
Calculating the reflectance map

Berthold K. P. Horn and Robert W. Sjoberg

It appears that the development of machine vision may benefit from a detailed understanding of the imaging
process. The reflectance map, showing scene radiance as a function of surface gradient, has proved to be
helpful in this endeavor. The reflectance map depends both on the nature of the surface layers of the
objects being imaged and the distribution of light sources. Recently, a unified approach to the specification
of surface reflectance in terms of both incident and reflected beam geometry has been proposed. The re-
flecting properties of a surface are specified in terms of the bidirectional reflectance-distribution function
(BRDF). Here we derive the reflectance map in terms of the BRDF and the distribution of source radiance.
A number of special cases of practical importance are developed in detail. The significance of this approach
to the understanding of image formation is briefly indicated.

I. Reflectance Map
The apparent brightness of a surface patch depends

on the orientation of the patch relative to the viewer and
the light sources. Different surface elements of a
nonplanar object will reflect different amounts of light
toward an observer as a consequence of their differing
attitude in space. A smooth opaque object will thus
give rise to a shaded image, in which brightness varies
spatially, even though the object may be illuminated
evenly and covered by a uniform surface layer. This
shading provides important information about the
object's shape and has been exploited in machine vi-
sion.1-8

A convenient representation for the relevant infor-
mation is the "reflectance map".4'6 The reflectance
map, R(p,q), gives scene radiance as a function of sur-
face gradient (p,q) in a viewer-centered coordinate
system. If z is the elevation of the surface above a ref-
erence plane lying perpendicular to the optical axis of
the imaging system, and i f x and y are distances in this
plane measured parallel to orthogonal coordinate axes
in the image, p and q are the first partial derivatives of
z with respect to x and y: p = Qz/Qx and q = Qz/Qy.

The reflectance map is usually depicted as a series of
contours of constant scene radiance (Fig. 1). It can be
measured directly using a goniometer-mounted sample,
or indirectly from the image of an object of known
shape. Alternatively, a reflectance map may be cal-
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culated if properties of the surface material and the
distribution of light sources are given. One purpose of
this paper is to provide a systematic approach to this
latter endeavor. Another is to derive the relationship
between scene radiance and image irradiance in an
imaging system. This is relevant to machine vision
since gray levels are quantized measurements of image
irradiance.

II. Microstructure of Surfaces
When a ray of light strikes the surface of an object it

may be absorbed, transmitted, or reflected. If the
surface is flat and the underlying material homoge-
neous, the reflected ray will lie in the plane formed by
the incident ray and the surface normal and will make
an angle with the local normal equal to the angle be-
tween the incident ray and the local normal. This is
referred to as specular, metallic, or dielectric reflection.
Objects with surfaces of this kind form virtual images
of surrounding objects.

Many surfaces are not perfectly flat on a microscopic
scale and thus scatter parallel incident rays into a va-
riety of directions (Fig. 2). If deviations of the local
surface normals from the average are small, most of the
rays will lie near the direction for ideal specular reflec-
tion and contribute to a surface shine or gloss.

Other surface layers are not homogeneous on a mi-
croscopic scale and thus scatter light rays which pene-
trate the surface by refraction and reflection at
boundaries between regions with differing refractive
indices (Fig. 3). Scattered rays may reemerge near the
point of entry with a variety of directions and so con-
tribute to diffuse, flat, or matte reflection. Snow and
layers of white paint are examples of surfaces with this
kind of behavior. Frequently both effects occur in
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Fig. 1. A typical reflectance map for a surface, with both a glossy and
a matte component of reflection, illuminated by a point source. The
coordinates are surface slope in the x and y directions, and the curves

shown are contours of constant scene radiance. ,

Fig. 2. Undulations in a specularly reflecting surface causing scat-
tering of incident rays into a variety of directions. The surface will
not appear specular if it is imaged on a scale whert the surface un-
dulations are not resolved. It may instead have a glossy appear-

ance.

surface layers, with some rays reflected at the nearly flat
outer surface of the object, while others penetrate
deeper and reemerge after multiple refractions and re-
flections in the inhomogeneous interior.

The distribution of reflected light in each case above
depends on the direction of incident rays and the details
of the microstructure of the surface layer. Naturally,
what constitutes microstructure depends on one's point
of view. Surface structures not resolved in a particular
imaging situation are taken here to be microstructure.
When viewing the moon through a telescope, for ex-
ample, smaller hillocks and craterlets are part of this
microstructure. This consideration leads to more
complicated models of interaction of light with surfaces
than those discussed so far. It is possible, for instance,
to consider an undulating surface covered with a ma-
terial, which in itself already has complicated reflecting
behavior (Fig. 4).

Reflectance is not altered by rotating a surface patch
about its normal when there is no asymmetry or pre-
ferred direction to either the pattern of surface undu-
lations or the distribution of subsurface inhomogenei-
ties. Many surface layers behave this way and permit
a certain degree of simplification of the analysis. Ex-
ceptions are such things as diffraction gratings, irides-
cent plumage, and the mineral called tiger eye. These
all have a distinct directionality in their surface mi-
crostructure and will not be considered here further.

Considerable attention has been paid to the reflective
properties of various surface layers. Some researchers
have concentrated on the experimental determination
of surface reflectance properties.9""21 At the .same time,
many models have been developed for surface layers
based on some of the considerations presented
above.22"36 Models often are too simple to be realistic,
or too complicated to yield solutions in closed form. In
the latter case, Monte Carlo methods can be helpful,
although they lead only to numerical specification of the
reflecting behavior. Purely phenomenological models
of reflectance have found favor in the computer graphics
community.36"38 Several books have appeared de-
scribing the uses of reflectance measurements in de-
termining basic optical properties of the materials in-

Fig. 3. Inhomogeneities in refractive index of surface layer compo-
nents cause incident rays to be scattered into a variety of directions
upon reflection. This kind of surface microstructure gives rise to

matte reflection.

•^y^^^^^-

Fig. 4. Compound surface illustrating more complex model of in-
teraction of light rays with surface microstructure.
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volved.39"*1 Attention has been paid, too, to the.
problem of making precise the definitions of reflectance
and related concepts.42'43

III. Radiometry
A modem precise nomenclature for radiometric terms

has been promoted by a recent NBS publication.43

Table I gives the terms, preferred symbols, and unit
dimensions of the radiometric concepts we will have
occasion to use for the development presented here.

Radiant flux $ is the power propagated as optical
electromagnetic radiation and is measured in watts (W).
The radiant intensity I of a source is the exitant flux per
unit solid angle and is measured in watts per steradian
(W-sr~1). The total flux emitted by a source is the in-
tegral of radiant intensity over the full sphere of possible
directions {4v si). The irradiance E is the incident flux
density, while radiant exitance M is the exitant flux
density, both measured in watts per square meter of
surface (W'm~2). The total radiant exitance equals the
total irradiance if the surface reflects all incident light,
absorbing and transmitting none.

The radiance L is the flux emitted per unit fore-
shortened surface area per unit solid angle. Radiance
is measured in watts per square meter per steradian
(W-m"2^"1). It can equivalently be defined as the flux
emitted per unit surface area per unit projected solid
angle. Radiance is an important concept since the
apparent brightness of a surface patch is related to its
radiance. Specifically, image irradiance will be shown
to be proportional to scene radiance.

Radiance is a directional quantity. If the angle be-
tween the surface normal and the direction of exitant
radiation is 9, the foreshortened area is the actual sur-
face area times the cosine of this angle 9. Similarly the
projected solid angle is the actual solid angle times the
cosine of the angle 9. Here we will use the symbol w to
denote a solid angle, while ft will be used to denote a
projected solid angle. If dw and d^l are corresponding
infinitesimal solid angles and projected solid angles,
respectively, dft = dw-cosO.

The following example (Fig. 5) will illustrate some of
these ideas. Consider a source of radiation with in-
tensity I in the direction of a surface patch of area dA,
oriented with its surface normal making angle 9 with the
line connecting the patch to the source. In fact, as seen
from the source, it appears only as a patch of area c?A-
cosf) would when oriented perpendicular to this line.
The corresponding solid angle is simply the area of this
equivalent patch divided by the square of the distance
from the source to the patch. Thus,

dw = dA • cos8/r2

The flux intercepted then is
d* = I - d u = /• dA • cos9/r2

The irradiance of the surface is just the incident flux
divided by the area of the surface patch:

E=dWA» I - cos9/r2

Table I. Radiometric Concepts

Radiant flux
Radiant intensity
Irradiance
Radiant exitance
Radiance

<S>
1=
E=
M--
L=

d9/dw
•• dWA
' dWA
•• d^WA • co

W
W
W
W

a9 •dw) W

•sr-i
•m-2
•m-2

• m"2 • sr~1

SURFACE

Fig. 5. Point source illuminating a surface, illustrating basic radio-
metric concepts.

Fig. 6. Local geometry of incident and reflected rays needed for the
definition of the bidirectional reflectance-distribution function

(BRDF) (redrawn from Ref. 43).

IV. Bidirectional Reflectance-Distribution Function
The Bidirectional Reflectance-Distribution Function

(BRDF) was recently introduced by Nicodemus et al.43

as a unified notation for the specification of reflectance
in terms of both incident- and reflected-beam geometry.
The BRDF is denoted by the symbol f r and captures the
information about how bright a surface will appear,
viewed from a given direction, when it is illuminated
from another given direction. To be more precise, it is
the ratio of reflected radiance dLr in the direction
toward the viewer to the irradiance dJS, in the direction
toward a portion of the source. In symbols,

/,-(Mi;Or.0r) = dLr(Oi,<l,i;6r.<l>r;Ei)/dEi(9i,<l>i)

Here, 9 and if> together indicate a direction, the subscript
i denoting quantities associated with incident radiant
flux, while the subscript r indicates quantities associ-
ated with reflected radiant flux.43

The geometry is as depicted in the figure (Fig. 6). A
surface-specific coordinate system is erected with one
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axis along the local normal to the surface and another
defining an arbitrary reference direction in the local
tangent plane. Directions are specified by polar angle
Q (colatitude) measured from the local normal and azi-
muth angle 0 (longitude) measured anticlockwise from
the reference direction in the surface. In general, in-
cident flux may arrive from many portions of extended
sources, so incident radiance L((0,,0;) is a function of
direction. If we consider the component of flux d^i
arriving on the surface patch of area dA from an infin-
itesimal solid angle dwi in the direction (0f,0i) we ob-
tain

d$, = Li • cosff, • du, • dA = L, • d0, • dA = dE, • dA,

where dE, = Z-i-cos^-dw, is the incident irradiance
contributed by the portion of the source found in the
solid angle d(s)i in the direction (<?i,0i). Similarly, the
radiant flux emitted into an infinitesimal solid angle dwr
in the direction (9r,<t>r}'-

d^r = dLr • cos9r • dwr • dA = dLr -dQr • dA,

where dLr(6r,4>r) is the radiance in the direction (f>r,tj>r)
due to the reflection of the flux incident from direction
{Oi, (j>i). The notation dX, where X is one of the radio-
metric quantities introduced in Sec. Ill, will always
denote a directional quantity, that is, one which de-
pends on either the incident or exitant direction. The
notation d2X will mean a bidirectional quantity, which
depends on both the incident and exitant directions.
Thus, the incident flux d$; depends only on the direc-
tion of incidence, but the exitant flux d^r depends on
both the direction ofemittance and (implicitly) on the
direction of incidence.

From these values of incident and exitant flux, the
BRDF is defined as follows:

fr(6i^i;e^r) = (d2$,/c(0,)/d$, = dLr/dEi

and thus has dimension inverse steradian (sr~1). The
BRDF allows one to obtain reflectance for any defined
incident and reflected ray geometry simply by inte-
grating over the specified solid angles.43

V. Integrals over Solid Angles and Projected Solid
Angles

The admitting aperture of an imaging system may
occupy a significant solid angle when seen from the
point of view of the objects being imaged. We will
furthermore have to deal with extended sources. In
both cases it is necessary to integrate various quantities
over solid angles or projected solid angles. This can be
accomplished by double integration with respect to the
polar and azimuth angles (Fig. 7). If X is the quantity
to be integrated, we have

T/2xdw= c" r X wa6d6d4iJ-, JoW

f.
= r fXdSl

f/2
X cos6 sm6d6d<l>.

J-7t JD

/•• /«X f T/2

Xdw= 1 1 s i=2v,
Ja J—s Jo

while
»/2

r XdQ,» f f
Ja J-v Jo W sia26dffd<t> = v.

The latter result will be used in the discussion of per-
fectly diffuse reflectance.
VI. Perfectly Diffuse Reflectance

A perfectly diffuse or Lambertian surface appears
equally bright from all directions, regardless of how it
is irradiated, and reflects all incident light.43 Thus the
reflected radiance is isotropic, that is, Lr is constant,
with the same value for all directions (Or,<i>r)- Also, the
integral of reflected radiance over the hemisphere above
the surface must equal the irradiance E. This implies
that the BRDF for this ideal surface fr,id is constant and
that the radiant exitance At equals the irradiance E. If
the reflected radiance is Lr, the radiant exitance can be
found by integration:

M= C LrdQr=LrV.
Jar

From this one finds that
fr,id = Lr/Ei = LrIM = 1/7T.

If we have an extended source with radiance L(, the ir-
radiance on the surface due to a small portion of solid
angle doi; lying in the direction (0(,0i) is

dEi(6,,it,i) = L.(8.,(A,) cos9,d(ri,.

The reflected radiance is then

Lr = (1/ir) f L,(<U,) cosffid^i.
Jw

This is a form of Lambert's cosine law.
VII. Collimated Sources and the Dirac Delta
Function

Not all sources are extended. One way to deal with
sources that are highly collimated is to treat them as
limiting cases of extended sources, with the distribution

If, for example, X = 1 and the region of integration is
the hemisphere above the object's surface,

Fig. 7. Polar and azimuth angles used in double integrals over
specified solid angles.
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tending toward an impulse or delta function. If this is
to be expressed in a coordinate system of polar and az-
imuth angles, one has to take into account the nonuni-
form spacing of coordinates. Consider a collimated
source which produces an irradiance EQ on a surface
oriented orthogonally to the direction (0o>^o) of its rays.
Clearly the radiance L, of this source should be zero
except for this direction. The product of Dirac delta
functions, 8(0i — (?oH(«Ai ~ 0o), will be a useful ingre-
dient of the formula expressing L, as a function of the
angles. One must insure, however, that the irradiance
on a surface lying orthogonal to the rays equals Eo, that
is,

fv /»»/2
= I ( JEo Li sinfl

J—K JO

Clearly this can be accomplished if
L, = Ey&(6i - 9o)S(<t>i - 0o)/sinffo.

This is called the double-delta representation of source
radiance for a collimated source. It can also be written
in an alternate form using the identity

S[f(x) - f(xo}] = 6(x - xo)/f'(xo).

where f ' ( xo ) is the derivative of/(as) evaluated at x =
XQ, provided that f ( x ) has an inverse in the domain of
interest. (This identity can be confirmed by integrating
each side with respect to x over the relevant interval.)
Then,

Li = Eo 8(cos0i — MaOo)S(<iii — it>o)-

VIII. Perfectly Specular Reflectance
A perfectly specular or mirrorlike surface reflects

light rays in such a way that the exitant angle Or equals
the incident angle Oi and that the incident and reflected
ray lie in a plane containing the surface normal. The
reflected radiance of a surface patch in the direction
(0r,0r) is simply the source radiance in the corre-
sponding reflected direction. That is,

Lr(6r,<t>r) = Li(0r,<t>r + v).

The surface thus forms a virtual image of the source.
From the definition of the BRDF, we see that

L, = ffrdEi = J^/rL,dO,.

That is,
^ ^ /.T ^.gQg^.gm^^

•/-r «/0

We can satisfy the conditions stated above if we let
/r,» = 5(0i - Or)6(<i>i - <S>r + 7r)/(sin0, COsff,).

This is called the double-delta form of the BRDF for
perfectly specular reflectance. Using the identity
mentioned in the last section, we can write this in an
alternate form43:

/,,;. = 25(sin2(»r - sin^adfc. - A- + v).

IX. Analysis of Image-Forming System
We will now analyze a simple image-forming system

(Fig. 8). We assume that the device is properly focused,
that is, those rays originating from a particular point on
the object which pass through the entrance aperture are
deflected to meet at a single point in the image plane.
Similarly, rays originating in the infinitesimal area dAo
on the object's surface are projected into some area dAp
in the image plane, and no rays from other portions of
the object's surface will reach this area of the image.
Furthermore, we assume that there is no vignetting, that
is, the entrance aperture is a constant circle of diameter
d and does not become occluded for directions which
make a larger angle with the optical axis. The effect of
vignetting on image irradiance will be considered
later.

The exposure of film in a camera is proportional to
image irradiance Ep, and gray levels in a digital imaging
system are quantized measurements of image irra-
diance. In order to calculate image irradiance we must
first determine the flux d^L passing through the en-
trance aperture arriving from the patch of area dAo on
the object.

d$^,=dAo f LrdHr,
Jftr

where By is the projected solid angle subtended by the
aperture. We will also need to know the area dAp of the
image of the patch, since image irradiance Ep is the flux
per unit area:

Ep = d$z,/dAp.

IfQ'r is the angle between the normal on the surface and
the line to the entrance aperture nodal point, while a
is the angle between this line and the optical axis, then,
by equating solid angles,

(dAocos0',.)//o2 = (dAp cosa)//^.

Consequently,

Ep = (/o//p)2 COSQ I Lr (cos6,/cosff',)d(i)r.
ft/Ur

Here the integral is over the solid angle occupied by the
entrance aperture as seen from the patch on the surface.

Fig. 8. A simple image-forming system. Light collected by the lens
from the surface patch of area dAo is projected into the image patch

of area dAp.

1774 APPLIED OPTICS / Vol. 18, No. 11 / 1 June 1979



If we assume that the lens is small relative to its distance
from the object, Or is approximately the same as 6'r, and
the ratio of their cosines is unity. Furthermore, the
reflected radiance Lr will then tend to be constant and
can be removed from inside the integral. The solid
angle occupied by the lens as seen from the surface
patch is approximately equal to the foreshortened area
(7r/4)d2 cosa, divided by the distance (fo/cosa) squared.
Finally, one obtains the well-known result

£p=Lr(T/4)(ci//p)2cos4a.

That is, image irradiance is proportional to scene radi-
ance. The factor of proportionality is v divided by four
times the effective /-number ( f p / d ) squared times the
fourth power of the cosine of the off-axis angle a. Thus
the sensitivity of such an imaging system is not uniform
over an image, but is constant for a particular point in
the image. Vignetting introduces an additional varia-
tion with image position. Ideally, an imaging device
should be calibrated so that this variation in sensitivity
as a function of ex can be removed.

Other kinds of imaging systems, such as microscopes
or mechanical scanners, lead to somewhat different
expressions. Generally, however, image irradiance is
proportional to scene radiance in such systems too. At
this point we should remember that scene radiance
depends on properties of the surface layer (BRDF) and
the distribution of light sources (source radiance)
since

Lr = f frLidQi.
JfliJOi

X. Viewer-Oriented Coordinate System
So far we have considered directions from the object

to the image-forming system and to light sources in
terms of a local coordinate system with one axis lined
up with the surface normal. Such coordinate systems
will vary in orientation from place to place and are thus
inconvenient for the specification of global distributions
such as that of source radiance. A coordinate system
fixed in space will be more suitable, particularly if one
of the axes is lined up with the optical axis (Fig. 9). In
this viewer-oriented coordinate system we introduce
polar angle 6 measured from the 2 axis and azimuth
angle <t> measured from the x axis in the plane perpen-
dicular to the z axis. Here, the z axis is parallel to the
optical axis. Directions to sources of light can be given
using these two angles. If the sources are far away in
comparison to the size of the objects being imaged,
source radiance will be a fixed function of these angles
independent of the point on the surface being consid-
ered.
XI. Surface Normal

In the local coordinate system the surface normal lies
along one of the axes, or equivalently, it is the direction
corresponding to zero polar angle. In the viewer-ori-
ented coordinate system the surface normal will corre-
spond to some direction, say (6n,<f>n)- The corre-
sponding unit vector is

Fig. 9. Viewer-oriented global coordinate system useful for speci-
fication of the distribution of source radiance Lr

n = (cosi^n ainffn, sin<^n sinffn, cosffn).
The surface of the object may be specified by giving
elevation z as a function of the coordinates x and y. We
can give an expression for the surface normal in terms
of the first partial derivatives of z with respect to x and
y, if these exist. Let the first partial derivatives be
called p and q. Then the vectors (l,0,p) and (0,l,q) are
tangent to the surface, as can be seen by considering
infinitesimal steps in the x and y direction. The surface
normal is perpendicular to all vectors in the tangent
plane and so is parallel to the cross-product of these
two;

(1,0,P) X (0,1,9) = (-p,-q,l).

Thus the unit normal can be written
n = (-p,-<?,l)/(l+ p2 + g2)V2.

The following results are obtained by equating terms
in the two expressions for the surface normal:

sinfln = (p2 + q^/d +p2+ g2)1/2;

COSffn=l/(l+p2+g2) l/2;

sm<f>n = -q/(p2 + g ;̂

cos<An = -p/(p2 + g2)172.

Conversely,
p = —cos0n tanffn,'

q = —sin<^n tanOn-

XII. Relationship Between Local and Viewer-
Oriented Coordinate Systems

In order to calculate the scene radiance, we will in-
tegrate the product of the BRDF and the source radi-
ance over all incident directions. Since the BRDF is
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Fig. 10. Surface normal and direction to portion of the source shown
in viewer-oriented coordinate system.

specified in terms of the local coordinate system, while
the distribution of source radiance is likely to be given
in the viewer-oriented coordinate system, it will be
necessary to convert between the two. Given the di-
rection of the surface normal (9n,<t>n) and the direction
to a portion of the source (6s,<t>s), both specified in the
viewer-oriented system (Fig. 10), we have to find the
incident direction (<?i,0t) and the exitant direction
(Or, 0r) both specified in the local system. Alternatively,
given the surface normal and the incident direction we
may have to find the direction to the source and the
exitant direction. Note that Or = On since the exitant
ray lies along the z axis in the direction toward the
viewer. Further, since we have excluded anisotropic
surfaces, we are only interested in the difference be-
tween 0r and 0i. From the relevant spherical triangle
(Fig. 11) we obtain:
Cosine formula:

cosff, = cosO, cosOn + sm9, sia6n cos(<l>, — A,);

Sine formula:
sm9i sm(il>r — <t>i) = sm6s sin(<^» — <^n);

Analog formula:
sinfl, cos(<t>r - 4;) = cosfl, sm9n — sva9, cosfln cos(^ - <j>n)-

The Jacobian of the transformation from (0g,0») to
(9i,<j)i) equals

WWW./a^,) - OBi/9^>,)(9^W,) = (sin6,/sm9t).

(The Jacobian will be required below when converting
a double integral with respect to one set of coordinates
to one in terms of the other.) The above formulas allow
us to find the incident direction from the source direc-
tion. Quite symmetrically, we can also obtain the
source direction from the incident direction:
Cosine formula:

COsff, = COSff; COSflr + Sin6j SmOr COS(<l>r — <S>i};

Sine formula:

sm9, sm(ip, — 0n) = sniff, sin(0r - <t>i};

Analog formula:
ainOa cos(^, - <l>n) = cosffi smffr - siaOi cosffr cos(^r - <t>i).

The Jacobian of the transformation from (<?i,0i) to
(Os,<t>s} equals

09,/Q9i)(9i>JQi>i) - (9ili,l99i)(a9.t3<l>i) = (sm6i/smB,).

XIII. Scene Radiance
It follows from the definition of the BRDF that re-

flected radiance can be written as the integral

Lr = f frLidQi = f frLi cosfl.Ao,
*/Qi Jw

Using polar and azimuthal angles this becomes

Lr(9n,<i>n)= f" f" fr(6i,<l>i;6r,'t>r}Li(ff,,(t>,) cosBi sin9.de.d0;.
*/-» t/0

Here we integrate over all possible incident directions
(0i,0,) and calculate source direction (Os, 4>s) from the
given surface normal (0n,0n) and the incident direction.
The inner integral has the limits 0 to v/2 for 0,, corre-
sponding to directions within the hemisphere visible
from the surface. The integration can be extended to
the full sphere of directions if the integrand is forced to
be zero when 0, lies between Tr/2 and TT. This can be
accomplished by replacing cost?; by max[0, cosff;].
Hence

£.)>••max[0, cosfli] sinffidflid^,.

Since the integral now is over the full sphere of direc-
tions, it can be easily rewritten using any other set of
polar and azimuth angles. Using the viewer-oriented
coordinate system, for example, we obtain

f* TV f* V

\ \ frLj max[0, cosO;] sm6,d6,d(t>,,J—v »/oLr=

that is,

Fig. 11. Spherical triangle extracted from previous figure and used
in derivation of transformation equations between the surface normal,
local coordinate system, and the viewer-oriented, global coordinate

system.
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Lr(«n,<t>n)= C' f*fr(9i,<l>i;6r,ltlr)L,(9,.ll>.)
J—x JQ

X max[0, coa6i] a'm0,d8sdip,.

Here we integrate over all possible source directions
(0,,0g) and calculate incident directions (61,^1) from the
given surface normal (0n,<^») and the source direction.
We now have two convenient forms for the calculation
of scene radiance. We proceed to calculate reflectance
maps for a few simple combinations ofBRDF and dis-
tributions of source radiance.

XIV. Lambertian Reflectance

A. Collimated Source
For a Lambertian reflector, f r = I/TT. For a colli-

mated source,
L, = EoS(9, - 9o)S(<t>. - (t>o}/sm6o,

where Eo is the irradiance measured perpendicular to
the beam of light arriving from source direction (0o,(f>o).
Substituting into the second form of the expression for
scene radiance above, we obtain

function of surface gradient, we can substitute expres-
sions in p and q for these trigonometric expressions.
The result is

(1 + pop + gpg)
R(p,q) = (BO/IT) max 0,

(l+p2+g2)l/2(l+pg+qg)l/2j

where
po = -cos0o tanOo,

go = —sin0o tonDo.

A surface with gradient (po,9o) is normal to the direction
of the incident light rays.
B. Uniform Source

A uniform source has constant incident radiance.
Let Li = LQ. Again, for a Lambertian reflector, f r = I/TT.
Substituting into the first form of the expression for
scene radiance, we obtain

/* IT /» f/2

Lr= I l (Ly/ir) cosO, am6id9id<l>i.
«/-T I/O

This becomes
/*»/2

•r=Lo I ain2flidfi, = Lo.
*/o

L,=L|

L,= f f* (Eo/v)8(6. - 6o)S(<l>. •
*/-«• »/0/-» Jo

X max[0, cosfi,] (sin0,/sm8o)d6,d<(>,.

This is equal to

Lr = CEo/ir) max[0, cos9;],

where 0, = 0i when Qg = ^o and (t>s = <j>o. In this case,

coaB'i = coeOr cos6o + sm9r sinffo cos(0o - <t>n)

and

cos(0o - it>n) =• cos^o coa0n - sin^o sin^n.

To obtain the reflectance map, scene radiance as a

Not surprisingly, the reflected radiance is independent
of the surface orientation in this case.

C. Hemispherical Uniform Source
A hemispherical uniform source is described by

Li(9,,<t>.) = Lo for9,<ir/2,

Li(0.,<j>,) = 0 for <?. > 71-/2.

In order to evaluate the double integral for scene radi-
ance, it is necessary to know the value 6\ of the incident
angle 0;, which corresponds to the horizon of the sky,
that is, Bs = 7T/2. From the coordinate transformation
equations one can easily see that

ZENITH

PORTION OF //
SOURCE NOT//
SEEN BY / i
SURFACE

Fig. 12. Cross section through uniform hemispherical source and
surface element, illustrating the horizon cutoff and the portion of

extended source not visible from the surface.
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wtff'i = —tanflr cos(<fc. - <l>i).
For <^r — T/2 < <t>i < ipr + T/2, the horizon cutoff only
occurs for 0'i > T/2 and can be ignored, since the inner
integral is from 6{ = 0 to 0; = T/2 only. For the other
half of the range of ^i, this cutoff must be considered.
Now,

/• *• f »/2
Lr 2= I I f r L i coaOi ava.6idBid<l>i,J—s Jo

SO

f*v f*mm[0i\v/2]
Lr = (LO/T) I | cosfl, sm0id6id<l>i.

*/-*• t/O

Letting <f> = <^i — 0,. and (^/ = 0i — 0r + TT) we can split
the outer integral,

full /«»/2
Lr = (Lo/ir) t ( - cosfl, sm9id6id<l>

J—stt t/O

+ (Lo/ir) r" €'coae,smff,d9,d<<>'.
t/-»/2 t/O

Now

f cos8, sin0id0. = V2,«/o

so the first term is simply Lo/2. Next, note that

("''cosff, sin(9.< î = (1 - cos2(9;)/4 = sm^'./Z,
Jo

where, since cot0; = —tan0r cos(0r ~ <Ai)>
sin2^, = 1/[1 + tan2^ coa2 ,̂. - ̂ )].

The second term thus becomes

(Lo/2ir) f" 1/(1 + tav.% cosV)dfli',
*/-ir/2

which equals

(Lo/2ir) [cos0r tan-Kcos^r tanî )]^ , = (Lo/2) cos0r.
-v/2

Adding the two terms we finally get
Lr(0n.<t>n) = (W2) (1 + COS^) = LQ COS2(6n/2).

This is the result found by Brooks.44 From it the re-
flectance map can be found immediately:

R(p,q) = (£o/2)[l + 1/(1 + P2 + Q2)^2].

XV. Specular Reflectance
A. Collimated Source

For specular surfaces,
fr = 5(9, - 9r)8(<<>> - 0r + ir)/(sm9. cos0i).

Using the source radiance from Sec. XIV. A and the first
form of the expression for scene radiance, we obtain

^ /.» /.' (Lo/sm0o}6{Bi - 6r)8(<t>i - <l>r + v)
J-v t/O

X 5(9. - 6o)S{^ - <f>o)dWi.

that is,

Lr = Lo5(e, - Bo)S(4>. - <^o)/sin0o,

where 9's and < ,̂ are the values of 0s and 0s corresponding
to 9i = 0r and <t>i = ^>r + T. Using the equations for the
coordinate transformations, one finds that 6', = 26r and
0, = 0n. Thus,

Lr = LoS(20r - W(0n - 0o)/sineo

and finally
Lr(9n,<l>n) = (Lo/2)5(^ - 9o/2)5(^n - <Ao)/sinflo.

To express this as a function ofp and q we have to re-
member that
Wx,y) - f(xo,yo)]S\g(x,y) - g(xo,yo)]

= S(x - xo)8(y - yo)/J(xo,yo),
where J(x,y) is the Jacobian of the transformation from
(x,y) to ( f , g ) (provided this transformation has an in-
verse in the region of interest):

J(x,y) = (3f/9x)0g/9y) - (Qf/9y}(3g/ax).

The Jacobian of the transformation from (p,q) to
(6n,<t>n) IS

J(p,q) = l/[(p2 + q2}1'2 (1 + p2 + g2)].

Let

pi = -cos0o tan0o/2,

qi= —sin^o tan0o/2.

Then, noting that sin(?o = 2 sin(<V2) cos(0o/2), one can
write

smffo = 2(p? + g^'/z/d + p2 + g?),

and therefore
R(p.q) = (£o/4)5(p - piWq - <h)(l + p2 + qi)2.

Thus, a surface element with gradient (pi,*?i) is oriented
to reflect specularly the collimated source toward the
viewer. This gradient can be related to the gradient
(p0i9o) introduced earlier:

Pi = Po[(l + P§ + qlY'2 - 1]/(P§ + <?o),

. 9i = <?o[(l + Pi + qo)172 - 1]/(P§ + <?§).

When the point (po,9o) is not far from the origin, (pi,qi)
is approximately midway between the origin and
(Po,<7o).

B. Uniform Source
It is easy to see that for a specular surface under a

uniform source, the scene radiance will be constant and
equal to the source radiance: Lr = LQ. This is the same
result as the one we obtained for the uniform source and
Lambertian reflectance. Thus a diffuse surface appears
just as bright as a specular surface if both are viewed
with uniform illumination. In fact, all surfaces re-
flecting the same fraction, p say, of the total incident
light will appear equally bright under this illumination
condition.
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C. Hemispherical Uniform Source
In this case,

Lr(6n,<l>n) ss LQ for ffn < ir/4,

L,($n.0j=0 for(9n>ir/4.
The reflectance map is

fl(p,(?)=Lo forp2-^^!,
fl(p,g)=0 forp^g^l.

XVI. Summary and Conclusions
We have shown that image irradiance is proportional

to scene radiance and that scene radiance depends on
surface orientation. The reflectance map gives scene
radiance as a function of the gradient. It can be cal-
culated from the bidirectional reflectance-distribution
function (BRDF) and the distribution of source radi-
ance. Several special cases were worked out in detail.
Each could have been developed more easily by a direct
method, but was obtained from the general expression
for scene radiance to illustrate the technique. The
general expression allows one to find the reflectance
map even if the source radiance distribution or the
BRDF is only given numerically.
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