[54] METHOD AND SYSTEMS POR SCANNING AND INSPECTING IMAGES
 Dr., Princeton, NJ. 08540
【1 Notice: The portion of the serm of this patent subsequent co Apr. 16, 2002 has been disclaimed.
[21] Appl. Na: 300,238
[22] Filed: Mir. 87, 2990

Bodated U.S. Applicaion Dafa

[60] Continuation of Ser. No. 906,969, Sep. 15, 1986, which is a coratinuatioa of Ser. No. 723,183, Apr. 15, 1985, Prat. No. $4,660,086$, which is a continustion of Ser. No. 394,946, JuL. 20 1982, Pat. No. 4,511,911, which is a division of Ser. No. 13,608, Feb. 16. 1979. Pas. No. $4,338,626$, which is a davision or Ser. No. 778,331, Mar. 16, 1977, PaL. No. 4, 148,061, which is a continuation of Ser. No. 254,710, May 12, 1972 . Pat. No. 4,114,730, which is a continuation-in-part of Ser. No. 267,377, Mar. 11. 1953, abandoned, which is a continuation-inpart of Ser. No. 626,211, Dee. 4, 1956, Pat. No. 3,808,379, and a continustion of Ser. No. 479,467, Dec. 24, 1994, abandored.
[51] Iat Cls \qquad HOD 9/38
US. Cl
359/룬 358/106;
$356 / 380$ Field of Search .ancone. 358/93, 105, 106, 108, $358 / 133,180,101,125 ; 382 / 34 ; 356 / 380,386$, 387; 360/9.8, 72.1

Referemer Clted

U.S. PATENT DOCUMENTS

2,798,605	\%/1957	Richards . .omenomo........ 309/584
2,803,406	6/8998	Nustall
2,803,959	8/1999	
3,049,588	\$/1962	Burnert -m.......................... 358/106
3,621,130	11/1971	
3,689,691	9/1972	Partantyse-......-.......-. 358/92
3,918,957	2/1973	Gulits .-....................... 358/113

9,740,468 ©/1972 Gardier 358/107

Minary Examinar-John K. Peng
Atvormey, Agans of Firm-Gerald D. Hosier; Steven G. Lisa

[57]
 AESTRACT

Ao automatic scanning apparatus and method for detecting the presence of one of zore cbjects in an innage seid under investigation or inspection. Electro-optical scanniag neans, such as otelevision camera, is enployed to scan an image field and generate output elec. trical gigonls which vary in accordance with variations in the optical characteristics of the matter and objects in ore image field scanned. Such signals are computer processed and anslyzed to geaerate coded electrical «ignals which define optical characieristics of portion of
 objects scanned, their ahape, colo of a combination of color and shape. Electronic means is provided to generate further coded electrical signals which indicate the presence of one or more objects in the imgge field scanned and may be used to effect intelligent indications thereol, so comsrol one or ziocre devicas such as a neotor or znotors, and/or to provide information for compuratocasl purposes to be processed and uritized by a comsperter. In ose forwin, the shape of an object or objects is detected and coded signals genernted are employed to effect a comparisom of such shape with informarion relating so the shapes of known objects to ideatify the object or objects acanned. In another form, the color or wurfice characteristics of an object is detected and resulting sigzals indicative thereof are compared with graformation derived from a memory to identify either the object or its color or suriace chas acteristies. In a thised form both shape and color are detected and compared with recorded information for ideanification purposes.

U.S. Patent Dec. 18, $1990 \quad$ Sheet 1 of $13 \quad$ 4,979,029

DIT of

C.28 1.41, 43,46.50?
U.S. Patent

Dec. 18,1990

Sheet 2 of 13
4,979,029
where is SWS? c. $15 \quad 1.56$
no control logic no casting no resetting

shows progressive cate heeds Binary code C. $19 \quad 1.66-68$

FIG. IB
where are $X 1$ and $X 2$? (.DP $2.14,15$ 个

heed full adder with carry meed Gel comolenoter with cary

FIG. IC
refored to as figure 10 allarently

$$
C 56 \quad 1.7 \quad C 56 \quad 1.37 \quad C 59 \quad 1.54
$$

and perkaes $C .20 \quad 1.50-53$

Sheet 4 of 13 4,979,029

FIG. 8^{\prime}
Single? line TE?
Col. 411.2

FIG. 4A

FIG.4B

FIG. 5

1 winigenor DT shuld ameat to A3 not A2? C.431.6

track C2?

$$
6.431 .54
$$

U.S. Patent Dec. 18, 1990
whe are PU1? AI? C.45 1.29,32

Sehmith eivevit makes no
sence a fter dipper
capacitive coupling?

FIG. 15
not a Schuitt cirruit

U.S. Patent
 Dec. 18,1990
 Sheet 9 of $13 \quad 4,979,029$

capacities

FIG. 9

FIG. 14
where is (1, C54 I.11?
where wines conssare the y comeded?
doer dot $\frac{1}{1}$ indicate
(i) wires connect
(ii) pulse tran former
(iii) wired OR

U.S. Patent Dec. 18, 1990
 Sheet 12 of $13 \quad 4,979,029$

Fig. 17

Fig. 18

U.S. Patent Dec. 18, 1990 Sheet 13 of $13 \quad 4,979,029$

METHOD AND SYSTEMS FOR SCAMNING AND INSPECIING IMAGISS

This is a continustion of my application Ser. No. \$06,969 filed Sept 15, 1986, which in turn is a continusrion of mpplication Ser. No. 723,183 filled Apr. 15, 1985, mow U.S. Pat. No, 4,650,086, issued Apr. 21, 1987, U.S. Pal. No. 4,660,086 is \boxplus continustion of Ser. No. 394,946, Gled July 2, 1982, mow U.S. Pat. No. 4.511,918. U.S. Pat. No. $4,511,918$ is \& division of Ser. No. 13,608 Eiled Feb. 16, 1979, מow U.S. Pat. No. 4,338,626, which is in division of Ser. No. 778,331, Filed Mar. 16, 1977, sow IU.S. PsL. No. $4,148,061$, which is a continuation of Ser. No. 254,710, Biled May 18, 1972, wow U.S. Pas. No. 4,818.730, which is a continustion-in-part of application Ser. No. 267,377, filed Mar. 11, 1963, zow sbandoned, which is a continuation-in-parr of Ser. No. 626,211, filed Dec. 4, 1956, now U.S. Pat. No. 3,801,379 and Ser. No. 477,467, filed Dec. 24, 1954, now abandoned.

BACKGROUND OF THE INVENTION

In U.S. Pat. No. 2,494,44, a method and an apparatus sions of small particles by counting pukes generated in scanning a large number of small particles. In this particular disclosure, it is necessary to mathematically calculate the average or onesh-particle size and possibly the area covered by the particles by using mathemsuical formules. However, it is not possible so specifically pick ous a particular particle and messure its size or aren directly by using this prior art method and apparatus.
Is U.S. Pax. No. 2.931,202, an apparasus is provided for counting the number of particles appearing in afield of view against a background conerasting in sppearance with the particles In this persicular prior art structure, a beam is impinged on the viewing field. Whenever there is a change in the beam intensity, an electrical pulse is produced and counted. That is, this prior ant method and apparatus merely provides a smple counting technique. There is absolutely 00 disclosure for digitizing the imnge on the field of view to provide its location or the specific dimensions thereof.

PYRMOSE OF FHE TNYENTION

It is a primary ojject of wus inv suluon wo provide a mesy and improved automatic busuning and inspection арррагивия

Asother object is so provide es suromatic imge feld scanaing apperarus which is capable of automatically determining various characteristics of the field being scanned or any predetermined portion thereof.

Another object is to provide an automatic inspection apparasus employing one or more electron beams which apparatus is highly varsatile and may be used to perform al plurelity of different scanning and inspection func: tions without major modificstion to said apparatus.

Another object is to provide am automatic inspection apparatus for automstically comparing or mensuring a plurality of different dimensions in an image field in a substanially shorter time intervill than possible by conveational inspection mesns.

Another object is to provide an improved means for electrically controlling and selecting portions of an image field being inspected.
A still further objecs is to provide sa improved electrooptical comparator means employing beam scanning which does not require masking sy ismage field for of fecting selective area scanning.

Another object is to provide an automatic inspection appsratus employing beam scanning to determine d measions and orher characteristics of articles of mannt facture, whereby both the work and the beam scanning
 manipulators to present predetermined portions of the articles to be inspected in the sield of the beams scanning means.

Another object is to provide automatic inspection beans scanning means for scansing and inspecring a phurality of different image fields which may comprise different areas of 2 worlcpiece.

Still wother object is to provide means whereby 3 video picture signal may be used to effect autoratic quality control by the invesrigution of part of said signal.
Another object is to provide a measa for effecting nutomatic measuremens and quality control functions using two video picture signals. One is a standard gignal of known characteristic and the other is a ample or test aignal whereby all or parts of said signals are investigated and compared by their simulemeous reproduction from a magnetic recording medium on which they are recorded in a predetermined relative positiom.
Azother object is so provide automatic means for reproducing a specilic or predetermined part or parts of a video picture signal for computing, measurement or comerol purposes.

Another object is to provide automatic means for reproducing that part of a video signal derived during the scanning of a speciric wrei of a cotal image feeld) without the need so coatrol the scanning beam of a video scanning device.

Another object is to provide means for operating on video picruse signals and for unodifying or changing 3pecific portions of said signals whereby the alkered picturt signai may be used to produce a video inege or still jicture of modified image characteristics.
Whother object is so provide arecordingianangement including analog signals with digital pulse code signais reeorded adjacent therezo for idemifying porwons of caid sigrals.

Another object is to provide automatic scanning and sontrol means for effecting measurement or inspection of an article of manufacture on a production line fof determining the dimensional or other physical characteristics thereof.

Another object is to provide new and improved apparerus which may be used to effect various inspection. control and digitizing functions.

Assodher object is to provide automatic apparatus for measuriag an object or surisce iscluding means for nelectively measuring prederermized parts of said objece and for providing iniormation in code form result. ing from said sueasurement which code nusy be utilizod by a digital computer.

SUMMMARY OF THE RNVENTON

2. Lescribed bercin, an apparatias and a method are provided for digitizing an image field. Code signals soch zo binary digienl signals are generated when the imupe Beld is zcamned. The code ajgnnis indicare information such as kocntion of a line, the border of an object, the thisunce between lioses or borders, sed areas. If would be possible to indicase information relased to volumes when appropriate miechanism in provided to scan in il directions.
Ia one embodiment of shis invention, a beam scanning spparasus includes an electron beam which may be moved relative to a workpiece or image ield to provide informstion or a picture field from acode signsl whicin
 The apparatus further includes means for analyzing the code gignal to determine certain characteristics of the image field such as the presence or absence of imsen or imge prortions such as components of an pasembly, laus, or other objects in the field, and the location and/or dimension thereof.
The apparatus of this invertion is applicable for the inspection of articles of manufacture. In addition, the appararus may be used so automaticully analyze a ficld such as a drawriag photograph, masp or electrosic picrore as found on an oscilloscope. The anslysis provides a determination of the degree of certain characteristics of the field such as light or darls areas which ane indicstive of certain known conditions. Such characteristics are obtainable in code form in one sspect of the invencion and are shus capable of being analyzed by a computer.or other device. In mother form of the 卵vention, spparatus is presenied for autornatically analyzing a changing condivion in an image field.
In another specific embodiment, the digitixing can be effected eifher automatically by a flying spor scanoer or by a cathode ray fube or by manual teckniques which currentiy use a photoelectric cell or some other form of sensing device. Therefore, the digitiaing may be accomplished either in constant speed or variable speed. That is, it can be fone either by timing of a constant speed scunner or in proportion to the degree of niovement of an allied digioal converter zuch as a wheel having codes associated therewith.

DEFINTION OF TERMS

Componenas and known circuits provided berem bear the following seneral aiphabetical potations in the yarious draying: Uniess otherwise noted, the circujis and components referied to herein and anuraised in block notabion are standard circuits which ane known in itse art. General citles, notations or termss such as "eunlticircuit timer or controlles", "computer". "corapusing circuis"" "recorder and/or computer". "Bignal analyzere "analos/digital converter", "clipper", "aliman", "storage tube", and "biarry suder", are well known components and periorma specific functions tenown in the prior art. The various components referred ic, whille they perform cheir aormal functions, heve been comsbined together in a new and umobvious way so chlectuate a new and unobvious result not knows in the prion
art before the effective filing date of the present application. Such prior art parents as U.S. Pas. Nos. 2,494,441; $2,931,202 ; 2,749,034 ; 3,081,379 ; 3,098,119 ; 3,239,602 ;$ $3,539,719 ; 2,429,228 ; 2,726,038 ; 2,954,059 ; 2,935,082 ;$ $3,146,343 ; 3,029,082 ; 2,979,568 ; 2033,505 ; 2,615,306 ;$ and 2,729,791 ane exemplary of the wanner in whici such ternoinology is acceprable iss the prior ant to fully disclose the inventions claimed therain. As shown in these prior art patents, all of the terminology referred to in the iastant case in clearly knows in the prior art and thereby provide the sbilled artisan sufficient disclosure to effectate the invention of the present disclosure. There a iyphea $(-)$ follows the letter, it is essumed that a multiplicity of the devices or circuits are provided in 15 the disclonure.

A-Amplifies, such an a reproduction amplifier for araplifying signals reproduced by an asociated magsetic reproduction transducer or pickup head PU.

RA-Recording amplifier, used to record pulse or 20 video picture signals on a magnetic recording member.

AN.A logical AND switching circuit which wils piuciuce an vutput sigrai whea, ana omy waen, sigome याद present at all inputs to said circuit

CLA vacurm sube or semi-conductor clipping citcứh preferably a video clipper operaciag as a desired clipping level.

CM,CM'A Schmirt cathode coupled multi-vibrator circuit, which comprises a cathode coupled multivibrator with an associased signal inverter as che ounput of the multivibrator. This eircuis will produce a pulse output when the leading edge of an elongated pulic appeass at said circuit and a second pulse output when the trailing odege of said pulse reaches said circumih.

D-Delay lime or time delay relay of required time 5 constans. If a mignal such as a video picturne siemal is to be delayed, D eignifies a delay lime.

IF, IFPP-A BCanning wasge fiald where video bers scanaing ss employed for inspection.
-NoA mormstly-closed, monosuble switch or logical 40 NOT swicching circuit which wink open and break a circuit whea e signal is presens as iss swisching iaput. It may be a vecuum tube, semi-eonductor or elecrromechanical device or any other logical circuits or gates.

OR-A logical OR swirching circuit adapted to pass a signal from any of a mulriple of inputs over a simgle ourpus circewit.
FF.A Fip-llop wwitch, electro-mechanical, vacuum rube or semi-conductor circuil A bi-gtable aswisch adapted to: (a) swirich an input sigrint from one of two inaput circuitz $s 0$ one of two output circuits, (b) swisch a sigual from a single imput circuit over one of two ouspues depending on the described application. The flipfop switch may bave two or three swritching imputs depending on the application, amplement input C which. senpen enea isised, switches a single input from ome ouzpus to the ofther and/or two inpusts, each of which, when energized, wwicches the filip-flop to illts respective oxipus.
PB-A picture signal, preferably dexived from beam scannise a fired image feld IF. The signal may be menplisude modulated or frequency modulated and may be the outpus of a conventional television scannine camera, filying spot scanner or the like. It anay be a coatimuous signal or may consist of a multirude of short pulses depending ow the type of scanning and signal formation exployed.
The $\mathbb{P B}$ signel may also be derived from the outpat of a fired photo multiplier tube with the imsge or object
$\operatorname{scam}_{\mathrm{m}}=t v$
being sennmed, being moved to provide variations in said signal. For some applications, the P? signol may be any anslog signal derived from scanning, an analog or digital computer or other compuring devioe.

PC. Pulse code nuraber. This may be any type of code (bianry digit, decimal, eic.) recorded either loagirudiailly aloas a Eiagle chanmel of a magnetic resording nember or recorded laterally alang a ningle channel of a magnetic recording nember or iaterally along a fixed psth or line scross multiple chanaels of said recording menber, there being code positicas where sid code ing crostes zach secordiag ciannel which either (a) arntains of does sor coatain a pulse recording or (b) orntains a positive pulse recording or a aegative pulse gecording depending on the design of the digiral compruting or switching appararus to which the reproduced codle is cransmitred. If recorded along a lateral line of the recording member, the code P.C may be reproduced at a speciric poiat in the reproduction of one or more picture or analog gignals adjacent thereto and may be ased to effect specific switching action when repro-
 ated picture signal(s).
SW-A, linuil gwitch.
SC,CS-A signal or घंgnals preferably recorded in positions on a magnetic recording member to be reproduced simultaneously with aspecific section of another picture or analog signal and used for gating or consrol parposes
STorefers to a video atornge tube or storage device haviag a wricing input WII for recording a picture signal om the storage elemeat of raid sube and an output RI, which, when a second input R8 is pulsed or energized, passes a picture signal derived from the scanning of the read bean of said tube.

CL-refers to a clipping circuit adjusted to elip at a specific elipping level. A diode, triode or other clipper such as used in video clippisg.

1F, IFPorefers to an image or object field being scanned to produce a picture sigral. The field in the optical syssem of a conventional or specini ulevision scanning camera. The field may also be the screen of an optical comparator or projection microscoge having a video scanning camera or flying apor zeanmer focused and posixioned relative thereto in a predetermined mannex. The image or images in said field may be any optical or radiation phenomenon which provides an ares or areas therein of different padiation or light sharacterispic relative to other areas so that, in scanning across gaid differeat areas, the resulting picture signal will change muficiently 10 permit measurement or messurements to be made by electrically noting smid cbenges or differences. The field may also comprise a map, photograph, X-ray image or patern, etc.
A) Dikhe acoverens indicaing varous componew
 rualts by the skilled artisan. The drawings discoso Fcrein below along with the description of the specific anubodiments clearly give guidssce to the skilled artisan. 15 seliect and interconnect each of the grior art devices to perform the desired overntions and effectuate the

BRIEF DESCRIPTION OF DRA WTNGS

The various electrical circuis sed herein for performing the described measuremens, comparison ind indicating functions are illustrated in block diagram

avalene:
 tape

predetermined points in the picture signal, the timing device and the drive for the tape must be synchronized Lo start at predetermined times and operate at predeter-
sotation for the purposes of simplifying the descriptions and drawinss.
The following assumptions are also made regarding the circuitry to simplify drawings and descriptions:

In the diagramas, where junctions are illusirated betweer two or more circuits which are electricslly conaected as asid junction with a further single circuit, is is assumed thast a logical OR circuit is employed at said jusction.

Where a single circuit exteads from a junction so two cr anore circuiz, it is assumed that either a single input, muitu-output transformer is provided at said junction or said output circuits are resistance balanced permitring any input signal so travel over both of said ourputs.

Therever circuits which sequire a power souree, sueh $2 s$ switching or logical circuits, gates, clipping circuits, multivibrators, servo motors, controis, amplifiers, transducers, are provided, if in assumed that a wource of the correct electrical power or potential is provided for said circuits. Power is also assurned to be provided on the correct side of all gates and relays where needed.
Various ansomatic measurement and comparison seanning techaiques are provided berein w'sereby a picture signal, derived irom paotoelectric, or video scannia 3 an inage field or part of a field, is recorded on a cosgratic recording member such as a magnetic tape tong a predetermined lengta of anid uape and in predeterroiaed positions relasive to ocher signils used for gating and control, When reproduced sogether, atad orier simais may be used to affect one or inore predetermined functions relative to anid pierure mignal.

The meethod of recording all signals in predeuermined relative positions on a recording member and then reproducing and using axid signals in one or more manners described herein has on number of advantages including the provision of a record which may be rechecked, ir necessary, or otherwise munitored. However, za the embodiments provided, it is not necessary to record the video or pieture sigual on the recording member is means are provided for prosenting said picturs aignal in the respective measurement or control circuit at a predesernined sime in relation to gaid other signalh. For many of the functions described, particularly those where it is only necessary to measure or compare images, a picture aignal may be passed directly from a video storage tube or other photoelectric scanping device to the reproduction-amplifier through which she reproduced signal passes. Fiowever, functions such as record keeping may require that the picture aignal be recorded; ience recording arrangemsents ane illustrased.

In the various ungnetic recording arrangements and spparatus provided herein, picture-aignals are shown recordon an a magnetic recording mamber which also ies other signals recorded thereon in predetermined positional relatinonaip to said picture signals The recording member is illustrated as an elongated flezible samgnetic tape or the developed surface of m magnetic disc or drusm. While not illustrated, it is sasumed that known means are provided for driving the tape or drum at constant speed past magnetic reproduction apparatus when constant speed is a requisite for the clesired measurement. For example, wiven an automatic timing circanis is utilized $t 0$ effect a measurement betwern two
sined rates. If the magnetic recording member is driver at a predeterroined constant speed, and if the timing ievice operates af a predetermined coastan! rate and is started as an iastani determined by the time of reproducticn of one or more signals on gaid magnetic recording member, then a particular reading or value of the tining device nay be converted to a lineal distance or a coorfinate is the field which was scanned 20 produce said picture siznal.
Wine wove ofjecss and ofe advatages will appear tithe ollo wing descoption and appended cisims, reference ceing made to the scompraying drawias form-解名 a part of the specification wherein like seference cheraceers dexignate corresponding parts in the several swiewa

FIG. 1 illustrates a porticz of a recording member zad in arrangement of picture signals and control or sating signais provided thereon in predetermined rels. tive positions;
FIG. AA illustrates an portion of a multi-wrack record-
 cent exch other and associsted control or geating signals anderaly nligned with said picture signais;
FIG. BB ilfustrates a portion of omulti-srack reconding member containing both picture and code aignais recorded on different trackes thereof and also illustrases in block diagram notation, gating and computing ciseaitry for acilizing reproductions of recordings;
FIG. IIS' is a circuir diagram showring details of part of the computiag circuiry of FIG. 1B;

FIG. IC illusurases a porkion of a recording nuember contaixing picture signals and controls and circuitry provided in the output of the reproduction transducers which scan said recording member;
PIIG. 2 illustrates a portion of a multioerack reconding member having signals of predetermined duration or length recorded therson in predetermined positions relacive to recorded picture signals for indicating, when reprodeced simultaneously with said picture signais, dimensional rasses of the physical phenomenon or objeces scanned to genertite said picture aignsils;
FIG. I illuszrates a recording and reproduction arrangemeat whercby comerol means ane provided for blanking all bu! predetermined or particular portions of coe or more picture signals so that the remaining portion or portions of anid picture signals zay be analyzed without interference from the other portions;
FHG. Ifllustrates a recording and reproduction apo rasperaent for opersting on a picture or anslog signal in a manner similar so that illustrated in FIG. \$ so effect one or more dimenional measurements or coctrol funcsoms;
FIG. 3° is a fragmentary view of a scannirg field illustrating the physical significance of certain of the signals recorded on the recording member of FIG. 4 ;
IIG. AA illustrates a circuit applicable as a replacs. ment for a portion of the circuit of FIG. if
FiG. ATM Dilustrater a digital code generator of choct spplicable to the circuiry of FIG. 4 to effect mesurureseas fuscrions;
FIG. I dlustrates a recording arraugement with predetermined positioned sync and gating aignais;
FIG. Ithastrates the recording arrangemens of FIG. 5 and circuit eomponestes utilizing the signals provided chereon;

FIC. I Manstraves a modified form of the recontias srangement and circuit components of FIGS. I end 6;

FIG. $\%$ illustrates a recording arrangement and a reproduction circuis dimgram utilizable for effecting antomatic dimensionsil messurement;

FIG. s' Ilustrater a scanning field showing physical uspects of the signals recorded in FIG. 3;
FIG. 9 Illustrates a recording arrangement and reproduction circuitry therefore applicable for measuring the various dimensions of distances in wo image field and providing said measurements as coded signais;

FIG. 10 illustraces \& clipping level adjustment means zppliczble to part of the appssatus of F1G. 9;

FIG. 11 is a more detailed view of a portion of FIG. 10,

FIO. 82 is mane delailed view of a portion of FIG.
FIG. 13 is a perspective view of a rcanning station atilized to provide signals which are applicsble to the recording and measurement arrangements illusirated in the other drawingr;

FIIG. Is is a plan view of FIG. 13, which view also illustrates recerdino and dimentionnt mencurimancomme. inents;

FIG. 15 is a scbematic diagram showing a circuil employing a summing amplifier to generate pulse signals;
FIG. It is an isometric view of an inspection station employing meang for prepositioning both a scanning apparanus and a workpiece;
FlG. 17 is a diagram of control spparatus for the apparasus of FIG. 16 and also illustrates means for recording and analyzing the results obtained by scanning.

FIG. 18 shows another control arrangement applicable to the apparatus of FIG. 16;
FIG. 19 shows an automatic scanning system having a zeanner which is positionally controlisble to comtinuously scan different ixage fields and includes means for indicating when changes occur in said image field; and FIG. 20 shows a scanning arrangement employing ${ }^{2}$ plurilisy of different scanners eich adapted to scan a 0 different image field or phenomenon.

The video information signals recorded on the mazt metic recording mediums illustrated in FIGS. I through 9, may 3e depived by using a leievision scanning syatem Whothe comporints ur fioxdiforemample in FIG. 14 .

A number of recording, reproduction, scanning and comparison messurement, counting, control and compuning fuactions are described herein. Additionally, an apparatus utilizes a video picture signal derived by electron bean or Ilying spor scanning of an object or inage e field or a video storage tube surficce.
For mont of the above functions, the pieruresignal or signals arc recorded in a fixed or predetermined position on : amgretic recordius ivernber suvih as a magnezic tape or drum and relative to one or mo:e control and/or gatice sigzals which will is cenoted by the solations SC or CS. These control signals are specified as conofant amplitude puise signals of a short or predetermined duration. However, they may also be of variable amplitude and/or frequency depending upon the iype of operation or function controlled thereby.
One technique comprises the scanning of an image or optical field sucti as a predetermined area of a surface of a workpiece or assembly, or an image fieid im which a portion thereof concains an object or plurality of objects or aress having an optical characteristic which is discernible from the characteristic of the surrounding field
$\operatorname{sen} u=+8$
analyze:

Hfed in 1957, the output signal of a video camera or soruge sube equivalear to the aigral derived from the widea camera scannoing rendobeam is recorded duriag it single frame or screen sweep either io an inage storage tube ar an a moviag recording member. Thereater, the aignal is reproduced at video frequency and used to zadulate the picture genersting write-beam of a video monitox-screen.
Ties PBI mignal of FIG. 1, if iatended to later reproduce a visual image on a monitor screeth 's thus preferabiy an ixange, wingle frame video picture signal. The sesinning of the picture sigral is porsitioned adjecent to or in predetermized relution to syac signal SI such that oypac signal $\$ 1$ may be ned we control the reproduction of ibe picture xignal PBA. For faster ecanning, the start of bise picture signal may be defined as a predetermined point occurring af or after the frame vertical sype gignkl sppears when the socalled read benem starts its frame sweep.
In the inter-laced scanning system, each complete sweep of the camera scarnning beam is referred to as a "field" sweep and two of such image fields make up an inage "frame". As stated, the PBI signal preferably has pro , ided therewith the associated frame blanking sigral so that it may be used to effect the production of a video imnage, ir necessary, for display purposes. For specific computing or operational functions, it may be desirable to merely compare part of the PBI signnal with another signal whereby only pars of a single frame signal need arecessarily be recorded and the blanking component of said signal may be eliminated. The sync signal $\$ 1$ may be need as a trigger signal recorded on a predetermined position of member 10 and used chereafter to trigger or otherwise effect the recording of the PBI sigrial on a predesermined reconding area or channel of member 10. If the PBI signal is recorded at randonn on member 10 , aync signal Sl may be used as an indicator of the parition of the PBI sigral and of another aignal or sigrals also recorded thereom.
A third channel or band recording area C3 parallet to bands Cl and C 2 , consains the necessary video horizontal tine syme signals HS. The sync signals HS are rocorded in a predetermined position relactive to PBI for the correct horizontal deflection and symchronization of the picture and blanking signal PB1 to effect the production of a video image.
A fourth channel CA runs paraliel to the other chansels and conkeins the associated vertical synctroniznsion signal VSI for vertical lime and frame synchronization of the picture signal PB1. The latter two signals HS and VS1 are optionaliy provided in the event thast it is besired to reproduce the PB signal as a pieture on a video sereen for moxitoring or other purposes.

One or more additional recording channeis or areas CS, C6, C7, C8, C9 and C10 preferably extend in: direction parallel to and are adjacent to those channels described hereinsbove. The channels C1, CZ, etc. contain ome or more operational gating or command signals CSI, CS2, etc. which may be either puise or analog signals. The command signals CS1, CS2, ecc. are preferably provided in predetermined tised pasitions relative so the picture signal PB1 located on channel C2 wo be reproduced therewith and are used to modify, gate or operatively coset with the video sigrul PBA. While the warious control signal or signals CS1, CS2, erc. masy be recorded at any cime on the recording medium 10, if their precise position relative to the vidco signals is an important factor, their recordation may be triggered by

$$
3
$$

the symchronizing signan \$1 which indicater the porition of the video signals. If precisely, relative to bymc signal
wignals on mexaber 10, will slso as a function of the relative positions of the various reproduction hesds.
A code or bir number $\mathbb{P C C}^{\prime}$ is thowa as a Berjes of tardem puises on the coannal Cl0 and having the binary value 1110101.

The code Pr is prowided as a serien recording to Illustrate thast such means of recording aumeriosl infornation may be used with and edjacens analog or picture gignal to be reproduced prior to, during or atier the reproduction of said picture aignal for sfiecting computing and /or control operutions to be performed on or in coaction with the reproduction of zaid pieture or malog signal, or in reiation to at least past of aaid signal. If the series oode PC' is mulized for coroputing and onatros purposes adjacent a picture agnal PB, then still another channel (not sbown) is praferably provided with a series of equi-spased, equiduracion pulses recorded thereon at preferably the interval of the pulives of PC ho act as a clock when reproduced amultansously therefrom thus simplifying digital operations in a swirching circuit or eomputer using said pulse code.
The recording of the pieture signal 9 PB and the associated sync signals on the magnetic mernber 10 has many advantages such as the provision of a permanert record which may be referred to at any time or repreduced by nelective means whenever meeded and visusily monibored by modulation of the picture generating bean of a monisor screen device. However, said PB signal need not be recorded provided that said signal may be otherwise zenerated in a measuriag or computing circuis at a predesermined isstant relative so the generation of said Other illustrated signals. It is further noted that mulkiple, landeraly recorded pieture signals masy be provided on one or zoone of the channeis of the recording suember 10 of FIG. II with the sstocisted gating and/or code aigrals for record keeping and onmputing purposes.

FIG. 2 showe a second picture mignal PB2 which may be selectively reproduced by use of a predetermining counter receiving the position indicating signals on channel C\&. Upon reaching a preser count, signal PB2 closes a switch besween the reproduction aransdueer reproducing from the channels Ca to CA when that section of the rape 10 containing the selected picture wignal $P B$ is adjacent the reproduction transducer.

The parallel code PC may be placed prior ta, or antex 45 the reproduction of the associated picture or analog Lisnal PB. If recorded prior to zignsi PB, said code PC may sffect a specific switching or adjustiag action. Diring the reproduction of a particilar segment of she PB signal, said PC signal may gate or effect an metion on a specinic length of said Pa recording If placed on usember 10 in a position to be reproduced afler the reproduction of the $\mathbb{P B}$ signal, the PC signai may be used for effectiong a computation obtainsble in digital form from other operation on the associated picture signai or a part or parts of said signai.

In is noted that the recordine arrangement of FIG. 1 is subject to madilication depending on the fwitchirg and fogical circuitry operazively connected to the custput of the transducing apparatus for measuring and performing operations on the associased picture signal, yiz:

1. The laterally gligned puise code PC which, in FrG. \&, is provided for reprodinction prior to the reprodisc. tion of a section or lengeh of the associated picture signal, 80 periorm a switching, gating, computing or other functions may be recorded adjacent a parnicular point im the picrure sigral PB for effecting a npecific
wrisching function or other sction, on or simutheneously - occusring with a predetermined length of said pieture cigral. On zuck function described hereinbelow provides said code or zignals in relay storage to be subaracted from or added wa nuramical code derived from operatiog can aspecifie length of the picture sigand.
I2. The illustrased pulse eode PC which is shown gecorded for a sbort duration in ElG. I, may be reconded on a longer section of mernbes 10 and may vary in length from a short pulse such as the shortest signat Whisk reay be recorded thereon, to the entre fengtis of the picture zignal PB. Wher the cede PC is reproduced, the ourput circuits of the associated reproduction heads will eaci sither have a signai or 20 gignal prescot during the geriod a particular code is seprofuced whereby said gulxiple circuits define a code partern or bit number at sny inatan. If it is desired to have this code present for a specific period of sime which may regresent such phenomenon as a wlernnce range, in will be necessary to recard the signals reproduced to provide the PC code recorded on member 10, sor a time during which said predetermined condicion or change in said picture sigHal will occur. If said code PC is thus pecorded as ane or more puise recordings of prolonged mad predeserinined duration or leagth next so a predetermined aeccion of she picture signal whereby said position is such that it will be fnown that said prolonged socie PC will exis in output circuitry for a time duration during which a particular change in amplitude or frequency in the piature signal will occur, then said code will be fown to exist when said change occurs and will be available for reproductica eberewith for affecting switchiag or coatrol functions, home of which will be described.
III. A series of parallel code recordings PC mey extist in tanclem array ajong member 10 in a mannes whereby, when the end of one code mtops, the sext begins on the wext lengtio of wid tape. Thus every point or Iength of member 90 will iseve an axsocialed parallel code, sugh 0 as a binary digital code, which will identify exid point or lengeth. If a sigual or signids such 24 ata nralog signal, video picture tignal, or orther signal or signalt are pecorded adjacent said chains of amid pralse codes recordings PC, the output circuits of the transducers reproducing said codes will be emergized with a predeter. mined code srrey during the reproduction of a particuiar lemgth of an adjacemt signal which condition will be indicalive of the position of the part of said adjacent sigrial being reproduced at the tivae the code is reproa duced.

If the PC signals mre of a binary or other mumerically progressing order, whereby each code array coccupies the same length of member 10 as the others and each successive code artay is of a numerically progreasing ordes (i.e. a binary digital signal order whereby one gignal srray is a unitary increase over the nrior tecorded code or the same in aremen: as esch successive number froma the prior numiver), thea the recording member If may be used exvertiaijy as a digitizer. If driven at constant speed, recording meraber 10 usay be used as a diigital timer or alock whereby an coda, existing in the antpat circuits of the transducen reproducing said necordeal code tracks, will be indicesive of the time lapse from the start of travel of said member 10 provided thas the code recordied at the stars of the cycle is thown. The member 10 may be a closed boop tape or drum running continuously and at constemt speed. It may be used as a digital clock by providing a normally open
electronic switsh or gate in the cutpur of each of the reproduction transducers reproducing from chanels Cs to C10, the code recording channels, and pulsiog all ainid gates simultaneovaly to effect tbeir elosure for a brief period of time at the syant of the incerval being zeessured and at the end of snid interval. Tae pulse code passed shrough ssid gates when first closed may be beld in reloy storage and may be added to or subtracted from the pulse code passed therethrough at the end of said interval. The result of subtracting tie smaller of seid two code sumbers from the larger aumber will be indic. adive of the time lapse between the two provided that the speed of the recording medium is bnown and the lengiths of the code aursys are aliso predeternined and mimilmr. If the drive shaft of the recording modium 10 is conaected to an analog mechanism, then the recording mediura and drive may be used as an analog to digiral converter of much greater capacity and duration than the conventional coded disc converter.
FIG. IA illustrotes a recording arrangement of analog and digital or coded pulse signals, which are func-
 recordiag member 10 is provided haviag muluple socording channels Cl to CN (where N is any desired zumber). The channel C1 has a series of pulse signals PSG recorded as a group or as trains thereon comprising short pulse recordings poritioned at equiospaced intervals, which may be reproduced and transmitted to a binary counter or other device for identifying any specific section or length of member 10 as a resuls of the marure of said particular code. When the equi-apaced, short pulse recordisys PSG are reproduced and passed 20 a pulse counser such as a decade counter, they will indicate any position on said member 10 by the existing value of said counter.
 signal recordings including one or more pulse codes PC such as digital codes, followed by one or more analog signals.ASGI which may be the aforsmentioned picture signals PP derived by scanning a fised pash in a field. The odd numbered channels $\mathrm{C3}, \mathrm{CS}$, C7, ese. many conrain other information in pulse or code forma such as a signal, $\$ 1, \$ 13$, for indicating the position of the start of the associated analog signal such as ASG1-3. The signal $\$ 1$-may also be positioned at any predetermined locmtion along the respective channel for swirching the output of the reproduction transducer reproducing a paricular part or all of the associated analog signal. The zaid output may be switched shereby for example from an input to a digital compurer mechanisra adapted to receive the associated PC codes to the input of an anslog device for receiving the ASG signal reproduced thereafier. The switching signal on the odd channels many also be incorporated and positioned on the even channels between said digital code signals and analog signal such as the illustrated SWS-signals of FIG. 1A.
The analog recording or recordings ASG1-1, ASQ1. 2, ASG1-3, etc. may be recorded in one of several forms. Said signals may comprise picture aignals of different but related phenomens such as derived froso the scanning of one or more surisces of a work member from different angles, two or more signal derived from scanning a standard field and field to be compared therewith, or the simultaneous output of one or more anslog recording devices or instruments which are all functioning simultaneously to measure for example, simultaneously changing variables of a process or cest. The digizal signals preceding exch analog signal or sig.
The - zermined manmer. For example, it may be required in the cycle of operation of the device controlled by nnalog signal associated therewith to repeat the control effected by a limited duration analog signas. The digital or pulse-code preceding the analog signal may be used to preses a recysling times or may be held in relay storage and used ro control the furure motion of the lupe or recording member 10 so that the analog ajgnal associated therewith is repeated chereafter or parts of said signal are repested in a predetermined manner.
Pulse recordinges $\mathbf{S Z}^{\prime}$ to $\$ 8^{\prime}$ are provided on the even sumbered channels between the groups of serially recorded pulse bit codes PC' and the analog or picture zigrals ASC-. The recordings SN' are preferably zeveral times the length of the pulses comprising the ${ }^{\circ} C^{\prime}$ recordings so that they may be used to actuape a relay which is responsive only to the longer signal. The reiay is used to switch the outpur from the respective reproduction transducer from a digital control device to an analog device or circuit prior to the appearmance of the reproduced ASG signal. It is moted thast the odd numbered channels C3 so CN may contrin a poraluel puise code for effecting moperation at is speciric point or points in the reproduction of one or mors of the analog wignals.
FRG. 88 shows mutuipie recordings on a magnetic recording tape or drum 10 driven at constant speed past multiple magnetic reproduction heads PU. The heads PU- 1 to PU-s (heads PU-A so PU-8 are shown in FIG. 1B) reproduce the signals recorded on the respective channels Cl to $\mathrm{C3}$. On channel Cl there is recorded a sync sigraal, such as SI of FIG. 1, for indienting the position of the stan of a picture signal such as a video picture signal P8 recorded on channel C2. Signal PB
may also be any manog sifonl on which a mexsurement or operation is to be ruade. On chansel C_{3}, one or more graing signals SCN are recorded for switching a selected leagth of lexgths of the reproduced adjacent PB mignas to one or more mensurement or clipping circuics.

The channels C\& to C8 contain multiple pulse recordings arranged in a multiple code or binary scale order woh that the heads FUS to PUS will, at any particular instant while reprodociog from said channels, be energixed is a specific code order That is, at any instant the parallel outguts of suid trazsducers will be energized in 4 ignal array equivalent to a code.

The code scale recorded in F1G. 18 is a sa-called progressive code with the aumber zero at the potint XI and the number 32 ut $X 2$. A socalled natural Stanef code reconding may also be ised is may any eode ineans whicin will provide a different code or signal array during each unit length or incremeat U in the tape or drum 20. On channel Cs, the puise signsls are equispaced and have a lengtio of $3 U$ or twice the unit length. II the reproduction heads PU1 to PU8 are aligned as whown laterally across the member 10, the code existing in thei output circuits will depeed on which mint lengths of the recording member said heads are reproducing from at the perticular instant. If the member 10 is a closed loop sape or drum and is driven at consunt speed relative to said besds PU, then the recordings on channels CA to CB may be used for siming or clocking purposes or masy measure the distance between any rwo poines or changes in the associated PB signal.

The time berween ayy two instantaneous or ahort duration oceurrences maty be determined autornatieally ass an munerical or binary code by the mechanism as shown in FIG. 1B. By applying the proper conscent or conversion factor to the result, the distancs between any two points in the associsted picture signal PE andfor the distance between any two points in the image frield scanned to produce said signal may be obtained. The combination of the recording member 10, constant spésd drive therefor, the reproduction apparatus and the illusrated circuitry may be used for performing any automatic siming function in which a rapid readous is desired in pulse code form of a time interval berween swo pulses passed thereto. The sime interval may be any two imstances in a timing or measuremeat cycle of any event whereby means are provided at each instance to produce a pulse of short duracion. The apparatus of FIG. IB may also be used to provide a binary or other pulse code for effecting compurationsi or controd fune©ions as various instances in a measurement cycle whereby each instance is characterized by an associnted pulse signal. The running code may also be recorded on additional channels of member 10.

The output of each of the magnetic reprodiction hexds PUA to PU8 is passed to a respective reproduccion amplifier At 20 As and thence to the input of a respective normally open monostable gate or swited O4 zo G8. The ourput of each gate is passed to a computer or computing mschsnism $\mathbf{C O}$, one form of waich whil be described and is illusurased in 819.1 B's $^{\prime}$. Deviee 00 may also be an automatic recorder. The outputs of the reproduction amplifierb At to Ass are only passed to computar $C D$ when the swritchirg imputs to said gntes Os to $G 8$ are energized.
Simultaneous energization of all gates O8 to O3 is 65 effecsed so provide a code output indicative that she heads are reproducing from a parnicular unit Jength U of nemember 10 by passing a pulse to the input of a mualkiple
output pulse transformer PT. Esch output of pulse transforiner PT is connected to a switching input of one of the five mormally open monostable gater or switches G4 so GB . The gates $G \&$ to G 8 are electrom tube or semi-conducior devices capable of switching in the megacycie sange. Thus ary condition occurring in the signal PB duriag the interval defined by reproduction of the SC gignal or signals masy be indicated ns acode. If the cocie occurring on chennels CA to Cs is of a aumerically progressing order, then the distance or time besween the sppearance at the input of pulse transiormer PT of swo pulses may be indicated by rubtracking one code so generated from the other.

If she recording member 10 of FIG. 13 having she 5 cod sconde recordings illustrated on channels C to CN is 4 closed loop megnetic tape, it may be used as a componeat of an znsiog to digital converter of greater versatilIfy than the conventional soded disc type of converter. Azsume that the member 10 is driven by the conventional capstan-depressor drive and there is no alippage in the driving means. Then the shaft of the capstan or a shaf coupled thereto may be digitized. That is, any
 numerical code or number by providing a pulse at the input to pulse transiormer PT at any instant in the rotation of aid shaf. Since the code reproduced from member 10 will be a function of the rotation of the capstan shaf, a coded number may thus be obtained for any degree of rotation of said khaft.
An anongated liexible magnetic tape with the code recordingis is illustrated in FIG. IB offers a coding surface of coasiderably greater leagth than the convenmonal coded disc. As such, the code may ertend as a grester aumerical value than on the eonventional disc convertes suriece thus eliminating counting circusiry and providing a considerabiy higher numerical value in code form than on the surlace of the disc.
If the recordings ons channels CI 30 C3 comprise multiple pieture signals or information in the form of bit recordingg suchi as binary'code; the'recording of a progressina nammerical code as in FIG. IB on ajid adjucens channels CA to CN may be used for a number of purposes. Said code may be used for the selective reproduction of any speciric adjacent recording such as a bit number or a specific length of PB signal, or the reproduction of one of a multiple of taid picture signals for transmission to further control or computing apparatus. Said cocle may also be used to identify a particular section of said cape. for recording a selecred signal or bis information. These functions may be effecied securately without the use of a counter counting drive shath rocations or shors pulse recordings and has an advantage over the latter techniques in that each point in the length of member 10 is identified by an associated code. whereas counting means are subject to errors if a pulse should be accidentully erased.

If the device of FIG. 18 is used as an antomatic interval timer, recording member 10 is friven at epostant speed. Then the computing circuit $O O$ includes means for computing the time lapse between two occurpences by subtracting the code occurring at the reproduction beads at the start of the interval to be timed from the code appearing there at the end of said interval. Tite difference will be proportional to the actual time it takes for said codes to pass said reproduction heads. A means for obtaining said difference automatically is illustrated in FIG. 2B', which shows part of the circuit. If the code on chanmels C\& to CN is a binary code, subtraction may
be effected by a merbod kown as complement acidiwion. Thas is, che complement of a a umber is formed in - cornplemenkisg circuir (CC) ans abded to the recond mumber. The resuls is the dixterence berween she nwo a annbers.

In FIG. 28', the circuitry for fiecting this operation is Hustrated in part The circuit compriser one singleinput, dualoutput bistable switcen or §lip-llop FFN is stre output of each gate ON. The awitches FF8 and FF7 2re part of the chain of said switches and are nach shown with a complement input. When pubed, the complement kaput switcines the ourput of said switcia from the existing condition to the other of its switching conditions. Said swiccher FFN greferably also have a reset input which, when puised, swiches the input to the other of said two states in which it has been placed or if in waid reset state, maintains said reset corodicion.

Assume that the resset condition of each flip-flop is the IInstrated "0" or left hand output and that all flip-flops $2 r e$ in this condition prior to the appearance of the first poind un une med moterval. Then sny puises of the coded number passed through the gases O 48 GN will pass through said "Q" outputs of said Mip-llops. The "go" ourput of each flip-flop is thus connected to a respective input of a first ahife register SRI which converts the perallel bit code passed through the gates GO to ON' oo a series code which is prassed to the complementing sircuit CC. From the complementiag circuit CC, the complement of the mamber is paszed to one input of a binary adder BA.

The second coded number in obmined at the end of said measurina cycle when a pulse sppeass as the input to the pulse transformer PT. This second coded number is passed through the flip-slops FIFs co FFs so a second shifk register SR2 from winch it is passed as a series code to the other input of the binary adder BA. The resulh, which is aransmitted from the adder as a cade, is the differenes between the two numbers and is phyporcional ua the tiasse berween the receipt of the rwo pulses at the input of pulse cransformer ET.

Swirching of all flip-flops to their output condicions nso is effected by passing a reproduction of the first pulse passed 80 pulse transformer FT turough a delay line or time delay relay \mathbb{D} and then to the daput of a multi-ourpur pulse transformer PT'. Each outpur of pulse transformer PT is connected to a respecive cornplemear impur "cc of a respective said bi-ruable switch to its other output condizion. Tae geat signals to peass through the Elip-liops wre this passed over the "go" outputs to the shin ragister SR2.
The duration of the delay \mathbb{D} will depend on the switching times of the zates GN and flip-flopa FFN as well as tane shortest tinne intervals to be measured. The pulses to pulse transiormer IPI, as will be described wereinbelow, may be derived from such en phenomenco as a specilied change in the sesociated recorded PS signal. The technique may be used to mesure distances in the inamge field scanned to produce the picture signal PB as described bereaiker.
If the flip-flops and carcuits CC, BA and SRI are eliminsted, the resulting outpues of shifi register SR I or of the ystes GN may be recorded as indications of the coordinate posirions of specified lines or areas in the field scammed to produce the picture signal 8 ? ${ }^{2}$. For the circuit of FIG. 18' to function, the code scale on chanwels C\& so Cl will be binary code.

The inpur to the pulse trensformer PT of FIGS. 18 and IB' may be transmitred from such circuil ampange- $^{\text {and }}$ rements as the lollowiog:
(A) in FIO. W, the outpurs of the Schanitt circuit CM FIG. 13 to messure and present as a bit code signal the kength of the aignas passed through the "not" circuir N. The output of either clipper CLI or Cl. 2 may also be passed to a Schmirs cathode coupled multivibrator circuih, the outgur of which is consected to the isput of a puise cransiormer, the alternate arringement sot being shown. is coe emborliment, the gating signals illustrated in FIC. I are provided in predetermined positional rciationsbip to the associated picture signal such that pert of tie picture signal which was produced during the line scan of a predeterwined portion of the image fieid comtains an area the width of which it is desired so mearure. The clipping circuit produces a signal output when the input is that part of aeid picture signal produced during scanning oaid area. Conse-
 canse, suid Schaits circuit to produce short pulse outputs. The circuits of FIGS. 88 and 18 ' including the recordings on channels C\& 10 CN will provide a code at the output of the binary adder BA therein which will be indicative of the cime lapse between raid two signals produced by said muliviorator cincui.
(B) In FIG. 4 , the outputs of any or alls of the circuits or logical swirching circuits AN 2-3, AN 2-4, AN 2-5, may be passed so a Scimir castode coupled multivibrasor sircait and then so pulse transformer PT shown in FIGS. 13 and 3^{\prime} '. The said outputs present in bit form a number which represents the lexgth of the signal passed through said AND circuits. The same masy be effected for the outputs of the various NOT awnitching circuina of FIG. 4. .
(C) In FIG. 7 the output of either elipper CLI or swirching circuir AN2-3 may be passed to a Schumitt circuil and the pesulting pulses therefrom to the pulse grasfonmea FT of FIOS. 23 and EDis.
(D) Ta FDO. 3 the ouspuss of the swixching circuit AN3 4 or N may be passed to a cathode coupled multivibrmor Schmitt circuir CM having jies output consected to puise transiormer PT of FIGS. 1B and 18',
(E) In FIG. O, the output of Schrmitr circuis CM may be passed to pulse transiormer PT of FIGS. 1B and 1B' or the output of switching circuis $\mathbb{A N 2}$-s to is Schrouit .circait and shen 80 pulse transformer ET for measuring the respective leagth or difference sigmal duration.
The revulting output of the binary adder \mathbb{B} A of FIC. 18' may be pasesd to a recorder or cempuring mechasiam such as the code matching relay to be described and illustrased in FIG. 10. The outpust of binary mdder BA may be used as an error or difference wignal in manchine comtrol. It may be used for example to correct: machine tool or adjuss its position to provide a produrtion or assembly resula indicates by ine make-usp of the picture pignal $P 8$ which is cioser to an scceptable soierance or standard.

FIG. IC ahown a means for effecting autorantic controd and switching by what will bereinatter be referred so as code matching. The sparstus comprises a mag; wetie recording member 10 such is a mignetic tape, drum or dice luving muitiple recording channels C1 fo CN carrying said described sync, picrure and gating signals, us liuscraved, adjecest to a group of recordings an channels CA so CN. The recordings comprine a pulse eode array wuch as a binary or other code running semie

F167

Fic 8

7169

F16 IC
aualyxi:
tape
which，if used to energize the associated reproduction cransducert PU4 to PUN，ss shown in FlO．8B，will provide sigzals af any instant during said reproduction in the catput circuits of seid aranaducers equivaleat to a particular coded number．

The siguals on channels CA to CN may increase with the length of menber 10 in a zumerically progressin 3 order．Exch unit increase in ssidr recorded code scale may occupy a particular wis length or any predeter－ soined lengith of mernber 10．Then，eaci of xaid lengths is identified by a particular code which may be ased for control purposes．Control signals may be generated and used，for example，to effect sucin fuections as cifesing a sormally open gate isving an input from the reproduc－ sion amplifier through which the asocisted picture agnal PB is being reproduced so pass the part of the picture aignal over a furcher circuit，recording of a signal adjacent the code recording．Controlling timing or programming functions whereby the member 10 is driver as a constant speed and a particular code is used to represent a particular time in a sycle．
 manasaly，puise，or signal operated or may be the switches of a card or punch tape reading device．Said switches，when closed and opened in the order of the preselecked code，condition the thlustraled circuitry． Therefore，a signal will be provided over an ourput circuis when and only when said preselected code ap－ pears at the multiple heads PUA to PUN as shown in FIG． 13 reproducing from the magnetic recording mamber 10．Said recording mernber may be driven continuously past said heads by a motor or in an intes． misseat manner by a solenoid actustod ratichet and pawl drive．
When one of the switches $R N$ is closed，o aignal is transmitted to a switching input＂ym of a single inpus， two output bi－stable switch FFN switching it from a ＂00＂，or reser condition to a．first，${ }^{\text {a }} 1^{\circ}$＂condition．When so actuated，the particular FFN ownich switches its inpus 10 an output circuit which extends therefrom to a corre－ sponding input of an \mathcal{N} inpus AND switching circuis ANAN．For example，when the Nip－flop bistable switch FF8 is in the resel or＂0＂condition，an input signal seat thereto from reproduction amplifier A 4 is passed to the switching input of a normsilly closed monostable switch or NOT circuit N 4 opening circuis N 4 and preventing a signual from a power supply PS from passing to its out－ puth
The output of circuit N4 extends to an input of a bi－stable switch FF＇4 and therefrom to the same input of AN4N that the＂q＂output of FF4 extended to．A logi－ cal OR circuit masy be provided at the junction of the two outputs which connect to the single input to ANBN if said circuits are not resistance matched．
The bi－sable swiscis FF＇4 is switched to its closed or El＂condition by the reproduction of a reset sigzal passed to circuit illustrated input ${ }^{\omega 1}{ }^{m}$ of $\overline{5 F} 4$ ．Said reser xignal is also passed to the＂O＂gwitching inpur of FF4 thereby conditioning the circuiry so that a sigoal will be passed to the corresponding input to ANAN only when there is no output signal from reproduction ampli－ fier $A A$（i．e．where there is no zignal on channel $C i$ st the reproduction head PU4．）A signal transmitted from amplifier As will pess through＂o＂of fip－ilop FF4 to the swicching input of NOT circuit NA and prevent the passage therethrough of the coastant output of prower supply PS．

The ourput of swich $\$ \mathrm{~A}$ is also passed to a＂on swicching imput of alip－llop FF\％thereby switching FF＇s to open and preverting any gignal from power aupply PS to pass therethrough when in said condirion． With Rip－8lop FFA swicched to state＂g＂0 signal will be passed to the corresponding ioput of circuit AN $\$ N$ only whea a signal is present at the head PU4 on channel 4 ． A delay line or relay DA miny be provided in the output of＂ g^{m} of flip－llop FF\％to sccount if necensary for the time it s⿴囗十介贝刂 the switches N－3 to NoN to switch if pro－ sided in the switching action by the sction of the corre－ sponding ？swirches．It is thus seen that by opening and ciosigg parcicular or selected of the \mathbb{R} gwisches，pro－ vided that all lip－flops FFF to FFN have been reser to acen，a code armay is set up in relay storage winich will provide a signal over the output circuit when the same code exists as recordings of the heads PU\＆so PUN．

As iliustrated，the code on channals CA to CN is a binary code and is of \＆numerically progressing order． Consequeatly，the imputs for activating switches R may be derived from a digital computer and may represent the desired shaf rotstion of the bower means driving she zncmber 20．A signal ouspus from circuit AN4N represents abe atrainment of a degree of movement of meraber 10 as indicated by the code input to the gwitcher R4 so RN．Said ourput signsl may be used to suars or stop a servo motor SM by activatiag a relay $\mathbb{R E}$ ． The relay RE may also be used to pulse a nolenoid，to sound an alarm，or to actuate any electronic or electro－ mochanical device，swisch，relay or motor．Reset of ship－Iop awitches FFF and FF^{\prime} is effected by manally of ausomatically closing a swicch SW which gates a sigrual from a power supply PS to a pulse transformes PT thereby transaisting energixing signals to the respective ＂00 owriching inpuss of the FFF switcibes and the＂1＂ inputs of ह下＇swisches．

FIG． 8 shows a section of a recording mediura 10 having a number of pulse signals CS11，CS12，CS13， CS14，CS18 recorded on separate tracks or channels adjecent video signals PB2，HS2，and VS2．The latter signas CSIS is recorded on chanmel Cs and is the shorn－ est of all the puise signals．While signal CS1S is prefera－ bly of a durstion in the order of tem microseconds or less duration when reproduced therefrom，adid duration will depend on what pheaomenoa it is being used to indicate of measure．The C11 to C15 signals are of decreasing leagth or duration along member 10 and are shown symmetrical with a transverse line PL extendiag across and prefersbly perpendicuilar to the direction of record－ ing and passing through the center of the shortest pulse CS15．This arrangement of recarded signals may be osed to indicate the position or region on which a par－ sicular point in the video picture signal falls or is ex－ pected to fall and may be used for messurement or quality control purposes iavolving said picture signal．

Assume the image from which the video picture sifs al PD was produced has particular characteristic． indicative of a position，plane，erge of an object thereir or the beginning of a specific area of said image and said charscteristic is scanned by the video scanning camera or device as a change in color or light reflectivity． Then，she video signal will change in amplisude．The change in amplitude may comprise an infifection in its amplitude if the color or light characteristic of the field suddealy changes．This change in amplitude may be indicated electronically by the use of a proper clipping or filter circuit in the ousput of the video reproduction amplisier for the video signal reproduction head．By
comparing said clipped signal and noting zee poxition of the leading edge of said signal in relation to the position of the $\operatorname{CS} 12$ to CS15 rignals, tes posidion or the region of its position may be indicated electrically.
The CSII signal rosy be used to indicate the precise monm or desired position of the surfice, plane, line or position of che beginning of the area in the field being ccanned. The CS14 signal recording may be positioned and of such a time duration or length to indicate a range of acceptable polerance for said picture signal inflection or inage position. For exmple, when the member 10 is noving as video frequency or the frequency or speed at which the video signal was recorded on menber 20 , then the length of the CS14 aignol may be such tint its reproduction will occur in a time interval during which tie camera scanning beam will eravel acrows a few thouandths of an inch of the surface of the object or image being scanned which will be equal to the combination of the plus and minus tolerance permitted for said image line to be off a desired or predetermined position PI inflicated positionally by sizand CS19.
It is assumed that an area, benchmark, points or a reference line or plane of the object being scanned is prepositioned in the image field and that the object or surfice being scanned is at the correct attimude and dirtunce from the video scanning camera or device. Such a method of sutomatic inspection or measuremeat may be effected by fixing the video scanning device or cassera so scan a particular area or field. A fixture or seops are provided in said field being scanned for aligning the object being scanned so that anll objects will have a common base and will be of equal relative scale in the image field. Thus a particular degree of sweep of the scamning beans will represent for each prepositioned object being scanned the same length on the surfice of esch ocher object scanned.
The length of the CS signuls is proportional to a parricular tength or distance.along any plane in the image field. The positions of the lesding and trailing edgus of these signals may be electronically detected and snay be used to indicate the position of a particular line, plane or small area in the image field or to effect the measurement of said line or plase from a predeter: unined line, plane or point in the field. As stated, the CSI signal may be used primarily as a means to gate a similar length of the video signal PB to an ousput circuit and the position of CSI will determine what particular length of the video signal will be gated. Assume that it is desired to indicate or measure the distance along a video scanning line between two lines oblique to the beam scanning tine which are of different lighe reflectivity or intensity than the image beckground. Further assume thas the position of each of suid lines may be indicated as a result of the inflection in the amplitude of the video piciure signal by a pulse created as the signal passes a video clipper, such as a pentode clipper. Then, the CSI signal will be provided on member 80 in a posision such that, when reproduced therefrom, is may be used to gate that part of the video signal produced when the scanning beam of the wideo camera crossers sid lizes.
Sinces the distance between said lines in the image field zasy vary from one sample or image field to the neat, if the maximum variation for all samples being scanmed is knows, a gating signal CSI may be provided of sufficient length to pass the correct section or sec. tious of the video signal for each field or sample being scanned such thete each will contain thast part of the
picture aignal containing said two lines. The CS1 rigaal thus acts to pas only that part of the image sigual $9 B$ in which it is koows that the two lines or points will sppear regardless of theip varistion from wolerance to the exclusion of all ocher lines or images in the rotsl video image feld. There may be other lines or images of simiLiar light intersity in the field welch would ordinarily prevent the comparative or quertitstive measurement of the desired length or distance in the image fildo, the 10 PB rections of wiich would have to be blinked or ocherwise dicerininated.

Tae CS12, CS13 mad CS14 xignals may serve one or more of several purposes. They may be used to indicate the actusl position and variation from a desired position indicated by the center of said zignals, of a point, plane. line of area, as indicated by an amplitude change or inflection in the $P B$ xignal occurring in the range indicated by the CSI signal. For example if the puise crested by the inflection in said video signsal occurs between the time the leading edge of the CS12 signal is
 reproduced, then ssid point in the video signal is known co occur in a particular tolerance range or distance from the norm which may be indicated by the position of the CS13 signal.

Similarly, the range or distunces between the leading edges of the CS13 and CS14 signals and between their respective trailing edges may be second tolerance regions and between the respective leading and urailing edges of CS14 and CS13 third solerance regions. For inspection of machined parts, the tolerance regions between C514 and CS15, for example, masy be indicarive of acceptable tolerances between CS13 and CS14 wignals indicative of acceptable but also of an impending required change in tool adjustment; between CS13 and CS14 signals indicative of a dimension scanned nos passing inspection and quality requirements but capable ot rework, and outside the leading and trailing edges of reproductions of signal CS13 indicative of complete rejection of the pers and aither shrur-down of the manchine for readjustment or the requisite that the scanning inspection apparatus be checked. The CS12 to CS15 signals may also be used for automatic sorting purposes whereby an object having a dimension which falls in the range of one of said pulse signals bur not in the range of the next smaller signal may be so classified or sorted by pulse means to be described.

FIG. 3 ahows a magnetic recording member 10 having multiple recordings thereon and also illustrates associated apparatus for the automatic comparative measuremeat of a similar length or lengths of two scanning zignal recordings which are signals derived from photoelectric scanning of moving objects or video beam scanning of image fields. Said picture signals include a sync or position indicating signal $\$ 1$ provided on a first chanmel C1 of member 10, two picturs signads PB1A and P318 recorded on channeis C2 and C4 and in lateral alignment with each other and the signal S1, and one or more discrete signals SC11, SC12, etc. shorter than either of said picture signals and recorded in predetermined positions on member 10 relative to said picture signals. Said reproduced SC signals may be used per se or with signals recorded on still other channels of the secording member to perform one or more of the variows other zating, control and operaive functioas de. scribed elsewhere in chis specification.
In FIG. 3, said SC aignals sse used, when reproduced, 30 gase specific and similar lengths of seproductions of
the two recorded picture ignals over respective output circuits for automatically comparing the characteristics of said similar leagths of said two signals. For erample, ane of said picture mignals PB1A may be derived from acanaing what will hereafler be called a standard image Faild. Such a standard is defined as aneld of measuremeat or inspection which to the optical scanning system of a beam scanning nideo device contains one or more images or image areas which (m) are in a predetenmined position in gaid field resulting from determined alignsacat thereis and (b) exhibit other predetermined optical characteristics such as predeterxined color or lizht characteristic.
The other aignal, PB13, is prefernbly derived from acanning another field containing matimage area or areas similar in shape, position or light characteristics to coro responding areas in said standard inage field but which cany vary in any of said characteristica. Since the amplisude and/or frequency of the picture signels PBLA and PB1B change as the optical charscteristics of the image field being meanned change, said two signals may be compared pount by pounc. 5 wo sumiar zegmeats or lengibs of said signals may thes be compared for amplisude or frequency variations by the means provided and the resulting differences in signal variations indicated by apparatus such as illuserated.

Whise the method of mesurement atilizing the recordings of taid two picture signals provided in fixed relation to asch orher on a mannetic recording member has numerous advantages, it is possible to perform the same function by pecording suid standard image field signal PBIA in a dized or predetermined position relseive to sync signal S1, for example. Said second picture signal is provided in the circuitry illustrated during the game time is is provided in FIG. 3 by the reproduction apparatus illustrated by utilizing the reproduction of axid $S \mathbb{1}$ signal to trigger, for example, the sweep of a video ssorage tube readbenns to.scans a charge pattern recording of said second picture signal and produce said second signal over said illustrated circuitry. Sirnilarly, is is possible so provide both said picture signals recorded on respective ssorage tubes and to effect their simulasmeous reproducrion by means of a signal derived by the reproduction of the sync signal \$1, whereby the member 10 serves as al signal generating medium for generating said SC aignals at predetermined ingtants daring the reproduction of said two picture signals.
The method of recording all signals in predetermined positions relative to each other has numerous advanrages. These include the provision of a recording which may be rechecked or rescanned if neceswary or changed in characteristic and which ma be filed for future reference or used to modulate the write beam of a picture tube for visual monitoring. The recording of at least said standard image field signal on member 10 has addi- 5 tional sdvantages in that is may be one of a multiple of related but different pieture signals recorded on zaid member and may be relectively reproduced therefrom adding flexititity to the apparatus and permituing it to be used to periorm a multiple of inspection functions relative to different tumage fields or devices.

Assume thas the signal PBLA has been derived from scanning a standard or quality-acceptable image field such as derived from the surface of a work member or Xoray structure of an object or subject which conforms to specified dimensions, surface characteristics or. light characseristic. Further assume shat taid image beld contains areas of different light or radiation intensity or

The aignals reproduced by reproduction heads PU1 to PUS are amplified by means of reproduction amplifiers A1 to AA respectively. The outpur of amplifier $A 2$ is passed so the impur of a normally open, monostable electronic gate or switch GI and the picture signal ousput of reproduction amplifier A to the iaput of a second gate Q2. The switching inpurs of gates G1 and Q2 seceive the outpur of reproduction amplifier A3 thereby amplifying the aignals SC11, SC12, etc. Said zate GI and G2 may be any monosrable electrical switcling device adapted to switch at the required sate and to effect the completion of a ciscuis between its inpus and outpur whenever a signal rtproduced from channel C3 is present at the switching inputs and to disconnect said circuits or when said signal is no loager present theress. r

Various elecflon tube and semi-conductor gates are known in the art and may be used for switches GI and C2. Thats, it is is anly desired to comare image sea-
zyents in prodetermined sreas of zeid two fields being scansed or compared, or particular leasths of said respective picture signais, the positions of the SC signats and their lenglhs will provide segenents of bolh said gignals on measuremest which segments were produced during besurn scanning said predetermined aress of said fields or said specified lengths of said mignals.

It is also assumed that the picture sionals PBLA and PBIB were derived by bears scanning means which provides a picture signal during scanning which varies $=3$ anplitude as the beam scas aress of different light ciberacteristic. For example, the field being scanped may contain an image wea of conc color or light inten. sity on a beid of a different color or istensity. Faen, as the beam crosses from said field to amid image $s=a$ or vice-verse, the picture signal produced during seid beam crossing will experience in inflection in amplitade.
Scanning and video systeus are known which produce a picture signal which changes in frequency when the field scanned changes in optical characteristics or radiation intensity. Amplitude change snd detection of said change is utilized throughout this invention for measurement purposes. However, means for detecting prederermined changes in frequency may also be applied. Thus, if it is desired to compare the position of an image or part of an area in she standard image field with the position of a similar are in another bield, the locadions of the respective inflections in said swo signals produced during scanning said similar areas may be compared by comparing their time relationship in the outpur circuiss of the respeccive amplifiers $A 3$ and $A 4$.
The outpuis of getes G1 and G2 are passed to respective elipping circuits CLI and C12 which may be standard video diode or eriode clippers adjusted 10 a desired elipping level. The clipping circuits with indicate by a signal output therefrom when said isstections in said respective picture signals occur. The gates G1 and G3 bave the flurther sdvantage or limising the input co the clipping circuits CLI and CL2 to predetermined 40 lengths of the respective $P B$ signals. The $P B$ gignals aray correspond to segments of snid signal produced during the scanning of a specific area or aress of stid tozal fields. Thus any other areas in said respective inage fields, which areas vary the same degres in light 4 intensity or chanacteristic as those being messured, will not confuge the measurements and will not give false gesules.
The outpurs of clippers CLIA and CL-2 are passed to a logical two-input AND switching circuit AN1-2 which produces a signal over an output therefrom when a signal is present at both inputs. Thus, a line irnage may be in the same coordinate position in the stmodard image field as in the other field being scanned. Provided that the other mentioned conditions of recording and reproducing said two signals simultaneously and initiating anid beam scanning actions at the same point in each of said fields are met, and each of said line imager as it is scamed causes an isflection of shor duravion in self respective picture मignily, and gaid inflectioms cause, respective pulse outpues from said respective clippiag circuits, then an output will be prodseed from the AND circuit AN1-2 which will be indicative that said swo inages where crossed by respecsive scanning benms are in the same coordinate positions in said swo fields.

The mentioned indicating technique will suffics if it is merely desired to compare a point in one seanned field with a point in a second of standard image field
whereby the outpur of the AND circuit may be pasted to a counter or recorder. However, if it is desired to acan a liwser area of \& field to determine if one or more points in said field, or one or more border sections vary in posivion from a standard, or where a specific border or line starts to vary from a standard, then further indjcating and computing apparatus is neceasary.

In F1G. 3, the output of AND circuit ANI-2 is pessed to the switching input of a normally closed monostible switch or logiod NOT switching circut N1. Whenever 32 output from gate AN1-2 in present at circuit N1, said玉witch will open and break a circuit between its ipput
 also prassed to the inputs of a logical OR swirching circuit 0-I, the output or which is conrected to the input of circuit N1. Thus, if either clipping circuit produces an output at a time when the other clipping circuit is not producing an output, said output signal will be passed through the NOT circuit N1. An output from circuis N1 will thus be indieative that the inflection or change in the signal PBIS occurs aither pricr to or 2f:r the 20 . currence of the respective inflection in the standard signas PBLA

Physically this may be interpreted as the ahifting of Is the position of a border or line in an insege field being scanned either side of a predetermined position us determined by she position of a similar section of an image in a standard or quality acceptable field or grastern. If it is desired to determine on which side of the standard or desired coordinste positiom, border or linae said imege -being investigated falls, then one of several techaniques may be emplayed. For example, owe of the two inputs to the OR circuit a- 1 may be eliminated or tit may be opened by sasnual awitching meanss at some theme after an ourput has sppeared at circuit N1.

FIG. 3 shows technique for determinimg where in the picture signal PBIE or said field scanned to produce gaid signal, an izuage varies froma a desired or standard position delined by the PBAA signal. The teclarique employs what will hereinahter be refarred to as a digital clock or timer referred to by motation DIT. The timing device DIT is started by pulsing an inpus F thereof and will produce a puise code such as a binary digit code over parallel circuits 22 whenever a trigger input TR of said tirser is puised. Thus, if the outpul of NOT circuit NI is passed to the triyger input of timer DIT, a signal code is available which indicates the time lapse from the time the timer is first energized. The ourput of circuir N1 may be of such a duration and occur cluring a time interval whereby the timing elemens of timer DIT advances more than one position or tinne increment. Tisen, multiple code signals will be transminted over the paral. hel ourput circuirs 22. By counting the mumber of said codes transmitted, the degree of which said sampled insage area varies from a standard image position may be determined.

The output 22 is shown extending to a computing circuit which may be an input CO wa digital computer adapted to record or orherwise uetize said digital infor. mation for computing or control purposes. In a simpler forma, stage CO may be a counter or swicching circuit adspted to energize servo devices for performing such functions on work being zcanned as sorting, marking, assembly or the tike. In more compiex arrangements, stage CO may be one of a number of digital computing mechunisms adapted so convert the digital input, fifter opersting thereon, into one or zaore sigmals for eontrolling various sctions which control results from a deci-
sion or decisions made by utilizing sad input informancion. Such actions na readjusting on mâchine, stopping, cenating, marking and the life may be controlled by eomputing mechnnisms and will depend on the value of the resules obinined from scanaing.
Other circuitry, hereinather described, may be utilized to improve or errend the utility of the apparstus of FIG. 3. The use of wuch apparatus will depend on the characteristic of che phezormenon being measured and the design of the computing or measuring circuits $C O$. For cample, the output of the NOT circuit N1 may be prassed directly to a reconding device or to a computer $C O$ which may be used to record said gignals and pro vide an outpus for operating a warning device or servo when said gignals become greater than predetermined duration or length. The output of circuit N1 may also be connected to a cathode coupled multivibrator Schrin circuit CM , she output of which is connecied to the input TR of timer DIT.
The mulaivibrator Schmitt circuit is adspted to produce a arisst short pulse at its output when the leading edge of a longer oulse appears at its input and a second whort pulse when the trailing edge of ssid longer pulse sppeans at axid inpul. These pulses may each be used to provide a respective coded output over the circuirs 22 which are indicative of their relative time relationship. Then, gaid first digital code may be subtracted from the second generated code by employing known digital computing means in shage CO. Consequently, a differ. eat signal or code will be obtained which will be indicative of a difference between the coordinate position of shas part of the image area of the standard field being scanned and that part of an image area being compared therewith in the field scanned to produce the PB1B signal. The resulting difference digital signal obtained from subtracting said two outputs of timer DIT may be recorded and/or automatically compared with a code or number recorded in the recording section of the compuser $\mathbf{C O}$.
As a further variation in the illustrated measurement cechnique provided in FIG. 3, a pulse code such as the binary digit pulse code PC' on channel CS of member 10 may be provided, reproduced and passed to the computer CO. The code PC' is reproduced by reproduction transducer PVI and amplified by reproduction amplifier A\$ prior to being iransmitted to computer $\mathbf{C O}$. Code PC' may represent, for example, in binary digital nocation, a number equivalent to the maximum permissible difference between the meationed two pule code outputs 23 resulting from said two, leading-trailing edge signal ereated short pulse outputs of said eathode coupled multivibrator.
By matching said two digital codes (b.e. the reproduction of code PC' and the difference signal computed by computer (CO) it can be automatically determined if the variation in that part of the porition of that gart of the aricle or image being cocanned and the position of associated pars of the standard irnage is greater than the degree specified by the code recording PC'. The difference sigasl or number which has been obtained by suibtracting said first input number from timer DIT to computer CO firom said second input mey be subtracted from the digital signal obesined by reproduction of the recording ${ }^{P} C^{\prime}$. The result is a number which indicates bow close the deviation in the position of said article or image area being scanned is to a samimum permissible deviation from $\begin{aligned} & \text { standard position. This latter result }\end{aligned}$ zay be used to effect the posivioning of a cool or orhes
device by operating a aervo motor through an equiveleat degree of motion or angular position proportional to said difference signal or code.

The aignal PC' of FIG. 3 may also be replaced by one or more Internilly aligned code recordings of the type referred to by notation PC Illustrated in FIG. 1. AddiEional recording chennels CS to CN may be provided with means for simulianeously reproducing a particular array of pulse recordings at ons cime. For example, a digital code sigzal output may be provided over paralle! circuits to computer CO at a particular instant or giont time interval in the measurement cycle. Then, and codes PC may vary in value from poiat to point along meraber 10 and may be used so perform or effect different operations or functions.

Multiple PC codes may be provided to indicate maximum permissible varistions in the positions of the standard image and that being measured. Then, each PC recording may be used to indicate the varistion in the position or dimension in a parricular part or dimension of the total inage or article being scanned. For exsmple, the marimum variation or permissible tolerance from a specified position of a first object or component assemBled on 4 chassis may be X inches and of a second object, Y inches. A first code PC is provided opposite or just prior to those parts of the picture signals produced during beam scanning ataid first object which is indica tive of said first permissible maximum variation. A second code PC is provided in \& position or positions along nember 10 to be reproduced just prior 20 or during those parts of the picture signails produced during beand scanning said second object. The first output of the cathode coupled multivibrator or the signal SC reproduced from member 10 may be used for swisching purposes in the compurer CO. For crample, wwitching the associaned. P. Coode reproduced from nember 10 during the time interval defined by said SC signal may be switched to a particular storage unit sucid as relmy storage where is is held and iused for comparison with the associated output of simer DIT. Further details of such $\frac{1}{4}$ swisching function will be described hereinafter. FIC. A shows magnetic necording means and sssociated reproduction determining one or more of the following phesomens:
(a) If a given image portion or area in a field being scanned falls in a particusar position in said field op if reference points, lines or planes of a given image fall in -predetermaine positions in said field,
(b) Where in said total field or how far offe reference point, line or area in the scanned field a given poins, image ares or line fills. Eramples of the operations of the above referred to scanning means include such investigative functions as determining if the border of an area or areas such as the edge of a worlipiece, part of assembly falls along a particular array of coordinstes; determine if the workpiece is precisely positioned on in assembly or is fabricated so tolerance. It is assumed that another surface or area of said workpiece is in a fixed position insald field to establish a benchmarts or base for said comparative measurement,
(c) The means of FIG. 4 masy also be used in determining if lines or areas on a map, scopes drawing or photograph fall along predetermined positions. It is again assumed that part of said map or drawing is in a referenced position in said field being scanned.

The arrangement of FIG. 4 may also desermine the degree of variance of phenomena wuch as described above from a predetermined position or positions in asid
field; and if any otber tunge phemoneuoa which is characterized by a varistion in light charscteriticic exists in a givea scanning field.
For the purpose of simplifying the description of the zignal recording arrangement and apparntur of FIG. S, reference is mande to FIGS. 2 mad 4^{\prime}. In FIG. 2 , multiple sulee signols are provided each on odifferent channei of che rasgretic recording member 10 to indicate tbe position of a change or inflection in a video picture signal by soting during which of said pulse qigrals said varistion is reproduced. Similar recording arrangements are provided in FIG. 8 at various positioas illustrated as sigzais P1 20 PN on member 10 which represent precise cuordiante positions or distances recorded from the start of the gicture signal recording where changen such 23 inflecBous in said picture signal will oceur if the surfece being acauned is precisely positioned relative to the scanning apperatus when the field scanned to produce the ? ${ }^{3}$ signal is similar to a standard image field.
Thus, at each of the ? coordinate positions, multiple pulse signals are provided which bear the general notasons SC1-N, SC3-N, SC3-N. The SC3-N signals are locsted at the? positions. When said infection in said PB signnl is reproduced simultaneously with the correspording SC3- N signal, the condition may be indicated by wse of a logical swirching AND circuit which produces an output when seid condition occurs: Said outpus signas indicanes thas the line or area being measured tallis at a predetersnined location or coordinate position in the image field.
Referenoe is also made so FIG. A' which shows a fragment of an image đeld IFP being scansed. The borivontal lines ST-L represent the trace of a faster scanning beam. The recording means and apparatus of FIG. 4 may be utilized to determine if an area such as whe band LN is positioned in said field IFP with its borders at predetermined coordinate positions therein. Band LN snay be such phenomens as the sithouette timange or a michined parro il line or curve on an graph, map or draw wing, etc.
For many measuremens functions, if another surface of said machined part is preposizioned in the field IFP or prepositioned relative to the scanning device, a maximum variation of an image thereof such as band LN from a predetermined position in said field may be determined and noted by means of measuring the lengths of the SCl-N signals. If the area LN is of a different color or light intensity than the surrounding ares, it will cause when scanned, a change in the resulting video signal. Such a change may be inflection in amplitude in that part of the signal produced when the camere scanniag beam scans aaid image line. The maximum expected shint in the position of band LN either wide of the prederermined position illustrated is indicated by the length of the longest zignals SC.N on channel C3. If the line in the image field zhould fall beyond the band or aren having the width SCA in FIG. 4', then thas part of the piciure signal $P B$ obtained when the camera beam scanmed line $L N$ will not be gated by the suocissed CS aignal.
FIG. A', it is noted thar a definition of the CS eignals of FIG. 3 in that they are pulse signals of such a fength, duration and position on magnetic recording member 10 relative to the associated video picture signal $9 B$ thast, whea said CS signals are reproduced therefroan their presence at the swiching inpus of a mormatly opem monostable electronic gate may be used to gate caly those segments of the PB signal which were produced

When the video scanning beam scanned the band area ASCN, ASC2N hisving the width SCN as shown in FiG. 4. A warrower band area ASCZN basving a width SCIN and centered within the larger band area, simiLarly defines the SC2N signais of FIG. 8.

While chese basd areas are assumed to be fixed in the field IFI' and provide increasingly smailer regions Which approuch the srea or line P, the actual posicion of the image arta or line LN way shif from one sample being scanned to the semt and may fall on either side of the tine E ai FIG. 4. As stated, the ares of maximum expected dispersion of band LN is assumed to besve the width SCN. Whereas, in FIG. If' it is assumed tha: the line IN may shift in its abesissa or X vaiue only from $X_{p}+S C N / 3$ to $X p-S C N / 2$ where X_{p} is the X coordinate value of the line P, other scanning arrangements suny have a line innage or area of any predetermined shape. Whereas in FIG. 4, the SC3-N signal which indicate the desired or bssic position of the line or band LN are of equal duration and are equi-spaced, for other measurement problems, the spacing of szid SC3-N sigasis will depend on the shape or other characteristic of the line or phenomenon being scanned and she rype of ims ge scanning employed to produce the picture signal.
In the upper len hand coraer of the image field IFP in FIG. 8^{7}, the iznage of a line LA may comsprise a mark on the aiticle, map or surfice, part of the edge of said image or some other characteristic of said insage being scanned which may be used to indicase if said article or surface being scanned is aligned in the field IFP and/or provided in the correct scale therein. The inmage line or area LA will produce changes or inflections in the PB signal and these may be compared for position in the picture signal with short pulses recorded on member 10. Said pulses are shown on channel C6 of FIG. 4 and are referred to by the motations CSE-1, CSS-2, etc. The pulses CS©-N may all be produced simultaneously with a corresponding pulse caused by the inflection in the video signal PB each time it scans the line LA. Then, by the provision of logical switching circuies in the ouspuss of the reproduction apparatus and a clipping circuit for clipping said inflections in the $P B$ signal, an automatic indication umay be attained that the object or surface containing the line or optical phenomenon LN is properly aligned in the image field and/or provided to correct scale therein. If these conditions are mot met, a waming device may be actuated to indicate that corrective action muse be raken by a human operator before sutomatic scanning may be continued.
The apparatus of FIG. A is illustrated in block diagram notation for the purpose of simplifying the drawings. Various szandard electrical components such as reproduction ampiiniers A1 wo $A 6$, video clipping circuits CL, gates G, logical AND switching circuits AN, logical NOT switching circuits N and the like are provided and are lanown in the art. It is assumed that each of these circuiss is providad wilh a power supply of gufficient magnitude. Similarly, these circuis are assamed to be cappoble of switching at the required fre60 quency for effecting precision in mensuremens.

The circuitry illustrated in the block diagram of Fic. 4 may be usilized to determine (a) if the surfice, article, map, drawing, photograph or other object containing the image LN to be scanned is to the correct scale in the image field IFP, (b) if same is conrectly aligned relazive no the optical or flying spor scanniag systems of the wideo device effecting said scanning, and (c) juss where in the ares of possible dispersion said LN inaage falls.

Multiple mangretic reproduction beads PUI so PU® are provided aligned scross the lape 10 over channels $C 1$ so C6 for simuleanans reproduction of any of the illusarared siguals.
The hesd PUZ rida agriwn chanal Co cortainiag the picture sigual PB and the wigual reproduced chereby is amplified in a reproduction amplifier As, From ampla(ien A2, the dibrsi is pessed so a clippias circuit C22 adjurted in cuipping level ic pass onily those parts of the $P 8$ sigral of o desired amplitude zuch of the infiection portions generated as the scanning beam feays lited LA and LN. The outpus of clipper CLI is passed so a monosable, sormally ppen electronic gzte 02 haviag a switching inpus from anplifier As and logical circuis ANG. 2 is from the amplifier A6 of the reproduction bead PU6, 30 thut $2 b e$ ajgnals CSGN will be peased thereto. If the reference line or area Lh in the imsge bleld is permutted so be a predetermined degree off scale or ofl a specified position or basic position in the sield IFP, the permissiole scatter may be accounted for is the lenath of the CSE aigmals.

The ourpur of amplifier At is also passed so a dalsy Üne D'ó, the ourpur of whicn is connecred to ine isput ol a logical NOT circuiz \mathbb{N}. The switching input to NOT circuit N6 is trom the output of AND circait AN6.2. Thus, if a signel is reproduced from the track $C 6$ of a tire when so signal is produced at the output of clipper CL2, an indication the! the reference line LA on the object or surface being scanned is mor at a prodetermined position or astitude in the inage field MFP will produce a sigmal at che output of the NOT circuit N®.
The deley circuit or line Dd is provided of a time duration to sccoum for the time required to awitch circuits AN6-2 and N6 alhough for many applications it anay not be required. If aignels are aimulaneously reproduced as che output of clipper CL2 and amplifier AG, AND circuit ANG2 will produce an outpar and swirch the normally closed NOT awitch N® to open so thas she signal from amplifier Ad will not prass therethrough to an alarrm of ocher devios ALG. Devies ALs masy be a relay which, when energized by as output from NOT circuir $\mathbb{N G}$, is adapled to effeer such actions as the stopping of the zneasuring appararus, rejection of the part or article being scanned, eic. by energizing an electrical device such as ia relay actuared solenoid.
Circuitry is provided to determine where the image of LN falls in the image zone referred to by wotation ASCN in FIG. 4. Respective reproduction heads PUS, PUA and PUS scan channels C3, C4 and CS and reproduce the illustrated signals therefrom. The reproduction amplifiers A3, As and AS anplify the mignals reproduced by their respective heads. The ourput of amplifier A3 is passed to the switching inpur of gate 02 thereby closing axid gate while present thereat and permitting any signal of zignals produced at the output of clipper CLI while seid gate G2 is closed by the presence of a reproduced SCN signal thereat to pess 80 three circuits including inpues to AND switchigg circuits ANE-3, AN2-4, and ANs.3.

The other inpus to circuit AN2-3 is from amplifier A3. When clipper Cl2 produces an output at ibe sasse time that one of the SCN signals on channel C3 is being reproduced, an output will be produced from circuis AN2-3 indicsting that the change or inflection in the $P 8$ signal caused by the scanning beam sweeping across the area LN falls in the region ASCN of the scanned image field. The ourpus of circuis AN2-3 may be passed 10 : coumer, recording device or further logical switching
eircuit 12. The output of amplifier AS is also passed so " Uhe swriching input of A NOT circait N2-3, the wignal inpus to which is derived from clipper CL2. Thus, if che area or tive LN frulls outside of the sues ASCN, such thas the change in the P3 rignal occurr and is prassed to clipper CL2 at a tiase when mo xjgnal is preseas at acopililies A3 so be passed so open circuit N2-3, said aignal clipped by CL2 will pass through circuit N2-3 to a circuis [2-3 which may be malarm, recorder or relay odapted so energize $\$$ counter or actuate a zolenoid or oher device.

Tre ourgur of swictic O2 is siso passed to one inpue of 3 lopical AND swiching circuis ANEs. The oliter imput to swrichcircuit ANES is from mplifier And. Therefore, if an SCSN nignsi is reproduced at the same time an ourput 的 produced from clipper C12, a Migand indication is obtained that the line LN falls in the region or area ASC2N haviag the width SC2N. The width SC2N is showis in FIG. 4' as a yarrower band or area cicser to the required posision of line $\mathbb{L N}$ at $X=X p$, Yaso in FIG. 6'. The output froms switching circuit A 12 - 4 may be persed to a counter, recorder of relay 14. iif reiay lif is a puise counsex, it may oe adizpled to produce a pulse over ans ourput circuis upon receipt of a paricular aumber of pulser from ewirchiag sircuis AN2-6. If.LN is a curved line or band or is oblique no the horizontal \mathbb{K}-aris of the inage field, \& prederermined number of pulses produced from switching circuit AN2-4 will indicate that a particular part or percontage of tbe totel liae $\mathbb{L N}$ falls within the wrea ASCIN.
It znay be desired to discover where in the image field the line LN deviates in its prosition and if it falls outside of a given limit defined, for crample, as the band area ASC2N. Assurning thas oxid line can vary from one zample scasined to the wemt in a manser whereby pars of said line may fall within said given area and pari beyond said given ares, a code indication of where said deviasion occurs may be derived as follows:

A pulec couster $P C O$ buvinge a counting inpur $P C$ is connected to a mormally inactive pulse geserator $P G$. The arigger input to the pulse generator PG is from the output of reproduction amplifier AI which receives the reproduction of the $\mathbb{S 1}$ gignad on channel C1. Since che
43 SI sigual is indicative of the reproduction of the start of the $\mathbb{P B}$ signal and in used to trigger the pulse generavor PG. the rumber of pulses produced by pulse generatior PG afeer being so triggered is an indicstion of the lengeth of the rocording member 1 moved past the reproducvion heads. Hence, if may be used to indicate uhe posisom of a particular point in the picture signal PB auch as a deviation from wierames.

The pulse count or pulse signals received by said counter activate asid counser for indicating whers in asid video PB signal or in said image field said devisrion or other occurrence take place. The phenomenon messurrable by the apparatus of FIG. \& is a point or area in tibe image field IFP where the lise LN first extends beyond or leaves predetermined area ASC3N. This may physicaly be interpresed as a devintion from solernee, a change in a predetermined image condizion, or an inage change such us a suep in the shape of a masufactured pant.

Said indication of position may be akained as follows: The coumter PCO is assumed to be initially set at sero and is adspsed to atart to count upon receipt of a first pulse from the pulse generator $P G$ which is triggered by reproduction of an $\$$ I aignal as che recording passes
head PU1. When a secoud inpur PCR so the courser PCO is pulsed, said counter either atops counting or provide signals therefrom indicative of the count reosived prior to exergizing input PCR by means of said pulse. Said signols are transmitted to a circuit 16 which may be a recorder, relay, part of a logical computing circuil or other device.

In FIG. 4 the input ${ }^{\circ}$ CRR is adspted to receive a pukse when the inflection or change in the PB sigrual, caused is the beam of the scanning camera first sweeps acroas the ares LN, is reproduced by head ?U8 when part of the SCZN signal associnted derewith is 200 reproducad therewith. The guise trasumitted to input FCR is indicative of this condition because it is the outsout of clipper CLI and can only be passed through a aormally closed NOT gate NCR when there is no signal at the owritching input of said gate from amplifier A4. An output through NOT circuit NCR indicates that the line or border of the area LN in FIG. \&' Talls ousside of the limits of area defined by the SCI aignals yet, due to the gating ection of the SCI signals when said line falls within the limits derined by the signai on chasnal C3.
Two other functions which may result when a signal is produced and passed through circuit NCR are also illustrated. The output of circuit NCR may also be passed ehrough a time delsy awirch or delay line D2 eo the reserving input RT of pulse countes ?CO to automatically reset said timer to condition is for the near measuring function. The output of circuit NCR is also connecred to \& relay RES which may actuate a warning devioe, solenoid or motor for causing sucts as action as rejection of the article being inspecsed, stopping a production machine, acc. The outpus of the pulse counter PCO may be provided on a single or multiple parallel circuits for trsasmitzing a parallel pulwe code therefrom whenever input $P C R$ is energized to the inpus of stage 16 which may be a recorder, computer, awritching circusit, relay or other device.

The pulse generator Po of FlG. \& may be elismimated from the circuitry as follows: Instead of recording a single prulse $\$ 1$ en channel $\mathbf{C 1}$, multiple equi-spaced shor pulses are recorded thereon preferably entending the length of the PB gignal. The length of these pulse aignals $S N$ will depend on the lenget of the $\mathbb{P B}$ signal. If the heads PUI to PUG are laterally aligned across a magnetic tape 10 , then the first signal $\$ 1$ will preferably be positioned at or aear the stant of the PB signal. The mumber or SN signals which pass and are reproduced by the heid PUI at mny instant during the reproduction will be mss indication of the length of the 8 PB sigral which has been reproduced up to that instanh. The output of amplifiet AI may be thus pasted directly to the pulse counting inpus of a counter such as counter PCD which hass been tet at zero and said counter may be singoyed and asused to read ous a value of the toul sumber of cour ts received by an input such as from circuit Now Than, the sotal pulses received until receipt of said lanter inpur will be an indieation of the lengeh or position of the PB signeal at which said latter pulse was received.
Ia FIG. acole generating means is provided in Place of the pulse counter PCO of FIG. 4 to isdicase the position or poxitions of zpecticic images or perts of imp. bges in the word image field represented by the video gicture signal PB. For example, various measurement, computing or control functions may require sife ansoancic indication by means of electrical sigzal means indicating the position of a line in the inuage field or a
porticn of a lime in a predeterminod pars of the leasge field. If the sield IF: of FIG. 4' is considened the K-Y plane of a coordinate syatem and she origin is predeter. mined by the coordinates as $\mathbb{K}=\mathrm{O}, \mathbb{Y}=0$ at the lower ben hand comer of said ficid, thes any poins in said field may be referred to as having positive Y coordinute.

A means for determining the coordinates of a point in Geld IFP in FIG. of a particular point in the PB signal is to initiate counting when first reproducing the $P B$ signal by gating the output of a pulse generator $P G$ and noting the toval count or number of pulses generased thereater if any insinnt. However, device 16 connected to the outpul of counter $8 C 0$ may be a digivat computer which is adnpted to atilize the output of counter PCO for automatic computational purposes. Then, said outpas is preferably provided in binary digital pulse form. Counters are known in the art and will provide a binary pulse code output at any instunt during their operation by pulsing their input. If counter BCO is such a digital ousput counter, a pulse transmited thereto from NOT circuir NCR may be utilized to indicate, by means of oinary codes, variarions in the picture sagnal PB recorded on chanael CS of member 10 .
In FIG. Sa means are also shown for providing in instantaneous binary pulse code output on parallei circuits to the input of a digital computer CO. The said code is an indication of the locatioss of a particular point in the picture signal. Depending on the circuitry employed to energize said code producing apparatus, asid eode may serve as an indication of the location of a particular change in sait picture nignal thereby digitaily indieating the position of a particular pars of the image in the field UFF.
Io F1O. \& an annlog to digital converter ADC of 3 conventional derign is ecmployed 20 provide a digisal pulae code on parallel circuita CKC which are consected to the ispus of a digital computer CO. The converter ADC zasy comprise a cosstant speed motor Ariver and a ghâ swiching device having wulciple 0 brush contactors which sweep a coded conzact spen of a coded disc to produce a digital code over parallel circuirs indicative of the position of asid ghaft at the instant an inpur TR is pulsed. The outpus of the amplifier A1 is connected for reproducing the recorded S1 pulse and passes anid pulse to the startirg ingut S-ADC of the converter driviag motor to surn the gycle. It is therefore assumed that the shaf of said converter is at zero posision prior to starting.

The code triggering signal to the trigger ingut TR of converyer $A D C$ may originate from any of the logical gwitching circuits or gates of FIG. \& depending on what is desired to be indicated by meanss of a digital code rignal. For ermmple, the image phenomenon in the field IFP may comprise a line such as LN of FIG. f' of a simple analog curve and it is desired to indicate by coded signal means the coordinmte points in said field where said curve or line falls. Thes, the input to imput IR is connected to the gate O2 of FIO. 4. Each time an inflection oecurs reproduced in the picture signal $P B_{\text {, }}$, parallel digital code will be procucad over the mulkipic parallel circuits CKC and eransmited to the cosmputes ∞.

II may be desired to indicate where the ares AC, for erample, varies from the predetermined area position as indicated in FIG. ${ }^{\prime}$ '. Then, the pulse input to input TR rusy be derived from ome of the ousputs of the logical AND gsritching sircuits ANE. The selection of which output to use will depend on which of the Jimirs de-
noted by the aignuls SCI, SC2, SC3, asc. it is devired to mearure variztioas relative so. The oxrput of NOT circuits $N 23$, N24, stc. wrill provide a code indication at the coxaputer by setivating to the iapur TR of eoavertior $A D C$ whea a change in the $P B$ signal occured resulaing from the aren scanned frlling outside the fraits defised by the signals on chanaels Ca_{3} and C 4 .

The inpur RE-ADC to the anaiog/digital converter $A D C A D C$ is connected to s reproduction amplifier A.7 which reproduces a signal from in wenth channei of recording member 10 (not shown). The seventh channel sigpai is positioned ibereon to be reproduced after the reproduccion of the 33 signal and is used to aivier ctop converter $A D C$ at in zero position or activate a servo which drives converter ADC position to a shat thereot at asid zero position. If the swiching shat of coaverter $A D C$ is adapted to make one syvolution during the time is takes to reproduce the PB signal, then a limit switch may be provided mounted adjucent asid awiuching sbaft of converter ADC adapted to be closed when one reve. lution of said shat has been angde and to thereby stop aid driving motor at said zaro postivion, Pubsing the control S-ADC during tae aext cycle by means oi a signs? reproduced from chanmel $\mathbb{C l}$ may be wsed wo bypsss awrich REE-ADC and start anid converter sriv. inf motor to stant the nert inspection sycle.

FIG. AB is a dingram showing further details of a digital clock or timer of the timer sype DIT uxilized in FIGS. 3 and 4. As stated, the digital clock is adapted, when operative, to trensmit a digit binary code therefrom as any instant after starciag when an inpus $T R$ is pulsed. Said code is indicative of the tizne passed from the stanting of asid clock. If the cycle of timer DIT is sctivaled at a predetermined time during the reproducsion of the picture signat $P B$, the posiaton of any point in anid PB signal may be indicated by generating a pulse aignal at the instant said point in said picture signal is reproduced and by passing ssid pulse signal so che input TR. of timer DIT. The resuluing code transmitted over parallel circuits 22 will be indicative of the time said slock was pulsed.
The digital slock of FIG. QB is electro-mechanical and is a modification of the conventional shaft position encoder in that it is driven after starting at a constant speed. The clock DIT indicater unic cime lapse wherens the conventional encoder is varisble speed device which is driven by a varisble speed motor the shaft of which is speed controlled by an analog wignas?. The clock DIT may utilize sertain pomponemes of a conver. tional shaf encoder; mameiy, a ghaf digitizer sssembly ADC havisg the conventional code disc abereis sad readour means. Assuming that digitiver $A D C$ is a photoelectric type of encoder, it saay contain the conventional sode disc driven by shast 16. It also has a readout hash Light geovee which is energized when a signal is presem at input : 'R, a radiarion lisxiting slit between ohe code disc and P!.ght, a slis system on the otber side of the code disc and a mulli-element photoelectric PBS cell ow the other side of the slit system.

The cell elements which receive iight chrougt the diec pass pulse signals over the outpur circuirs 22 so compurer $C O$. These plemeats, while nor Hustrated in FIG. AB are known in the arn and are part of the cuncoder section of the type $309-13$ eiectric shaft position encoder produced by the Electronsic Corp. of America. The shail 16 is driven by a constans speed motor 12 through reduction gears preferably of a ratio of 100 to i or greater. The ratio depends on the time constant of opeed chereanter, it sasy be calibrated so that a particular pulse code thast is geaerated om the ousputs 22 With the shat 16 initially provided at a zero see point will shwhy indieste by code the bume tize lapse from sxid strrixis. Raoma autorstic control apparams 12 is reed for rapidly mecelerntiag suid motor in a predeterziped manaer and include control means for maintaining the apesed of said motor constane thereafter.
The atartiag and stopping of ciock DrT and its resset to zero may be effected by a combination of awitches including a pulse sctuated fip-llop switch for starting and stoppiag the motor 12. The switch is indicated by ine blocko having nosationas F asd S . When iupul F is pulsed, a circuit is completad between a power supply PS and the snotor 12 and/or itr constans speed control. Whea the inpur $\$$ to the lip-llop switch is puised, zaid wwich switches to open, thereby cuting off the power apply. In the apparatus of FIG. \& , if the iaput to F is derived from amplifier A1 and if member 10 is driven at constant speed, then at any particulas instwo after input F is exergized by the reproduced $\mathbb{S 1}$ pulse, a particular code will be trasmitued from the eacoder and suid codo will be indicssive of said time interval.

The curtpart of the converter ADC' consigus of multigle parallel circuits 22 over which said digital prulse code is cramsuinted whemever an inpus pulse appess at a line 20. The input line 20 entends from the gate GS and the output code from digitizer $A D C^{\prime}$ effected when line 20 is energized will iadicate the poims at which an inflection cecursed in the $P 8$ signal.
The digizal tamer of clock DIT wasy be reses to zero as follows: A bi-grable soienoid 21 is mounted adjacent the shant 16. A can projection 18 is provided on hhaft 16 which during morral operation of the device rotates and clears the retracted shaf' 26 oi the puals pull wole35 noid 31. The solenoid has two inputs F and \mathbb{R}. When inper F is pulsed its shan 26 projects and when imput R is pulsed shafit 26 retracis. Mounted on the end of Bhaft 26 is a limis swisch 28 which is projected into the path of cam sis when ixput Fof solenoid 21 'is pulsed. The limit swicch 28 is provided in circuit with a power supply PS and when closed as is eagages cam projection 18 , a signal thereby transmitted to the stop control § of moror 13 and input \mathbb{R} of 21 . The solenoid shaft 26 is thus retracted and the motor 12 stopped with the shaft 16 provided in a piedetermined or zero position. A deliay relay 30 in the circuit o. limit switch 28 and input 8 of soienoid 21 may be used so delay the retraction of shaft 26 so that the shat 10 masy come 20 rest sgajnst shat 26 . The pulse transmitred to input F of solemoid 31 is derived from amplifier Ay which emplifies signals recorded on a reventh chansel C7 of the member 10. The seventh channel signals are provided so indieate the end of the particular recording or desired computing func붕도.

In FIG. S, a signal recording arrangement is provided on an magneric recording member 10 and is applicsble for aperaking on or gating partienlar lenghs of a video picture signal which correspond to those parts of the
wideo picture zignal P3 derived duriag the beam scanzing of a particular ares or areas of che rage field or object being scanned. Tae recorded sigrats of FIG. 5 comprise a syac signal \$1 provided on a first recording channel CI for incicicatiag the position of a sideo picture wignal PB on a recording channel C3. Multiple pulse znating signals SC1, SC2, SC3 . . etc., preferably of predetermined durmtion, are provided on a chird chanzel C3 in predetermised positions adjacent she PB sigsal. Tae SCN signals are preferably of a length and/or positioned relative to the picture घignal P3 zuch that they cnay be ased to gate or effect operstions on sivaliar lengiths of the PB signal. If the leagth, spacing and positions of the SC signals are predetermined, then that part of the cotal video picture gignal 99 which ww produced duriag the camera beam ocanning of a particular area of the rotal field being acanned may be gated Bbereby or operated spon. The segments of the ?3 gignal which are so gated will be determined by simultaseously reproducing the P3 signal and the SC signal.
If the reproduction heads are lsterally aligned across the magnetic recording member 10 , as illustrated, then esch SC signal may be used to gate an equivalens adjacent lengith of the $P 3$ signal. For gating or operating apon those segments of the PB signal created during the video scanning of a speciric area or areas of the total field being scanned, the lengtios, spacings and posilions of the SC dignals relative to the PI signal will be deterunised by the shape of the seliected area or patch of the cotal freld being scanned and by the sype of scanning employed. For example, raster scanning many be ernployed across a rectangular scanning field. Consequently, a recrangular area or patch in said total field which hass its sides paralle! to the borders of the sotal field will be represented in the PB sigral by a series of equi-length, equi-spaced segments of the picture signal.
The segments of said picture signal may be reproduced and scanned or otherwise operated upon by having similar lengths of equi-spaced gating signils SC recorded on channel C3 and by reproducing said SC signals simultaneously with the picture signal. The presence of the reproduced SC zignal at the swirching input of a mormally closed electron tube gate will gate an equal length of the PB signal. By predatermining the lenglhs, spacings and positions of the recorded SC sig. anls, any parriculas area or areas of the tosal field being scanned may be gated in this manner or otherwise upon. The SC signals may be provided by a puise generator. of known design. Either reproduction of the syac pulse S1 or the first part of the picture signal may be utilized to arigger the operation of said pulse generator to correctly provide the SC signais for recording anto chassel Ca.
Scill another means for providing SC or CS àgnats on meraber 10 of the worrect lengit, spacing and position may comprise seanning an objert or image ficld by bean scrnning mear. und passing the resuluing video picture signal to a beann storage cube and recording it in the ssorage element thereof Nexh the recording member 10 is driven pasts its recording and reproducticn beads. Reproduction of the \$I signal is used to trigzer the read beam of ssid storage cube. The resulting output of said tube is passed to a slipping circuit of the type described. The output of the clipper is recorded on channel C3 as a series of discrete signsis. If the signal recorded in the storage sube is derived by scanning a rask or map having position predetermined black or white aress of sufticiess light contrast on beckground
fields and said mask or map is correctly positioned in the scanniog field of sajd beam meanning means and provided as the proper irasge scale, then SC signsls of the desired lexgth, specing and possition may be generated and recorded on channel C3 by selection of the corsect mask partern.
A preferable means for providing such a mask is as follows: An innage field IF is shown in FIG. I' at the scanning plase of a video scanner or video camers optical system. Rester scanning is utilized in FIG. B' and 'hbe $^{\prime}$ scanning field is assumed to be rectangular. The aorizontal lines ST are traced by the video camera meannin 3 beam which sweeps serows several areas A.A, A.B and A-C. Said areas are cack crossed by a number of hori13 zoneal scanning sweeps. Escí of zaid areas are assumed to have different light characteristics or color than the back ground BF of said field IF. To determine if the area A-C falls within o mpecific band arza A-C' of the field, the apparatus of FIG. 4 may be used to effect said determinstion. The signal recordings of FIG, 3 consist of a xeries of gating signals SCN provided of equal length and equal spacing along the recording member if the ares A-C' is rectangular and if the borders of seid scanoed area are parailel to the bordens of the image field IF . Each pime the beam scans a path ST and crosses the leading edge El of area A-C, an inflection occurs' is the ampititude of the picture signal. If the background area to the right of image area $A \cdot C$ is the same light iotensity as the srea on the leff side of the 0 A-C picture, said signal will exhibit the wame amplitide generated before scanning A-C when the besma aweeps pess the trailing edge E : of area $A-C$. The area $A-C$ may represent any optical phenomenon such as a curout in a panel, a component assembled on a device having a general surfices of different color than area A-C, the croas section ahadow or end view of an objeck, one object or area in a field of many such as illustrated by areas A.B and A.C.
The area ACC of FIO. g' may be positioned in a 40 known position in the field $3 F$ and is may be required to measure or indicass only the positions of similar shaped areas in other scanned image fields. Then, the sirgnals to be recorded on channel C3 of F1G. I may be obusined by placing a mask ovar the areas $A-A$ and $A \cdot B$ of essenAs tially the aame light characteristic as the background of said field, scanning the field IF witth a video image scanning camera such as a vidicon or icomoscope subc, passing the resulting picrure signal to a clipping circuit such as clipper CL- 2 of FIG. 1 and recording the output of said elipping circuit on the magnetic tape 10. The recorded signal $S 1$ is used to stars or trigger beam scanning of the field IF.
Hence, the phenomenon to be meesured is recorded and may be reproduced at che correct instant so that the signals SC1, SC2, SC3 . . SCN mxy be used to gate onily those parts of the picture signal PB generated during the acanning of the area $A=C$ while excluding sigmals generated on scanning areas A-A. and A-B. In order to generate and record, signals $S C N$ on member 10 for gating portions of the picture signal PI generated in seanning an area $\mathrm{A}-\mathrm{C}^{\prime}$ which area is larger than $\mathrm{A}-\mathrm{C}$ and has a marginal area around area A-C to account for permissible small shifts in the position of area A.C from one workpiece or specimen being scanned to the next and to generate gating signals modified to accoumt for pernissible shitting or movement of area A.C in the irsuge field, the optical system of the scanning device may be enlarged the necessary degree to make the sides
or borders of the ares A-C fall on the coordinate linos LE and TE which respectively represent the wides oi the aren A.CC and devermine the leading and arailing edges of ajid SCN signals, Arter effecting zaid valargemeat of che image area $\mathrm{A}-\mathrm{C}$ and masking of the areas A-A and A-B so that the background of image Eeld IF is exeastially of one light characiecistic, the modified field may be acanned and che picture signal passed zo 2 clipping circuit the output of which is recorded as dezcribed to provide the SCN signals on imember 10.
FIG. 6 Uل Uustrates a recording arrangemeat and associated uransducing apparstus for reproducing and/or. modifyiag a portion or predetermined portions of a video picture signal PB recorded on a magnetic recording member or cape 10 whereby coratrol of asid reproduction or sigual modifying is effected by one or more iignals recorded in predetennined positions relaive to said PB signal. In FIG. 6, a single control xigan CS1 is ahown provided on channel C3 of the recording meniber 10 adjacent the $\mathbb{P B}$ agral. Signal CS1 is in such a position whereby it may be used to gate or otherwise efiect an operation on a similar and predetermined hength of the $P B$ sagnas.
The aignal SII on channel C1 may be used wo record wither the PB signal or CSI gignal in a predetermined relative position, one after the other is recorded thereon. The CS signal may be pesed as described to the swicching inpus of mormally open gaie 02 after being reproduced by reproduction unanducer PU3. When switch G2 is closed by the signal reproduction of the CS recording passed chereso, that part of the PB signal present at reproduction head PUZ will be passed through said gate G2. A particular segment or segments of the $P B$ sigral such as the segments produced during the beam scanning of a particular area in the image field may thus be gated and passed to o circuir DCK which is adapted to operate in a predetermined manner on said gated agments. of the reproduced picture signal, by means of the gating signal or signals recorded on chanmel C3.
The circuit DCK is provided wo perform one or more of a number of functions on the gated segments of the P8 signal passed thercto. If segments of the PB signals are gated by muluiple piulse gignals on C3 of predetermined length and positioned such that said gated regsnents correspond to the picture signal sections geaterated during the ecanning of a parzicular area of the lield being ocanned, then functions zuch as amplification; attenuation or erasure of the gated signal portions ansy be effected by operscion of circuis DCK bo produce a modified video gignal which will provide a corresponding change in the image field generated thereby. Gate fial may be operated so close and pass prederermined wortions of the virim signal by cuaing signals derived, as hereinabove provided, from clinping prortions of the rept oduced video picture signe? reelf (i.c. she ourput of iesd PUZ) which may fall above or below onsin level.
If the output of deiny DT is connected to recording head RH2 gate GT may be opersted to closs by the same clipped gating signals. Thus either the ourput of the signal changer circuit DCK or the pieture signal generning storage tube ST may be passed to recording head RHil after appropriste delay introduced by delay lines DT' or DCK is effective in presenting the aew or modified picture aignal regment as the recording heasd RH2 at a time that either the slipped portion of the
recorded picture signal PB or the portion defined by signal CSI is present at recording hend RH2.

The new or modified video มंgnal portion may either be recorded directly over the regment of the video I rigal recording if is 40 modify or replace or on the appropriate length of the charnel Cl which has been erased. Such erwsure masy be effectedfy aither passing the clipped porsion of the reproduced video picture signal or the reproduced CS signal(3) through a delay stable electronic gste GE which sutes a power aupoly PS io energize a mapretic ernse bead EMi2.

The delay period of delay $D 3$ is such that head Efi2 will be energized during the interval the length of the 5 tape containing the portion of the PB signas recording waich was clipped upon reproduction is passing erase head EHIS or during the saterval that portion of the picture signal recording associated with signal CS is passing erose head EK2. Thus, the modified picture 20 signal passed through circuit DCK will then be reporded on sn erased section of she chanale $C 2$ in the zrect position greviously occupied by the original gated section of the reproduced sigral.

Thi apparatus of FiG. 6 may also be used to perform 25 functions which are commonly employed in still or motion picture photography, suck as: (a) fading or Blanking or crasure of a particular area or areas of a picture or image field such as is comssonly done in reouching a photograph. (b) fading or reducing the 30 image intensity of an area or areas of the total innage hield being scanned and reproduced, (c) increasing the brighemess or amplifying the image field being scanned and reproduced, or (d) recording a second image aignal over a particular area or areas of an image field.
In order to effect the last function, fie., recording a sew signal or signals on a series of lengths of the recorded picture aignal to effect the production of a new innge in said image field when said picture aigas is used to modulate the write beana of a video storage or picture 40 tube, it will be mecessary to obtain said mew picture signal by reproducing if from a recording device.

FIG. © also shows menas for effecting this section of recordiag a aew picture signal asto a particular length or lengths of the channel CZ between the leading and 5 trailing odges of the PR signal already recorded thereon. Said recording arrangernent comprises a video storage sube ST having an input WI energizsble for writing a video signal into the storage alement of said rube and a reading outpur RI on which is generated a reproduction of the recorded video picture signal when a trigger pulse is received at read beams trigger input \mathbb{R}_{2}. The arigger input to \mathbb{R} may be derived from anplifier A3. If the scorage element of sube ST is capable of producing a signal when scanned by its read beam, which, when recorded on member 10 of FIG. 6.as uaid recording member is driven at the same speed in which PB was recorded, it erill produce a recording baving the same length as recording PB. Furthermore, if the innge area in the storage tube recording element is bocated along the rame coordinate of the storage mbe, \leftarrow storage element as in the field scanned to generate the PB signal. signal segments for affecting ssid image area zuny be recorded onto the correct lengths of channel C2 as follows:

The signal \$1 is reproduced by a geproduction head PU』 as the leading edge of picture signal PB first passes reproduction head PU3. The reproduced signal passes to the trigger input R2 of storage rube ST. The read
beann of storage tube ST usarts its sweep and the resulting octpur signal thereof is passed lhrough a gate GT which is normally open and is ciosed when \mathbb{a} ignal is present at its swieching inpul thas is counected to smplifer A3. A delay line DT is provided berween amplifier AI and zate GT to sccount for the time required for triggeriag the read beam. If is assumed that the SI signa] is provided in a position to permit the reproduction of signal S1 to arizger storaze tube ST to provide on output sizmal therefrom st the instant the leading edge of signal PB proses head PU2. This lig, if $2 n y$ can be wleo scounted for in deisy ine DT which is connected between gate GT and the recording amplifier RA2 for recording liead RH2. The recording amplifier RA2 is positioned where stage RA.CK is connected to delay hine DT and recording head RH-3. The ome delay constant of delay DT' ix such as to delisy the passage of the sigual from storage tube ST a anfficient time to permis the member 10 to travel the distance between heads PU2 and RH2. The gate GT is utilized to blank out all parts of the signal transmitted from storage tute ST eacept those of equivalent length and reproduced w!. an the signais CS oa chamel C3 are reproduced.
In FIG. F, a series of gasing signais SC1, SC2, SC3 SCN ase provided on channel C3 of magnetic recording member 10 adjecent a video picture signal $9 B$, which, 3 in the other hereinubove described examples, may comprise a composite video signal with picture, blanking horkontal, and vertical sync pulses provided therswith. Each of suid SC signais are of a particuiar leagth and are recorded spaced apart in positions relative to said PB signal. The SC signals may be used, when reproduced simultaneously therefrom with said 9B signal, to gate particular or predetermined lengths of aaid PB signat which lengths were generated when a video scanning carnera beam scanned across a particular area or boundary in the image field being investigated.
An object or surfise may be prepositioned in the field being scanned such that a point or points on the surface of the object are at prederermined coordinate positions in the scanned image field. Then, a particular area or areas, determined by said multiple gating signals SC, may be investigated to determine if smaller areas, spots, lines or the like of different light characteristic than the backgroend of said selected areas exist therein. For exsmple, surface defects such as scratches, marks, holes, discolaration and the like which appear as inuages of different light ciuracteristic shan the general surface due to shadows, change of reflectivity or greater absorptican of light, will cause a variation in the amplitude or frequency of the video picture signal when said susface is scanned.
If Ps lignal is composite video zignal recorded on channel C2 or if other areas of the field being scanned are of equal or greater isgit variation than the surizce defects or image phe vomens being invertigated, the gating signals SC Ens; be reproduced and employed. In this manner, such phesomens will nol serve to confuse the factions of messuring, counting of of ofherwise deterwining the existence of or eatent of such defects because said SC rignals may be used to zate ouly sections of the picture signal P3 generated while scanning the ares of che imgge field in which said defects or phesomerai to be measured cocurs to tie exclusion of oulver aress of said inage field.
in FIO. 7_{0} the SC signals are reproduced by head PUS and passed to one input of a logical AND swiching circuil $A N 23$. The picture signal recording PB is
reproduced by zagnesic reproducing bead PU3 and passed through a seproduction amplifier A2 to a clipping circusi: CCIs. The output of CC18 satends to the other input of circuil AN23. The elipping ciruit CC12 is rijusted $>$ clipping level to derect the ionge phenomena or zurface defectis is the aren determined and gatid by the SC sigals for lavestigution. Whenever both signais from cilipper C13 and amplifier A. 3 are present at circuit AN23 an output signal is produced therefrom,

Said output ignal moy be utilized in one of a aumber of manners. The presence of such an output sigal may indicate a defect or andesirable ciaracteristic of tic surisce being scanned and may be used to energize a relay which may effect one or more of such functions as the singing of a bell, energizing of other types of slanms, the siopping of starting of a servo motor, actuation of a solenoid for rejecting or transferring the part being scanned, or the pulsing of a counter. It may also be desirable to count the pulses passed from AND circuit AN23 in a counter suck as counter TC which may contain circuit means for amiting a pulse therefrom fo: control purposes of a predetermined count is exceeded daring the pessage of the entire PB signal. Notation AM refers to an alasm triggered by on ouiput from counter Is TC.

FIG. 8 is a schematic diagram illustrating signal recordings and reproduction means including control circuits for automatic dimensional measurement. Means are provided for auromatically zad rapidly desermining if a dimension in an imase field, such as the distance between two surfaces, which dimension is discernible by variations or inflections in the light or eolor of the inage derined at the linuits of the investigated dimension, is positioned in a purticular or predetermined area therain and is of the same length as a standard or comparative dimension. Said comparative dimension may be the leaght of or distance across a similar component or area conformiag. ta a.given dimensional brandard such as across an articie of mmafacture waich is dimensionally acceptable and conforms so precise dimensional measurements according 20 , for exampie, an engineering rpecificarions.
Measurement and position of the dimension or dimensions being inspected and compared is accomplished in FlG. 8 by use of a video picsure signal derived by video camera beam scanning the surface of the object or area being measured or compared. The said picture signal PB may be recorded or otherwise provided whereby it may be passed to a messuring circuit or circuits at a time whereby the generation of said signal is synchronized to the reproduction of other gating and position indicating signals recorded on a magnetic recording member.

In the inereimbove described video measuring and control sechniques, one or more wideo picture signsls are recorded on a magnetic recording member in a precise position relative to one or more control or gating signals so that said other signals may be reproduced to gate parricular lengthes of the video signal and to indicate the position of particular points or areas in said 0 video signal. The same results may be attained by recording the video picture signal on any other medium such as the surface of a storage tube provided that it can be reproduced therefrom in a manner whereby it is synclaronized in cime to the generation of said other 65 signsls. This may be occomplished in the arrangement of FIG. I, for example, by reproducing the frame indicating or sync signal SI and mploying said signal to srigger the sweep of the 'read beam' of a storage tube

ture rignal severated when the beand crowses from the border to conder of ares A.C. The Schemitr circuis CM will produce short pulses when the leading and urailing edges of the zignals from clipping circuit CL3 arrive thereas. The gating xignal CS3 will determine which of the sweeps scross area ACC will be used for messurement and will preveut tbe passage of signais produced by Schunith circuir CM 25 the result of acasning the ciser arreas $A-A$ and $A \cdot B$ in the field $B E$.
The output of Schmitt circuit CM is passed wo one input of a logical AND circuit AN2-8. The other input of AN2A is conuected ro the output of amplifier At. Tee outp th of Schmitr circuit CM is also passed throuzh a dexy hise D2 to the input of a logical NOT circait N2. The switching input of circuit N2 is comnected to the output of the AND circuit AN2-4. Delay D2 is provided to sccount for the awitching tirge of cireut AN2-4 so that, if a pulse is produced at the output of Schmirt circuit CM at the same time that CSA is being reproduced, it will not pass through the NOT circuit N2 but will be stopped by the appearance of a pulse zenersted by AND circuit AN24. Whes there is 30 ourput from NOT circuit N2, the leading edge and/or trailing edge of area A.C fall within the area or position indiruled by signals $\operatorname{CS4} 4$ and $\operatorname{CS4}-2$. If the pulse should be produced from Schmirr circuit CM whien there is no signul output from amplifier A4, the AND circuit AN2-4 will not produce an output and zeid pulse will pass through the NOT sircuit N2.
The output of NOT circuit N2 may be connected so 30 one or more of a number of electrical devices zuch as a relay or zecording head. The relay RE xay be used so activate a wanning signal generating device, stop a machine, effect a visual or mingnetic recording, send a signal zo a computer, esc.
A simplification of the recording arrangement and apparatus of FIG. I involves the eliminstion of the signal CS3, its reproduction apparatus and the gate G2. However, the channel CA must be poise free and cannot coatain other signals which would, give a false indicstion of the condition of the PB signal. If the recording member 10 is a mragnetic druma or closed loop tape, it may be sotased or aravelled at constant speed and may be used so repeat the described comparative measuremens by either intermitrently recording and erasing a PI signal of the phenomenon being measured from member 10 or providing said position indicating signals CS as time intervals and synchronized to the generation of a wideo picture aignal generated in scanning seid phenomenon. The sigral S1 on channel C1 may be used to trigger the sweep of a video camera scanning device to start producing said picture signal at a predetermined instant when a particular length of the recording member 10 is passing the reproduction heads or is in a predetermined position relative to said beads, during its travel, so that the similar effect will be attained as obtained in recording said signal on a specitied lengtrio ot said member 10 relstive to ssid other ignals and simultaneously reproducing said aignals pharefocm.
FIG. 9 illustrates means for sutomatically measuring a distance or distances between points in a video image Beed such as the distance between two coordinates where a scanning line STL crosses the borders of a particular ares in said field or the borders of two predetermined or specified areas. An example of such measuremeat is the rectangular image field BF having an vere or parch A-C as shown in FIG, 8. The area A-C is charracterized by a different radiation or light intensity
than its surrounding field area BF . To simplify the description, uhe sides or borders of area A-C are parallel to Be borders of the field $B F$. The width D of area $A-C$ may be automatically determined by outomatically measuring the length of that part of the picture sigmal produced during scanning the width of said area, or, assuming that acanning speed is constant, determining the time it cakes for the beam to travel from one border to the other. If it is known bow long it rakes for the scansning beam to travel a unit distance across the area or surfiace AC, then the width or any predeternined disension of area A-C masy be measured by timing the interval it zakes for points in or portions of the picture sigral generuted by such scaoning to each exist in or 5 arive at a measuring circsuit

Frovided that the area A-C is of a known and predevermined soase in BF , the actual distance D is obtained by multiplying the time is rakes for zaid beam to sweep across said area by the proper time constant. The latter may be derived if the speed of acanning is known and the time it takes for the scanning beam to sweep or travel a anit distance is determined. Assume the picture signal generated in scanning the field is recorded on : magaetic recording member 10, as sbown in FIG. 9, while seid member is driven af constant speed. Then, distance D may be determined by accounting for the speed of said tape, the time interval between the reproduction of that segrent of the PB signal generated when the scasning beam crosses the border El of area A-C during a wingle line and the reproduction of that regment of PB generated when said beam crosses the border E2.
FIG. 9 abows means for effecting a measurement whereby the picture signal PB derived by scanning field 3 BF is recorded in a predectermined position on a magpetic recording member 10 relative to multiple, gating signsis CS3 recorded at predetermined positions on channel CS and signal CSA recorded on channel C4. Signal PB need mot be so recorded if is may be gener0 sted in a measuring circuit such as that illustrated in FIG. I at a predetermined cime reiative to the generation of the other illustrated signals.

Wherens in F1G. \& athe length of a ahors pulse signal on channel CA determined a solerance range for the position of a lime or border image in the field, in F1G. 9 such a positional tolerance is determined by the positions of the reapective leading edges of signal recordings $\operatorname{CS3}-1$ and $\operatorname{CSA}-1$. This is effected by passing the output of reproduction araplifier $A .3$, which output is the reproduction of recorded signal CS3-1, zo ann input of a dual inpnt AND circuit AN23 and the output of reproduction amplifier A to the switching input of a sormally closed monostable gate or NOT switch N2 which is switched to open when a reproduction of the CS3-1 signal is present thereat.

Thus, if there is an input to NOT circuit N2 resulting frow a predetermined change or characteristic of signal PE being cuipped in video clipper CL-2, there will conly oc 2n output from AND circuit AN23 if signal CS3-1 is being reproduced but jot CS4 1. The positions of the kading and trailing edges of signals $\operatorname{CS3} 11$ and $\operatorname{CS4}-1$ thus determine the tolerance range of the position of the border of the area or ofber optical line phenomenon being measured.
Signai CS3-1 of F1G. Thas the length equivalent of L in FIG. \&' mnd rignal CS4 11 has the length equivalent to L minus 4 T where T is the distance in the field BF along which field the border of area A-C may shift either side
of a sormal ar ztandard porition writhout falling cutride of a desired volerance range.
The aigual CSA-1 of FIG. 2 has the cffect to blank and prevent cronsmission to AN23 of any signal which may be reproduced whes a portion thereof falls beyond the limits of the inside colerance limits. Thas nny images ziturted withis ares A-C which would confuse or prevent messurement are aliminuted from anid mensarepeal If arcs A-C das areas within its borders amilay in ineensity ro ficid BF, rigual CS4 my y be so poritioned co a recordiag member and has a length sufficient to preveat the passage of any cignowi frow the clippiag circalit which will produce is omtpuk and interupt the sigmal paseed therethrough while sigual CS3 is present thereby to produce suriations ot multiple pulies in the outpat of AND circuit AN2 which will switch the flip-Slop FC.
For emample, the area across which it is desired to effect a lineal measurement may bot be an area haviag chager or interruptioss (suck as [A) in the composition of the inage pattern within its borders whici will cause variations in the picture signal which will confuse or prevent measuramast. To effect dimensional measurement by scanning, it is necessary so block any output from Schmits circuit CMI to the measurement appanratus iflustrated which is not a pulse generated by Eig. zals produced at the leading edge and arailing edge of the border of the area being scanned for dimensional measurement. The position of sigral CSA is such thas, when reproduced and pessed to a jogical NOT circuit, it will prevent the output aignal from Schmirt circuit CM produced during the same cime interval as signal CSA is genarated from passing to the AND circuit AN23. This is effected by connecting the output of
 of signals so the awricching input of NOT eircuir N2 thereby disconnecting or breaking the circuit between wircuit CM and AND circuir AN23.
Also illustrated in FIG. 9 are means for automatically adjusting certain of the circuit variables such as the clipping level of the clipper CLS. This may be effected automstically without adjustisent by the provision of ane or more signals recorded on said recording member in positions to be reproduced to effect the desired adjustment by controlling a servo motor coupled for providing said adjustanens.
FIGS. 1 to 12 illustrate means for automatically adjusting the clipping level of clipper CLI one or a number of cimes during said automatic mensurement cycle. Means are also provided for effecting the selection of one of multiple of ousputs $\mathbb{K} 1$ to $\mathbb{K} N$ over which to gate the results of measuremeat. A aumber of other fuasctions may also be automatically adjusted by reproducing prerecorded signals from member 10. For example, the degree of amplification or attenuation of all or part of the picture signial may be adjusted by recording one or more gignils on channeis CS so CN of the member ins in positions to be reproduced asd effecit the required adjustmens of control prior to or during a messurement cycle.
If recording nemember 10 is driven at constant mpeed, the duration of a signis recorded an and reproduced therefrom prior wo or during the reproduction of the picture signal may be employed to drive a nervo motor from a zero ser condition for a predetermined cime 20 position the shat of a variable resistor, capacitator or inductance a predetermined adjusument. A series of equi-spaced, equi-duration pulses reproduced from a aingle auxiliary channel may also be passed to a solenoid
for atepping a switch so a selected position to select one of a plurality of output circuits on which so transmi?

The reaults of measurement digital code recorded zither in series or in parallel on a multiple of said auxilliary channels may be passed to the digiral-to-arsloz converter or shaft positioner which is adapted so adjust a variable potentiometer or rotary swirch. In FIG. 9 servo anotor $\mathbb{S M}$ is coupled through geary $G \mathbb{R}$ so she thant of a variable potentiometer $\mathbb{R g}$ in the gridi-cathode 30 vircuit of the clipper CL 300 effiect predelermined adjustment of the potentiometer shat by means of a signai reproduced from C3. The moior SM is controlled by forwand and reverse coatrols F and ${ }^{\circ}$ which are exergized by gignals seproduced from channels Cs and C7. Thua, if member 10 is driven as a predetermined and corstant speed past the reproduction heads, the length of a aignal secorded on asid member will be equal to a speciric rime said sigal erisus in the outpur of the zespective reproduction amplifiers.

A signal of a particular duration recorded on channel C8 will waintain the control \bar{F} of motor $S M$ energized for ap particular time whereby the that of the servo motor SM will be drivez a predetermined number of rotations which is used to preset or to predetermine she slipping level of clipper CL2. This may be effected by controlling wid motor to positionally control the shaft of the potentiometer $\mathbb{R}^{g} g$ in one direction by signals reproduced from channel Cl of anember 10 and in the other direction by signals reproduced from chanael C3 by the reproduction amplifier As. Amplifier As is operarively connected so the formand drive control Fo of servo SM as sbown in FIG. I1 to preset the abatit of the variable potentiometer $\mathbb{R g}_{\mathrm{g}}$ in the grid-sathode circuit of the triode tube $6 \mathbb{I}$ of the clipper CLI as illustrased in FIG. 10.

A signal recorded on channel cy may be of auch a length to reset the shan of potentiometer Rg to reso as shown in FIG. 11. Subsequeatiy, a signal reproduced from chanael Cs is fed to the forward drive control Fof motor-SM4 20 preposition said shaft, thereby adjusting the potentiometer operated biostable solenoid actuated swith adspted to effect the reversal of motor SM. The motor SM continues its reverse traval until the ghaft of the potentiometer Rg has resched a zero position.
In FIG. 11, a limit switch LSW is shown adjacent a zero stop pin SMS. When actuated by the brush arm BA of the variable potentiometer Rg_{g}, suop pir SMS is adapted so stop motor SM as a reset shaf position. For conventional video apparatus variabie potentiometer R_{g} has a range of 5000,000 ohms 203 megohms permitting any predetermined level of video amplituda in the picture signal range to be clipped according to the setting of sadd shaft RPS.
A second method of preserting the potentiometer $\mathbb{R g}_{g}$ is to recond one or more digital codes on one or more chanaslis of member 10. These digital codes are then seproduced at a particular instant during the reproducthinn of the picture signal recording PB or prior thereto and used to effect the zagular positioning of said shaft. FIG. 10 illustrates apparsus for effecting such shaft positioning by means of a digital-zo-analog converter DAC. The input to converter DAC may be a series or parallel disital code reproduced from recordings on the member 10. The digital to andog converter consists of is a setting unit DAC" and a control unit DAC' for receipt of eaid digital input from amplifier As. The serting unit DAC positions the shaft to the number of revolutions and fractions of a revolution determined by the coded
signal input reproduced from recording member 10 . The output shat of setting unit DAC' is coupled by jear zoeass GR to the shan of the varisble resisior. The secting of the resistor 起g determines the clippiag-level ai clipper CL2
Also illustrated in FIO. 1 are means for outomatically electiog one or more circuits over which to gate iaforzation derived from tie measuring operation described. Tue ouspur of pulse cointer CT's connected to the fimput of a mulfi-output selection switch MS whici is a rotary reepping swirch sias is capsble of attining ove of a particular aumber of swicching positions as prodecerminad by puise siznals provided at an 自put ST wereto. A signal to a resetting input RST resets said swisch so a zero swicching poxitico.
The output of counter CT say be a digital paise ar puise train indication of the count and may be passed to ove of a number of computing, recording or control circuits for effecting or performing various compuring, recording or control functions. In FIGS. 9and 12, means are ahown for sutomstically gating the ourput of counter CT to one of multiple circuits K 1 to KN . Signgis recorded on recording member 10 are used to select which of the circuirs $\mathbb{K} 1$ to $\mathbb{K N}$ the cutpus of counter CT will pass so.
This means may also be employed to gate segreents of the picture sigral $F B$ to one of a plurality of different circuiss or to gate the output of any of the other illustrated devices such as clipper CL2 or Schmin circuit CM to one of mulkiple circuits for recarding, measursment or computing purposes. A zaultiple circuis rotary switch MS has its inpur connected to counter CT.
in FIG. 12, switch MS comprises the combination of solenoid SOL operative, when iss inpus is pulsed, to actuase a ratchet and pawl mechanism $R P$ which steps a shaft R.PS to move a potentiometer electrical wiper arm WA to the next swisching position. The input to zolenoid SOL is derived from the reproduetion ampiifiee A3. If shaft RPS is-reset 20 a zero position, the zumber of pulses recorded on shannel C6 will determine the position to which shan RPS is moved. Hence, the swicching of the input to the selected output circuit is effected. A servo motor SM' actuated by a signal reproduced from channel A6 may be used to resen or drive the shaf? RPS to a zero position at the end of the snensuring cycle. The electro-mechanical switching means of FIG. 12 may be replaced by an electronic device such ass a mangnetron beam switching tube with the inpus from As connected thereto for switching said beam one switching posivion each time a reproduced pulse is received thereby.
The bereinabove described means for effecting antomanic swiching may also be used to gate an selected of a plarality of signals or voltages to one or more selecesed circuits adapted to effect measurement of the type deacribed prior so or during the reproduction of the pictare signas.
The recording arrangeraent and meeasuring apparaiuis of FIG. I is subject to a degree of varintion witbout departing from spirit of the invention as related to automaric dimension positional messuremens. For example, the pulses produced as the ourpur of the respective Schmirt cathode coupled multivibrator circuir CM by the leading edges of the reproduced conerol or gationg wigrals CS3 and CSs may be used to deline a measurement or tolerance range alonge a scanning trane in the field being scanned. If amplifier A3 is connecred to a Schmiry circuil CM, it 600 will produce a puise when
the leading edge of signal CSS appears. The first pulse produced by the leading edge of signal CS3 may be used to ctart a digital timer of the type described and the socond mentioned gulse to reset seid cimes. A prulse or puises produced by clipping and passing the picture signal PB through a Schmitr circuir CM msy be used to sffect a binary digital code outpul from said timer which is indicative of the location of said change in said picture signal between the leading edges of zignals CS3 $27 d$ CS4. The lending and trailing edges of the CS3 and CSA xignals may thus define the limits of a dimension or positional zolerance mage.

The pulse counter CT may also be replaced by a digital simer or clock DIT of the rype bereinabove Is illistrated and used. A timer DTT indicates by a digital outpu: \&herefrom where said change occurs in said picture signal selstive to said CS signals or to the begisning of said pictune signal. In the intter example, the digital timer DIT may be started by the reproduced signal S1, the first pulse output of AND sircuit AN23 or another signal recorded on and reproduced from channel Cl or on any other channel which agnal is posnioned in a predesermined locstion of atolerance renge for the piarticular image phenomena being measure.

An spparatus for antomatically scanning work-inprocess and for deternining by one of the means hereinibove described is shown in FIC. 13. The following phenomena may be determined:

4a) If the contour or ahape of a work-piece conforms to a given contour or falls within specinfed dimensional linaits of a given contour.
(b) If a particular or predetermined part or dimension of said wort-piece conforms to a predetermined dimension and/or is positioned relative so other parts or areas of ssid work-piece within given dimensional Jimits,
(c) If predetermined image areas exist or do mot exist on said work such as production marikings, components assembled therewith, imperiections, components or -materish, exc.
(d) The sctual messurement of a predeternined or specified dimension across said work or heross part of said work, and
(e) Other of the aumerous functions commonly performed by visual or manual means or mechanical measuring devices in inspecting or messuriag work in process or finished goods.

FIG. 13 shows means for conveying a series of articlen of mamufacture past a вcanning stakion SC-ST. The coaveying means comprises a conveyor CV illustrated as an endless motor driven belt but which may be any known sype of arnicle conveyance. For the purpose of simplifying the description, the workpiece or arricle Wh so be scanned is shown as an oblong block or boxshaped solid with a series of steps formed therein. Any dimension meross the article such as the illustrated dy and de dimensions extending scross the first two steps in the upper fice of workpiece may be eutomatically deiermined by the means provided in FIGS. 9 zo 12
Puring inspection scanning the work is held stationary by in sutomatic clamping furkure. However, scanning may be eriected on-the-lly upon photocectric detection thereof on the conveyor, prefersbly while in a predetermined location and aligned the the scanning field to provide accurate measurement The positions of said siep-lixe formations relative to one exd W1 of workpiece may be automatically determined by the means of FIC. 4, or relative to she posicion of an area zuch as area WI which may comprise a bole, formation on said part
$D_{1} \& D_{2}$

$$
\text { Firg } 9 \text { only? }
$$

ar somponent assembled therewith determined by the zeans of FIG. 8. The recording member 10 illustrated in FIG. 14 comprises a closed loop tape which is continsounly driven in a Eired paih af a constant speed for sflecting said recording and reproduction relative therew by magnetic transducing heads \mathbb{R}^{H} and PU.

A! a scanaing station SC.ST, a video camera CAMM is lised on a mount relmtive to the conveyor CV and is focused to scan the suriace WS which faces the camern when worspiece W is aligned as a predetemined posiion an conveyor CV and ithe front end WE is ai a predetermined position in the longirudingl travel of the nonveyor CV. Siraple means are provided in FIG. 14 for aligning the worts W relative to the scanning comers CAM. Hownever, more compler alignment means or buntures may be needed depending on the ahape of the worth, the characteristics of the scanning device CAMA and its oprical system, and the precision required for the automatic measuremeni.
The work $\$$ travels in tise attutude illustrated in 20 FIGS. 13 and 14 along the conveyor CV prior to seaching scanning station SCST. An alignment bar AB ersends over the conveyor CV. The work Wis pusped against bar A.B by a pusher bar 31 which is operated by an air or hydraulic cylinder CY1. The operation of cylinder CY1 is effected when the leading surface WE of the work has reached a predeuermined point in its longitudioal travel in the scanning field BF.
A photoelectric cell PH and photoelectric control PHC therefor ase provided. Control PHC tranmits a pulse over an output circuit when light from a light fource LS mounted acroas the conveyor is cut or interrupted by the work W as it moves past. The interruption of the light source LS initiates the action which prepositions workpiece \mathbb{W} in the scanning field. The transmitsed pulse activates a control for an air cylinder CY2 which thereafter projects arm B2 across the conveyor CV. The face WE comes to rest against arm B2 thereby aligning workpiece W in the field when bar $B 1$ is projected by cylinder CYI so forse frece WS against alignment bar AB.
The workpiece W is chus enseatially provided in I predetecmined posivion relative to the beanning camera CAM with the surface WS so be scansed at a predetermined artitude relakive to asid camera acanning field. The output of control PHC is thus passed over two circuits. A first is connected to a control F of cylinder CY2 which is one input of a solenoid acrusted electromechanical lip-flop swirch which opens \& vilve and sctuates the cylinder CYZ projecting the bar B2. The pulse is also passed to a time delay switch D3. A pulse is then transmited from swisch D2 to the forward conarol F of cylinder CYI.
The delay period of delay wwitch D2 is such that pusher bar BI will be projected against workpiece W a time interval thereafter which is sumficiens to permis the surface WE to engage and align itself against bar B2. When workpiece W is 30 aligned, scanning of the sie!d by ecanner eanera or llying spot seanner CAM may bake place in such a short interval that bars B1 and B2 may be retracted within a fraction of a second after bar B1 has urged workpiece W against bar AB. Therefore, the conveyor CV need not be stopped during this acdion.
Thus, cylinder CYI is adapted to automatically retract at the end of its forward stroke. The return travel of cylinder CY1 may be used so actuate a limit switch thereby completing a circuit with s solenoid which
eicsen or opens a valve to sctivaite cylinder CY 2 retract ing bar B2. This action is accomplished in F1G. I\& by delay relays D2' and D2 which provide pulses for energizing the reverse controls of the lip-flop switches controlling fluid actunted cylindern CYI and CY2 for retraction thereof a short rine afier bar B1 urged workpiece W agrinst bar AB.
The scanning action is accomplished as follows: The pulse signal output of control PHC is also passed 10 through delay line DI to respective cime delay relays D3 and D\& and through line LI ashown and to the somplemeat input C of an electrical bi-stable unit or Iip-fiog switch Fl2.

A firsi puise trassmitted ohsongh line II to switching 13 sontrol C of fip-10p swich FL2 switches the picture signal output of the video scanning device CAM over a sircuin to the writing or recording input $k\}$ of a video storage tube STT. The image signal derived from scansing the surface of the prepositioned workpiece W is recorded on the storage element of the storsge sube SIT as described below.

After being energized by the signal on the outpus of delay line D1, delay element D4 transmirs a second pulse to swiching coatrol C of 1 lipoliop FL2 a time delay period after transmission of asid tirst pulse 80 effect the recording of the video picture signal on the storage clement of STT. Thereafier, flip-llop FL2 switches to a condition whereby the circuit between the scanner and the ssorage sube SIT is broken. Therefore, when the workpiece W starts moviag agsin after bar B2 retracts, the recordiag in ssorage trabe STT will have beea effected.
A delay relay D3 having a time constant equal to that of delay relay D4 or greater permits the picture signal so be read into the storage tube STT before effecting the recording of asid picture signal on the magnetic recording member 10 in one of the manners hereinabove described. Said picture may otherwise be used as described to effect a measurement or comparison by reproducias is aimultaneously with signals generated by reproduction from member 10 in the mannery provided in FIGS. 18012.

The output of delay relay D3 is passed to a nip-flop swirching circuit FL2' which is a normally open awitchs ing means. Upon receipt of a pulse from delay relay D3, switching means $\bar{F} L 2^{\prime}$ closes for a predetermined perSod of cime after which it automatically opens. The input so switch FLI' is derived from reproduction arnplinier A1. When the reproduction head PUI repro0 duces the sync signal $\$ 1$ from channel CI of recording nember 10, said $\$ 1$ pulse is passed to read trigger control RT of storage means SIT. Control RT triggers the read beam control of asid video storuge tube STT and causes said beam so sweep the surfisce of the storage elemeni and produce an output therefrom which is a ideo pictiure signal. The cutput is passed ro a recording amplifier RA3 and receided on chanoel C2 through secordiag thend $\mathbb{R H} 2$ in a fixed position relstive so the sigral \$1 recorded on channel C1.

The trigger control RT comprises a vecuum tube gate for changing the potential of the read gun element (not shown) of STT so the desired voltage for effecting, zutomatic seading of the stored signal hasu, whation

 amplifier A1 and switch RT remains closed for a period 80 permit member 10 so travel 83 least one cycle. Therefore, regardless of where the recorded signal SI is lo-
catod wien 』ip Dop FLY is lirst energized, the reproduction of घigans S1 will pess through swich FI 't io suritch RT before the switch RT opens. The output of fiip-flop FI工' is ilso passed to a tione delay switch FL3. Delay.switch FI3 is in the circuis of the recording amplifier RA2 and the recording head RH2 and maintains said circuir closed for a period of time necessary to effect recording of at lenst one complete video frame picture signsl onto merober 10 .
FIG. 15 is a schematic diagran whowing a further means for producing a firs positive pulse when the leading edge of an elongated signal or pulse appears in a circuit and a second pulse ourpur when the trailing edge of said signal appears therent. The circuit of FIG. 13 may be substituted for the Schmitr cathode coupled multivibrator circuit CM of FIGS. 3 and 9.

The circuit of FIG. $\mathbb{I S}$ includes in differentiating circuit DCT comprising a capacitator and resistance of very sumall time constant, e.8. in the order of 10^{-12} microseconds. The input to the differentiating circuit is from the clipping circuit CL2 of FIGS. 8 or 9. A summing amplifier or integrator SA is provided in the citcuit with shree inputs so its grid, One input so summing smplifie: SA is derived directly from an erystal diode CDI of the differentiating circuit DCT. Another input to summing amplifier $S A$ is from the output of $a D C$ amplifier inverter IN. A second crystal diode CD2 is in the circuit of differentiating circuit DCT and inverter IN. A feedback loop is shown from the output of SA to its inpurt. The Schnits circuit summing amplifier CM of FIG. 15 will provide a dual signal output, as described, when a prolonged signal passes to its input.
In FIG. 14, the output of the photcelectric detector PHC is connected to the trigger input TC of the video scanner or camera CAM through a delay relay or delay tine D1' and switch. When energized, the trigger consrol TC may be adapted to cause the camera CAM to effect a cycle of beam scanning of the image field including the workpiece being inspected. Then, the single frame video picture signal generated on the output 0 R-CAM may be passed directly to a recording member such as a magnetic drum or disc for direcs recording thereof without employing the intermediate storage sube STT for storage. Synchronization of the reproducion of the video signal from the recording member 10 with the reproduction of a comparator video signal or sating signals as described may be effected by clipping the vertical sync signal from the composite picture signal so recorded That is, said wertical sync aignal is used to syachronize the recording and/or reproduction of said comparitor signal or zignals.
Whe mput RI extends to the modulation and deneeEon control circuits for the wrik-beam of the video storage tube SIT. The input RI receives the video picture signal generated at the outpat R-CAM of the yideo camera CAM.

When the trigger input for the reading control RT Frulsed by a reproduction of the frame pulse signal Sy the stored video signsl in storage tube STT is generated on output OST. In FIG. 14, the video camera CAM contains \& trigger control TC for full frame scanning: Refer to my U.S. P ${ }_{21}$ Nos $3,546,258$ and 3,051,777 for greater details of iframe trigger control Tre
\ln FIG. $1 C$, the output of AND circuit ANAN may be used for various control or computing purposes. If the motion of member 10 is coupled or mynchronized to the motion of anachine tool carriage or comporent, the signal from AND circuit ANSN indicates that she

Condition preser in the $R N$ swirches has been atrained and the output from AND circuit AN4N zasy be ased 20 start or stop a bervo device driving said machine or associated therewich. It may be desired to open or close a valve, ectuste a solenoid, reverse direction of a driv. ing motor, eic. when said condition has been reached.

The relay RE of FIG. 10 may be used as a gate to perform my of the geting functions described in this invention and may be used when energized by an outpus from AND circuit ANAN to effect one of various transducing actions on the genersted or recorded picture signal; zamely.
(a) An output from AND circuit ANGN may indicate that a desired point in the length of the magnetic recording smember 10 has been seached (i.e. one containing a specinic picture aignal recording of a multiplicity of different picture signal recordings). Said output may be used to effect reproduction of said picture sigral from the recording thereof by completing a circuit berween the output of the respective reproduction head PU2 of amplifier A2 and another output circuit consected, for example, to a recorder, etc. Acruating the selays R \& so RN in a predetermined order may thus be used for selectively reproducing picture aignais from member 10. The unit length \mathbb{U} of the code mey extend the length of a specific signal recorded adjecent sherero that the ourput gate will be ogen at the time said signal recording is present at the respective reproduction bead.
(b) Similarly, on output from AND circwit ANAN may be used to erase a specific signal or length of a signal recorded on member 10.
(c) If bit information is recorded on channels Cl and $C 2$ and any other channels necessary to effect numerical. recording for digital computing, control or storage of information, the preselection coding means of FIG. 10 may be used for selecting from a specific channel or channels thereof a signal or signals in code form which may be'present on a known' length: of said member or tape 10.
FIG. 16 illustrates an inspection suation, preferably along a production line, which is more versatile than the apparatus illustrated in FIG. 14. Means are provided for relatively moving both a beam scanning device and work to be inspected whereby different areas of said work are presented to the scanning field of the scanning device. The scanning device CAM my comprise 3 deflection control beam scanning video camera, as described, or any suitable sadiation scanning means such as one milizing X-rays, infra-red radiation received from the article being inspected, sonic or other forms of radistion detection and scunning means.
The scanner CAM is mounted on a manipulation apparatus 61 having one or more arms which are supported finm above. For dumis of a typicil article mamipulator and the automatic control therer, f to cause an article such as the scanning -isuera SAM to travel a predetermined path in the realm of its motion, reference 0 is made 20 my application Ser. No. 477,467 filed ob Dec. 24, 1954, and other copending applications which refer so computer controlled or programmed manipulators. The manipulator 61 has a first vertical arm 62 which is rotaisble and defines a joint 621 for supporting a second arm 63. At the end of arm 63 , the scanner camera CAM is supported on a base 65 which is preferably power pivotable and/or rotatable by means of servo motors mounted within the arms 63 and/or base 65.

Scanning of the Belof immedintely in froat of the optieal system of the scanner CAM may be effected while seid scanner is ststionary filer having been sutomatio cally prepositioned by means of a programming appassbus or computer and/or while it is in motion as defined by movement of the manipuintor 61 . The outpat of the scanner CAM comprises one or more firme picture aignals and is passed to a recording apparatus of the sype described. The output's recorded or immedintely compared with a standard picture signal or signals to determine variations in portions of the image field as bersinabove described.
The apparatus illusurated in FIC. 16 comprises inflow conveyor 50 illustrated is a closed loop belt or flight conveyor. A plurality of alide bers $\$ 8$ constituting suide means are mounted above the conveyor $\$ 0$ to define the alignment of articles delivered along \& central portion of conveyor $\$ 0$. Therefore, said articles will be carried onto a turntable the having means for prepositioning and clampingly eagaging the lower portion of the article. The suriace of the article is thereby aligned relative to the optical scanning pield of the scanner CAM.

The turatable 38 is shown pivotally arounted on base 36. Turntable $\$ 4$ is pivotsble to effect discharge of articles thereon onto a receiving conveyor $\$ 2$ after gcaaning has been effected and to sotate the article about a yaw axis relative to she scanner. Therefore, different portions of its surface may be presented in the scanning field thereof while the scanner is held stationary or moved in a predetermined manner. The turntable 34 is also rosatable about irs central axis by means of a motor 54 M which is operatively coupled to firictionally or otherwise engage a surface of the table and rotate it as the motor 54 M is operased. Thus, the work held apainst the surface of the turatable 54 is movable about the central axis of the turntable so that a further degree of movement of the work is attained. The turntable 54 may also be movable about a third aris which is parallel to the direction of the conveyors 50 and 52 so that the work may be rolled, pirched and yawed in accordance with control signals derived from a computer or a programming means. Consequently, substantially most of the surface of the work may be presented in the scasming field of the electromptical scanning means CAM.
Side clamps 58 and 59 are movable by respective servos 38 M and 59 M to engage opposite suriaces of the work after it has been discharged onto the upper surface of the turntable 58 . A clamp or stop 60 is projectible upwardly through an opening in the turniable SA to limit the forward motion of the base of the worts and preposition said work prior to operation of the side clamps 38 and 59 thereagainst. Clamp or stop member 50 is preferably retractable into the turatable 54 at the end of the inspection cycle. Thus, the work on the turntable may be released by forwardly tilting said turntable $\$ 4$ after the clamps 58 and 39 have been remacted. Such action will resull in discharging the workpiece jess inspected onto the receiving coaveyor 32 whereby it is 60 carried to the neas worts station.

All of the described servos and actuators for the turntable 34, the conveyor motors and the motors powering the camera manipulator may be computer or program controlled to effect prepositioning of the work prelacive so the scanner and presentation of predetermined portions of the suriace of the wort in the sicanwing field.

FIG. 17 illustrates article positioning concrol means applicable to the apparatus of F1G. 16. However, positional control means for the scanner is not showa. It is asuraed thas it may be provided in accordance with the reachings of my copending application Ser. No. 477,469 and interlocked with the detecrion of an article at the inspection station.

The article is detected apon arriving at the turatsble or inspection station by means of a phoroelectric cell and control PHC which generates an output pulse. Said output pulse is pessed to both the forward stant control F of the rape transport drive motor MT and a trigger iopu! 320 of a malti-circuir timer or controller 22. Controller 32 has plural outputs for controlling the projection and retrection of the servos $58 \mathrm{M}, 59 \mathrm{M}$ and 50 M for clampingly engaging said workpiece and prepositioning it at the inspection such as oa che turntable S4 of FIG. 38.

The controller 32 also provides a aignal to close a normally open switch 33 disposed in the output of mag. netic tape reproduction transducer PUI and the trigger inpur TC for the deflection conerol chain of the scanner camera CAM. Consequently, when the frame indicating polse \$1 recorded on the channel C1 of the magnetic recording member 10 is reproduced, it will pass to the trigger input TC of the camere to effect deflection control of iss scanning beam in a single frame sweep of its image field which includes as least a portion of the surfece of the workpiece.

The picture signal modulnted on the outpus RCAM of the scammer is passed through a flip-flop wiveh 34 so one of two recording beads RH3 or RH4 depending on the condition of flip-flop 38 and is recorded onto cirher channel C3 or C4 of the tape 10. The other channel contains either the picture signal derived in ecanning a saandard image field, portions of which standard imege field are to be compared with portions of the field being inspected, or scanning the previous article or field for comparative scanning axalysis. Io other words, the apparsus illustrated in FIG. 17 may slso be used for the sonsiomous surveillasce of a nloor area, landscape or other form of display artained, for example, from scanaing a particular area, volume or continuous flow of material provided that the cycle controller or timer 32 is utilized only to time the scanning of the camera and not co control the operation of article prepositioning and clamping means.

Accordingly, the flip-flop switch 34 will.be generally applied where it is desired to effect automatic comparison of portions of one picture signal with similar portions of the previously generated picture signal. Swisch 34 may be bypassed by directly connecting the picture signal output of camera CAM with one of the two recording heads RH3 or RH4. Means may be provided 35 for automatically erasing the-ryeviously iscorded picture sigusl on the channel to receive the sev recording or for immediately comparing the jun-senerated picture aignial with a standard picture signal recorded on tape 10 is a signal anslyzer 30 of the type hereinabove 60 described. The signal analyzer 30 of FIG. 17 is illustrated as operatively coupled for receiviag the two picture signals recorded on channels C3 and CA as well as gating signals SC recorded on channel C3 to effect the automstic measurement functions hereabove provided.

The flip-flop switch 3t may be operated to switch she picture signal output of camere CAM alternaiely from one chanael to the other by the frame position-indicat-
ing-aignal on chanmel CI reproduced by trickup bead PUT.
FIG. 17 also abows means for operating the rape 10 in an incerminent manner. The operating mens includes szop control Sof mosor MT. Motor MTT is energized by the pulse output of the article detector PHC and stop control S is energized when a reproduction head PUI reads the frame position indicating pulse previously picted up by head PUI at a time such that the encire pricture aignal generated by camera CAM hos been secorded on the tape.

In FIO. 17, the magnetic recording member may comprise exther a closed loop sape of such a length io permir the recording of single frame video picture sigmals or a recording dise preferably provided with means for either auromatically or manually effecting the chage of a picture gignal recording. A continuously sotated magneric secording drum or disc may also be employed. The output of the signal analyzer 30 extends wo © computer CO for analyzing, recording or operating on the results which may be in digital form by means hereinabove described. The computer CO is opersgively connected to the multicircuit controller or timer 32 for changing the program thereof to effect changes in the degree of motion of the firsure clamping means: operated by wervo $58 \mathrm{M}, 59 \mathrm{M}$ and 60 M to accommodate different articles.
The cycle controller 32 may also have additional outpur eontrol circuits for positionally controlling or moving the scanning camera CAM is e predetermined sequence or patb to effect a predetermined scanning funcrion. Alernatively, the computer CO may be axio lized to control the movement of both the article and geansing camera in a predeternined manner in which feedback signals refe gemerated so accurately position either or both so that an accurate base may be established for the generation of picture signals which may be automatically analyzed with picture signals zenerated in a similar and predetermined movement of a standard article and the scanner.

FIG. 18 illustrates a recording and control arrangement applicable to the apparatus of FIOS. 16 and 17. A plursality of different standard picture signals are recorded and are selectizely reproduced for comparison with picture signals gemerated in scanning different articles which are related to respective of the picture signal recardings on recording member 10.

Preceding ench picture signai is a reapective pulse train $P C^{\prime}$ recorded on track C1. Pulse train $P C^{c}$ is in the form of a binary code. The binary code is reproduced by reproduction cransducer PUI and passed to a shif register 35 which converts the code so a parallel biamy code on outputs 35°. This code is peassed to a code marching relay 36 of the sype illustrated in FiG. 10 having parallel inputs 36 ' from a computer or controller 37.

The output of relay 36 is passed so the arigger controd TC which uriggers a single deflection cycle for the read bearn of the scanser CAM only when the code reproduced from channel CI matches the input code gener. seed by controller 37. Thus, the controller or code setup neans 37 may be operative in response to means for detecting and identifying the particular article which aricle may be one of a plurality of different articles moving on the conveyor. Consequently, it may generate a particular code assocised with said articie for eflecting the reproduction of that picture signal recorded on recording member 10 and the gating signals
provided therewith and associated with the particular article. Alternavively, ft may be utilized to effect the pecording of the picture wignal generated in scanning the articie sujsceat or in a predetervined position on the recording weraber relntive so the associnted previously recorded standard picture signal.

The output 360 of code marching relay 36 is passed 80 the scanning srigger input TC of the scanner CAM and through a delay relay 360 to the retrsct control F of the product positioning or clumping servo. Release and transfer of the product is thereby sccomplished ather scanning has been effected and after said peryo has been energized so sdvance against or otherwise retsin the product by activation of the limit swich or photoelec. tric detector PHC.

FIG. 13 also shows a connection of the output of stage PHC with means for miarting the stop control S of the servo MCV for stopping the inflow conveyor 30 . Consequently, the aemt articie shereon will not be delliv" ared to the inspection station or surntable $\$ 4$ until scanaing of the article already thereon has been completed. The ourput of delay relay 30 D is thereiore also passed to the stars control F of servo MCV as well as to any other servos operative in removing the article from the inspection aration so that the cycle may be repented for the neat article. In a preferred form of the invention illustrased in FIG. 1B, the magnetic recording member 10 mmy comprise © disc or drum which is driven at constant speed whereby scanning is effected whenever a code as commanded by the input device 37 is reproduced firom chansel Cl.

FIG. 19 illustrates a scanning and detection apparmsiss having features thereinsbove described and a scanner such as a relevision camera CAM. Camera CAM is ausomatically controlled in position to scan aither dif. ferent imnge fields or an image field whichs äs greater in area than the optical system of the camera. The camera CAM is mounced on a turntable 47 which is rotared or ascillated in a-predetermined mansser by menns of a servo fis. The curarable 47 may be continuously rocased to provide a continuous 360° scan or oscillated by auromatic mechanical or electrically controlled means to scan at different positions in its roration. Such positions may be defined by different changeable clisplays such as meter, chars or scope faces.

Accordingly, the turnimble drive motor \$6 is controlled by as suromatic comsroller or compurer CO which may also effect comtrol of the moverpens of the recording member or tape 10 ins tbe event that e predesermined condision exists in the field beisg geanned and is detecred by a signal analyzing means or comparator 30 of the type hereinabove described or any suisable uneans for comparing the picture signal generated in scanning the anse image field during the previous scan with that of the mext scan.

In FIG. 19, the clos ad loor recording unember 10 consiaues to operate at cither constant speed op inter. mirtently. Member 10 gennitits both picrure aignals on the amputs to the comparator 30 unatil a predetermined condition exists in the picture signal derived from the last scanning cycle or in a portion of said picture signals as determined by the gating signals of the type mereinabove decribed. When such a condition exists, the closed loop magnetic recording belt 10 which contains recorded therean pieture signals derived from scanaing areas defined by the plurality of different camera posirions 47 e so 87% is mot otilized for affecting automatic comparative measurement. A second recording means

4I comprising a magnetic recording disc or drum 42 rotated at constans speed is utilized for Fecordiag both the picture signal derived from scanning the unchanged or previous inage bield and each subsequent picture gignal generared in scanning tbe changing image field. Therefore, a running analyzis of the changing insge giruation is obrained.

In other words, the recording disc or drum 42 is operative for recording just one picture gignal on each of itm tracks which may be reproduced the number of times per minute the recording surface is rotated. The aumber of rorations is preferably equivalent to the aumber of cycles per minute which the bean of scanning camera CAM may be driven. The output of reproduc-

Gion head PU3 which is generating the standard picture signal is passed to s recording head hh'. Said output is recorded on the first track of magnetic disc or drum 42 and the output of the scanning camera CAM is recorded through recording head 45 on a second urack of disc or drum 42.

These recorded picture signils are reproduced by repective pickup heads $\$ 5^{\prime}$ and 46^{\prime} and are passed through a flip-llop swirch 34' to the comparator 30 . The dip-llop switch $3 A^{\prime}$ is a double pole-double throw device. Switch 34^{\prime} is automatically switched to pass the reproductions of the picture signal recordings on rapidly rotsting recording member 42 so the comparator 30 by a signal generated either on the output of the comsparstor 30 by the computing circuit 00 or on the output thereof which energizes an alarm Al in a manner bereinabove described.
Thus, the scanning camera CAM is continuously positioned to scan different image fields. lits output picture signal is compared with respective recordings on the closed loop recording member 10 until a predetermined change occurs in the image field or a portion thereof as determined by predetermined variations in the picture sigmal. Whereafter, the rapidly rounting dram or dise 42 is employed to effect continuous comparative recordings which are produced and therenter the comparator 30 determines the extent or aarure of the changing image conditions. Accordingly, the output of computer CO or comparator 30 is also passed to the stop control S of the motor MW which is operative to either oscillate or rotate the turntable $\$ 7$ thereby changing the scanning field of the camera.

In a preferred form of the embodiment illustrated in FIG. 29. synchronizstion between the movemeat of endiess recording member 10 and the rotation of the scanaing camera CAM may be attained by conventional means including use of a single drive for both the cape transport and the tumtable mount for the camera. The drive may be continuous or intermittent and operative such that each time the scanner CAM generates a picture signal by scanning a particular image field as determined by the position of turntable 47, a respective comparator signal will be reproduced from member 10 or recording will be effected in a predetermined position on member 10 relative to said comparator sigras. The control means 113 of FIG. 30 may also be employed.
FIG. 20 shows means for utilizisg a plarality of scanring comers CAM-1, CABH-2 etc. each of which is adapted to scan a different image field such as different changing displays, special volumes, etc. The mechanism of FIO. 20 is applicable to the apparatus hereiasbove described. It is assumed that the field scanned by each of agid cameras has a different optical characteristic than the fields seanned by the other cameras and chat stan-
dard aignals are recorded along predetermined lengths of the recording member 10 asxd are each ideatified by a respective parallel code.

A plurality or benk of reproduction beads PUC are 5 adapled so reproduce the picture aignal identifying codes from a plurality of recording tracks. The identifying codes are passed to a ahifl register 48 which con. veris each code to a series code which is passed simuleaseously to a piurality of coded relays 49-1, 49-2, etc. Each of said relays is operative 20 generate a control signal upon receipt of the respective code which differs from the codes which energize the other relays

The outpus of each of the relsys 49 is connected to operate the trigger control TC of a respective scanning camera. Consequently, only that camera will effect a scanning sweep of its imge field when a particular code is presest at the reproduction hescls PUC. Accordingly, the picture aignal of the camera will be recorded in a predetermined location relative to an associated or predetermined picture signal to be compared therewith or will be reproduced and immediately compared with a predetermined picture signal which is one of a plurality of such signals recorded along different lengths of the recording member 10.
Ceruain aspects of the scanning, recording and reproduction arrangements provided herein may be utilized in improved scanning and detection systems. For eramplie, a systers may be provided utilizing one or zaore slow and/or fast scan video cameras so automstically acan and detect changes in an image field by comparing the previous picture sigxal generated in cennning a particular imsge field with the mext picture signal or any gubsequext picture signal and momatically determining as described changes thereis.

It may be desired to scan an image field such as (a) the frace of a cathode-ray-tube displayiag information which may vary with time, (b) a landscape, (c) or other aren such as a warehouse floor, (d) part of a production process, etc. and to automatically moxitor all or part of the inoage field being scanned. Predetermined variations in a particular part of the irsage field may be used to generate alarm signals, code signals, etc. Said predetermained variations may be discriminated from variations in other parts of the image field by generating gating signals from recordings or other means which pass just those parts of the picture signal generated in scanning predetermined arens of the image field to analyzing circuirs. As described, the analyzing circuirs mey be for mutomatically noting changes in frequency and/or in. flections or changes in amplitude of the picture signal just generated from the previous picture signal. The variations in the amplitude or inflections may be automatically analyzed as to degree or amplitude, rate of change, duration, ecc. by convertiag such variables to digital form end analyzing them by means of a computer. Or the analog portion of the changed or changing pricture signal may be sompared with sured analog aignals to determine the wä̀ī's of the changing image Beld.

In a preierred system, an exdless track erusable pecording member such as a closed loop magnetic rape or drum is continuously driven past magnetic recording and reproduction transducers. Any of the arrangements Illustrated in FIGS. 1, 2, 9, 9 or \$ mey be utilized for automatically determining variations in the image field being scanned. The scanning camera may be stationary or caay be auromatically roisted, oscillated or olherwise positioned to present different portions of the surrourd-
ing image Beld or enviroament in ies held. A plurality of cameras may be employed with each adapted to have the signals generated by owe or more field scans thereof fased to the recording transducing means at a time such chat it zny be compared with the picture signs] generated in previously scanning the same iunge area or bocation. In other words, a monitoring system may be provided in which a plurality of different images or areas of a single field not accessible 20 a single scan by earners may be automatically and continuously monicored.

Referring, for example, to FIG. 3, the standard picture signal or siagle frame sweep signal generated in the previous scan of the image field may be recorded as signal PBLA on track C3 and its locstion determined by its own vertical frame syac signal or lirme locating signal $\$ 1$ on crack C1. Signal S1, when reproduced, is thus utilized to trigger the deflection chsin of the camera in scanning the same image area which was scanned so generate picture signal PBIA so as to gevierate a second picture signal which may be recorded as signal PB1B or is immediately directly compered with aignal PBIA. The entire picture signal znay be compared point-by-point with signal PB2A or just certain portions compared for any noticeable change or predetermined changes. The adjustment of the filter or clipping level of video clippers CL-1 and CL-2 and/or the location of gating signals SC11, SC12, erc. may be manaally effected by using manual variable controls or may be compuser controlled or program controlled by convertional rervo controlled means.

The picture signal PB1A may remain recorded or maxy be replaced by the signal derived from the meatt scanning. If certhin changes occur in the picture siganl, automatic means, controlled by the warming signal generased, for esample, ar the ouspur of clipper CLil or AND circuir AN1-2, may be employed to (a) stop unovement of the scanner camera and continue to scan the image area so changing. (b) retain the camera scanwing the chenging imsge area of operative coupling with the recorder, (C) deflection control the beam of she scanner to continue to scan the area which is changing wo the semporary exclusion of other areas, (d) control the optical portion of the electro-optical scanner to be retained on and magnify the general area of the immge field where said change is occurring, (e) bring into operation other scanners of the same or different characteristics on the area under change such as redar, ulerasoaic, infra-red, X-ray, esc. to determine ocher characteriatics of the changing phenomens, and (I) sound an alarme
If is is desired to note when changes of a predeter. mined character oceur in the field under sarveillance, a comparator signal of predetermined characteristic. which need not mecessarily be a video picture signal, thay be generated or recorded, for example, in place of she video picture signal which is used to compare with portions of the picture signal derived in scanning the field being inspected. For example, is way be kerown that a certain condition may exist in a cartsin portion of the image field being geanned when the pricture signal thereof eahibits a predetermined change in amplitude or frequency along a predetermined segment or segments thereot. Then, comparasor pulse or analog signals may \#e recorded at predetermined positions relative the frame sync signal \$1. Signal $\$ 1$ is used to trigger the read beanm of the camera scanning the field being inspected. These signals may be compared with and reed
to grate clipped or filtered prortioas of the video picture gignal for analyyis thereof. Such comparator gignals seed zot be recorded as described, but may be genersted is synchronized relation to the generation of the taspection picture signal by other known gignal generating means.

In another form of the invention, means for digitizing or analyzing an image fieid is provided in which por. tions of the field such as discrete areas differing in shade, color or intensity from other portions or areas oot defined by sharp image contrast may be preseni. If tuy be desirable to analyze said portions as to such varisbles at (a) existence or coordinate locstion of an area or areas of a particular intensity, shade or color, (b) determination of the araa of a particular intensity or color in the field, (c) comparison of the location degree or coverage of areas of difierent color intensity or areas lacking discrete or sharp outline in a first image field with similarly colored or ahaded aress of a second field, etc.

To effect auch determinations, the apparatus hereinabove deccribed may be modified by passing the beam generated and modulated picture signal, which picture fignal is genersted in scanning the isnage field being analyzed, to analyzing circuitry. The analyzing circuitry includes a plurality of means for filtering and/or clipping different portions of the picture signal exhibiting different characteristics. Color separation and determination by utilizing either a color television camera to generate a composire color celevision signal which may be later separated into its color components or combinations thereof by employing the proper electrical filter means or by exploying the aecessary optical filuer or filiters on the lens of the scanner camera.
A plurality of electronic filsers may be employed to teparate different portions of the picture aignsl of predetermined colors. Then, the output of each filter cir. cuit or combinations thereof may be used as the herein described gating aignals for operating or gating binary digital code signals generated by a difjital clock sireuik. The digital clock signals may be urilized to determine the location of areas in the image field of a particular color or ahade and/or the shape or degree of coverage of said area or areas of said particular color or colors.
An image field such as a photograpla, map or other field formation may be made up of different areas of differens shades of a particular color such as shades of Esey, halkone areas, ecc. said shades are scannable so generate a pricture signal which varies in amplitude in eccordance with the intensity or degree of the thade being scanned. A plurality of elipping devices such as clippers CLI and CL2 shown in FIOS. 3, 4, 4, 48, 7, 3 and 9 may each be connected to receive the same picture signal but with each adjusted or provided with a clipping level which is different from the slipping level of the ochers. Thus, for a perticular shade or jracensity being scanned, one or morz of the clippers may clip and generate an outpur signal while one or unsue may mot provide sn output signsl.

The outputs of each clipping circuit may be comnected to logical wwitching circuits such as illustrated in FIG. 4 so detarmine the scanning of a particular shade innage intensity or color by messs of a further signal or signals generased on further sircuits. Each of the clipping circuiss may be connected to operate a respective code zenerator when its output is saergized or to pass the digital sode outpat of a slock when its ourput is energized. If ewch code generasor is generasing a differ-
eat code or codes of signals of different frequency, then inadications in code form may be derived of the charecteristics of the ares or areas of different or predeter. mined color, shade or intensity. Such codes may be recorded or immedintely analyzed so fetermise the existence of said areas, location, exrewt, shape, sec.

The video emmera CAM may comprise a conventional television camera or a flying spot ecanner. Such 3 camera CAM is employed throughout the disciosure to acan and geaerate video signals representative of the image or images in the scanning field being inspecter. The flying spol scanner may employ a deflection controlled read beam or a solid state image sensor containing a suitable aumber of light sensitive elements. The light sensitive elements generate a suitsble video signal when light is received from the surlace of the object being scanved or when the image field is focused thereon.

One form of a suirsble video camera which does not employ deflection control beam is described in Bell Telephone Lsboratories note No. 19.3-22, dated March 1972. Light of the image fieid to be analyzed is focused onto a solid state area imaging device. The imaging device such as a silicon chip contains an arrey of ligit sensitive storage cells defining a charge coupled stornge area wherein each of the cells thereof generates a stored charge which is proportionate to the incident light directed thereon. The integrated frame signal generated by all the light sensitive ceils is then transferred to a storage area and read through a serial register to an 30 outpur electrode as an analog video picture signal.
Single frnme video picture signals may be genernted for the purposes defined herein by coatrollably operasing the shutter of such a camera. The camera shutter is predeserminedly opened when the object or image to be 3 iaspected is in the field of the camera optical system, such as in response to the described article detection mesns. The shutter is closed immediately thereater until the nex: object or image is in the field and ready for the next scanning cycle.

1 claim:

1. A method for inspecting an image field to determine if an select image phenomenon is present in said image field, comprising:
(a) scanning an image field containing at least one optically contrasting image portion which is detectable with an electro-optical scanning means,
(b) generating first electrical signals which vary in sccordance with yariations in the optical characseristics of the image field scanned.
(c) analyzing said first electrical signals and generating first information signals corresponding to the optical characteristics of the image field scanned,
(d) electrically comparing said first informsation sigmals with signals from recordings in a memory which are indicmive of said selecs image phenomemon, and.
(e) generating digiual signals indicative of the presence of said select image phomomenon in suid scanned image field.
2. A method in accordance with claim $\mathbb{1}$ which ineludes employing said digital signals so intelligibly indicate the presence of said select image phonomenon in the image field scanned by said electro-opticul scanning means.
3. A method in accordance with claim I including applying said digital signals to controllably affect the scanning operation.
4. A method in accordance with clain I wherein said electrooptical scanning menns iricludes a camera and means for effecting controlled relative movement beTween and camers and aid image phenomens in a field 3 which is greater in ares chan the scanniag field if'said

(a) scanning an image field containing at least one optically contrasting image portion which is derectable with an electro-optical scanning means, smid electro-optical scanning means including a camera and means for effective pelative movement

[^0]\qquad

[^1]\qquad ,

(e) fourth means associated with waid comparison mesns for generating digital signals indicative of the presence of said image of defined optical charscteristics in the image field scanned by said first menns.
9. A system in accordance with clair: a incluring means for receiving and urilizing saud digital signals to incelligibly indicate the presence of an thiect isaring said defined optical characteristica in the image field scuned.
10. A method for inspecting an image field to determine if a select image phemomenon is present in said image field comprising:
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad .
\qquad

[^2]

[^3]

[^4]

berween aid camera and irage phemomena in an texase field.
(0) generning first electrical signals which vary accordance siris veriatioas is the opoical characseristics of che irage field senmed,
(c) axalyzing yaid firsi clectrical signals and generziing firbs information sigronls corresponding to the oprical charscteristics of the jomage field scanmed,
(d) electrically comparing said first information sis. nals with the signals from recordings in a memory which are indicative of said select image phenomemocen and
(e) generating digital signals indicative of the presence of said relect image phemomsnos in raid scanned image field.
11. A method for inspecting an image hield to determine if a select kuage phenomenon is present in stid timage field comprising:
(a) scunning an image field contriniag of least one optically contrasting image portion which is desectable with an electro-optical scanning means, wherein said electro-optical scanning means includes a camera and aeans for effecting controlled relative movement between skid camera and suid image phenomens in a field which is greater in area than the scanning field of said camers,
(b) generating first electrical signals which vary in accordance with variations in the optical charscseristics of the image field scanned,
(c) analyzing said firrt electrical signals and gevers. ing first informantion signals corresponding to the optical characterissics of the image field scanned,
(d) elentrically comparing said first information sigzals with signals from recordings in a memory which are indicative of said select image phenomemon, and

SCANNINO

scanning \rightarrow television + obstract

7:30-31
17:58-60
20: 50-53
17: 6-19 LCU
pis maxnere
disitizing \rightarrow lratim under

$$
3: 9-16 \text { or differenus }
$$

$$
14: 35-41
$$

(17:6-19) 6
18: 14-16 LCo $\quad(35 \quad 1,61-64 \quad 1361 \quad 37$

$$
\begin{aligned}
& \text { analysis + clipping } \\
& \text { 27: 33-38,60-62 Figh } \\
& \text { 33: 7-12 } \\
& 44: 3 \rightarrow 7 \quad \text { Fing } \\
& \text { 46:65 } \rightarrow 2 \quad \text { Fis } 8 \\
& \text { 48:56-58 Fig9 } \\
& \text { Computer analysing } \\
& \rightarrow|B, 1 B|_{1}, C_{2} \\
& \text { location woder }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4:30-38 } \\
& 5: 90-47 \\
& \text { 8: 43-46 } \\
& \begin{array}{cll}
\text { Seauning } & \rightarrow \text { elontuabeam } \\
1: 64 & 2: 2 & 2: 14 \quad 2: 22
\end{array} \\
& 3: 18 \quad 4: 64 \\
& \text { scanning + prepwituring } \\
& \text { Columan } 9 \\
& >\frac{\text { andysis } \rightarrow \text { magnetic medivm }}{6: 23-27} \stackrel{10: 10-13}{=} \\
& \text { 8:53-57 tape, drum, dise } \\
& \text { 20: 62-6y } \\
& \text { analysis }+ \text { gating cs } 1.28 \text { c6 } 143 \\
& \text { 亿27:38-48 Fig } 3 \\
& \text { 24:1-11 Fig2 } \\
& \frac{43: 53-65 \quad \text { Fig } 7}{49: 3-16} 45: 46-65 \mathrm{Fig} 8 \mathrm{Fig} 9 \mathrm{also} \text { at.. }
\end{aligned}
$$

[^0]: \qquad

[^1]: \qquad

[^2]:

[^3]: \qquad

[^4]:

