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Density Reconstruction Using Arbitrary 
Ray-Sampling Schemes 

BERTHOLD K. P. HORN 

Abstmet-Methods for calculating the distriiution of absorption 
densities in a cross section through an object from density integrals 
dong rays in the plane of the cross section are well-known, but are 
restricted to particular geometries of data collection. So-called con- 
volutional-backprojection-summation methods, used now for parallel- 
my data, have recently been extended to special cases of the fan-beam 
teconstruction problem by the addition of pre- and post-multiplication 
steps. In this paper, a technique for deriving reconstruction algorithms 
for arbitraty ray-sampling schemes is presented; the resulting algorithms 
entail the use of a general linear operator, but require little more 
computation than the convolutional methods, which represent special 
cases. 

The key to the derivation is the observation that the contribution 
of a pntticular ray sum to a particular point in the reconstruction es- 
sentially depends on the negative inverse square of the perpendicular 
distance from the point to the ray, and that this contribution has to  
be weighted by the ray-sampling density. The 'remaining task is the 
efticient arrangement of this computation, so that the contribution 
of each ray sum to each point in the reconstruction does not have to 
be calculated explicitly. 

The exposition of the new method is informal in order to facilitate 
the application of this technique to various scanning geometries. The 
frequency domain is not used, since it is inappropriate for the space- 
variant operators encountered in the general case. The technique is 
Iustntd by the derivation of an algorithm for parallel-ray sampling 
with uneven spacing between rays and uneven spacing between pro- 
jection angles. A reconstruction is shown which attains high spatial 
resolution in the central region of an object by sampling central rays 
more fmely than those passing thmugh outer portions of the object. 

R ECENT INTEREST in computerized axial tomography 
as a means of determining absorption densities in a cross 
section through an object has led to a variety of basic 

algorithms [ l ]  -[ 111. Part of this interest stems from the 
diagnostic benefits derived by the medical community from 
scanners utilizing X-ray sources which provide cross sections 
of the head, body, and, soon, the heart. Reconstruction from 
the mass of data generated by many ray samplings was not 
feasible before the advent of small fast computers, and the 
choice of reconstruction method depends to a large degree on 
the speed with which such a computer can perform the calcu- 
lations. As a result the so-called convolutional- backprojection- 
summation algorithm has emerged as the method of choice 
and is largely displacing competing methods using two-dimen- 
sional Fourier transforms or iterative-solution techniques used 
to solve large sets of sparse equations. These other methods 
do still find application in specialized areas where speed is 
not the main criterion of success. A further advantage of the 
methods based on convolution is that each collection of den- 
sity integrals, also called a projection, can be treated in a 
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Fig. 1. Parallel-ray scanning geometry. Many projections are mea- 
sured, each with rays arriving parallel to a particular direction. 

separate computation [61, [ 11 I. Other advantages include 
reconstruction over limited regions and the ability to analyze 
mathematically the effects of noise. 

Reconstruction methods developed so far, however, have 
mostly been suited to  the parallel-ray projection method of 
data collection, commonly employed in early slow comput- 
erized axial-tomographic scanners [ 9 ] .  Here density integrals 
or ray sums are sampled evenly along a line perpendicular to 
the rays (see Fig. 1); such a collection of data is called a 
projection, and projections are formed for a set of projection 
angles evenly spaced over either 180° or 360°. Reviews of 
a variety of reconstruction algorithms for this ray-sampling 
scheme may be found in several references [ 121 - [ 141. 

Since X-rays cannot be focused or  deflected as visible light 
rays can, the pencil beams used for parallel-ray sampling are 
obtained by tight collimation of radiation emitted from an 
X-ray source radiating into a large solid angle. Most of the 
output of the source is therefore wasted. Since a certain 
number of X-ray photons must be absorbed in order to get 
a sufficiently accurate estimate of the density integral along 
the ray, a great deal of time elapses before all ray sums have 
been observed. In the meantime, the object may have moved. 
For these and other reasons, modem scanners use fans of rays 
striking a multiplicity of detectors (see Fig. 2). A whole 
projection may now be measured in the time it would have 
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Fig. 2 .  Fan-beam scanning geometry. Many projections are measured, 
each with the source in a particular position. 

taken to  measure a single ray sum with the older system 
[IS] ,  [161. 

One difficulty with the so-called fan-beam approach is that 
ray sums are no longer evenly spaced in terms of ray direction 
and distance of rays from the center of the region being 
scanned. As a result, conventional reconstruction techniques 
do not apply without modification. Resorting the ray sums 
and interpolating to  approximate parallel-ray data has not 
proved very effective, because accuracy is compromised by 
the interpolation step [ 15 ] - [ 18 1, especially for the case of 
noisy data. 

Convolutional-reconstruction methods have been modified, 
however, t o  deal with two very special cases of this ray-sum 
collection scheme [19]-[21]. The first method applies to 
the situation where the fan is sampled evenly along a line at 
right angles to  the line connecting the source to the center 
of the region being scanned. Such data collection can be 
achieved only with a detector array that corotates with the 
source of radiation. This puts a demand for exceptional 
stability on the central detectors in the array, since points 
near the center of the region being scanned are "seen" only 
by a few detectors during the complete scan (221, [23]. 

The second method applies to  the situation where the de- 
tector array lies on a circle about the center of the region 
being scanned with radius equal to the radius of the circle on 
which the source moves. This geometry lends itself to the use 
of a fixed detector array with consequent simplification of 
the scanner mechanics. Since they lie on the same circle, 
there is a spatial conflict between the source and the detec- 
tors. If they are placed on circles with differing radii, the 
special-case solution no longer applies. The latter geometry is 
in fact common among proposed fast scanners. 

Clearly a method is needed for deriving algorithms similar 
to these modified convolutional methods for data collected 
by arbitrary sampling of the ray-sum space. Unfortunately, 
as it turns out, convolutional-backprojection-summation 

Fig. 3. Designation o f  particular rays and calculation o f  distance be- 
tween a ray and a point in the region being scanned. 

premultiplication of each ray sum by a factor depending on 
the position of the corresponding ray in the fan. Further- 
more, both involve the use of a post multiplication during 
the summation step with a factor which depends on the 
position of the point being reconstructed relative to the fan 
currently being treated. 

While the main impetus for this work comes from the 
computerized X-ray transverse-axial-tomography application, 
similar methods are of import; 
radio astronomy [2],  [3  ] and elel 

mce in such other fields as 
ctron microscopy [4 I ,  15 1. 

The algorithms developed here ,, ,,..,.,, ,..-,. ,,,.l.,.,. 
Operations using general linear operators can be thought of as 
spatially varying convolutions, where the "kernel" or "point- 
spread-function" is allowed to depend on the position at 
which the operator is applied. The derivation depends on the 
following observations, which will be elucidated in the next 
few sections. 

1) The contribution made by a particular density integral 
or ray sum to a particular point in the reconstruction is a 
function of the perpendicular distance from the point to the 
ray. 

2) This contribution is essentially proportional to the 
negative inverse of the square of the distance, except for rays 
passing very near to the point in question. 

3) The contribution of a particular ray sum has to be 
divided by the local ray-sampling density, to account for 
uneven sampling of the ray-sum space. 

4) The ray-sampling density is simply the inverse of the 
Jacobian of the transformation from a convenient uniform 
scanning-coordinated system to the coordinates used in 
parallel-ray reconstruction. 

5) Using a general linear operator, ir is possible to arrange 
the computation efficiently for most scanning geom ' ' 

interest. That is, each generalized projection gives 
separate computation, and it is not necessary tl 
mine the contribution of each ray sum to each pic 
explicitly. 

6) For a few special cases, the general linear op 
spatially invariant and thus is simply a convolution. 
ray sampling is the best known example of this. 

techniques apply only to  a few special geometries. Even the The notation used here is similar to that used 
two fan-beam reconstruction methods mentioned above shminarayanan [ 6 ] ,  [ 191. The set of rays sampled is 
augment the convolutional step of the algorithm with a subset of the two-parameter family of straight line 
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the perpendicular distance 1 
being scanned. For  some sc 
eters will be more suitable, I 
method is convenient, becau, 

plane. Various ways can be envisioned for designating par- Integrating both terms by parts, we get 
ticular rays. We may, for example, specify the inclination 1 B of a ray (relative t o  the upright axis in Fig. 31, as well as  lim p(l '  - E ,  8 )  + - p( l l  + E ,  8 )  

from the center of the region "O E 

anning geometries, other param- 
but for parallel-ray systems this 
se, for this case, the projections 

correspond t o  evenly spaced 
projection correspond t o  even 

Let p(1, 8 )  be the density i 
( I ,  8). In practice we will bl 
density integrals, correspondi 
which depend on  the scann. 
use polar coordinates (r ,  4 )  
scanned, and let /(r, 4 )  be th 
( r ,  $), then our  task will be 
given a set of values of p( l ,  8). 

One important quantity wc 
distance, t ,  from a given poi 
we get, 

If we let 1' be the value of  11 
of a ray passing directly t h ~  
(8 - @), and so 

IV. RADON'S FC 

The earliest known solutio 
is given by Radon in his pal 
not be rederived here, since 
are needed and because he k 
the proof. T o  apply his fc 
f(r, $) is bounded, continuc 
scanned. Then p(1, 8 )  will a1 
for 1. Further, p(1, 8 )  will b 
the partial derivative of  p(1, t 
too. Radon's inversion form 
[W,  111 

The above result does n o  
conditions-particularly the  1 

the partial derivative of p(1, t 
certain artifacts o r  reconstru 
containing rays for which thf 
magnitude of the resulting ( 

the numerical approximations 
The inner integral is singt 

This singular integral may be i 

values of rays within a Since p( l ,8 )  is assumed t o  be continuous with respect to  1, we 
ly spaced values of 1. can rewrite this 
ntegral o r  ray sum along the ray 
e given only a finite set of these +- 
ing t o  discrete values of 1 and 8 Lm F,(t) ~ ( 1 .  8 )  d l  (6) 
ing geometry. If we choose t o  
to  designate points in the  region where 
le absorbing density a t  the point 
t o  reconstruct values o f f  (r, @), 1 

F ( t ) =  7 ,  f o r I t I < €  
e (7a) 

e will need is the perpendicular 
nt t o  a ray. Using Fig. 3 again, 

cos (8 - 4). ( 1) Combining the above results 

2 R +- corresponding t o  t = 0 ,  ( the case 
.ough the point), then 1' = r cos f ( r ,  @I = $[ e-o a m  j'_- F.0) P ( ~ , O )  d l  d o .  (8) 

n t o  the reconstruction problem 
per of 1 9 1 7 [ 1 1. His result will 
advanced mathematical concepts 
las given such a clear account of 
xmula, we have t o  assume that 
)us, and zero outside the region 
so be zero outside a certain range 
le continuous. Now assume that 
3) with respect t o  1 is continuous, 
~ula  then can be written as [21] ,  

t strictly apply if some of the 
one regarding the continuity of  
?)-are violated. We may expect 
ction errors in and near regions 
: assumptions fail t o  apply. The 
:rrors depends on  the details of 
I made t o  the above equation. 
dar, since t = 0 ,  when 1 = 1' (2). 
interpreted as 

1) Clearly each density integral o r  ray sum p(1, 8 )  contrib- 
utes t o  each point in the reconstruction according t o  its 
distance from that point. 

2) In fact, all but those rays passing very close t o  the point 
contribute with weight proportional to  the negative inverse 
of the square of the distance from the point. 

3 )  The weight of  the contributions of rays passing near the 
point is such that the sum of all weights is zero. That is 

The above three observations are important in the derivation 
of the new algorithms. The only other problem that will have 
t o  be tackled concerns the calculation of ray-sampling density. 
Then the techniques developed here can be applied t o  partic- 
ular scanning geometries. 

Let the inner integral (6)  discussed in the previous section 
be called g ( l f ,  8) .  Clearly it can be thought of as a convolu- 
tion of the original projection data p(1, 8 )  with the filter func- 
tion F,(t), since t = 1 - 1' and F, ( t )  is symmetric: 

+- 
g ( 8  = i / 1 '  - 1 1 8  d l .  (10) 

We can use the outer integral (8) t o  calculate the densities 
from this convolved or  filtered data 

1 ,8 )  d l .  (4)  In practice we know only a finite number of ray sums and con- 
sequently have t o  approximate both of the above integrals by 
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finite sums. If we choose t o  observe M projections evenly 
spaced in angle from 8 = 0 t o  8 = 2n, we may approximate 
the outer integral ( I  I )  by 

where 6 8  = (2n)lM is the angular increment between succes- 
sive projections. Note that gi(lt) is the convolved projection 
data of the jth projection evaluated a t  I' = r cos (8 - 4). For 
reasons of computational efficiency, we calculate the con- 
volved data a t  only a small number of places-typically the  
same ones for which projection data is available. This allows 
the use of a single convolution per projection, independent 
of the location of the points in the  reconstruction. The  value 
of gj(ll), needed in the above summation, must, however, 
then be estimated by interpolation from the  values a t  those 
places where the convolution was actually computed. 

This convolution will be discussed next. If we let W be the 
width o r  diameter of the region being scanned, and N the  
number of evenly spaced rays across this width (sampled by 
the  detectors) we can approximate the inner integral (10) 
by 

Fig. 4. Detailed geometry o f  a parallel-ray projection, showing ray 
passing through a designated point. 

produces weights which are alternately (213) and (413). This 
corresponds t o  Simpson's well-known rule for numerical 
quadrature. The second set of  weights, o n  the other  hand, 
corresponds t o  a numerical integration formula which takes 
into account the singular nature of the integral being approxi- 
mated, as will be shown later. 

By summing the series indicate 
(61)' Fo = (n2 112, 4 and (n2) /3  fol 
suggested. 

:d (ISb), one  finds that 
: the three sets of weights 

where 61 = W/(N - 1) is the uniform interval between succes- 
sive rays in a projection, and pii is the ray sum for the ith ray 
in the  jth projection (see Fig. 4). Now the i'th ray passes at  
a distance I' = i' 61 - W/2 from the origin, so this is the value 
of  1' associated with g i p j .  From this relationship one can 
determine which values of g . ~  . should be used in the inter- t ' 
polation for estimating gi(l ). One uses g i J i  and g(i l+ ,)i 
where 

VI. CHOICE OF %EIGHTS 

This analysis differs from the standard derivation of the 
weights w k .  These coefficients are commonly obtained by 
inverse Fourier transformation from a filter response designed 
in the  frequency domain. Their differences are usually dis- 
cussed in a somewhat ad hoc fashion in terms of the need to 
low-pass filter the projection data in  order t o  avoid aliasing We next turn our  attention t o  the discrete approximation 

t o  F, ( t )  (71, o r  undersampling. Clearly, this is wrong, since t o  avoid the 
effects of  undersampling, low-pass filtering has to  
formed before sampling. After sampling we throw c 

be per- 
~ u t  the 
ishable. 
D some 
~ u n t  for 
re sam- 
esulting 

F~ = -- W k  f o r k  # 0 
(k ' good with the  bad, since they are n o  longer distingu 

(Fortunately, the finite size of the  detectors and tc 
extent the finite size of the source of radiation acco 
some low-pass filtering of the projection data befo~  
pling and thus help t o  limit the magnitude of the r~ 
artifacts). 

The derivation of  these weights as coefficients in fc 
The value of  Fo is chosen simply so that the sum of all filter 
coefficients is zero, in view of  a similar condition o n  F,(t) 
(9). The weights wk give some flexibility in the  numerical 
approximation t o  the  singular integral (10). Some common 
choices are: 

jrmulae 
11. The 
ade by 
quency 

for  numerical quadrature instead seems more insightfr 
connection between these two points of view is m 
Hamming 1241, [25]  in his discussion of the fre 
response of integration formulas. 

Different choices of weights lead t o  different approximation 
behavior. As one might expect, there is a trade off between 

Ramachandran and Lakshminarayanan (1971) 
w k  = 2 f o r k  odd,  and wk = 0 for k even (16) 

noise and resolution. Random additive noise in the density Shepp and Logan (1 974) 

wk = 4k2/(4k2 - 1) 
integrals leads t o  noise in  the final reconstruction. The ampli- 
fication factor depends o n  not  only the details of scanning 
geometry (number of projections and number of rays per 
projection), but  also the weights chosen. The first filter above 
(16). for example, has fine resolution at  the cost of sensitivity 
t o  noise and sharp contrasts, makes full use of the sampled 

Horn (1976) 

W,' =1. 

The third set of weights corresponds t o  the trapezoidal rule 
for numerical integration o r  quadrature. Linear combinations 
of the  above weights may also be used. For  example, a com- 
bination of (113) of the first set and (213) of the third set 

projection, and does not attenuate higher frequencies. The 
third filter, o n  the  other  hand (18) lies at the other extreme 
and tends t o  blur sharp edges, while suppressing noise; it 
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removes some of the higher frequency components of the 
sampled projection data. The second filter (17) lies between 
the two extremes. In practice, one should allow for the 
possibility of using different weights to  suit different appli- 
cations, in order to be able to exploit fully the trade off 
between noise amplification and resolution. 

Overshoot in regions where p(1, 8 )  does not have a contin- 
uous derivative with respect to I is a common problem with 
filters that produce high-resolution results. They are most 
sensitive to violations of the assumptions underlying Radon's 
inversion formula. 

Finally, note that the two summations (12) and ( 13) allow 
us to evaluate the estimated density at arbitrary points (r, @). 
n practice, one uses a fixed grid of picture cells, in the form 
f some regular tesselation of the plane. This limits the 
mount of computation and reflects the fact that resolution 
; limited, in any case, by the sampling width (61) along each 
rojection, and that no new information is gained by per- 
orming reconstruction on a grid much finer than this. 

VII. RAY -SAMPLING DENSITY 
With the parallel-ray scheme described, sampling is uniform 

in 1 and 8. That is, successive rays in a particular projection 
correspond to evenly spaced values of I, while successive pro- 
jections correspond to evenly spaced values of 8.  Thus I and 
8 are natural coordinates for the rays. Other coordinates 
are preferred when we are dealing with fan beams or  more 
general scanning schemes. Essentially, whatever the scanning 
scheme, we must find coordinates 5 and q natural to the 
particular geometry, such that we have uniform sampling in 
5 and q. The collection of ray sums p(1, 8 )  for a fixed value 
of q will be referred to as a generalized projection. It is 
simple now to rewrite the reconstruction formula (8) as 
foUows 

where 

is the Jacobian of the transformation from (5, 7)) space to  
(1,8) space. It can be conveniently visualized as the factor 
by which a small area in (5, q )  space is expanded when mapped 
into (1,O) space (see Fig. 5). 

Since we have uniform sampling in ( t ,  q) space, the sampling 
density in ( I ,  6) space equals the uniform density divided by 
J. To see this more clearly, let two rays (I, 8 )  and (I1, 8 ') be 
considered "near" each other if 11- 1'1 < 6112 and 18 - 8'1 < 
6012. Clearly, then, the number of rays "near" a given ray is 
proportional to ( l l J )  61 68 (see also the derivation in [26]). 

Consequently, we can state that the ray-sampling density 
is inversely proportional to J. Further, it is clear that the 
contribution of a particular ray sum to a particular point 
must be weighted by J, that is, the inverse of the ray-sampling 
density. 

Intuitively, this seems reasonable since we do not want to 
emphasize contributions from regions of (1, 8 )  space which 
happen to be sampled more densely than others. It should 
be noted that we can no longer expect all regions of the 
reconstruction to be equally well determined or  resolved, 
since rays important to the reconstruction of one may be 
sampled more coarsely than the others. Fortunately, for 

I 

Fig. 5 .  Transformation from uniform scanning coordinates to co- 
ordinates used in Radon's inversion formula. The Jacobian is the 
ratio of the area of the quadrilateral A ' B ' ~ D '  to that o f  the quadri- 
lateral ABCD. The scanning density is the inverse o f  the Jacobian. 

practical fan-beam systems, the equivalent change in point- 
spread function over the region being reconstructed tends 
to be fairly small and thus not visually noticeable. 

We may write (1 9): 

where 

In the general case, t = I - 1' will be a function of both (r, @) 
and (5, q). As a result, the inner integral may have to be 
evaluated separately for every point (r, 9) in the reconstruc- 
tion, for every projection. That is, g is a function of three 
variables, unless we further restrict the possible scanning 
schemes. Fortunately, in most interesting cases a variable 
~ ( r ,  @) can be introduced which is natural to the scanning 
scheme such that g becomes a function of x and q only. 
(This may require splitting the variable t into a product of 
a term which depends on and one which does not-the 
latter term can be moved out of the inner integral.) 

If g can be written in terms of x and q only, a great com- 
putational efficiency arises, because the inner integral has to  
be evaluated only for every ~ ( r ,  @) for a given projection, 
not separately for every picture cell (r, @). An example later 
on will make this clear. Frequently, a good choice for ~ ( r ,  @) 
is t' defined by the equation l(5') = 1'. 

VIII. GENERAL LINEAR OPERATORS 
If we can find a new parameter ~ ( r ,  @) as described above, 

then the inner integral (22) becomes 

If we consider q as a parameter for the moment we can write 
this in a form that is more easily recognized: 

This is a general linear operation with kernel K,(x, 5) = 
F,(t) J. This operation is very similar to  a convolution 
aside from the fact that in a convolution the kernel would 
be invariant. The above integral may also be referred to as 
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a superposition integral, and the general linear operator may 
also be called a linear space-variant operator. Integrals of  
similar form occur in the solution of partial differential equa- 
tions, in which case the kernel is called a Green's function. 
In a number of special cases, such as  uniform, parallel-ray 
scanning, the kernel is space-invariant (that is, is a func- 
tion of X -  [ only), and the operation simply becomes a 
convolution. 

Note, by the way, that the sampling-density factor, J, 
presents no special problems, representing merely a premul- 
tiplication of the ray sums. In fact, under fairly general 
conditions, J is a function of  [ only and so each ray sum is 
simply multiplied by a factor depending on its position within 
its generalized projection. 

IX.  PARALLEL-RAY SCANNING WITH VARIABLE 
RAY AND PROJECTION -ANGLE SPACING 

As an illustration of the utility of  the new method for  
finding reconstruction algorithms, we develop an algorithm 
suited t o  parallel-ray scanning where both the spacing between 
successive rays in a projection and the interval between suc- 
cessive projection angles are nonuniform. 

Let the  rays be evenly spaced in [, while projections are 
evenly spaced in q. Then we write I as a function of  5 ,  and 
we write 6 as a function of  q .  Clearly, I(t) and 6(q)  should 
be monotonically increasing, continuous, and differentiable. 
This also assures us  that the inverse functions will exist. That 
is, given I we can find [, and given 8 we can find q. The 
Jacobian (20), here simplifies t o  

It is clear, given these assumptions, that J will be positive, and 
that its two factors may be split between the inner and outer  
integrals. Now choose [ I ,  such that 1(Ev) = I', that is, from (1) 
and (2) 

l(Et) = r cos [e  (q) - 41. (26) 

Then, t = I([) - I(['), and, consequently, we find that the 
inner integral is a function of [' and 7) only. Finally from (21) 
and (22) 

where 

Here then we have an inner integral which corresponds t o  a 
general linear operation. It  becomes a convolution only if 
1 happens t o  be a linear function of [, that is, when the spacing 
of the rays in a given projection is uniform. 

For  discrete sampling of the ray sums,, we approximate the 
above integrals by sums 

Here again, pi i  is the i th  ray sum in the jth projection. If ei 
is the  jth projection angle and Ii is the  distance of the ith ray 
from the center of the region being scanned, then 60i is the 
angular interval associated with a particular projection, while 
61i is the  projection interval associated with a particular ray, 
where 

Also, 

That is, Fi i is chosen so  that 

Here we happen t o  calculate gili for a set of  values of I '  which 
corresponds t o  the set of values of  I for  rays whose ray sum is 
known. One could equally 
calculation for  a different, 
of 1'. In either case, the v 
the known g i t i  by interpola 

Note that the inner sum 
general linear sum.  fort^ 
culation than a simple cor 
above simplifies if either 
angle spacing become unifo 

It  should be pointed OL 

problem due t o  the slow I 

Fitis. When rays are spac 
analytically (15b), while it 
are required here. If I is a 
then the error term of t l  
proportional t o  l /n .  This 
suggests a solution. If we 
i = i f -  n t o  i = i t + n ,  then 
i = -00 t o  i = +m is given b) 

well have decided t o  perform the 
perhaps evenly spaced set of values 
alues gi(lt) have t o  be found from 
tion as indicated before. 
I (30) is not a convolution, but a 
~nately, it requires little more cal- 
wolution. It  is also clear how the 
the ray spacing o r  the projection- 
rm. 
it that there is a minor practical 
convergence of the  series (32b) for 
:ed evenly, this sum can be found 
is likely that numerical techniques 

symptotically linearly related t o  5 ,  
le sum evaluated with n terms is 

illustrates the problem as well as 
let s, be the  sum of Fie i 6Ii from 

I a good estimate of  the sum from 
I 

X .  TAKING INTO 
NATURE OF I 

So far, when we approxi 
sum (30), we pay little t 
kernel F,(I - 1'). It  is I 

approximations may be f o  
deal with the singularity. 
values of the density integ 
crete points, and that it is 
ponent of the integrand 
distances along a projectic 
this function was assume 
(- l / t Z ) ,  o n  the other han 
rapidly near the point t = ( 
vations after splitting the 
each over the width of one 
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l i  and I i+,  (see Fig. 6). I t  measures the density integral pij  in 
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teed t o  the singular nature of the 
.easonable to  suppose that better 
und by considering methods which 
In this regard we note first that the 
yal p([, q )  are known only at dis- 
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d, is known everywhere but varies 
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inner integral into many integrals, 
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Fig. 6. Positions o f  detectors along projection as defined in derivation 
of  numerical approximation to  singular integral. 

(3Sb) 
prisingly simple result 

the center of the ith detector lies at (li + 
rer integral (28) can then be approximated as 

= (1 - I t )  and 

The reader may want to compare this with the original form 
of the inner integral (4), from which this result can also be 
obtained directly. This numerical approximation of the inner 
integral is particularly advantageous from a computational 
point of view since it is no longer necessary to keep a two- 
dimensional array of precalculated weights. This assumes 
that one can afford to  calculate (li - l r ) ,  and that the ray 
sums are replaced by the differences of ray sums as required 

(36) above (40). This latter calculation is needed only once per 
projection. 

The form of the result also implies that reconstruction may 
be possible when the ray spacing varies discontinuously, that 
is, when I([) does not have a continuous derivative with 
respect to l. This in turn suggests the possibility of using 
evenly spaced detectors; combining the measurements of 
neighboring detectors in portions of the projection where 

(37) high resolution is not required. 

sult and replace p(1, 8) with pij, when li < 
inner integral (36) becomes 

verify that this in fact reduces to Shepp and 
(1 7) when rays are evenly spaced [that is, 
12)SI - W/2, 61 = W/(N - I)]. (This was 
3eattie [ 1 S] .) More complicated integration 
developed if one fits low-order polynomials 

7 i j  instead of assuming that the density inte- 
: over the width of one detector. Techniques 
ay be found in standard texts on numerical 
lere, however, we will be satisfied with the 
eloped above (38) which is better than the 
:d earlier (30) since there is no difficulty 
veights by which the ray sums are to be 

an be further simplified by using the other 
n v n r r n  \a v. talc integral of (- l / tZ )  

4 
Pi' j 

ayuiimg WLII  sums and rearraneine terms leads to the sur- 

X I .  MOTIVATION FOR STUDYING VARIABLE 
RESOLUTION METHODS 

In a number of situations, one is interested in reconstructing 
an object buried inside some larger entity of less interest. If 
one were simply to restrict the scanned region to the object 
of interest, correct reconstructions would not be obtained, 
since the absorbing density is then nonzero outside the region 
being scanned. This violates assumptions underlying Radon's 
formula. Up to now, the only alternative was to scan the 
whole region occupied by absorbing material and reconstruct 
it with uniform resolution. (At best, there is some saving in 
the backprojection step, since one need not calculate the 
density of picture cells outside the region of interest). 

The new variable-resolution method to be illustrated here 
has the advantage that the computation of the filtered pro- 
jection is speeded up considerably, since fewer ray sums enter 
into the calculation. Of equal importance may be the fact 
that less radiation is needed to obtain this smaller set of 
measurements. 

XII. DEMONSTRATION OF THE VARIABLE 
RESOLUTION METHOD 

In order to illustrate some of the features of the new method, 
a computer algorithm based on the results derived here (40) 
and (25) has been developed. This algorithm has been applied 
to ray sums calculated using a mathematically defined object 
or  phantom composed of elliptical parts (see Fig. 7). A com- 
parison will be made of the results obtained in four cases: 

a) N = 200 evenly spaced rays, 2 mm apart. 
b) N = 100 unevenly spaced rays, 2 mm apart in the center, 

8 mm apart at the edge, with smoothly varying spacing. 
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Fig. 7. Outlines of the elliptical components of the phantom used in 
the demonstration of the variable-resolution-reconstruction method. 
The numbers indicate the absorbing densities of each component. 
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Fig. 8. Reconstruction obtained in the following four cases: (a) 200 evenly spaced rays. 2 mm separation; @) 100 un- 
evenly spaced rays, spacing varies continuously; (c) 100 unevenly spaced rays, spacing varies discontinuously; (d) 100 
evenly spaced rays, 4 mrn separation. In this figure black corresponds to  a density of -0.06, and white corresponds to  
a density of 1.22. 
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1.9.  The reconstructions shown in the previous figure displayed with higher contrast. Here, black corresponds to  a 
density o f  0.94, while white corresponds to a density of 1.06. 

~nevenly spaced rays, 2 mm apart in the  center, 
the  edge, with abruptly varying spacing. 
:verily spaced rays. 4 mm apart. 
d d) ,  the  computation essentially reduces t o  that 
Shepp and Logan [ 1 1 1, as indicated earlier. For  
ollowing transformation from uniform scanning 
1 actual scanning coordinates was used: 

Q + l .  The derivative of 1 with respect t o  C; here 

, the sampling density a t  the  center ([ = 0 )  is 
lour umes mat found at  the edges (t = - 1 and [ = +I) .  In 
case c) ray-spacing varies abruptly, with the  54  innermost 
rays spaced 2 mm apart, followed by 6 rays o n  each side 
spaced at 4 mm, then 7 rays spaced a t  6 mm, and finally 1 0  
rays spaced at 8 n 

In all cases the  ray sums were averages, obtained by inte- 
grating from t h e  left edge of a beam striking a detector t o  the 
right edge of this beam so  as t o  simulate the suppression of 
high-frequency components found in practice as a result of 
the finite width of  real detectors. The region scanned had a 
diameter of W = 4 0 0  mm, and M = 150 projection angles were 
employed in each case. 

Each projection is first processed t o  produce the differences 
required in the  summation (40). The filtered sums are then 
determined for positions corresponding t o  the individual 
detectors. In  order t o  facilitate back-projection, these values 
are (linearly) interpolated to  a much-finer evenly spaced set 
of positions. Back-projection, then, can proceed much as it 
does for the ordinary convolutional algorithms by processing 
each picture cell in turn. For  every picture cell, the  appro- 
priate point in  the interpolated data is found by  considering 
the projection angle (as illustrated in Fig. 4). The value found 
there is then added into the  sum accumulated for  this picture 
cell so  far. The  whole process is repeated for all projection 
angles. 
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Fig. 10. Higher resolution display o f  central regions of the 
figures. The density range is the sar 

The picture cells were spaced 1.5 mm apart and lay inside The t 
a circle of diameter 3 3 0  mm for the reconstructions shown same fc 
in Figs. 8 and 9. For  Figs. 1 0  and 11, the  spacing was 0.75 operatic 
mm inside a circle of 150-mm diameter. requirec 
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Fig. 11. Horizontal density profies through the middle o f  the central circular component in each o f  the four reconstructions. While cases 
(b) and (c) require only as much computation as case (d), they give rise to  resolution similar to  that found in case (a). 

The low resolution near the edges of the region of recon- 
struction (where the rays are spaced 8 mm apart) for cases 
b) and c) can best be seen in Fig. 8. Not much is visible in 
this figure of the central components, however. The overall 
low resolution of method d) is most clearly shown in Fig. 9. 
(It is important not to be misled by the apparent high resolu- 
tion of high-contrast features due only to the reduced density 
scale of this mode of presentation). The good resolution of 
methods b) and c) in the central regions is illustrated by 
Fig. 10, as well as by the density profiles in Fig. I I .  The 
density profiles are along the lines indicated in Fig. 12. I t  
appears that while the variable-resolution methods, b) and 
c), require only about as much computation as the low- 
resolution method, d), they have about as much central 
resolution as the slower high-resolution method, a). 

The reader will have noticed the reconstruction artifacts 
particularly apparent in the high-contrast presentations (Figs. 
9 and 10). The phantom was purposely constructed to in- 
clude high-contrast features outside the central region which 

contained a variety of low-contrast features, since artifacts 
radiating outwards from the former often degrade the pre- 
sentation of the latter. 

As indicated earlier, these artifacts are traceable to the 
projection data's failure to obey the assumptions underlying 
Radon's formula. That is, the partial derivative of p(1, 8 )  
with respect to 1 is not everywhere continuous. It is easy to 
see that the discontinuities occur at the edges of the elliptical 
components of the phantom, and that ridge-like artifacts 
oriented tangentially to the high-contrast components radiate 
across the reconstructed density distribution. The exact 
magnitude of these artifacts depends on the particular align- 
ment of  a projected edge relative to the edges of the detectors. 
It is easy to  see, too, that the magnitude of these effects 
decreases with increases in the number of projection angles, 
since the contribution of each individual projection is then 
reduced. Further, it can be shown that the magnitude of the 
effect also decreases with the number of rays in a projection. 
The artifacts are easily visible in the examples presented here 
because both the number of projection angles (150) and the 
number of rays per projection (100 or  200) are relatively 
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