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[1] Accurate air temperature observations in urban areas
are important for meteorology and energy demand plan-
ning. They are indispensable to study the urban heat
island effect and the adverse effects of high temperatures
on human health. However, the availability of tempera-
ture observations in cities is often limited. Here we show
that relatively accurate air temperature information for the
urban canopy layer can be obtained from an alternative,
nowadays omnipresent source: smartphones. In this study,
battery temperatures were collected by an Android appli-
cation for smartphones. A straightforward heat transfer
model is employed to estimate daily mean air temperatures
from smartphone battery temperatures for eight major cities
around the world. The results demonstrate the enormous
potential of this crowdsourcing application for real-time
temperature monitoring in densely populated areas. Citation:
Overeem, A., J. C. R. Robinson, H. Leijnse, G. J. Steeneveld,
B. K. P. Horn, and R. Uijlenhoet (2013), Crowdsourcing urban air
temperatures from smartphone battery temperatures, Geophys. Res.
Lett., 40, 4081–4085, doi:10.1002/grl.50786.

1. Introduction
[2] High temperatures can negatively influence human

health [Laaidi et al., 2006]. For instance, in the summer of
2003, a heat wave caused increased mortality rates in France
[Filleul et al., 2006; Le Tertre et al., 2006]. This is espe-
cially important in cities, where most people live and air
temperature extremes are raised by the urban heat island,
particularly during the night [Oke, 1982; Johnson, 1985;
Souch and Grimmond, 2006; Steeneveld et al., 2011; Stewart
and Oke, 2012]. The percentage of urban dwellers world-
wide is projected to increase from 49% in 2005 to 60%
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in 2030 [United Nations, 2005]. Moreover, energy demand
planning [Allegrini et al., 2012] will become more challeng-
ing, given the projected climate change and its variability. In
order to assess the resource implications of policy interven-
tions and to design and operate efficient urban infrastructures
such as energy systems, greater spatial and temporal res-
olutions are required in the underlying resource demand
data. Unfortunately, only limited information is available
[Keirstead and Sivakumar, 2012]. Hence, there is an urgent
need for accurate air temperature observations, specifically
in urban areas.

[3] The possibility of crowdsourcing urban observations
employing smartphones has been identified in a recent report
of the National Research Council of the National Academies
[2012]. To increase the availability of air temperature obser-
vations in urban areas, we call on the help of smartphone
users to obtain access to a yet untapped network of temper-
ature sensors that could potentially collect worldwide tem-
perature data at low cost in an automated fashion. This can
be more cost-efficient than the installation of new weather
stations, which moreover require maintenance and are only
representative for a limited area. Lithium ion batteries have
temperature sensors to prevent damage caused by attempts
to charge them when the battery is too hot. Its signal does not
provide a direct air temperature measurement, because the
smartphone is a significant heat source itself, and because it
is typically carried close to another heat source: the body of
the user. The urban canopy layer consists of the air contained
between the urban roughness elements (mainly buildings)
[Oke, 1976]. Here we show how daily averaged air temper-
atures for eight major cities (> 2 million inhabitants) can
be derived from smartphone battery temperature readings
obtained from an Android application employing a straight-
forward heat transfer model (Figure 1 (left)). This is a first
step toward trying to obtain even more relevant tempera-
ture information that would be useful for a variety of urban
applications, e.g., an accurate estimate of urban canopy
layer temperatures for the complex and diverse local and
microscale environments in a city.

[4] Since 20% of the Earth’s land surface has cellular tele-
phone coverage [GSM Association, 2007] and 500 million
devices [CNET, 2012] use the Android operating system, a
huge potential exists for obtaining real-time air temperature
maps from smartphones, especially in densely populated
areas. For example, from 25 April 2012 to 22 April 2013,
already over 530 thousand devices have contributed a total
of over 220 million readings of battery temperatures across
more than 200 countries/territories employing the Android
application OpenSignal for smartphones (opensignal.com;
recently also available for iOS), which crowdsources data
relevant to wireless connectivity (Figure 1 (right)).
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Figure 1. Heat transfer model and world map of battery temperature readings. (left) Smartphone’s battery temperature
(Tp) can be retrieved using an Android application. Battery temperature is influenced by environmental temperature (Te),
body temperature (Tb), as well as insulation between smartphone and environment (ke), and that between smartphone and
body (kb). Pp is thermal energy generated by smartphone per unit time. (right) World map (©OpenStreetMap contributors;
openstreetmap.org) of locations of battery temperature readings (blue dots). Based on data collected by Android application
OpenSignal from 25 April 2012 to 22 April 2013. Red ovals denote the eight cities for which air temperatures are estimated.

2. Data

[5] From the worldwide 1-year data set of 220 million
battery temperature readings, a subset from eight major
cities for half a year were selected, resulting in about
2.1 million readings. The cities cover a wide range of
climate zones: Buenos Aires (Argentina), London (UK),
Los Angeles (USA), Paris (France), Mexico City (Mexico),
Moscow (Russia), Rome (Italy), and São Paulo (Brazil).
They cover the period 7 May 2012 to 22 November 2012,
which is divided in two periods: 7 May to 31 August (called
summer, except for Buenos Aires and São Paulo, then called
winter), and 1 September to 22 November (called autumn,
except for Buenos Aires and São Paulo, then called spring).
The temperature measurement only requires the application
to be installed and the user to allow data collection. It does
not require a data connection since data are cached on the
device and uploaded periodically to a server for storage
when a connection is available.

[6] After additional selections (see supporting informa-
tion), 1.3 million battery temperature readings are left for
further analysis, on average 844 per day and per city. Sub-
sequently, those battery temperatures are averaged in space
and time to obtain daily averaged (0–24 h local time) battery
temperatures for each city.

[7] For each city, daily mean air temperatures (given as
integers) from routine World Meteorological Organization
certified stations were retrieved from the National Oceanic
and Atmospheric Administration for calibration and valida-
tion purposes. All selected stations are located at airports,
which are relatively close to the city center for Buenos Aires
(5 km), London (12 km), Mexico City (7 km), Rome (7 km),
and São Paulo (8 km). The stations of Los Angeles (18 km),
Paris (22 km), and Moscow (27 km) are located further away
from the city center. Note that the stations are at most rep-
resentative for two local climate zones [Stewart and Oke,
2012] in the urban canopy layer. The observed air tempera-
ture data are utilized to calibrate a heat transfer model and
for validation purposes.

3. Heat Transfer Model

[8] A smartphone is typically, although not always,
carried in a pocket of clothing, close to the user’s body.
The thermal energy generated by the smartphone must be
balanced by heat outflow to the body and to the environment.
The conductive heat flow between two adjacent systems is
proportional to the temperature difference between the sys-
tems and depends on the thermal insulation between phone
and environment and between phone and body. This law
has been employed to derive a steady state heat transfer
model to estimate daily averaged air temperatures from daily
averaged battery temperatures for a unique combination j
of city and sampling period (see supporting information for
the derivation):

NT A,day
e,j,d = mj( NT

A,day
p,j,d – T0) + T0 + �j,d, (1)

where NT A,day
e,j,d is the daily averaged environmental or urban

canopy layer air temperature, NT A,day
p,j,d is the daily averaged

battery temperature (both in space A and time), and T0 a con-
stant equilibrium temperature. Note that mj is a coefficient,
�j,d is a random disturbance, and d denotes the day number.

[9] Using daily averaged observed air and battery temper-
atures, optimal values of mj (for each city and period) and
T0 (constant for all cities and periods) are found employing
least squares regression. One calibration and one valida-
tion data set are constructed for each city and period, by
alternately assigning (without replacement) 1 day to the
calibration and 1 day to the validation data set to avoid
potential biases that may be induced by seasonal variations.
The calibration data set is used to estimate the parameters of
the heat transfer model (equation (1)), whereas the validation
data set is used for verification of the performance of the heat
transfer model on independent data. The optimal values of
mj for a certain city and period and the overall optimal value
of T0 are used to calculate air temperatures for the validation
data set.
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Figure 2. Estimation of air temperature from smartphone battery temperatures. (top) Map of London (UK;
©OpenStreetMap contributors; openstreetmap.org) showing locations of selected smartphone battery temperature readings
(blue dots) from 7 May 2012 to 31 August 2012. Red oval indicates location of meteorological station at London City
Airport. (bottom) Time series of daily averaged observed and estimated air temperatures, as well as battery temperatures in
London for same period. Grey-shaded areas denote 10th to 90th percentiles of battery temperatures and ˙ 0.5 ıC roundoff
uncertainty in observed daily air temperatures. ME denotes mean error (bias), MAE is mean absolute error, CV is coefficient
of variation and �2 is coefficient of determination. CAL and VAL stand for calibration and validation data set, respectively.
WMO nr. is World Meteorological Organization station index number.

4. Results and Discussion

[10] Air temperatures are estimated from battery tem-
perature readings for eight cities. Figure 2 (top) shows
the locations of selected battery temperature readings from

summer for London. Figure 2 (bottom) shows that daily
battery temperature (orange line) and observed daily air
temperature (black line) are strongly positively correlated
(0.82), consistent with equation (1). The evolution of the
estimated air temperatures often corresponds well with the

Figure 3. Time series of daily averaged observed and estimated air temperatures for 1 September 2012 to 22 November
2012. (left) For Los Angeles (USA). (right) For São Paulo (Brazil). Grey-shaded areas denote˙ 0.5 ıC roundoff uncertainty
in observed daily air temperatures. ME denotes mean error (bias), MAE is mean absolute error, CV is coefficient of variation,
and �2 is coefficient of determination. CAL and VAL stand for calibration and validation data set, respectively. WMO nr. is
World Meteorological Organization station index number.
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Figure 4. Validation of estimated daily air temperatures against observed daily air temperatures. (left) Scatter plot based
on data from eight cities for 7 May 2012 to 31 August 2012. (right) Scatter plot based on data from eight cities for
1 September 2012 to 22 November 2012. Grey line is y = x line. ME denotes mean error (bias), MAE is mean absolute error,
CV is coefficient of variation, and �2 is coefficient of determination. CAL and VAL stand for calibration and validation
data set, respectively. WMO nr. is World Meteorological Organization station index number.

observations. Figure 2 (bottom) shows the estimated air tem-
peratures for the calibration and the validation data sets. For
the validation data set, the mean absolute error (MAE) of
daily air temperatures amounts to 1.45 ıC, whereas the bias
(ME) is only –0.28ıC. The coefficient of variation (CV)
(i.e., the ratio of the standard deviation of the differences
to the mean daily observed air temperature) is 0.12 and
the coefficient of determination (�2) (i.e., the fraction of
explained variance) is 0.65.

[11] Figure 3 shows results for Los Angeles (autumn) and
São Paulo (spring), which are similar to London (summer).
Alternating cold and warm periods are generally well esti-
mated from the battery temperature data. Figures 2 and 3 are
representative for the best obtained results. A more complete
overview by scatter plots of daily air temperatures based on
independent data from all cities and both periods (Figure 4)
indicates a small bias. The coefficient of determination is
large, 0.81–0.84, implying that a large part of the variation
in observed daily air temperature can be explained by the
estimated daily air temperature based on the heat transfer
model (equation (1)). Nevertheless, deviations larger than a
few degrees can be found. It appears that only for Paris and
Moscow (autumn), the proposed model provides less accu-
rate time series of daily air temperature, which is discussed
in the supporting information. The time series for all cities
and periods are given as Figures S3 and S4.

[12] An important problem is that a subset of battery
temperature readings have likely been taken inside buildings
or cars, whereas our goal is to observe outside air tem-
perature. In addition, for each city and period, a constant
value of mj is assumed, while in reality each observation
has its own thermal conductivity. One particular issue con-
cerns representativeness errors. The smartphone battery and
meteorological station observations represent temperature at
different locations, where surrounding land use will gener-
ally differ as well. The battery temperature readings have
been taken at many locations. Data from the meteorological
stations are from one location for each city, which will not be

entirely representative for urban areas. Because of the com-
plexity and diversity of local and microscale environments in
a city, the estimated daily air temperatures will only provide
a rough estimate of the actual areal average air temperature.

[13] The assumption that people carry their smartphone
in a pocket in their clothing can be violated. Moreover,
the number of received readings fluctuates during the day
and between days and readings will therefore not always
be representative to the same extent for estimation of daily
averaged air temperatures. In addition, those influenced by
outdoor air temperature fluctuate. For example, in case of
cold periods, more people may stay inside, resulting in
relatively high battery temperatures and hence overestimated
air temperatures. See the supporting information for a more
extensive discussion.

5. Conclusions and Perspective
[14] This study shows that it is possible to estimate rel-

atively accurate daily urban canopy layer air temperatures
from smartphone battery temperature readings employing
a straightforward heat transfer model. By averaging over
a sufficiently large number of battery temperature read-
ings, the existing variation in thermal conductivity over
individual readings is adequately filtered. Moreover, the
influence of outside air temperatures is sufficiently reflected
in the battery temperature readings, despite the fact that a
subset of readings has likely been taken inside buildings.
This proof of principle shows that monitoring air tempera-
tures employing smartphones with an Android application
holds great promise, although neither the application nor the
smartphones have been designed for that purpose.

[15] Model coefficients would need to be optimized for
different cities and seasons in order to provide worldwide
air temperature estimates. In addition, operating system
version, smartphone model, and screen size are likely to
have an impact on the way in which the battery responds
to air temperature. Coefficients of the heat transfer model
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could therefore be optimized for, e.g., specific smartphone
models, if sufficient data are available. Finally, techniques
could be developed to detect whether the phone is indoors
or outdoors, to select only those readings which have been
taken outside.

[16] A substantial increase in the number of battery tem-
perature readings from Android and iOS phones would
allow for mapping urban air temperature to study the diur-
nal cycle and the urban heat island effect. This would
require the selection of meteorological stations solely from
densely populated urban areas for calibration. For exam-
ple, dedicated urban meteorological networks may be used
for this purpose [Muller et al., 2013], preferably a range of
stations representative of the different microclimates. The
diurnal variation in the coefficients of the heat transfer model
should also be considered then. First, many additional high
quality urban observations would be needed to refine the
air temperature estimates from smartphones and to expand
their possibilities. In the end, such a smartphone application
could substantially increase the number of air temperature
observations worldwide. This could become beneficial for
precision agriculture, e.g., for optimization of irrigation and
food production, for human health (urban heat island), and
for energy demand planning.

[17] This work shows another opportunity of cellu-
lar communication networks to monitor the environment.
Microwave links from these networks can be employed to
measure rainfall [Messer et al., 2006; Leijnse et al., 2007;
Overeem et al., 2011], or even to estimate the space-time
dynamics of rainfall on a country-wide scale [Overeem et
al., 2013]. Also dedicated sensors are being developed for
smartphones, e.g., an add-on to measure aerosols [iSPEX,
2013]. The meteorological Phenomena Identification Near
the Ground project enables users of a smartphone applica-
tion to report information on precipitation near the ground
[National Severe Storms Laboratory, 2013].

[18] Other opportunities may arise, e.g., some phones
already have air humidity, air pressure, and air temperature
sensors. OpenSignal has released a dedicated crowdsourcing
weather application (WeatherSignal). Environmental data
from smartphones could eventually even be utilized for
data assimilation in numerical weather prediction models,
development of urban canopy layer air temperature retrieval
algorithms from satellites, water management, and urban
planning. Hence, we expect that these projects and our
results are only the beginning of crowdsourcing applications
for measuring environmental variables.
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