
Appendix A 
Translation of 

Radon's 1917 Paper* 

ON THE DETIERMTNATION OF FUNCTIONS FROM THEIR 
INTFGRALS ALONG CERTAIN MkNlFOLDS 

If one integrates a function of two variables x, y-apoint-funcfion f ( P )  in the 
plane- that satisfies suitable regularity conditions, along an arbitrary straight 
line g, then the values F ( g )  of t h s e  integrals define a line-juncfion. The 
problem that is solved in part A of this paper is the inversion of this functional 
transformation. That is, answers to the following questions are given: Is every 
line-function that satisfies suitable reguIarity conditions obtainable by this 
process? If this is the case, is the point-function f then uniquely determined by 
F and how can it be found? 

The probIem of finding a line-function F ( g )  from the mean values over its 
points j ( P ) ,  which is in a sense the dual problem, is solved in part B. 

Finally, in part C, certain generalizations that arise particularly from 
considering non-Euclidian manifolds as well as higher-dimensional spaces are 
briefly discussed. 

Interesting in themselves, the treatment of these problems is gaining even 
more interes~ because of the fact that there are numerous relations between this 
subject and the theory of the logarithmic and the Newtonian potential. These 
will be pointed out in [he appropriate places. 

A. DETERMINATION OF A POINT-FUNCTION IN THE 
PLANE FROM I T S  INTF,GRALS ALONG STRAIGHT LINES 

1. Let j ( x ,  y )  be a real function defined for all real pointsp = [x, y ]  that 
satislies the following regularity conditions: 

(a,) f ( x ,  y ) is continuous. 
fi,) The following double integral, which is  to be taken over the whole 

plane, is wnvergent: 

*Translated by R. Lohner, School of Mathematics, Georgia Institute of Technology. Atlanta. GA 
30332. 
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(c,) For an arbitrary point P = [ x ,  y ]  and any r 2 0, let 

1 2- 
f,(r) = - 1 f ( x  + rcos +, y + r sin +) d#. 

2~ 0 

Then for wery poinl P, 

Thus the following theorems hold. 

meom I. The integral of along the straight line g with the equation 
xcos + -t- ysin+ - p,  given by 

(1) 
+m 

~ ( ~ , + ) = ~ ( - p , + + n ) = l -  f ( p m s 0 - s s i n 4 , p s i n 0 + ~ ~ $ ) ~  
03 

is "in general" welldehned. This means that on any circle those points that 
have tangent lines ror which E d m  not exist lorn a set of linear measure zero. 

?Xeomm I' If the mean value of F( p,  4) is formed lor the tangent lines of 
the circle with center P = [x, y ]  and radius q: 

then this integral is hbsolutely convergent for dl P, g. 

Tlieomm III. The value of f is rnrnplerely determined by F and can be 
computed as follows: 

Here the integral is to be understood in the Stieltjes sense and it can also be 
defined by the formula: 

(III') 

Before starting with the prmf of these theorems, we note that conditions 
a,-c, are invariant under rigid motions of the plane. Thus we can always 
consider the point [O,C)] to represent an arbitray point of the plane. 
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Now the double integral 

is seen to converge absolutely. Using the transformation 

x = q c o s $ - s s i n + ,  y = g s i n + + s c o s $ ,  

it becomes 

so that its value can also be expressed as 

From well-known properties of absolute convergent double integrals, theorems 
I and I1 follow. 

In order to derive formula (1111, one can choose the following path: 
Introducing polar coordinates in (1) yields 

or, using the mean value notation from c, :  

Comparing this with the value of (1) obtained before, 

Introducing the variables r1 = v, qZ = u, this integral equation of the first 
kind can easily be solved by the well-known method of Abel, which yields 
formula (111) for 

jo(0) = f(0,Q). 
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However, it seems to be hard to derive this without placing further restric- 
tions on f; therefore, we prefer a direct verification. 

To prove the equality of the expressions (111) and (HI'), it first must be 
shown that 

I'a(q1 = 0- Iim - 
q-OD 9 

Because of (2), 

and this converges to zero as q + oo because of b , and c ,. 
Introducing (2), the right-hand side of (111') is t ransfomd into 

If the order of integration is interchanged in the second integral, one can 
integrate with respect to g and see that this integral is an absolute convergent 
double integral that justifies the interchange. Moreover, one finds the value 

for the preceding expression which yields, in fact, f'(0) )- f/0,0), as can be 
shown without difficulty. 

2. Let F( p, 9 )  = F(-p,  + + .n) be a linefunction satisfying the following 
regularity conditions: 
(a,) F and its derivativw 5, $,, F,,, F+, F,,, F,,+ are continuous 

for all [ p, $1. 
(4) E, F,, pF,, pF,, and pF,, converge to zero uni fody  in 9 as 

p 3 00. 

(5) The integrals 

converge absolu teEy and uniformly in 4. 
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Thcn we can prove the following theorem. 

meorem IY. If j ( P )  i s  formed acwrding to (111) or {IIf'), then it satisfies 
conditions a , ,  b,, c, and its integrals along straight lines yield the given 
F ( p ,  $1. Due to theorem 111, it is the only such function. 

Introducing polar coordinates, we get 

f( p cos $, p sin 4 )  -- - - / m + / 1 * 5 ( p c o s w  + p , w + 9 ) d o  
2 r Z  0 P 0 

1 m  =-/ ~ n ~ d p ~ ~ % _ ( p  + p c o s w , ~  +$)dw 
2a2 o o 

since 

+ fwdw kpf,,( pcos u + t ,  w + J.) dt 

and the first term is equal to zero because of F(p, 4) - 4 - p ,  + + m ) .  Thus 
the product of the integral with In p converges to zero as p + 0. From the 
same property of F, it also follows that 

Now it sufrices to show 

since the conditions a,-% are invariant under rigid motions. We let 

C satisfies regularity conditions that can be easily specified. According to 
this decomposition,J(p, 0) i s  split into two parts f,(p) and f,(p) that have to be 
investigated separately. Because of 
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it follows that 

Now, this is absolutely integrable from - oo to + oc with respect to p, 
which can be seen from interchanging the order of integration. The value of the 
integral is  

As to &(p) ,  we will show that it is also absolutely integrable and yields zero 
when integrated from - oo to + w. 

We can write j' ,(p) as follows: 

' ( P I  = $pw J - + ~ G ~ ~ (  p ,  w)ln ip - pcos wl .  urs  w do 
m 

p - p c o s w  pp cos2w 

m 

since the integral of the additional terms is zero and in this form integration 
with respect to p leads to an absolutely convergent threefold Integral. This is so 
because of - 

/_',*)... .In) p - p c o s w  p cos w 
ppcos=w I + I + p2ws14d ldp 

with 

A l p )  2. lim - = 
Ipl-ar Il ' l lnl~l 
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Thc integration with respect to p yields the value 

which completes the proof of (4). 
N o w  it remains to show that f satisfies the conditions a,-c,. 
The continuity Follows from the representation (33 because of the assurnp- 

tions a,-%. Condition b, is also satisfied since 

is integrable with respect to 4, as is easily seen. To show that c, holds, we form 

from which the validity of c, can be seen. This completes the proof of theorem 
IV. 

B. DETERMINATION OF A LINEFUNCTION FROM ITS 
POINT M E A N  VALUES 

3. Let F( p ,  +) = F( - p ,  + + v )  be a line-function satisfying the following 
regularity conditions: 
(a,) F, F,, F, are wntinuous, IF,( < M for all p, +. 
(b,) F,In(p( i s  convergent to zero uniformly in + as p + m. 

(q ) I ' F, 1 ln lp  1 dp is uniformly convergent in +. 

Again these conditions are invariant under rigid motions. We fonn the point 

where the Cauchy principal value is to be taken for the integral with respect to 
x. The value of F for any other straight line can be determined from this 
formula by means of a suitable rigid motion. 

To prove this, we first deduce from (5) that 

where A, B are two positive constants. 
Now, as we have done already earlier, we let 

where G ( p ,  +) is bounded in the domain of integration and has the limit zero 
asp -* a. From 

J-:G,(x cos cp + y sin +, +)cos $ sin + dy 

= [ ~ ( x  cos + + B sin 9,9) - G(x oos + - A sin +, $)]cos 9 
it follows that the second term of (6) tends to zero as A -* m, B -, cr, thus 
leaving only the first one to be investigated. Performing the analogous integra- 
tion, one sees that in this first term the integral with respect to + also tends to 
zero as A + m, 3 -+ m if the integfation is carried out over an intervaI which 
does not contain + = 0. Therefore, it remains to consider 

This integral can be written as 
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mean value of F( p, 4) for P = [x, y 1: 

/(x. y )  = Ljiq'2~(~ MI ) + y sin 4, 0 )  dg. " -n/2 

Then the foIlowing theorem holds. 

7bmnem K F is uniquely determined by specifying/; that is 
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Then, assuming A and B sufficien~ly large and interchanging the order of 
integration, after some computations one obtains [he value 

I t  is sufficient to determine the limit of the second integral as A + m. We 
write it as. follows: 

1 
-In( A sin e)[ F ( x  cos e + A sin e, 0) - F ( x  ws e - A sin a,  o)] 
r 

1 +' / .  ~n- E,( P , O )  d~ 
x w r s ~ - A s i n e  I p  - X I  

Since in the last integral the logarithm tends to zero uniformly as A -+ a, 
the limit follows: 

which leads to the limit of (6): 

It should be noted here that the latter expression represents the boundary 
values of the imaginary part of a regular analytic function in the upper half 
plane whose real part has the boundary values 2F(x, 0). 

If we now form 

. in the spirit of [ornula (V), then this double integral is absolutely convergent 
and leads directly to formula (V) since 
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4. Now Iet f be a point-function with the following regularity properties: 

(a,) f and its derivatives up to the the s m n d  order are continuous. 
(b,) The expressions j ( x ,  y ) ,  / m 1 n ( x 2  + y 2 ) f , ( x ,  y), 

/+ln(x2 + y2)&{x,  y) approach zero as x 2  + y Z  + a. 
(c,) The integrals 

and 

where D, f means any first and D, f any second derivative, are 
absolutely convergent. 

Again these conditions are invariant under rigid motions. Then the following 
theorem holds. 

7%eorem VI. The line-function formed from according to (V) has the 
point mean values j ( x ,  y ). 

It is sufficient to show the proof for the origin. For an arbitrary straight line 
through the origin, (V) yields after an integration by parts: 

I or, after introducing polar coordinates p, J.: 
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In order to form the point mean value for [O, 01, the integration with respect I In fact, I first found the inversion formula (IV) in this way. However, 
to @ from 0 to 2s can be carried out under the double integral, and then one carrying out this thought in a strict manner seems to be more difficult than the 
has to divide by 2a. The term containing a2f/t7$2 that appears during this direct verification, and it even fails in the non-Euclidian cases, which will be 
computation cancels when integrating with respect to 4 and there remains soon discussed. 

which indeed reduces to f(0,O). 
In order to show the uniqueness of F, i t  remains to show that the conditions 

a,-c, are satisfied, which makes it obviously necessary to place further 
restrictions on f. 

5. Here the Following remark, for which I am indebted to Mr. W. Blaschke, 
who also posed the problem, should be made: Both problems treated 
here are closely related lo the theory of the Newtonian potential. That 
is, if we consider the transition from a point-function to its mean 
values F along straight lines as a Iinear functional transformation 

and similarly the transition from a line-function F to its point mean 
values u 

v = BF, 

then it is natural to consider the composed transformation H = BR 
defined by 

I t  can now be readily seen that HI is  nothing but the Newtonian potential in 
the points of the plane that is covered with a mass of density (l/m)f. 
According to a remark made by G. Herglotz, this can be used to construct the 
inverse of the transformation H; this leads to 

where c,, i s  a notation for a mean value analogous to the previously introduced 
notations and A is the Laplacian operator. 
Now we could think of performing the inversion of R and H, which was 

done directly in 1-3 by means of 

Finally, we remark that the regularity conditions assumed in parts A and B 
are of course by no means the most general ones. This can be shown with 
simple examples. 

C. GENERALIZATIONS 

1 6. A far-reaching generalization of the problem treated in part A could be 
formulated as follows: Let S be a surface on which a lineelement rls is 
defined by any means, and a twice infinite family of curves C is given ~ on S. Then, a point-function on the surface is to be determined from the 

I integrals Jjds along the curves C. 

The nearest specialization is obtained by taking a non-Euclidian plane for S, 
the corresponding line-element for d! ,  and the corresponding straight lines for 
the curves C. In the elliptic case, the problem can be carried over to the 
geometry on a sphere. Interpreting in a well-known fashion a diametrical pair 
of points on the sphere as a point in the elIiptic plane, there results the 
problem of the determination of an even function on the sphere (i.e., a 
function with the same value in diametrical points) from its integrals along the 
great circles. Minkowski was the first to deal with this problem in principle*) 
and he solved it by expansions in terms of spherical functions. Later P. Funk 
computed Minkowski's solution and he has shown how to obtain this solution 
from the Abel integral equation! This is the method to which I owe the 
solution of problem A. Funk's solution is analogous to (111) with the exception 
that the sinus of the spherical radius appears in the denominator and to the 
integral there is added the value of F at the pole of the corresponding great 
circle divided by T .  In the hyperbolic plane, the solution of the problem is 
analogous to (111) too: 

(here the measure of curvature is assumed to be - - 1). This can be shown to 
be in total agreement with the derivation o i  (111) indicated in 1. 

In both cases, the question analogous to B can be posed also. In the elliptic 
geometry, nothing new results because of the absolute polarity, and in the 
hyperboIic case a solution analogous to (V) does not seem to exist. 

*Gesammelle Ahhandlungen n, pp. 2?7fI. 
' ~ u f h .  Ann., 74, pp. 283-288. 
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A second specialization results if (in the Euclidian or in the non-Euclidian or, using an already often used mean value notation: 
geometry) the circles with constant radius are taken for the curves C. Here 
Minkowski's method using spherical functions can be applied on the sphere G(q) = Q,,- ,Jw$,(q)(r2 - qz)(n-3)f lrdrp 
and so the problem can be solved to a certain degree. However, it is interesting Q 

that in this case the uniqueness of the solution can be lost. The reason for this This formula is analogous to ( I )  and has corresponding consequences. The 
i s  that for certain radii p delined by the zeros of the Legendre polynDmids of substitution r 2  = v. q Z  u leads to the integral equation 
even order there exist even functions on the sphere that do not vanish 
identically, but whose integrals along any circle with spherical radius p are 
zero. In the Euclidian case, the spherical functions are replaced by the integral @(u) = - 2 im+(o)(~ - u)cH-3)p &. 

theorem of the Bessel functions. Here there are always functions which do not 
vanish identically but whose integrals along any circle with fixed radius yield If n is awn, we get the same equation as (2) by differentiating ((n/2) - 1) 
zero. If this radius is one then these functions are (in polar coordinates) times, and from this, , 

J , ( x , p ) m  n$, J,,(x,p)sin n4, d o )  =f(O*O, . .  ., 01 

can be found. Thuq for a given F, the formation of F differentiations and one and linear combinations, where x, is a zero of J,. In the hyperbolic case, the 
integration is necessary. If n is odd. then this integration is omitted, since we Bessel functions are replaced by secalled conid functions for which the 

corresponding integral theorem has been proven by Weyl.* The results are now get from differentiating ((n - 11/21 times: 

analogous to the Euclidian case. 2(- l)(n-llfl 
+@I= a - 3  '~(#-~f l (o) .  

7. The results in parts A and B can be generalid in another direction by 
passing on to higher-dimensional spaces. In a Euclidian space R", one ~ " - l ( ~ ) ?  

an try to determine a point-function I ( p )  = J(xl, x,,. . . , x,) from its 
integrals F(a, ,..., a,, p )  over all hyperplanes a , x ,  + + a x = 

The three-dimensional case is particularly simple, but this case can also be 
u rn PI treated using a method analogous to 5 that yields vwy elegant results. From (a: + - - - + ~r: = I). Following a promlure analogous to that applied 

(73, the point mean value of F for q = 0 follows: in 1, we form the mean value G(q) of F over the tangent-planes of the 
sphere with center [O,  0,. . . , 01 and radius q. It is given by the ( n  - 1)- - 1 
fold integral: 

fCx, Y ,  2) 
~ ~ - z l l j ~ ~ d x d y ~ .  

1 
& ( q )  = K-aa, 4) du* 

This equation can considwed the Newtonian potential of the space covered 
with a mass of density Jf. Therefore. it follows that 

where dw is the surface element ahd Q, = (2rnP)/{r(n/2)) is the 
surface area of the n dimensional sphere af + . +.  t a: = 1. 1 

j ( x ,  7 ,  2 )  = - -AF, - 2v 
can be represented as an n-fold integral over f: 

where stands for the point mean value of F. 
Here also the problem analogous to B tin be solved. Using the methcd 

(7) qq) = k // fb~, ~ 2 , -  3 1") indicated in 5, one finds for a plane-function F with known point mean values 
hln x:+ . . . * :  =-,I f that 

2 - 2 ( " - 3 ) f l  
1 

( x ? + - . + x n  q ) F(E) = - j l ~ f d ~ ,  
X - * .  dr, 

(X;Z + . . . + X~){*-2"2 where du is the surface area eIernent of the plane E. d is the Laplacian 
operator for the three-dimensional space, and the integration is  to be taken 

*Gar! Nachr., 1910, p. 454. over the whole pIane E. 

- 'z?q 
T T . .  




