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On the chain stability of bilateral control model
Liang Wanga and Berthold K.P. Hornb∗

Abstract—In this paper, we study the chain stability of vehicles
under bilateral control (BCM), and prove that vehicles under
bilateral control are chain stable: i.e. all input perturbations to
the chain decay exponentially (with the length of the chain).
Chain stability analysis tells us how vehicles under bilateral
control will act in traffic when mixed with cars driven by human
drivers. It shows that self-driving cars using bilateral control
can reduce traffic flow instabilities in mixed traffic. Indeed,
chains of BCM vehicles become perturbation-consuming dampers
when inserted in traffic, since they split chains of human-driven
vehicles and prevent perturbations from being transmitted from
one chain of car-following cars to the next. Thus today’s traffic
can be improved greatly by the insertion of BCM vehicles. The
simulation results validate the theoretical analysis.

Index Terms—bilateral control, car-following model, mixed
traffic, chain stability, adaptive cruise control (ACC), self-driving
system.

I. INTRODUCTION

AS the result of the development of sensors and artificial
intelligence, self-driving cars and self-driving assistant

systems come closer and closer to reality. One interesting
question is “how will self-driving cars impact today’s traffic?”
For instance, platooning [25]–[29] can be implemented much
more easily by self-driving cars than by human drivers. The
“stop-and-go” traffic and the so-called “phantom traffic jams”
caused by human-driven cars [6]–[19] can then be suppressed.
In brief, the platoon controller tries to bind successive cars
together and force them to move in lock-step fashion like
carriages in a train. A single lead vehicle has global control of
the whole chain of cars following and plays the same role as
a locomotive in a train. New platoon models, e.g. decentral-
ized platoon, bi-directional platoon, multi-neighbor platoon,
are continuing to be proposed to improve the traditional
centralized predecessor-following control architecture [30]–
[33], [35]–[42]. See [43]–[53] for more theoretical analyses
of various platoon models.

One question is “can local control of vehicles solve the
traffic flow instability problem without such global control?”
Such newly designed self-driving cars will run on the road
independently, unlike “carriages” in a train. Global-control
parameters, e.g. preset desired speed for all cars, preset desired
relative position in the traffic, are not allowed in the advanced
adaptive cruise control (ACC) system of such self-driving cars.
Moreover, neither vehicle to road communication (V2R) nor

a School of Electronics and Communication Engineering, Sun Yat-sen
University, Guangdong, 510275, China, e-mail: wangliang@csail.mit.edu. Part
of the work reported here was carried out while Liang worked at MIT.

b Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA 02139, USA, e-mail: bkph@csail.mit.edu

∗ Corresponding author: Berthold K.P. Horn. Sponsored in part by Toyota
Research Institute (LP-C000765-SR) and SYSU Fund (76150-18841217).

vehicle to vehicle communication (V2V) is required. The ACC
system’s input can come entirely from the vehicle’s on-board
sensors — i.e. vehicle control is based totally on the outputs
of its own sensors. Independence of vehicles also means that
the control system (including control commands) in one car
are not accessible to ACC systems in other cars. One such
new extended ACC system is known as the bilateral control
model (BCM) [1]–[5], in which, roughly speaking, the vehicle
is controlled to stay as far from the leading car as from the
following car. See also [23], [24] for previous efforts involving
use of information about the following car in addition to the
leading car.

We should mention that BCM focuses on longitudinal
control of individual vehicles. The traffic flow is simplified
as a single-lane highway vehicular system (i.e. not inner city
with traffic lights, for example). Vehicles under BCM do not
require full autonomy (actually, BCM is just a special ACC
system). Nor is V2V or V2R required, and thus vehicles obtain
no more information about the environment than available
from measurements by on-board sensors. Thus, BCM vehicles
are far from the “smart cars on smart roads” [27]. They are
just “normal cars on normal roads” (with additional pair of
backward sensors).

Although traffic purely under car-following control, or pure-
ly under bilateral control, may appear to be similar to special
cases of platooning, i.e. decentralized platoon with infinite
boundaries, here, we should mention that both car-following
control and bilateral control apply to single vehicles, and thus
there is no requirement that all vehicles operate under the same
control strategy. Indeed, cars under car-following control and
vehicles under bilateral control can operate independently and
coexist in traffic1. Realistically, not all cars will be converted
to bilateral control at once, so the question arises as to what
role BCM vehicles will play during a transition period in such
a mixture of cars under car following control (CFM) and cars
under bilateral control. The existing stability analysis of pure
BCM traffic does not answer this question.

For traffic flow under predecessor following control archi-
tectures, e.g. car-following control or one directional platoon-
ing, there are two important concepts, i.e. stability and string
stability [47], [48], [53], that are used to qualify the (traffic)
system’s performance. Basically, these two concepts try to
answer the following two questions:

• Stability: Will the traffic system return to the equilibrium
state from an arbitrary initial state?

1Although there are some studies on merge control of platooning [54]–
[56], the merged cars become a new lock-step train of “carriages”, rather
than independent vehicles. Gaps between cars in platoon are designed to be
very small, which prevents other vehicles from merging in.
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• String stability: What is the impact of continuous per-
turbation of the first car on the traffic flow? Or, to be
more precise, will such perturbations be amplified or
suppressed by the following cars?

For bi-directional information flow system, e.g. bidirectional
platooning or bilateral control, the stability property has been
well studied. Basically, the stability of a platoon can be in-
creased greatly by adding information about the following cars
[30]–[32], [49], and traffic flow purely under bilateral control
is stable [1]–[5]. However, at least to our knowledge, string-
stability analysis for the bi-directional information flow system
has not been well studied. Due to the particular topological
structure of the bi-directional system, the techniques used for
string-stability analysis of the one-directional information flow
systems can not be directly extended to analyze the string
stability of systems with bi-directional information flow. Thus,
more generalized definition and new techniques are needed
in order to deal with “string stability” analysis for the bi-
directional topological structure.

In this paper, we study the (generalized) string stability
of systems with bi-directional information flow. We call this
“chain stability” to emphasize the special topological structure
— different from the one-directional predecessor following
control architecture for which the string-stability concept was
defined. In this paper, we focus only on bilateral control sys-
tem (i.e. BCM chains). However, the definition and techniques
provided here can be used to analyze other bi-directional sys-
tems, e.g. bi-directional platooning, directly. We prove here the
chain stability of bilateral control model. The chain stability
analysis provides the answer to the question above about the
roles that BCM vehicles play in mixed traffic. Namely, BCM
chains become perturbation-consuming dampers inserted in
the traffic — they split the chains of human-driven vehicles
and prevent the perturbations transmitted from one chain of
car-following vehicles to the following chains. Thus, today’s
pure CFM traffic can be improved greatly by inserting BCM
chains (in order to split CFM chains).

II. CAR-FOLLOWING CONTROL AND BILATERAL CONTROL

Let yn(t) be the position of the n−th car, and vn(t) =
ẏn(t) be its velocity2. The pair {yn(t), vn(t)} gives the state
of the n−th car, which is adjusted through the acceleration
an(t) = ÿn(t) commanded by the control system. First, for
the car-following model (CFM),

an = kd(dn − sn) + kv(rn − un) (1)

where, dn = yn−1 − yn − L denotes the space between
the current car and its leading car (with car length L) and
rn = vn−1 − vn denotes the relative velocity between the
current car and its leading car, kd > 0, and kv > 0 are the
proportional and derivative gains respectively. For “constant
headway” CFM, the desired space sn is a constant safe
distance s, and the desired speed difference un is simply

2Note that yn−1 and yn denote the position of the leading and current cars.
The positive direction is chosen as the direction in which cars are moving,
thus, yn−1 − yn > 0 (see Figure 1).

(a) Car-following model

(b) Bilateral control model

Fig. 1. Illustration of the car-following model and bilateral control
model. The blocks with “L”, “C” and “F” denote the leading car,
current car and following car. (a) Car-following control is based only
on the state of the leading car “L”. (b) Bilateral control uses the states
of both leading car “L” and following car “F”.

chosen to be zero, i.e.

sn = s and un = 0 (2)

The desired space sn can instead be set adaptively according
to the car’s speed, i.e.,

sn = vnT and un = 0 (3)

where T is known as the reaction time. Such a car-following
control strategy with the adaptively controlled desired spacing
(sn = vnT ) is known as the “constant time headway” model
[20]–[22]. In these car-following models, control of car n is
based only on the relative position and relative velocity of car
n− 1 immediately ahead.

For human drivers, it would be difficult or distracting to look
forward and backward all the time, but this is not a problem for
a sensor based system. So a second pair of sensors can be used
to measure distance and speed difference between the current
car and the following car. These two new measurements dn+1

and rn+1 can then be used for control. For instance, we can
set

sn = dn+1 and un = rn+1 (4)

Then, eq. (1) becomes

an = kd
(
dn − dn+1

)
+ kv

(
rn − rn+1

)
(5)

We call this new control strategy the bilateral control model
(BCM). Here, the control of car n is based on the relative
positions and relative velocities of both car n − 1 ahead and
car n + 1 behind. In words, the control objective of BCM is
to stay in the middle between its “front and back” neighbours,
and to travel at the average speed of these two neighbours.
Figure 1 shows the two models.

One attractive advantagement of BCM is that traffic flow
under bilateral control is stable for all values of kd > 0, and
kv > 0 [1], [4], [5]. A physical analog of a line of traffic
under bilateral control (5) is a “spring-damper-mass” system
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shown in Fig. 2. Intuitively, a perturbation will lead to damped
waves travelling outward in both directions from the point of
perturbation. The amplitude of these waves decays as they
travel. See [1], [5] for more detailed analysis. Ref. [4] also
proves that bilateral control is stable under any and all bound-
ary conditions3: infinite line, circular boundaries, fixed-fixed
boundaries, free-free boundaries and fixed-free boundaries.

Fig. 2. A physical analog of the traffic flow under bilateral control is a big
“spring-damper-mass” system.

The stability property of BCM shows that traffic flow
instabilities can be suppressed by automated control systems
in individual vehicles. For traffic flow under CFM or one
directional platooning (i.e. predecessor following control ar-
chitecture), another important concept is string stability [47],
[48], [53]. Is there a corresponding property similar to “string
stability” for BCM traffic flow?

III. STRING STABILITY AND CHAIN STABILITY

Stability and string stability are two different concepts used
to analyze (single-lane) traffic flow. For a chain (or string) of
vehicles, the equilibrium state denotes the case in which the
cars are equally spaced and all moving at the same speed4 [4].
Stability analysis relates to the impact of initial condition (i.e.
the initial states of all cars) to the traffic system, i.e.

• If there is a small perturbation in the initial states of the
cars from the equilibrium state, will the traffic system
return to the equilibrium state (stable) or will there be
increasing departures from the equilibrium (unstable) —
which ultimately lead to a traffic jam?

String stability instead describes the impact of the first car’s
behavior on the traffic system, i.e.

• Suppose the traffic initially is in the equilibrium state,
but the first car keeps generating perturbations (e.g.
sinusoidal oscillations or emergency braking). Will the
perturbation generated by the first car be amplified by
the following cars (string-unstable) or be suppressed by
the following cars (string-stable) and disappear finally?

Note that the above description of string stability implies that
information flow in the system is one directional, that is, car
n only receives information about the state of car n−1 ahead.

3The boundaries in platooning are used to control the desired states of
all vehicles in the platoon. In contrast, BCM only focuses on the control
of a single car. The boundary condition in BCM is just to design the ACC
system such that the car can also run alone on the road. For instance, by
setting a threshold on the range values, the chain will split into two sub-
chains automatically if some car in the BCM chain (say car n) brakes suddenly
(perhaps due to some external disturbance). The sub-chain in front of car n
keeps moving and the cars behind car n will stop gradually.

4Different from platooning, no pre-set desired spacing (typically very tight
in platooning) is used in car following and in bilateral control. The “equal
spacing” in the equilibrium state of a BCM vehicular chain is determined by
the boundary conditions. Some thresholds are also used by the BCM controller
[1], [5]. For instance, if the space between two successive BCM vehicles
is large enough, then the BCM vehicular chain will split into two chains
automatically.

In order to deal with the bi-directional (information flow)
system, we need to change the above question from one about
the relationship between successive cars to the relationship
between the first and last car in the traffic system. That is,

• Suppose that traffic is initially in the equilibrium state,
and the first car keeps generating perturbations (e.g.
sinusoidal oscillations or emergency braking). Will the
result in the last car, due to the perturbation in the first
car, be bounded, unbounded, or finally disappear (as the
number of cars goes to infinity)?

For one-directional information flow system, e.g. CFM traf-
fic or one-directional platooning, the answer to the above
question can be obtained directly by analyzing the relation-
ship between two successive cars in the system. However,
for two-directional information flow system, the answer can
not be obtained directly from the relationship between two
successive cars. Based on the above question, we can extend
the traditional concept of string stability (for one-directional
information flow system) to one for more general system (e.g.
bi-directional information flow system).

Now, we give the detailed mathematical description. Let
yn(t) = n(s+L)+V t denote the equilibrium position of car
n (with equal gaps of size s and the same speed V ), and let
xn(t) denote the perturbation of car n. By the superposition
principle, the perturbation xn(t) can be decomposed into a
combination of pure-frequency components Xn(ω)e

jωt, and
the system’s performance can be described by the coefficients
Xn(ω), i.e. the response to a sinusoid of a single frequency.

Definition 1 (Generalized string stability): Supposed there
are a total of N + 1 cars (with car 0 the first car and car N
the last car) in traffic. If for any ω ̸= 0, we have:

lim
N→∞

∥XN (ω)∥
∥X0(ω)∥

= 0 (6)

then the traffic system is called (generalized) string stable5.
Otherwise, the traffic system is not (generalized) string stable.

If the information flow in the traffic system is one direc-
tional, e.g. CFM traffic or one-directional platooning, with the
same transfer function H(ω) form car n − 1 to car n, i.e.
Xn(ω) = H(ω)Xn−1(ω), then we find:

∥XN (ω)∥
∥X0(ω)∥

=

∥∥∥∥ XN (ω)

XN−1(ω)

∥∥∥∥ · · · ∥∥∥∥X1(ω)

X0(ω)

∥∥∥∥ = ∥H(ω)∥N (7)

Thus, the generalized string stability condition (6) is the same
as the following condition

∥H(ω)∥ < 1, (for all ω ̸= 0) (8)

which is the criterion used to identify the string stability of
CFM traffic flow or one-directional platooning.

5No pre-set desired spacing is used in BCM. That is, there is no (pre-set)
desired relative position for each car in the BCM vehicular chain. Thus, only
the effect of the first vehicle in the BCM chain is considered. In platoon
models, pre-set desired space (or equivalently the pre-set desired relative
position for each car) is used, in which case the effect of any vehicle with
respect to the following ones should also be analyzed. In this paper, we focus
mainly on a BCM chain, and thus, only the effect of the first car needs to
be considered. Actually, the performance of the intermediate vehicles in the
BCM chain is guaranteed by the stability property of BCM [1], [4], [5].
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For two directional information flow system, e.g. BCM
traffic or bidirectional platooning, the criterion (8) can not be
used directly. Instead, the generalized string stability condition
(6) should be used to identify the system’s performance. In this
paper, the condition (6) for two directional information flow
system is called the chain stability condition.

Definition 2 (chain stability): Supposed there are a total of
N + 1 cars (with car 0 the first car and car N the last car)
in the traffic, and the information flow between the middle
N−1 cars (i.e. car 1 to car N−1) is two-directional with two
transfer function H1(ω) (from car n− 1 to car n) and H2(ω)
(from car n + 1 to car n), i.e. Xn(ω) = H1(ω)Xn−1(ω) +
H2(ω)Xn+1(ω) (for n = 1, 2, · · · , N − 1). Car 0 (the source
of the perturbations) moves independently and is treated as
input to the system. Car N is “connected” to Car N − 1 with
a new transfer function H(ω), i.e. XN (ω) = H(ω)XN−1(ω).
If for any ω ̸= 0, we have:

lim
N→∞

∥XN (ω)∥
∥X0(ω)∥

= 0 (9)

then the (bi-directional) traffic system is called chain stable6.
Otherwise, the traffic system is not chain stable.

For traffic flow under the constant headway CFM, whose
H(ω) is shown later in eq. (19), it is easy to prove that the
traffic system is not string stable for all kd > 0 and kv > 0
(by direct calculation from eq. (8)). While for the traffic flow
under the constant-time headway CFM, whose H(ω) is shown
later in eq. (20), the string stability condition can be calculated
from eq. (8) directly [4], [5], [58]. That is,

1

2
kdT

2 + kvT > 1 (10)

Next, we consider the question of the chain stability condi-
tion for traffic flow under bilateral control.

IV. CHAIN STABILITY ANALYSIS

In a bi-directional information flow system shown in Fig. 3,
the state of each sub-system inside the system (except the two
at the ends) depends on both the sub-system ahead and the
sub-system behind.

Fig. 3. In a two-directional information flow system, the state of each sub-
system depends on both the sub-system ahead and the sub-system behind.
The cascade of “spring-damper-mass” in Fig. 2 is one typical example of
such system.

6Some other concepts, e.g. formation coherence [33], [34], are also defined
in platoon control. Pre-set desired space (or equivalently pre-set desired
relative positions for each car) is used by platoon models to form a rigid lattice.
Formation coherence captures the notion of how well the formation resembles
a rigid lattice or a “solid object” [34]. For BCM, no pre-set desired space
is used, and the vehicular chain under BCM performs like a “soft object.”
Chain stability captures the notion of how well the chain absorbs a (input)
perturbation on one side and prevents it from being transmitted to the other
side (output). Moreover, chain stability requires the perturbation in the-other-
side vehicle disappearing rather than only being bounded as N → ∞.

The states of the N sub-systems in such a bi-directional
system are determined by 1). the input X0(ω) to the system,
i.e. state of the first sub-system; and 2). the following N
equations:

Xn(ω) = H1(ω)Xn−1(ω) +H2(ω)Xn+1(ω) (11)

for n = 1, 2, · · ·N − 1, and

XN (ω) = H(ω)XN−1(ω) (12)

The N unknowns

X =
(
X1(ω), X2(ω), · · · , XN (ω)

)T (13)

can be found by solving the following linear system:

HX = −H1(ω)b0 (14)

where the N ×N matrix H is

H =



−1 H2(ω)

H1(ω) −1 H2(ω)

. . . . . . . . .

H1(ω) −1 H2(ω)

H(ω) −1


(15)

and the N × 1 vector b0 is

b0 =
(
X0(ω), 0, · · · , 0

)T (16)

Thus, the unknowns X are exactly the first column in H−1

multiplied by −H1(ω)X0(ω). The ratio XN (ω)/X0(ω) is
the entry in row N and column 1 of H−1 multiplied by
−H1(ω). Only one entry in H−1 is used to calculate the
ratio XN (ω)/X0(ω), thus, it is not efficient to calculate H−1

by brute force. Moreover, it is not straight-forward to solve
the linear system (14) (especially as N goes to infinity). A
simpler approach is needed (and introduced in section IV-B)
to implement the chain stability analysis.

A. Linear system of the BCM chain

In this paper, we only focus on the chain stability analysis
of BCM traffic. Thus, we specify the corresponding H first.
Note that yn(t) = yn(t) + xn(t). Thus, vn(t) = ẋn(t) + V ,
and an(t) = ẍn(t). Moreover, we find dn−dn+1 = xn−1(t)−
2xn(t)+xn+1(t) and rn−rn+1 = ẋn−1(t)−2ẋn(t)+ẋn+1(t).
For pure-frequency-response analysis, the perturbation is taken
to be a simple sinusoidal oscillation at a fixed frequency, i.e.
xn(t) = Xn(ω)e

jωt. From eq. (5), we find

Xn(ω) =
kd + kvjω

2kd − ω2 + 2kvjω

(
Xn−1(ω) +Xn+1(ω)

)
(17)

for n = 1, 2, · · · , N − 1. Thus, we find that

H1(ω) = H2(ω) =
kd + kvjω

2kd − ω2 + 2kvjω
(18)

For BCM, the boundary, i.e. the last vehicle in the BCM
chain, simply implements car-following. Two different cases
are studied in this paper:

1) Free BCM chain in the traffic: There is no CFM car
following behind the BCM chain (at least not in the
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range of the distance sensor). The last BCM vehicle in
the chain just implements constant headway CFM, i.e.
eq. (2). The corresponding transfer function is:

H(ω) =
kd + kvjω

kd − ω2 + kvjω
(19)

2) BCM chain is followed by human drivers: There is
a vehicle driven by a human driver behind the last
BCM vehicle (within the range of distance sensor).
The human-driven car immediately following the BCM
chain, i.e. the first vehicle in the following CFM chain,
becomes the boundary of the BCM chain ahead. The
human driver could implement constant headway CFM
in eq. (2), or constant-time headway CFM in eq. (3).
The case of constant headway CFM has been discussed
above. Thus, we only focus on the case of constant-time
headway CFM here. The corresponding transfer function
is:

H(ω) =
kd + kvjω

kd − ω2 + (kv + kdT )jω
(20)

First, let p(ω) = 1/H1(ω) and q = 1/H(ω). Now, the
linear system (14) is specified as following:

SX = −b0 (21)

where S is the following symmetric N ×N matrix:

S =



−p 1

1 −p 1

1 −p 1

. . . . . . . . .

1 −p 1

1 −q


(22)

and the N × 1 vector −b0 =
(
−X0(ω), 0, · · · , 0

)T
.

B. Solving the linear system

Instead of solving the linear system (21) directly by Gaus-
sian elimination (i.e. LU decomposition of S) [59], some tricks
are used here to solve the linear system. Note that S is a tri-
diagonal (symmetric) matrix. The linear system (21) will be
much easier to solve if S can be turned into an upper triangular
matrix. This can be done by adding a new equation XN = XN

to the linear system (21), i.e.

1 −p 1

. . . . . . . . .

1 −p 1

1 −q

1





X0

X1

X2

...

XN


=



0

0
...

0

XN


(23)

Now, the matrix in the above system becomes a (N + 1) ×
(N + 1) upper-triangular matrix. However, note that XN in
the right-hand side vector of eq. (23) is unknown (rather than

some known input such as X0). The trick is to divide both
sides of eq. (23) by XN . Then, we find:

1 −p 1

. . . . . . . . .

1 −p 1

1 −q

1


︸ ︷︷ ︸

U



zN

zN−1

...

z1

z0


︸ ︷︷ ︸

z

=



0

0
...

0

1


︸ ︷︷ ︸

eN

(24)

or in “matrix-vector” form: Uz = eN , where

zk(ω) =
XN−k(ω)

XN (ω)
(25)

Now, all the entries in the right-hand side vector of eq. (24) are
known constants. The linear system (24) can now be solved
directly by back substitution [59]. Then, the chain stability can
be indicated by zN (i.e. the first entry in the solution of (24)).

Note also that the first N − 2 rows of the matrix U in
eq. (24) are of Toeplitz form, i.e. have a constant diagonal.
Moreover, The last two equations in (24) provides two initial
values: z0(ω) = 1 and z1(ω) = q(ω). This type of linear
system (24) is well studied [59], [60]. The solution is:

zk(ω) = c1r
k
1 (ω) + c2r

k
2 (ω) (26)

with r1 and r2 as the two roots of the following quadratic
equation:

r2 − p(ω)r + 1 = 0 (27)

Note that

p(ω) = 2− ω2

kd + kvjω
̸= ±2 (28)

for all ω ̸= 0 and kv ̸= 0. Thus, we see that the two roots
r1 and r2 are different. Substituting (26), we can check that
zk−p(ω)zk−1+zk−2 = c1r

k−2
1

(
r21−p(ω)r1+1

)
+c2r

k−2
2

(
r22−

p(ω)r2 + 1
)

= 0 + 0 = 0 for all k = 2, 3, · · · , N (see
eq.(27)). Thus, the first N − 1 equations in the linear system
(24) are matched. The two coefficients c1 and c2 in eq. (26)
are determined by the two initial values z0 = 1 and z1 = q,
i.e. {

c1 + c2 = z0

c1r1 + c2r2 = z1
(29)

Note that r1 ̸= r2 (according to eq. (28)). Thus, we find:

c1 =
r2 − q

r2 − r1
and c2 =

r1 − q

r1 − r2
(30)

Now, the solution zk(ω) in (26) becomes:

zk(ω) = q(ω)
rk2 (ω)− rk1 (ω)

r2(ω)− r1(ω)
− rk2 (ω)r1(ω)− rk1 (ω)r2(ω)

r2(ω)− r1(ω)
(31)

which satisfies all of the linear equations in (24). Note that the
determinant of the (upper triangular) matrix U in eq. (24) is
1, i.e. non-zero. That is, the matrix U in eq. (24) is invertible,
and thus the solution of the linear system (24) is unique: z =
U−1eN [59]. Thus, zk(ω) in eq. (31) (for k = 0, 1, · · · , N )
is the solution to the linear system (24).
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C. Chain stability of the BCM system

Note that zN (ω) = X0(ω)/XN (ω). Thus, the chain stability
condition (6) for BCM traffic becomes

lim
N→∞

∥zN (ω)∥ = ∞ (32)

for all ω ̸= 0. Without loss of generality, we suppose that

∥r2∥ ≥ ∥r1∥ (33)

First, let’s prove the following Lemma:
Lemma 1: For all ω ̸= 0, the coefficient c2(ω) ̸= 0 for both

cases of free BCM chain in the traffic, i.e. H(ω) chosen as
(19), and BCM chain followed by human drivers, i.e. H(ω)
chosen as (20).

Proof of Lemma 1: First, note that H(ω) in (19) can be
viewed as a special case of H(ω) in (20) with T = 0. Thus,
we analyze the H(ω) in (20) with two different cases: T = 0
and T > 0. From eq. (20), we find:

q(ω) = 1− ω2 − kdTjω

kd + kvjω
(34)

Then, prove by contradiction. Suppose c2 = 0, from eq. (30),
we find that r1(ω) = q(ω). Note also that r1 is one of the two
roots: 1

2

(
p±

√
p2 − 4

)
(see eq. (27)). Thus, we find

(
p(ω)−

2q(ω)
)2

= p2(ω)− 4. Substituting eq. (28) and (34), we find:(
ω2 − 2kdTjω

)2
= ω4 − 4ω2

(
kd + kvjω

)
(35)

That is,
kdT

2 = 1 and kvT = 1 (36)

Thus we find:
1) When T = 0: Eq. (36) can not be satisfied. Thus, the

hypothesis c2 = 0 is wrong.
2) When T > 0: From eq. (36), we find kd = 1/T 2 and

kv = 1/T . Then, eq. (34) becomes q(ω) = 1 + Tjω.
Thus, ∥q(ω)∥2 = 1 + T 2ω2 > 1 for all ω ̸= 0. Thus,
∥r1(ω)∥ > 1 (note that r1(ω) = q(ω)). From (27), we
find r1(ω)r2(ω) = 1, and thus ∥r1(ω)∥∥r2(ω)∥ = 1.
Thus, ∥r2(ω)∥ < 1 < ∥r1(ω)∥, which is contradict to
the hypothesis (33).

Thus, c2 ̸= 0 for both of the cases that H(ω) is chosen as
(19) and (20) . �

Now, we prove the following:
Theorem 1 : The system of BCM vehicles is chain stable

for arbitrary kd > 0 and kv > 0.
Proof of theorem 1: From eq. (27), we find r1(ω)+r2(ω) =

p(ω) and r1(ω)r2(ω) = 1. First, note that

∥r1(ω)∥∥r2(ω)∥ = 1 (37)

From (28), we find that p(ω) is not a real number for all
kd > 0, kv > 0 and ω ̸= 0. Thus7 ∥r1(ω)∥ ≠ ∥r2(ω)∥. Thus,

7Prove by contradiction. Suppose that ∥r1(ω)∥ = ∥r2(ω)∥, then the
condition r1(ω)r2(ω) = 1 implies that r1(ω) equals to the conjugate of
r2(ω), and thus p(ω) = r1(ω) + r2(ω) will be a real number. However,
p(ω) is not a real number (see (28))

∥r1(ω)∥ < 1 and ∥r2(ω)∥ > 1 for any ω ̸= 0 (according to
the convention (33)). Finally, from (26), we find:

∥zN (ω)∥ ≥ ∥c2(ω)∥∥r2(ω)∥N − ∥c1(ω)∥ (38)

Note that c2(ω) ̸= 0 (by Lemma 1). Thus, ∥zN (ω)∥ → ∞
(for all ω ̸= 0) as N → ∞. �

In this paper, we focus only on bilateral control. How-
ever, the above techniques can be used to analyze oth-
er bi-directional information flow systems directly, e.g. bi-
directional platooning or asymmetric bi-directional vehicle
control.

V. BCM CHAINS IN TRAFFIC

The chain stability analysis provides the performance of
BCM chains in mixed traffic. First, let’s consider the traffic
flow shown in Fig. 4: CFM vehicles followed by BCM cars.
The fist car in the chain studied in Definition 2 is: the last
vehicle in the CFM chain immediately ahead of the BCM
chain. There are two different cases: (1). there is no following
CFM car behind the BCM chain (in the range of the distance
sensor), and there is a CFM car following the BCM chain. In
case (1), the last BCM vehicle becomes the end of the chain
in Definition 2 (as shown in Fig. 4(a)). The last BCM vehicle
can just implement constant headway CFM, i.e. free-boundary.
In case (2), the CFM car immediately following the last BCM
vehicle becomes the end of the chain in Definition 2 (as shown
in Fig. 4(b)). The whole BCM chain becomes the set of middle
sub-systems of the chain in Definition 2, which “connect” the
last CFM vehicle in the CFM chain immediately ahead to the
first CFM car in the immediately following CFM chain.

⋯ ⋯ 

CFM chain BCM chain 

⋯ 
 !  "  #  $ 

(a) Free BCM chain in the (mixed) traffic

⋯ ⋯ 

CFM chain BCM chain 

⋯ 
 !  "  #  $%" 

⋯ 

CFM chain 

 $ 

(b) BCM chain followed by human drivers

Fig. 4. In mixed traffic, the first car in the chain studied in Definition 2 is:
the CFM vehicle (i.e. the black block) immediately ahead of the BCM chain
(i.e. the white blocks). (a) if there is no CFM car following the BCM chain,
then the last BCM vehicle becomes the end of the chain in Definition 2. (b)
Otherwise, the CFM car immediately following the BCM chain becomes the
end (or boundary) of the chain discussed in Definition 2.

The “stop-and-go” traffic jams in the CFM chain will cause
continuous perturbation X0(ω). The chain stability of the
following BCM vehicles will guarantee such perturbations will
be damped away. That is, XN (ω) goes to zero for all ω ̸= 0.

Now, the effect of a BCM chain in mixed traffic becomes
clear. Without the BCM chain, the perturbation X0 is trans-
ferred to the following vehicles. By adding a BCM chain,
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⋯ 

CFM chain BCM chain 

⋯ ⋯ 

CFM chain BCM chain 

⋯ BCM Damper BCM Damper 

Fig. 5. The BCM chains in traffic play the role of perturbation-consuming dampers (called BCM dampers), which split the CFM chains and prevent the
perturbations transferred from one CFM chain to the following CFM chain.

the perturbation transferred to the following human-driven
vehicles is XN , which is guaranteed to be small according to
Theorem 1 (chain stability). That is, the BCM chains become
perturbation-consuming dampers inserted in the traffic, which
split the CFM chains and prevent the transfer of perturbations
from one CFM chain to the following CFM chains (See Fig. 5).
Thus, traffic flow can be improved greatly by the BCM chains,
comparing to today’s pure CFM traffic.

Moreover, the input perturbations X0 to the BCM chain
asymptotically decay exponentially (see eq. (38)). Thus, the
inserted BCM chains (also called BCM dampers) consume
the perturbations (in the CFM chains) very efficiently. The
effectiveness of the impact of BCM vehicles depends on the
following two parameters:

1) The fraction of BCM vehicles: some perturbations are
amplified exponentially by the CFM chain (see eq. (7)).
All input perturbations to the BCM chain decay asymp-
totically exponentially (see eq.( 38)). Thus, the higher
the ratio of BCM-chain length to CFM-chain length (i.e.
the higher fraction of BCM vehicles), the more effective
the BCM-chain will be in stabilizing the whole traffic
flow by consuming the perturbations.

2) The length of the BCM chain: according to eq. (38) and
Definition 2, the effectiveness of BCM chain stability
improves with the length of the chain, so it should not
be too small.

VI. SIMULATIONS

We build a simulator to demonstrate the perturbation con-
suming behavior of chains of vehicles under bilateral control.
The parameters used in the simulations are listed in Table
I. In order to deal with some events that may occur during
simulation, we add another rule: if the space between the
successive two cars is less than the car-length L, i.e. car
collision can occur, then, we let the second car implement
“emergency stop” in the next iteration.

TABLE I
THE PARAMETERS USED IN THE SIMULATION.

distance feedback kd 0.3 (1/sec2)

velocity feedback kv 0.2 (1/sec)

Car length L 5 (meters)

max velocity vmax 160 (km/h)

min velocity vmin 0 (km/h)

max acceleration amax 5 (m/sec2)

min deceleration amin −5 (m/sec2)

time step ∆t 0.1 (sec)

In the beginning, the vehicles are all spaced apart by 25
meters, and all move at the same speed of 25 m/s. The
simulation results, i.e. the trajectories of vehicles in space-time
domain, are shown in a relative reference system, which moves
at the constant speed of 25 m/s. The initial space between the
successive vehicle trajectories is 30 meters (i.e. initial vehicle
gap plus car length).

First, we demonstrate the chain stability of BCM (Theorem
1). The number of BCM vehicles is N = 20. The car ahead
of the first BCM vehicle generates continuous “stop-and-go”
perturbations. It decelerates at −5 m/s2 until the speed is
15 m/s (i.e. −10 m/s in the relative reference system), then
accelerates at 5 m/s2 until the speed is 35 m/s (i.e. 10 m/s in
the relative reference system), and then decelerates again at
−5 m/s2 until the speed as 15 m/s (or −10 m/s in the relative
reference system), and so on. Fig. 6 shows some simulation
results at different times: 50 sec., 52.5 sec., 55 sec. and 57.5
sec. The whole simulation result (in 600 sec.) is shown in:
http://people.csail.mit.edu/wangliang/#ChainStability.

Fig. 6. Some of the simulations results. The red squares indicate the BCM
vehicles, and the solid red square indicates the last BCM car in the chain.
The solid black square is the input to the BCM chain.

The solid black square in Fig. 6 shows the first car, i.e. the
input to the following BCM chain. The perturbations in the
input cause the perturbations in its several following (BCM)
vehicles. Due to the chain stability of BCM, such perturbations
will be consumed by the BCM chain. There is no noticeable
perturbations in the last BCM vehicle (marked by the solid
red square in Fig. 6).

Fig. 7 shows the trajectories of the totally 21 vehicles (in
the relative reference system). The obvious perturbations in
the first car (i.e. the red curve in Fig. 7) are consumed by the
BCM chain. The last BCM vehicle of the chain (i.e. the thick
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Fig. 7. The trajectories of vehicles in space-time domain of a relative
reference system (which moves at the constant speed 25 m/s). The number of
BCM vehicles is N = 20. The first car introduces continuous “stop-and-go”
perturbations (i.e. red curve) to the system. Due to the chain stability, the
perturbations introduced are consumed by the BCM chain. The perturbations
of the last BCM vehicle (thick black curve) are very small.

black curve) has only very low amplitude fluctuations.
Fig. 8 demonstrates the effect of a BCM chain in mixed

traffic. The black curves in Fig. 8(a) are trajectories of CFM
vehicles; while the red curves in Fig. 8(a) are trajectories
of BCM vehicles. Totally, there are 20 CFM vehicles and
another 20 BCM cars. We can suppose that vehicle patten
in 8(a) appears periodic in the whole traffic. That is, the ratio
of BCM vehicles and CFM cars is one. At time 0 sec., 100
sec. and 200 sec., the first CFM car generate perturbations by
sudden break and then speed up. That is, decelerates at −5
m/s2 for 1.5 sec., then speed up at 5 m/s2 for another 3 sec.
and then decelerates again at −5 m/s2 for another 1.5 sec.
Now, its speed is 25 m/s (or 0 m/s in the relative reference
system) and position is 0. The perturbation generated by the
emergency brake of the first car is amplified by the successive
CFM vehicles, and finally becomes larger perturbations input
to the following BCM chain. Still, due to the chain stability
of the BCM vehicles, the input perturbations (i.e. the thick
black curve in Fig. 8(a)) are consumed by the BCM chain
(i.e. the red curve in Fig. 8(a)). The perturbations in the first
CFM car immediately following the BCM chain (i.e. the 31-th
curve in Fig. 8(a)) is almost negligible. Such tiny perturbations
might be amplified by the following CFM vehicles. However,
the following BCM chain can then be expected to consume

the perturbations before it becomes large enough to generate
traffic jams. Thus, traffic flow will be relatively smooth.

For comparison, Fig. 8(b) shows the result of pure CFM
traffic (with 20 CFM cars). The first 10 CFM vehicles (i.e.
the first 10 black curves in Fig. 8(b)) are exactly the same
as the first CFM chain in Fig. 8(a) (i.e. the first 10 curves
in Fig. 8(a)). However, the performance of the next 10 CFM
vehicles in Fig. 8(b) (i.e. the last 10 curves in Fig. 8(b)) are
totally different from the second CMF chain in Fig. 8(a) (i.e.
the last 10 curves in Fig. 8(a)). Without a BCM chain, the
perturbations can not be consumed promptly, and thus, the
continuously amplified perturbations will generate traffic jams
(and potentially car collisions) very soon.

Fig. 9 shows some simulation results at 130 sec., 135 sec.,
140 sec. and 145 sec. These results visually demonstrate
the conclusion from Fig. 8. The last car in the first CFM
chain (marked by solid black square) is subject to large
perturbations. These perturbations are consumed effective-
ly by the following BCM chain (marked by red squares).
Thus, the perturbations in the first CFM vehicle of the sec-
ond CFM chain (containing 10 CFM cars) is unnoticeable,
and thus, the second CFM chain (which is following the
BCM chain) moves relatively smoothly. Without the inserted
BCM chain, the perturbations in the 10-th CFM car (i.e.
the solid black square) are amplified continuously, and then
result in today’s “stop-and-go” traffic jams that we are al-
l familiar with. The whole simulation result is shown in:
http://people.csail.mit.edu/wangliang/#ChainStability.

VII. CONCLUSION

It is well-known that:
• Traffic flow instabilities, including alternating “stop-and-

go” driving conditions, are the result of the natural
behavior of human-drivers, where control of vehicles
generally is based only on the state of the car ahead.

• Such traffic flow instabilities can be suppressed effective-
ly if control of all of the vehicles also takes into account
the state of the following car, using a bi-directional
control strategy. This can greatly improve the traffic
system’s stability.

However, the existing stability analysis of both bi-directional
platooning and bilateral control strategy focuses on “pure”
traffic system, where all of the cars are purely under platooning
control or purely under bilateral control. One interesting
question then is “what is the impact of such vehicle chains
(purely under bi-directional control strategy) on the whole
traffic flow when mixed with cars driven by human drivers?”

To answer this question, another concept is needed to
replace the one applicable on one-directional information flow
system, e.g. for pure CFM traffic or predecessor following
platoon control. That is, a concept similar to that of string
stability for the one-directional information flow system is
needed. Due to the particular topology of the bi-directional
information flow system, the analysis and conclusions for
the one-directional predecessor following system can not be
directly extended to the bi-directional information flow system.
At least to our knowledge, something similar to string stability
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Fig. 8. Demonstration of the effect of a BCM chain. (a). The perturbation generated by emergency braking of the first car (at 0 sec., 100 sec.
and 200 sec.) is amplified by the successive CFM vehicles to be large perturbations (i.e. the thick black curve). Due to the chain stability
of the BCM system, such perturbations are consumed by the following BCM chain (i.e. red curves) before traffic jams are generated. The
traffic will be relatively smooth. (b) Without BCM chain, the perturbations in the thick black curve is not consumed promptly, and thus, the
continuously amplified perturbations will generate traffic jams (and possible car collisions) very soon. The first CFM chain (i.e. the first 10
curves) in (a) are exactly the same as the first 10 CFM cars in (b). However, the second CFM chain (i.e. the last 10 curves) in (a) move
much more smoothly than the last 10 CFM cars in (b).

analysis for such bi-directional control based traffic system has
not been well studied before.

In this paper, we first extend string stability for one direc-
tional predecessor following system to a generalized concept
(in Definition 1): the system’s performance of “transferring”
perturbations from one end to the other end of a “chain” (or
“string”). Such generalized string stability indicates the role
that the vehicle “string” (i.e. under one-directional control)
or vehicle “chain” (i.e. under bi-directional control) plays in
the whole traffic. If the vehicle “string” or “chain” is string
stable in the generalized sense, then the perturbations caused
by the vehicles ahead of the vehicle “string” (or “chain”) will
dissipate. Otherwise, such perturbations will be passed to the
following vehicles behind the vehicle “string” (or “chain”).
That is, if the vehicle “string” (or “chain”) is string stable in
the generalized sense, then it will have a positive effect on
traffic flow by preventing the propagation of perturbations.

The generalization of string stability to vehicle chains
under bi-directional-control topology is called chain stability
(Definition 2) in this paper to emphasize the special topolog-
ical structure different from the one-directional predecessor
following control architecture for which the string-stability
concept was defined. In this paper, we focus only on the

bilateral control system (i.e. BCM chains). We analyze such
BCM-chain systems, and prove their chain stability (Theorem
1). This result provides a mathematical description of the roles
BCM vehicles play in mixed traffic. That is, the BCM chains
become perturbation-consuming dampers inserted in the traf-
fic, which split CFM chains and prevent perturbations from
being transferred from one CFM chain to the following CFM
chains. Thus, BCM vehicles play a very definite “positive”
roles in mixed traffic.

As mentioned, in this paper, we only focus on bilateral con-
trol model. However, the definition and techniques provided
here can be used to analyze other bi-directional systems, e.g.
bi-directional platooning or asymmetric bi-directional ACC
system, directly. The analysis and techniques used in this paper
can also help design optimal parameters for these other bi-
directional systems. (Note that, for example, in Theorem 1, we
prove bilateral control is strictly chain stable for all kd > 0
and kv > 0. But this result will not be true in general for other
bi-directional systems.)

The chain stability analysis of BCM shows in part the
impact that self-driving cars can have on today’s traffic. The
BCM vehicles are still “normal cars” with additional pair
of backward sensors. Still, traffic flow can be improved by
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Fig. 9. Some of the simulations results. The black squares indicate the CFM vehicles, while the red squares indicate the BCM vehicles. The solid black
square indicates the last car in the CFM chain, whose perturbations become the input to the following BCM chain. The solid red square indicates the last car
in the BCM chain. The following CFM chain moves much more smoothly, because the BCM chain consumes the perturbations from the solid black square.

BCM vehicles inserted in traffic. Under the assumption that
more information about the environment (via e.g. V2V and
V2R) can be used, cars can become “smarter and smarter”
through e.g. reinforcement learning [61]. Unsurprisingly, such
“smart” self-driving cars can do more than platooning or
bilateral control, and thus potentially can provide even more
positive impact on traffic, e.g. multi-lane control [62], route
flow estimate and control [63]. These will be some new and
interesting topics.

We focus in this paper on theoretical analysis. In real
application, the feedback control model (1) is implemented
as a discrete-time system by the ACC controller, and the
effect of quantization in time should also be considered,
as should delay. The corresponding stability/string stability
conditions for both CFM and BCM will change somewhat in
the discrete case. Study of the stability/string stability under
these conditions and the effect of delay will be future work.
Moreover, other control strategies, e.g. the linear combination
of BCM and CFM, may also be used by self-driving cars.
Then, for example, more attention could be paid to the leading
car than the following one. Different vehicles may use various

gains, and gains for one vehicle may also be determined
adaptively according to e.g. the traffic situation. Again, these
problems will be addressed in future work.
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