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Abstract

The techniques of patterned excitation microscopy (PEM, also referred to in the literature as structured illumination, harmonic excitation

light microscopy, or laterally modulated excitation microscopy), has recently been extended to the non-linear regime, permitting a further

increase in resolution breaking the Abbe diffraction limit (saturated PEM, saturated patterned excitation microscopy (SPEM)). Fluorescence

saturation was suggested as the non-linear effect employed to achieve this aim. Here a two-dimensional extension of the linear and the non-

linear patterned excitation technique is introduced and simulations of the expected resolution improvement are presented. The simulations

account for photon statistics, a sub-optimal degree of modulation and a high amount of background fluorescence in the sample. The resulting

point-spread-functions achieve a full width at half maximum of 215 nm (widefield), 118 nm (linear PEM), and 57 nm (saturated PEM, 9 £ 9

orders). For higher resolution, an increased number of detected photons and of raw data images are required. A potential method for

substantially decreasing the required number of raw images in PEM and SPEM is discussed.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent publication (Heintzmann et al., 2002) the

concept of saturated patterned excitation microscopy

(SPEM) was introduced. This method is a non-linear

extension of various linear techniques (in this article

referred to as patterned excitation microscopy, PEM),

laterally modulated excitation microscopy (LMEM)

(Heintzmann and Cremer, 1999), structured illumination

microscopy (Gustafsson, 2000; Gustafsson et al., 2000)

and harmonic excitation light microscopy HELM (Frohn

et al., 2000, 2001). All of these methods are based on

the separation of overlapping components of the imaged

object in Fourier-space. As an effect of patterned

excitation, these components are shifted in Fourier-

space in relation to each other. Therefore, each

separated component can be reassigned to its ‘native’

places, such that the zero frequency of each component

corresponds to the zero frequency in Fourier-space,

resulting in an improved resolution since an enlarged

region of sample information in reciprocal space has

been transferred in comparison to flat illumination

widefield microscopy.

The non-linear extension of PEM by use of fluorescence

saturation introduces further such components at even

higher spatial frequencies, which can again be separated and

reassembled, enhancing the range of transferable spatial

frequencies and thus the resolution (Heintzmann et al.,

2002). As with other non-linear microscopy methods

(Schönle et al., 1999; Klar et al., 2000) the diffraction

barrier (Abbe Limit) can then be overcome.

The aim of this article is to expand the method of

patterned excitation to two-dimensional excitation patterns,

and to expand the treatment of how to optimally reassemble

the extracted object components.

2. Methods

In this section, the steps of data-processing along with

the theory will be described in detail in the order in which

they are computed in the simulation. It will start with a

description of the patterns, followed by the effect

of fluorescence saturation, image formation and finally
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the image reconstruction, in which the structure of the

excitation pattern is determined from the noisy data and the

final result is obtained by a weighted averaging procedure

in Fourier space.

The simulations presented below were all carried out on a

grid (162 £ 162 pixels) with 15 nm sampling distance. The

point spread function (PSF) for imaging was simulated

using high numerical aperture vector theory (Egner and

Hell, 1999) at a wavelength of 520 nm, aplanar apodization,

a numerical aperture of 1.3 and a refractive index of 1.518.

These parameters yielded a widefield cut-off frequency at a

relative distance (relative frequency) of 15% to the Fourier-

transformed image border (in X or Y).

The distance of the illuminating dots, arranged in a two-

dimensional square grid, were 27 pixels (405 nm in object

space) in X and Y. The first-order diffraction spots from

coherent illumination (at 488 nm) of this dot pattern would

hit the back focal plane of the objective at 92.7% of the

acceptance radius.

Photon noise was introduced into the images according

to a Poissonian distribution. 104 expected photons were

assumed in the brightest pixel.

Most parameters (the PSF, the sampling and the relative

saturation) of these simulations corresponded closely to a

previous publication (Heintzmann et al., 2002).

2.1. Two-dimensional patterns for excitation

A possible setup for generating two-dimensional exci-

tation patterns that can be altered/shifted reliably along two

dimensions, is shown in Fig. 1. The pattern is generated by

illumination of a spatial light modulator (SLM), displaying

a periodic structure with coherent light. To further influence

the pattern and enhance its modulation depth, an order-

selection aperture can be introduced, which can suppress

certain diffraction orders and transmit others. Fig. 2 displays

the simulated excitation patterns. Panel (a) shows the

simulated excitation pattern in the sample plane originating

from a point grid under normal illumination with coherent

light. The parameters have been selected such that only four

first diffraction orders and the zero diffraction order pass

through the back aperture of the objective. In other words,

the excitation pattern is generated by the interference of five

planar waves. Furthermore, a scalar theory was assumed for

the illumination part, not considering the polarization

effects. The two dimensional excitation intensity pattern

Iexðx; yÞ in the plane of focus can be described as

Aexðx;yÞ ¼ expðikðx2DxÞÞþ expð2ikðx2DxÞÞ

þ expðikðy2DyÞÞþ expð2ikðy2DyÞÞþm ð1Þ

Iexðx;yÞ ¼ lAexðx;yÞl
2
¼Aexðx;yÞA

p
exðx;yÞ

The star ( p ) stands for the complex conjugate and iUffiffiffiffi
21

p
: The complex-valued amplitude function is the sum of

plane waves (here in 2D) without loss of generality directed

along the coordinate axes. The two-dimensional intensity

distribution Iexðx;yÞ is given by the absolute square of the

amplitude Aexðx;yÞ: The vector ½Dx;Dy� describes the spatial

displacement of the pattern. The absolute spatial frequency

k is for symmetry reasons assumed to be equal for four of

the plane waves, depending on their simulated angle of

incidence onto the focal plane, which in turn depends on the

length of the unit cell in the pattern displayed on the SLM.

The real-valued constant m (in Fig. 2a, m¼ 1) originates

from the zero-diffraction order. As observable in Fig. 2a, the

coherent superposition of the amplitude spread functions

leads to bright ‘ghost-spots’ (grey arrow) at positions

between the nominal imaged spot positions (four of them

marked by white arrows). The removal of the zero

diffraction order from the illumination simplifies the pattern

(Fig. 2b), now having twice the spatial frequency of the

nominal image periodicity.

Aexðx;yÞ ¼ expðikðx2DxÞÞþ expð2ikðx2DxÞÞ

þ expðikðy2DyÞÞþ expð2ikðy2DyÞÞ ð2Þ

Iexðx;yÞ ¼Aexðx;yÞA
p
exðx;yÞ

Incoherent illumination from all accessible spatial direc-

tions to the grid would mostly remove the ‘ghost spots’ in

Fig. 2a and would theoretically permit the transmission of a

pattern up to twice the spatial frequency when compared to

Fig. 1. Possible experimental setup for two-dimensional patterned

excitation. In the case of saturated patterned excitation microscopy

(SPEM) the light source (here laser) needs to be strong enough to cause a

non-linear dependence of the emitted light intensity on the local

illumination intensity.

Fig. 2. The excitation pattern in real space. (a) Simulated intensity pattern

Iexðx; yÞ in the object plane generated assuming a square grid and passing

the zero and the first diffracted orders through the back aperture. The grey

arrow marks a ‘ghost’ spot stemming from the coherent illumination

(neglecting polarization effects). (b) Illumination pattern when the zero

diffraction order is removed from the illumination. (c) The emittability

pattern resulting from (b) at high intensities. 10% background intensity

were assured prior to the influence of saturation. This pattern was used in

the SPEM simulations. (d) Schematic representation of the illumination

pattern (b) in Fourier-space. The numbers indicate the relative strength of

the orders.
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the coherent perpendicular illumination case. Thus, the limit

of high spatial frequency generation in the illumination

pattern using coherent illumination suppressing the zero

order is identical to incoherent illumination and a reduced

unit cell in the SLM pattern. However, the coherent case

leads to an optimised contrast in the object plane. A

practical difficulty when illuminating with coherent light is

the avoidance of the appearance of speckles.

In the following section the coherent situation with

suppression of the zero diffraction order (Fig. 2b and c) is

assumed. For the Fourier transformed intensity Iex this

results into 3 £ 3 orders placed in a square reciprocal lattice,

which is rotated by 458 (Fig. 2d).

2.2. Fluorescence saturation

Driving a large fraction of the fluorophore population

into the singulet excited or the triplet state (fluorescence

saturation) causes a non-linear dependence of the local

fluorescence emission intensity on the illumination inten-

sity. For the sake of simplicity this effect was simulated by

Iemðx; yÞ ¼ Emðx; yÞrðx; yÞ

Emðx; yÞ ¼
fIexðx; yÞ

f þ Iexðx; yÞ

ð3Þ

with Iexðx; yÞ representing the excitation intensity (with its

maximum normalised to 1), Iemðx; yÞ denoting the emission

intensity (except for a constant factor which does not

matter), which is proportional to the fluorophore density r

and the spatially dependent emittability Emðx; yÞ: The

characteristic saturation factor ðf Þ for the simulations

involving saturation was 1/5. Eq. (3) corresponds to a

simple two-state model of fluorescence saturation (Sandison

et al., 1995; Tsien and Waggoner, 1995; Heintzmann et al.,

2002), with a relative saturation a (ratio of the emitted

intensity to the maximal possible emission) of 5/6 at the

strongest simulated excitation intensity.

Depending on the experimental conditions and selected

fluorophores, some deviations from Eq. (3) may occur but

are not expected to significantly perturb the general results.

Even under fluorescence saturation conditions, the

intensity in every image is linearly related to the fluorophore

density in the sample. For this reason the emittability

Emðx; yÞ has been introduced to characterize the spatially

dependent ability of a fluorophore to emit light (Heintzmann

et al., 2002). The emittability is calculated by application of

Eq. (3) to the illuminating intensity pattern, omitting r: Fig.

2c displays an emittability obtained from the illumination

intensity pattern of Fig. 2b.

2.3. Image formation

In Fig. 3 the object (Fig. 3a) is displayed along with

images (no noise applied) simulated at two successive

positions (phases) of the excitation spot raster as defined by

Dx and Dy in Eqs. (1) and (2) (Fig. 3b and c). A noticeable

difference in the detected intensity, depending on the

position of the excitation pattern, is visible. In Fig. 3b

and c, a linear dependence of the fluorescence emission on

the excitation intensity was assumed, whereas in Fig. 3d, the

saturation according to equation 3 was included. As

expected, saturation leads to a decrease in contrast. To

demonstrate that the SPEM method does not require the

appearance of exact zeroes in the illumination pattern, a

general intensity offset of 10% was added prior to

saturation. This corresponds to a 90% modulation depth of

the illumination pattern in the sample.

2.4. Image reconstruction

To understand the data reconstruction process of PEM

or SPEM data, it is useful to investigate the data in

Fourier-space during various steps of the reconstruction

(Fig. 4). Widefield fluorescence imaging with flat

illumination acts like a mask (Fig. 4b) on the Fourier-

transformed object (Fig. 4a) by virtue of its multiplication

with the optical transfer function (OTF) that decays to

zero above a limiting frequency. Linear patterned

excitation leads to a convolution of the object with the

Fourier-transformed intensity distribution prior to the

‘masking’ imaging process. The object’s zero spatial

frequency is strongest. When illuminating with a pattern,

this object zero frequency can be observed to appear at

multiple positions (four out of the nine such places are

marked by arrows) in the Fourier-transformed PEM image

(Fig. 4c), indicating the presence of overlapping multiple

shifted object components, which have to be separated for

the reconstruction.

Fig. 3. The simulated object and its images at different excitation phases. (a)

The object used in the simulations. For the sake of clarity, low intensities

have been enhanced. (b) A simulated image assuming a linear relationship

at the first position (phase) of the excitation pattern. (c) The simulated

image at the second position of the excitation pattern. (d) Simulation of the

non-linear saturation effect at the first excitation phase (compare with (b)).
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Imaging at various spatial positions of the excitation

pattern permits such a separation. This is achieved by

inverting an equation system that models the varying

complex valued phase contribution of each object

component to the measured image. The forward model

can be approximated as

~Inðkx; kyÞ ¼
X

l

Mln ~rlðkx; kyÞ

Mln ¼ c0l exp 2pi
lxnx

sx

þ
lyny

sy

 ! ! ð4Þ

lxe{ 2 mx…mx}; lye{ 2 my…my};

nx ¼ {0…sx 2 1}; ny ¼ {0…sy 2 1}

where l is an index iterating consecutively over each of

the accounted two dimensional positions of the reciprocal

grating (indexed by lx and ly) caused by the SLM, which

is in this case assumed to be of rectangular shape

accounting for 2mx þ 1 positions along the kx direction

and 2my þ 1 positions along ky: The number n indexes

(by nx and ny) the s ¼ sxsy images acquired at equidistant

steps (1=sx of the unit cell along X and 1=sy of the unit

cell along Y) along the respective x and y spatial

position. Eq. (4) has been constructed for the case of real

space movements corresponding to the principal basis

vectors in reciprocal space. In the simulated situation

there is a 458 rotation between movement ½Dx;Dy� and

the basis vectors of reciprocal space. This can however

be incorporated by iterating ½nx; ny� over the set up phase

shift vectors as expressed in the basis system of the

reciprocal grid directions.

To solve the above equation system, the inverse (or

pseudo-inverse) of the matrix Mln can be applied to the

vector defined by the Fourier-transformed (indicated by

the tilde ‘~’) measured images ~Inðkx; kyÞ yielding a vector of

the individual object component values at each pixel

~rlðkx; kyÞ: Due to the linearity of the Fourier-transformation,

this step can actually be performed in real space. It should

be noted, that the equation system can become singular

under some conditions, which has to be avoided. The

extracted object components ~rlðkx; kyÞ (Fig. 4d) can then be

shifted by ½sx;l; sy;l� (Fig. 4e), such that the zero object

frequency is at the origin of the reciprocal space. In the

simulations presented here, the shift vector was calculated

from the image data, as follows.

2.4.1. Automatic determination of the excitation pattern

For reconstruction, it is necessary to know the precise

distances and positions of the excitation pattern. Although

this can in theory be known a priori, it is often difficult to

achieve in practice. An automatic determination of the grid

spacing unit vectors of the excitation pattern (in this case

along the diagonals), as well as the precise position of the

grid in the first acquired frame is therefore highly

desirable. This has been achieved by an approach based

on cross-correlation (Gustafsson, 2000; Gustafsson et al.,

2000). For order separation, previous knowledge of the

grid spacings is not required. The separated components

can then be used to determine the spacings. Since the

position of the first order can at most slightly exceed the

range of transferable spatial frequencies (due to the shorter

excitation wavelength) its attached object component of

first order will always have an overlap-region in Fourier-

space with the information contained in the widefield-like

zero order component. Since the information in the overlap

region should be identical, the relative shift of the

components in Fourier-space can be obtained by a precise

determination (with sub-pixel accuracy) of the maximum

of their cross-correlation function. This defines the real-

space grid-spacing and thus the distances between all

orders along this spatial direction. Sub-pixel accuracy was

reached by the determination of the centre of mass of the

magnitude of the cross-correlation function in a 3 £ 3 pixel

region around the maximum after subtraction of the

minimum in this region:

Fig. 4. Steps of the reconstruction in Fourier-space. In these simulations,

no photon noise was applied and from panel (e) on the imaging OTF has

been corrected. (a) Fourier-transformed object. (b) Simulated widefield

image of the object. (c) A single image using linear patterned excitation

(no saturation). (d) Extracted first order component. (e) This component

shifted as to align the zero frequency with the object zero frequency

(indicated by the arrow). (f) All 3 £ 3 extracted components pieced

together. No final apodization has been performed. (g) Apodization of (f)

with a relative frequency of 0.25. (g) Magnitude in Fourier-space of a

SPEM reconstruction (with saturation, 7 £ 7 components, apodized to

0.4) (h) SPEM reconstruction (with saturation, 9 £ 9 components,

apodized to 0.5).
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where imax and jmax denote the x- and y-index respectively

of the maximum pixel in the absolute magnitude of the

two-dimensional cross-correlation function CCði; jÞ:

Through a similar shift determination for one perpen-

dicular first order, the two dimensional grid-spacing and

thus the relative shift of each extracted component could be

determined. The relative grid position of the first image was

determined by evaluating the complex phase of the zero

frequency of the two respective back-shifted first order

components. It should be noted that these positions can also

be determined from the cross-correlation (Gustafsson, 2000;

Gustafsson et al., 2000).

2.4.2. OTF compensation and weighted averaging

The effect of the widefield-like emission OTF ~hem;iðkx þ

sx;i; ky þ sy;iÞ on the extracted and shifted object components

~riðkx 2 sx;i; ky 2 sy;iÞ was compensated, and these extracted,

compensated and shifted components were averaged, with

weights depending on the pixel position in Fourier-space

(Fig. 4f):

~Irecðkx; kyÞ ¼

Xð2mxþ1Þð2myþ1Þ

i¼1

ai ~riðkx 2 sx;i; ky 2 sy;iÞ

ðsiaiÞ
2Xð2mxþ1Þð2myþ1Þ

i¼1

1

ðsiaiÞ
2

;

ai ¼
~hgoalðkx; kyÞ

~hem;iðkx þ sx;i; ky þ sy;iÞ
ð6Þ

The si denote the standard deviations of the noise levels,

estimated from high spatial frequencies of ~riðkx; kyÞ; for

which the signal level should be zero. The reconstructed

Fourier-transformed image ~Irecðkx; kyÞ was finally trans-

formed back to real space.

Weighted averaging in Fourier-space is described in a

second article in this journal (Heintzmann et al., 2003),

where the method is applied to data obtained at different

pinhole settings of a confocal microscope. This concept has

been introduced in Gustafsson (2000). The method

employed in the simulations presented here is identical to

that in Heintzmann et al. (2003), in which assumptions for

the relative strength of the components were required. In the

data presented here, the relative strengths were obtained by

analysing the Fourier-transform of the emittability pattern.

Some very small higher-order components were completely

omitted. The scaling factors depend on the chosen

illumination intensity as well as on the shape of the

saturation curve. Thus a precise experimental characteriz-

ation of a specific fluorophore is essential for its use in

SPEM, especially if its behaviour deviates from the model

given in Eq. (3). It should be noted that the relative strengths

of the separated components may also be obtained by

comparison of their relative magnitude (Gustafsson, 2000;

Gustafsson et al., 2000).

The averaged components lead to a non-isotropic border-

frequency in Fourier-space (Fig. 4f). In addition, the abrupt

drop in spectral power in Fourier-space causes ring-shaped

artefacts in real-space. To avoid both of these effects, a final

apodization is applied to the reconstructed data (Fig. 4g). In

the simulations with saturation (SPEM) the principle of

reconstruction is identical to the non-saturated case except

for the fact that many more components have to be

separated and accounted for. In the cases presented here,

these are 7 £ 7 ¼ 49 components (Fig. 4h) and 9 £ 9 ¼ 81

components (Fig. 4i). The goal function of the OTF after

apodization was

~hgoalðkx;kyÞ ¼
ðk2

x þ k2
y Þ, k2

max
: cos

p
ffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
2kmax

0
B@

1
CA

ðk2
x þ k2

y Þ$ k2
max

: 0

8>>>><
>>>>:

ð7Þ

As noted in Heintzmann et al. (2003) based on Sementilli et al.

(1993) and Gabor (1946) this minimizes the second moment

of the PSF, projected along any in-plane direction. The

apodization border kmax measured in relative frequency to the

image border in Fourier-space (in X or Y) was selected as 0.25

(3 £ 3 components), 0.4 (7 £ 7 components) and 0.5 (9 £ 9

components), yielding close to isotropic data for Fig. 4g–i.

3. Results

The real-space reconstructed results of the simulations

are displayed in Fig. 5. In all of these simulations photon

noise (104 photons at the maximum) was applied. This high

amount of photons was necessary for the reduction of

px ¼ imax þ

X1

i;j¼21

i CCðimax þ i; jmax þ jÞ2 Min
1

i;j¼21
CCðimax þ i; jmax þ jÞ

� �

Sum

py ¼ jmax þ

X1

i;j¼21

j CCðimax þ i; jmax þ jÞ2 Min
1

i;j¼21
CCðimax þ i; jmax þ jÞ

� �

Sum

Sum ¼
X1

i;j¼21

CCðimax þ i; jmax þ jÞ2 Min
1

i;j¼21
CCðimax þ i; jmax þ jÞ

� �

ð5Þ
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artefacts in the SPEM-reconstruction using 9 £ 9 com-

ponents. In Fig. 5, a substantial increase in resolution is

observed, depending on the number of components.

However, it is also obvious that high-resolution images

are influenced by noise to a higher degree, resulting in

striped artefacts, which at the lower photon levels

completely destroy the image structure (data not shown).

Even in the noise-free case, residual artefacts can still be

observed (Fig. 6a). These are assumed to originate from the

higher orders introduced by the saturation process, which

are not accounted for in the reconstruction.

These simulations were a worst-case situation. For a

9 £ 9 components reconstruction assuming 100% modu-

lation, no fluorescence background in the sample and a

maximum of 103 photons per pixel, the resultant image

quality was satisfactory (Fig. 6b).

A noise-free calculation was also performed and the

full width at half maximum (FWHM) of the point-

object evaluated by fitting a Gaussian distribution to

the reconstruction results (Fig. 7). The increase in

resolution depended on the number of orders considered

in the reconstruction.

3.1. Required minimum number of images

An important issue is the minimum number of images

required for successful reconstruction. At first glance, it

seems that at least as many images (s) as total number of

orders to separate ½m ¼ ð2mx þ 1Þð2my þ 1Þ� are required.

Re-evaluating the situation from the perspective of infor-

mation theory (Cox and Sheppard, 1986), however, leads to a

different view. Assuming n pixels in Fourier-space, which

can in principle be determined in the final reconstruction and

r pixels in Fourier-space being inside the detection OTF in

each raw image, a number of s $ n=r images could be

sufficient to yield an unambiguous result. However, the

above consideration has to be viewed with care, since it

presupposes a non-redundant situation in the raw data. In the

current situation with at least m required images, some pixels

in Fourier-space are determined multiple times and then

averaged (by the weighted averaging approach). To reduce

the number of required images, it should therefore be

possible to dispose of multiple determination of Fourier-

space pixels and instead include this redundancy into the

equation system that connects the components. A single pixel

of the measured raw data in Fourier-space is the sum of m

overlapping orders. However, identifying the positions in

Fourier-space to which the extracted components of this

pixel contribute in the final reconstructed result (after shifting

and reassembling), it can be seen that some of these positions

remain within the range of the detection OTF (as an example

the situation for 3 £ 3 component PEM is shown in Fig. 8a).

All of these connected pixels (seven connected pixels

exemplified in Fig. 8a) have overlapping information content

and it is thus useful to describe them in a single equation

system. All of the reconstructed orders are placed on

a regularly spaced reciprocal lattice (the order lattice)

Fig. 5. Reconstruction of the object from the image data. (a) The object used

in the simulations (clipped at high intensities to enhance the structure). (b)

A calculated widefield image of the object. (c) Reconstructed image from

81 images without saturation (linear PEM case, corresponding to Fig. 4f).

(d) Apodized PEM reconstruction to yield an isotropic resolution

(corresponding to Fig. 4g). (e) Reconstruction from data including

saturation (7 £ 7 orders accounted for, with final apodization). (f)

Reconstruction from SPEM data accounting for 9 £ 9 orders including

final apodization.

Fig. 6. Influence of photon noise. (a) If no photon noise was introduced this

reconstruction was obtained assuming 9 £ 9 components under saturation

conditions. (b) In this simulation, only 1000 photons in the maximum pixel

have been applied. However, no background fluorophore and 100%

modulation degree were assumed. For better visualization, negative values

were assigned to zero.

Fig. 7. Simulated point spread functions. No photon noise was applied in

this simulation. The full width of half maximum for the curves was

determined to amount to 215 nm (Widefield), 118 nm (Linear PEM), 70 nm

(7 £ 7 SPEM), 57 nm (9 £ 9 SPEM) respectively.
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spanned by lattice unit vectors (Fig. 8b). Positions in the

reconstructed Fourier-transform connected by integer com-

binations of order lattice vectors can be combined into a

single equation system, avoiding the necessity for weighted

averaging, but assuming the detection OTF is known a priori

or determined from the experimental data. For the example

pixels shown in Fig. 8a, seven independent measured data are

acquired with every measurement. From this information a

total of 23 regularly spaced pixels in the final reconstructed

image (Fig. 8b) have to be determined. Thus 23 unknown

reconstructed points need to be determined from s images,

each containing the information for seven positions. It

follows that s ¼ 4 rather than s ¼ 9 images are more than

sufficient to determine the 23 unknown values in the nine

reconstructed object components. However, the number of

required images depends on the precise position of the points

entered into the equation system. In the example shown in

Fig. 8, a maximum number of images is required, when only

four orders in the raw data are measured (Fig. 9). In this case

16 positions are present in the reconstructed data, implying

that four images are just about sufficient for this set of pixels.

The required number of images is highly dependent on the

distance between the zero and the first order. At larger lattice

spacing this number increases, as would be expected from

information theory.

4. Discussion

I have demonstrated in this work that 2D-patterned

excitation is a suitable approach for linear and non-linear

patterned excitation microscopy techniques. In the non-

linear case, the practically achievable resolution depends on

the signal-to-noise ratio (SNR) in the raw data, on the

achievable degree of modulation and also on the relative

contribution of background fluorescence that may also

originate from out-of-focus light in a three-dimensional

sample. In analogy to multi-point confocal microscopy,

employing more sparsely distributed spots in the illumina-

tion pattern is expected to substantially reduce the influence

of this out-of-focus fluorescence on the final reconstruction

result, albeit at the expense of a larger number of

components to account for and thus a large number of

images to acquire.

An experimental realization of the simulated concept

could, for example, be based on a Q-switched Nd:YAG laser

with a pulse energy .10 mJ per pulse, sufficient for

saturating the fluorescence in a reasonable field of view. It

is also possible to drive the system into triplet state saturation,

depleting the ground state. A scheme for achieving resolution

improvement base on ground-state depletion (GSD) has been

suggested previously, albeit for a scanning approach (Hell

and Kroug, 1995). Due to the much longer lived triplet-states

light-sources such as pulsed flash-light systems could be

used. Although Eq. (3) might not directly be applicable for

GSD, a substantial non-linearity will arise and a good

resolution enhancement can thus be expected.

The choice of the excitation pattern has a major influence

on the reconstruction result. The higher order spots in the

emittability distribution possessing only small strengths are

the predominant cause for the noise in the reconstruction

result. Shifting more spectral energy to these higher orders

is therefore desirable.

At high numerical apertures, the vector nature of light

can have a major impact on the strength of the illumination

orders (private communications, M.G.L. Gustafsson). The

polarization effects will reduce the interference contrast

between most orders, a phenomenon that has not been

accounted for in the presented simulations. At worst, two

diffraction orders, each at an angle of 458 to the optic axis

and parallel polarization will not interfere at all. Using a 1D-

gridlike illumination and a polarization vector perpendicu-

lar to the optical plane of each refracted beam could have

practical advantages, since this way permits the contrast to

approach one, even in the high-NA case.

Fig. 8. Possible equation system for the 3 £ 3 linear case accounting for the

order information in 2D. (a) The Fourier-transformed range of raw-data

modified by the OTF with its limit indicated by a circle. The gray spots

indicate the positions that can be connected by a single equation system.

The arrows indicate the k-vectors to these spots in the raw data. (b) The

positions of the gray spots in the reconstructed Fourier-transformed data.

Due to the symmetries of the emittability pattern, many spots overlap and

only a total of 23 spots have to be determined. Four raw data images would

thus be more than sufficient.

Fig. 9. Regions in the Fourier-transformed raw-data require a variable

amount of images. In the worst case displayed here only four spots are

present in the raw data with a total number of 16 spots to be determined,

thus requiring four images of raw data.
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Furthermore, the choice of an illumination pattern of

square-grid shape is far from spherically symmetric, causing

a non-isotropic decay of the weights of the higher

emittability orders.

An excitation pattern of three-fold symmetry (hexago-

nal) is expected to shift more energy into the high orders

caused by saturation, as well as result in an advantageous

more isotropic decay of orders. A hexagonal pattern with

high contrast can be achieved by transmitting three orders

near the border of the back-focal aperture with a relative

angle of 1208 if measured from the blocked zero order. An

approximation to this situation can also be generated on a

square grid.

From the simulations it is not yet clear whether a

simultaneous or a successive application of differently

shaped patterns (e.g. with different directions) leads to an

optimal quality of the final image. Successive application of

a series of different patterns can be realized via rotation of

the excitation grid (Heintzmann and Cremer, 1999;

Gustafsson, 2000) or by generating various patterns using

a single programmable spatial light modulator (SLM). The

SLM has practical advantages, since it does not require

macroscopically movable parts and its programmability

offers flexibility advantages (Hanley et al., 1999; Heintz-

mann et al., 2001).

It should be noted that the imaging OTF has to be known

in order to generate a reconstruction. In the reduced

equation system, connecting in the raw data different

positions in reciprocal space, the system will depend on

the exact position in reciprocal space under evaluation. In

principle, the OTF could be used for correcting the raw data

prior to application of the equation system, which reduces

the problem to only a small fixed number of equation

systems. However, in over-determined situations this could

lead to sub-optimal results, since the relative strength of the

information is not appropriately conserved.

The measured raw data, as well as the reconstructed data

are real-valued, and thus the computation time and the

required storage space can be reduced, since only half of the

resulting Fourier-transformed image needs to be computed.

For the equation system, however, this does not seem to lead

to a reduction in the number of required images.

When a number of images greater than the number of

required excitation phases is determined, the consideration

presented above (Fig. 8) should lead to further improvement

of the signal to noise ratio, since further constraints are

placed on the data.

Considering the SPEM situation for 9£9 components (at

a spot position similar to Fig. 9) the number of required

images can be reduced quite substantially from 81 to 25 (4

spots per image, 10 £ 10 spots for the reconstruction). In a

similar manner, this approach can be applied to patterns of

different symmetry or even to data taken successively with

different patterning directions. It can also be extended in a

straight-forward manner to a full 3D treatment of data

stemming from three-dimensional samples.

A complication is that extreme care has to be taken

when interpolations in Fourier-space are performed. Since

the relative shift in Fourier-space can be a non-integer

number of pixels along each spatial direction, the indicated

vectors in the raw data do usually not align with the pixel

positions. A possibility for circumventing this effect is to

shift the raw data by the required amount though

multiplication with expð2ikDxÞ in real space. The shifted

raw data can then be used to determine the remaining

values at the interpolated positions in Fourier-space.

Fortunately these shifts (in this case 4) have to be

performed only once since the geometry remains identical.

The resulting final pixels still need to be shifted to their

appropriate positions in Fourier-space. A disadvantage of

this approach is that, for each pixel in Fourier-space, a

different equation system has to be solved, potentially

leading to long computation times. A further analysis of

the properties of these equation systems will hopefully lead

to a better understanding and thus result in a simplified

solution. Simulations using this reduced equation system

have not yet been performed, but a major improvement in

signal-to-noise along with a reduction of required number

of images is to be expected.

A reconstruction based on Maximum Likelihood (ML) is

expected to further improve the results (Verveer and Jovin,

1997, 1998). ML-based reconstruction has the important

advantage of correctly accounting for the properties of

Poissonian photon statistics. Furthermore, it introduces

constraints on the sample such as its positivity. This way, a

reconstruction up to higher frequency regions (even beyond

the measured frequency limit) is possible, simultaneously

yielding a substantially improved signal to noise ratio.

However, the results of ML-based methods depend on the

sample structure, meaning that the result can no longer be

described as a simple convolution of a resultant PSF with

the object. An ML-based approach to the data treatment of

patterned excitation data has, to my knowledge, not been

developed to date.

Photobleaching possibly has an influence on the SPEM

method. As discussed in Heintzmann et al. (2002),

photobleaching will be more severe than in the linear

methods only in cases where excited (singlet or triplet)

state absorption plays a major role. It should also be noted

that, although the simulations have been performed for the

non-linear process of fluorescence saturation, a number of

other coherent and non-coherent non-linear effects such as

two-photon absorption, stimulated emission, Rabi-oscil-

lations, coherent anti-stokes Raman scattering could

possibly be employed in the same or at least very similar

way.

In summary, two-dimensional patterned excitation offers

practical advantages for linear as well as for non-linear

cases. The SPEM simulations demonstrate the potential for

exceptionally high resolution and there is a great potential to

reduce the required number of images.
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