

AOM Drive: the sum of 50 Sines

WHY A NEW LIGHT MICROSCOPY?

Limitations of Lenses

Low Resolution Large Field of View Long Working Distance

- Lens link resolution, field of view, working distance
- Lens cannot image wide region (brainstem nuclei) with high resolution (synapse)

SYNTHETIC APERTURE MICROSCOPY (SAM)

Add laser illumination and computer program to a lens

Phases of lasers determine high resolution illumination

Inside a single pixel: How resolution is boosted

PHASE RELATION BETWEEN BEAMS MUST BE CALIBRATED

ESTIMATING PHASE RELATIONS BETWEEN 15 BEAMS

15 evenly spaced beams arranged in a ring

solve a set of linear equations

INDEPENDENT RESULTS FOR ALL PIXELS SHOWN AS AN IMAGE

256*256 pixels grayscale image

independent

results for

1800

Results for 15 beams

Collectively

shown as a

DISCUSSION

linearly and periodically over CCD region Periodicity agrees with beam angle and wavelength

Estimated phase progresses

685nm 744 nm

 Direction of phase progression agrees with beam direction

Supported by NIH Research Grant R01-DC00238 and DARPA Grant 6890324

Reference M. S. Mermelstein. Synthetic Aperture Microscopy. PhD Thesis.