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Abstract

We have developed direct methods for recovering the motion of an observer in a static environment in th e
case of pure rotation, pure translation, and arbitrary motion when the rotation is known . Some of these
methods are based on the minimization of the difference between the observed time derivative of bright -
ness and that predicted from the spatial brightness gradient, given the estimated motion . We minimize
the square of the integral of this difference taken over the image region of interest . Other methods presen-
ted here exploit the fact that surfaces have to be in front of the observer in order to be seen .

We do not establish point correspondences, nor do we estimate the optical flow. We use only first-orde r

derivatives of the image brightness, and we do not assume an analytic form for the surface . We show tha t

the field of view should be large to accurately recover the components of motion in the direction towar d

the image region. We also demonstrate the importance of points where the time derivative of brightness is

small and discuss difficulties resulting from very large depth ranges . We emphasize the need for adequat e
filtering of the image data before sampling to avoid aliasing, in both the spatial and tempora l

dimensions .

I. Introduction

In this paper we consider the problem of deter -
mining the motion of a monocular observer mov-
ing with respect to a rigid. unknown world. We
use a least-squares, as opposed to a discrete ,
method of solving for the motion parameters ; our
method uses all of the points in a two-image se-
quence and does not attempt to establish corres-
pondence between the images. Hence the metho d
is relatively robust to quantization error, noise, il -
lumination gradients, and other effects .

So far, we can determine the observer motion i n
two special cases :
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Veteran's Administration .
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• when the motion is pure rotation,
• when the motion is pure translation or whe n

the rotational component of the motion i s
known .

At this writing we have not developed a direc t
method that is applicable to arbitrary motion .

1 .1 Earlier Work

In the continuous or least-squares approach to
motion vision, motion parameters are found tha t
are consistent with the observed motion of the en-
tire image. Bruss and Horn [ 1 ] use this approac h
to calculate motion parameters assuming that th e
optical flow is known at each point . Adiv [2] use s
the approach of Bruss and Horn to segment th e
scene into independently moving planar objects :
he shows that given the optical flow, segmenta-
tion can be performed and the motion calculated .
Nagahdaripour and Horn 13] eschew the use o f
optical flow and calculate the observer's motion
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directly from the spatial and temporal derivatives
of the image brightness, assuming a planar world .
The advantage of this direct approach. which we
also use here, is that certain computational dif-
ficulties inherent in the calculation of optical flow
are avoided . In particular. it is not necessary t o
make the usual assumption that the optical flow
field is smooth : an assumption that is violated
near object boundaries, necessitating flo w
segmentation .

Waxman and Ullman [41 and Waxman an d
Wohn [51 also avoid the discrete approach to mo-
tion vision: their techniques make use of first an d
second derivatives of the optical flow to comput e
both the motion parameters and the structure o f
the imaged world . In the interests of developin g
methods that can be implemented, the technique s
presented in this paper avoid the use of second -
and higher-order derivatives .

1 .2 Summary of tfae Paper

One of our approaches to the motion vision prob-
lem can be summarized as follows : Given the ob-
server motion and the spatial brightness functio n
of the image one can predict the time derivative o f
brightness at each point in the image . We find the
motion that minimizes the integral of the squar e
of the difference between this predicted value and
the observed time derivative . The integral is taken
over the image region of interest, which . in the
discussion here, is usually taken to be th e
whole image .

We use auxiliary vectors derived from th e
derivatives of brightness and the image positio n
that occur in the basic brightness change con-
straint equation. Study of the distribution of the
directions of these vectors on the unit sphere sug-
gests specific algorithms and also helps uncove r
relationships between accuracy and parameters
of the imaging situation .

We have developed a simple robust algorith m
for recovering the angular velocity vector in the
case of pure rotation . This algorithm involve s
solving three linear equations in the three un-
known components of the rotation vector . The
coefficients of the equations are moments ofcom-
ponents of one of the axuiliary vectors over the

given image region . We show that the accuracy o f
the recovered component of rotation about th e
direction toward the image region is poor relativ e
to the other components . unless the image regio n
subtends a substantial solid angle .

We have developed several algorithms fo r
recovering the translational velocity in the case o f
pure translation . These algorithms exploit th e
constraint that objects have to he in front of th e
camera in order to be imaged . This constrain t
leads to a nonlinear constrained optimizatio n
problem. The performance of these algorithm s
depends on a number of factors including :

• the angle subtended by the image . i .e ., the fiel d
of view,

• the direction of motion relative to the optica l
axis ,

• the depth range .
• the distribution of brightness gradients .
• the noise in the estimated time derivative o f

brightness ,
• the noise in the estimated spatial gradient o f

brightness, and
• the number of picture cells considered .

We have not yet been able to select a "best"
algorithm from the set developed, since one may
be more accurate under one set of circumstances
while another is better in a different situation .
Also, the better algorithms tend to require mor e
computation, and some do not lend themselves to
parallel implementation . Further study using rea l
image data will be needed to determine the rang e
of applicability of each algorithm .

We found a strong dependence of the accurac y
of recovery of certain components of the motion
on the size of the field of view. This is in concert
with other reports describing difficulties wit h
small fields of view, such as references [?J an d
[5J .

1 .3 Comments on Sampling. Filtering. and Aliasing

Work with real image data has demonstrated th e
need to take care in filtering and sampling . The
estimates of spatial gradient and time derivative s
are sensitive to aliasing effects resulting from in -
adequate low-pass filtering before sampling . This
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is easily overlooked, particularly in the time
direction. It is usually a mistake, for example, to
simply pick every nth frame out of an image se-
quence . At the very least, )i consecutive frame s
should be averaged hefore sampling in order to
reduce the high-frequency components . One ma y
object to the "smearing" introduced by this tech -
nique, but a series of widely separated snapshot s
typically do not obey the conditions of the sam -
pling theorem, and as a result the estimates of th e
derivatives may contain large errors .

This, ofcourse, is nothing new. since the same
considerations apply when one tries to estimate
the optical flow using first derivatives of image
brightness (Horse and Schunck 161) . It is impor-
tant to remember that the filtering must he ap-
plied heforc sampling-once the data has bee n
sampled, the damage has been done .

2 The Brightness-Change Constraint Equatio n

Following Longuet-Higgins and Prazdny 171 and
Bruss and Horn [ll we use a viewer-based coor-
dinate system . Figure 1 depicts the system under
consideration . A world poin t

R = (X, Y,Z) r

	

(1 )

is imaged a t

r = (x .y,l)'

	

(2 )

Fig. I . The viewer-centered coordinate system. The trans-
lational velocity of the camera is t = (U.KW)r. while the
rotational component is m = (A,8,C) r .

That is, the image plane has equation Z = 1 . The
origin is at the projection center and the Z-axi s
runs along the optical axis . The X- and Y-axes ar e
parllel to the x- and y-axes of the image plane .
Image coordinates are measured relative to th e
principal point, the point (0,0,1) T where the opti -
cal axis pierces the image plane . The points r an d
R are related by the perspective projectio n
equatio n

r= (x .y.l)r

	

X Y Z
R

R
i

	

(3 )

with

Z = R• i (4)

and where i denotes the unit vector in the Z
direction ,

Suppose the observer moves with instan-
taneous translational velocity t = (U, V, W) T and
instantaneous rotational velocity co = (A .B .C) T

relative to a fixed environment, then the time
derivative of the vector R can be written a s

R,=-t-u)XR

	

(5 )

The motion of the world point R results in motio n
of the corresponding image point : the value of
this motion field is giver, by

dr _ d ( R )
r`

	

dt - dt R - i l

= RJR • i} - (R, • i)R

	

( 6 )
(R . z) '

This can also be expressed a s

i x (R, X r)

	

(7 )r` -

	

R i

since a X (b X c) = (c • a)b - (a • b)c . Substituting
equation (5) into othis result gives (see Negah-
daripour and Horn [31) :

	

1 1
r,=-2XIrX

/
{rXw-

R
t }

J

	

[8 }
`1

	

i 1

In component form this can be expressed as
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-U+xW+Axy-B(x'`+ 1)+Cy
z

_ -17 +yW_ Bxy+A(y 2 +1)-Cx
Z

0

(9)

a result first obtained by Longuet-Higgins an d
Prazdny [7] .

This shows how, given the world motion, th e
motion field can be calculated for every image
point. If we assume that tha brightness of a smal l
surface patch is not changed by motion, then ex-
pansion of the total derivative of brightness E
leads to

aE dx + aE dy
+ aE = 0

	

(10 )
Ox dr

	

ay dt

	

at

(The applicability of the constant brightnes s
assumption is discussed in Appendix A-) Denot-
ing the vector (Mlax,aE143y,0) r by E, and Mlat by
E„ permits us to express this result more compact-
ly in the form

E,•r,+E,= 0 (11)

Substituting equation (8) into this result an d
rearranging gives

Er -][(E,Xi)Xr]Xr]• m

+ [(E, x Z) X rL t = 0

	

(12)
R 2

To simplify this expression we le t

s=(E,X1)Xr

	

(13)

and

v=-sXr (14)

so equation (12) reduces to the brightness change
constraint equation of Negahdaripour and Hor n
[3], namely

v - w +
s t

= R i -E, (15 )

The vectors s and v can be expressed in compo-
nent form as

-Ex

s =

	

-E,

	

and

(XE.+ yEy

+El. + y(xE,r + yEy)

V -

	

-Ex - x(xEx + yEy )

	

(16 )

YE.Y -
xE,.

Note that s • r = 0, v • r = 0 and s • v = 0. These
three vectors thus form an orthogonal triad . The
vectors s and v are inherent properties of th e
image. Note that the projection ofs into the image
plane is just the (negative) gradient of the image.
Also, the quantity s indicates the directions i n
which translation of a given magnitude will con-
tribute maximally to the temporal brightnes s
change of a given picture cell . The quantity v
plays a similar role for rotation .

3 Solving the Brightness Change
Constraint Equation

Equation (15) relates observer motion (t,o), th e
depth of the world R • z = Z(x,y) and certai n
measurable quantities of the image (s,v) . In
general, it is not possible to solve for the first tw o
of these given the last. Some interesting specia l
cases are addressed in this paper and in Negah-
daripour and Horn [3] ; these are : '

i. Known depth: In section 3 .1 we show tha t
given Z, s, and v, the quantities, t and (D can be
calculated in closed form using a least -
squares method.

ii. Pure rotation (11 t 11 = 0): In section 3.2 we
show that given v, the rotation vector W can be
calculated in closed form.

iii. Pure translation or known rotation : In sec-
tion 3 .3 we present a least-squares method fo r
determining t . Once t is known, the brightnes s
change constraint equation can be used t o

'We do not discuss here related methods using optical flow ,
such as those of Bross and Horn (l] .



find the depth at each picture cell :

Z = R z=-	 s t
E, + v w

iv. Planar world : Negahdaripour and Horn 13 ]
present a closed-form solution fort, to, and th e
normal n of the world plane.

v. Quadratic patches: Negahdaripour [8] gives a
closed-form solution in the case that a portio n
of the world can be represented as a quadratic
form.

In this paper we consider various integrals over
an image region thought to correspond to a singl e
rigid object in motion relative to the viewer . In the
simplest case, the observer is moving relative to a
static environment and the whole image can b e
used. The size of the field of view has a strong ef-
fect on the accuracy of the determination of the
components of motion along the optical axis .
When we need to estimate this accuracy, we will ,
for convenience, assume a circular image of
radius r,, . This corresponds to a conical field o f
view with half angle 0,,, where r, = tan 0,,, since we
have assumed that the focal length equals one .
(We assume that 0 < 0, < n/2) .

We will show that the field of view should b e
large. Although orthographic projection usuall y
simplifies machine vision problems, this is on e
case in which we welcome the effects of perspec-
tive "distortion"!

3.1 Depth Known

When depth is known, it is straightforward to
recover the motion . (Depth may have been ob-
tained using a binocular stereo system or some
kind of range finder .) We cannot, in general, fin d
a motion to satisfy the brightness change con-
straint equation at every picture cell, because of
noise in the measurements . Instead we minimize

jj[E+ v w+(1/Z)s t] 2 dxdy

	

(18)

Differentiating with respect to to and t and settin g
the results equal to zero leads to the pair o f
vector equations :
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[IIuIz) 2ssTdxdy] t

+ [JJ(1/z)svTdxdy] w

= - f fE,(11Z)sdxdy

[fJ(I/zvsT dxdY]t

	

(19 )

+ [JJvv T dxdY] w

-f fE,v dxdy

This is a set of six linear equations in six un-
knowns with a symmetric coefficient matrix . (The
equations can be solved by partitioning in orde r
to reduce the computational effort .) The coef-
ficients are all integrals of products of com-
ponents of (1/Z)s and v . It may be useful to
note tha t

trace(sv T) = trace(vs r) = s • v = 0

	

(20) -

We could have obtained slightly different equa-
tions for to and t if we had chosen to weight the in -
tegrand in equation (18) differently . We study the
special case in which IItll = 0 and the special case
in which llwll = 0 later .

One application of the above result is t o
"dynamic stereo ." A binocular stereo system ca n
provide disparity estimates from which 1/Z ca n
be calculated. The above equations can then b e
used to solve for the motion, provided estimates o f
the derivatives of image brightness are also sup-
plied . The correspondence problem of binocula r
stereo has, unfortunately, been found to be a dif-
ficult one . It would represents the major com-
putational burden in a dynamic stereo system .
We hope that motion vision research will even-
tually lead to simpler methods for recovering
depth than those used for binocular stereo-
although they are likely to be relatively inaccurate
when based only on instantaneous translational
and rotational velocity estimates .

(17)
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Fig. 2. Shown here are the (a) 10th, (b) 20th, (c) 30th, and (d )
40th image out of a 40-image sequence obtained when a CC D
camera mounted on a tripod was (manually) rotated about it s

vertical axis. After the initial acceleration, the image motion in

the center is between 7 and 8 picture cells between successive

frames. Image motion between frames is slightly larger in the
corners of the image .

3.2 Pure Rotatio n

When I[t11 = 0, the brightness change constrain t
equation reduces to

E,+v

	

=0

	

(21 )

We wish to find the value of to that minimizes th e
sum of the squares of the errors in the time deriva -
tive of brightness, that is, we want to minimiz e

Jf1E1 + v 0)12 dxdy

	

(22)

Differentiating with respect to co and setting th e
result equal to zero gives u s

41 1E, + v w]v dxdy = 0

	

(23 )

Since (v • w)v = v(v - c)) = (vv ')w, we can write this
in the lam

[Jjvv r dxdy]co = -
JfE

rvdrdy

	

(24 )

which is just a special case of equation (19) . Thi s
is a set of three linear equations in the three un-
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known components of w, namely,A, B, and C . The
coefficient matrix is symmetric and only th e
right-hand side depends on the time derivative
of brightness .

One can, by the way, tell whether one is dealin g
with a case of pure rotation or not. In the presence
of a translational component, equation (21) wil l
not be a good approximation and so the integra l
in formula (22) will not be small . Experiment s
show that this simple method of determinin g
rotation is robust and easy to implement . Sligh t
variations are possible by weighting the in-
tergrand differently. This method is reminiscen t
of the optical flow based method of Bruss and

Horn [ 1 ] and very similar to a method develope d
by Aloimonos and Brown [9], to which our atten-
tion was drawn after we wrote this paper .

Shown in figure 2 is every tenth frame out of a
40-frame sequence taken with a tripod-mounted
CCD camera rotated manually about its vertica l
axis . The vertical component of the compute d
rotational velocity is shown in figure 3 as a func -
tion of the frame number . The units along the ver -
tical axis are picture cells per time step in the cen -
ter of the image (rather than say radians/second) .
After the initial acceleration, image components
near the center of the image move by about 7 to 8
picture cells between successive frames . Three
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curves are given for varying amounts of image
low-pass filtering and subsampling. The lowes t
curve (A) corresponds to the raw image data, and
shows that for this particular scene at least, a mo -
tion of 7 to 8 picture cells is too much for accurate
recovery of the angular velocity . The computed
velocity appears to "saturate" at around 4 pictur e
cells per time step. The next higher curve (B) cor-
responds to image compression by low-pas s
filtering and subsampling by a factor of two in
each direction. In the compressed image sequen-
ce, the motion is in effect only about 3 to 4 picture
cells per time step . The top curve (C) was obtained
using images that were low-pass filtered and sub -
sampled a second time to reduce them by a tota l
of a factor of four in each direction . In this doubly
compressed sequence, motion in the center of the

image amounts to only about 1 .5 to 2 picture cells
per time step, and the angular velocity is accurate -
ly recovered. Further filtering and subsampling
leads to velocity estimates that are essentially th e
same as the ones obtained with this sequence .

3.2.1 Distribution of the Directions of v. To under-
stand the properties of the algorithm for recover -
ing the instantaneous rotational velocity, on e
needs to study the matrix obtained by integratin g
vv T. We can think of the direction of v as identify -
ing a point on the unit sphere and of I[v[I as the
mass of a particle placed there . The collection o f
vectors corresponding to an image region then
can be thought of as a set of particles on the uni t
sphere . The integral of vv T is the symmetric 3X 3
matrix whose elements are integrals of the nine
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pair-wise products of components of v. This ma-
trix is related to the inertia matrix of this set o f
particles . If the particles were spread uniformly
over the surface of the sphere, this matrix woul d
be the total mass times the identity matrix . As we
show next, the particles are confined to a band, s o
this matrix, while diagonal on average, is not a
multiple of the identity matrix .

We know that v • r = 0 and that the possible
directions of r lie within a cone defined by th e
field of view. For a particular value of r, the equa-
tion v • r = 0 defines a plane that cuts the uni t
sphere in a great circle (see figure 4) . The vector v
must point in a direction corresponding to a poin t
on this great circle. Since r lies inside a cone o f
directions with half-angle 0,,, these great circle s
have axes that lie in this cone also . The collection

of great circles lies in a band around the uni t
sphere of width equal to the total width of the
visual field .

We can obtain the same result algebraically as
follows: Lett, and i be unit vectors in the direc-
tions r, v, and s. Then, since r, s, and vare mutually
orthogonal ,

(z•r)2+( .•v)2+(i•s)2= 1

	

(25)

while

. v) 2 +

	

• i) 2 + (i • v) 2 - 1

	

(26)

where Sr, and 2 are unit vectors in the X, Y, and
Z directions . Subtracting the two equalities we
obtain

(x $) 2 + (Y $ ) 2 = (i . ~) 2 + (i
.8)2

	

(27)
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Fig. 3 . Recovered vertical component of the angular velocity
vector as a function of the frame number . The angular velocity
is given iii picture cells of image displacement at the center o f
the image per time step . Curve A was obtained using the raw
image data, curve B from a low-pass filtered and subsample d
image sequence, and curve C from an ima ge sequence that
was low-pass filtered and subsampled twice . Further low-pas s
filtering and subsampling produces essentially the same
curve.

which, since •

(2 f.)' > cos' 0,

	

and

	

(i • s)-' > 0 (28 )

tells us that

(z v) 2

	

(y • v) 2 > cos'

	

0,

	

(29)

Eaaq. plan .

Fig. 4. A cross-section through the v-sphere defined by th e
image paint r.

Thus the directions of v lie within an angle 0, of
the "equator" of the unit sphere . We call this han d
(shown in figure 5) the permissible band.

3.2.2 Estimate of the Condition Number. It is im-
portant to determine under what circumstances
the recovery of the rotational velocity is ill -
conditioned, and whether the different corn -

Fig. 5. The permissible band on the v-sphere (front and rear views) .
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ponents of the rotation vector are equally affecte d
by noise in the data . To study these issues . one
needs to estimate some of the properties of th e
coefficient matrix of the equations . We can get a
rough idea of what the integral of vv T looks like b y
assuming that the particles corresponding to v are
spread uniformly within the permissible band . In
Appendix B we show that the area of this ban d
is

K = 4n sin 0,

	

(30 )

The mixed inertia terms (such as the integral o f
the product ofx andy) are all zero because of the
symmetry of the band. The resulting 3X3 matrix
is thus diagonal . Furthermore, if we letJ , .Iv ,, . and

be the diagonal terms then it can be shown (i n
Appendix B) tha t

1_t..,. = I = (K/3)[l + (1/2) cos = 0 U ]

	

(31 )

while

	

= (K/3) sin' 0,

	

(32)

Thus .,/K and I, ., ./K vary little with 0,, while L_/K
changes dramatically. The (L-) condition number
of this matrix-the ratio of the largest to the
smallest eigenvalue-is jus t

., .Y_ I+(1/2)cos-
1,,

	

sin' 0 ,

	 3/2

	

1
sin- 0,

	

2

This is very large when the field of view is small .
When the condition number is very large, smal l
errors in the right-hand sides of the equations, o r
in the coefficients of the matrix itself, can lead t o
large errors in the solution .

In fact, the particles are not spread uniformly
within the permissible band and do not hav e
mass independent of position, so the above i s
only an estimate . We obtain the exact result i n
section 3.2 .4 .

3.2.3 Stability of the Solution Method. The numeri -
cal stability of the solution for co is reduced whe n
the condition number is large . In practice . the ele -
ments of the matrix of equation (24) will be cor -
rupted by noise in the measurements, as will th e
right-hand side vector in this equation . The es-
timate of the third component of w will be affected

more by these perturbations than the other two .
Experiments confirm that the component of rota-
tion about the optical axis is distributed more b y
noise than the others . The ratio of the errors grow s
roughly as the inverse of the size of the field of
view. This is not a peculiarity of our method . bu t
applies in general .

It is intuitively obvious why this should be .
Rotations about the x- and v-axes produce mo-
tion fields that vary but little over the image . A
small field of view can be used to estimate thes e
components with almost the same accuracy a s
can a large field of view (provided the same num -
ber of picture cells are used.) Rotation about th e
z-axis, on the other hand, produces a motion fiel d
that varies directly with distance from the prin-
cipal point . Thus the maximum velocity depend s
on the size of the field of view . With a small fiel d
of view. the maximum velocity in the image wil l
be small and relative errors in measurements cor-
respondingly larger.

If an image region is used that is smaller tha n
the whole field of view and perhaps off center. the
analysis becomes more complex . In this case, th e
component of rotation about the direction toward
the center of the region is less accurately known ;
the accuracy again decreasing with the size of th e
image region . This shows the futility of' ap-
proaches based on data from small imag e
patches. or higher derivatives of brightness at on e
point in the image . When working with very smal l
image -regions, the best one can do is to estimat e
the optical flow-there is no point in trying t o
recover the "rotation" about the center of the
region .

3.2 .4 Ensemble Average of the Integral of vv . The
integral of vv T varies from image to image . It ha s
already been suggested . however, that it will b e
approximately diagonal . We can obtain a more
precise answer by averaging over an ensemble o f
images with all possible directions for the bright-
ness gradient at each image point . We assum e
that different directions for the bri ghtness gradi-
ent are equally likely . The result so obtained ca n
be viewed in another way : it is the integral ob-
tained in the limit from a textured image as th e
scale of the texture is made smaller and smaller .
In this case we can arrange for every direction o f
the brightness gradient to he found in any smal l

(33)
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patch of the image . By suitable choice of the tex-
ture we can arrange that no direction of th e
brightness gradient is favoured-all directions
occur with equal frequency.

If we take into account the distribution of direc-
tions of v and the weights IIv~I, we find (in Appen-
dix B) that

ffr dxdy

1 + r,,2 /2 + r4,/6

	

0

	

0

=k„

	

0

	

1+r,2,12+r416

	

0

0

	

0

	

x- 2,12
(34)

where r„ is the diameter of the image and the con -
stant k, depends on the size of the field of view a s
well as the distribution of magnitudes of the
brightness gradient. In practice we can easily find
lc since

trace f fvvr dxdy) = jf trace(vvT)dxdy

	

= jjv . vdxdy

	

(35)

so

	

2k,(I + 3r!14 + 4/6) = Jfv . vdxdy

	

(36)

Note that the condition number i s

r~12

	

rv

	

3

	

(37)

It attains a minimum of 1 + 2 213 = 2 .633 . . .
when r, = = 1 .565 . . . . Thus the componen t
of rotation about the optical axis is not recovere d
as accurately as the other two components, no
matter how large the field of view. Also, as far a s
rotation is concerned, there is little advantage t o
making the field of view wider than a half-angle
9 u = tan- '

	

-\71T= 57 .42 . . . degrees, since the
condition number reaches its minimum there .

Some simplifications of the method for re -
covering the rotational velocity based on the
above analysis are discussed by us in referenc e
[101 .

3 .2.6 The v-Bar Projection . We know that the
directions of the vectors v lie in the permissible
band. But what about the vectors

-E,v

	

(38 )

occurring in the integral on the right-hand side o f
Eq. (24)? We know that in the case of pure rotatio n
E, = -v • w, so

	

(v . w)v . We conclude tha t

v w = (v . w) 2 > 0

	

(39 )

Thus the directions of the vectors are confined to
a hemisphere with co at its pole or "navel ." We cal l
this the compatible hemisphere for the case of
pure rotation .

If the vectors covered this hemisphere uni-
formly, we could easily estimate w by finding th e
center of mass of the particles on the unit sphere
corresponding to the values of The center o f
mass of a hemisphere of uniform density is at a
point midway between the center of the sphere
and the navel of the hemisphere, so we could us e
the formula

2 if dxdy

N fl~~►'~~dxdy

Unfortunately, the vectors v do not cover th e
whole compatible hemisphere, since they ar e
confined to the permissible band, just as are th e

-vectors v . In fact, the vectors T. lie in the intersec -
tion of the permissible band and the compatibl e
hemisphere, as shown in figure 6 .

We can now see in another way why a smal l
field of view reduces the accuracy with which we
can estimate the component of rotation about th e
optical axis . If the field of view is small, the per-
missible band will be narrow, a mere ring . Our
task is to guess which hemisphere cut the ring in
half. This is easy when we are dealing with a ban d
that covers almost the whole sphere-when it i s
very narrow, however, there is some uncertainty .
A hemisphere claimed to provide a solution can
easily be rotated about the line connecting th e
ends of the cut ring without significantly chang-
ing the intersection of the hemisphere and th e
ring as illustrated in figure 7. Thus the a-

1 + r,212+r~16 = 2 + 1 + rv

(40)
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Fig 6. The v-sphere showing the intersection of the permiss-
ible band and the compatible hemisphere, in the case whe n
the field of view is wide (front and rear views).

Fig. 7. The intersection of the permissible band with three
different compatible hemispheres when the field of view is
narrow .
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component of the direction to the navel of th e
hemisphere is uncertain in the presence of noise ,
or, when measurements from only a small num-
ber of picture cells are available .

We could use the geometric insight that the vec -
tors v all lie in the intersection of the permissibl e
band and the compatible hemisphere to con-
struct algorithms for recovering the direction o f
the vector to . Some other method would then have
to be found to estimate the magnitude of to .
However, we do not need to approach the prob-
lem in this way, in light of the least-squares solu-
tion presented above . This geometric approach ,
however, will be fruitful in the case of pure tran-
slation where we find a similar geometric con-
straint and have no need to find the magnitude o f
the motion vector.

If there is a translational component to the mo-
tion, by the way, the points v will not be confine d
to a hemisphere . This provides a convenient test
to see whether the method presented above can b e
applied or not .

3.3 Rotation Known or Pure Translation

If the rotation is known, perhaps measured by
some other instrument, but depth is not, then th e
general problem reduces to the problem of pur e
translation . We can write

E;+(IIZ)s t = 0

where

E;=E,+v• W

In the remainder of this section we do not dis-
tinguish between E, and E .

Note that equation (41) is not altered if we
replace Z by kZ and t by kt . Thus we can recove r
motion and depth only up to a scale factor. In the
sequel we will set IItlI = 1 when convenient .

First of all, note that, unlike the case in which
depth is known (section 3 .1), we cannot obtain a
useful result by simply minimizing

JJ [E, + (11Z)s . t] 2 dxdy

	

(43)

since the integrand can be trivially made equal to
zero at each point by the choice

Z = - St

	

(44 )
E,

(This may, however, produce negative values fo r
Z, a fact that we exploit later.) Given the correc t
value oft, the above equation provides a mean s
for recovering depth, as already mentioned .

Equation (44) and the fact that depth must b e
positive, by the way, lead to a simple upper boun d
on the depth at a particular point even when th e
direction of translational velocity is not known.
Since Z 7 O. we can write

z --IZI

	

I IEr I I
and so

Z < IIsIIIItl I

'Ed

The right-hand side here is the depth compute d
on the assumption that s is parallel to t. Of cours e
this is only an upper bound, since Z will be muc h
smaller ifs happens to be nearly orthogonal to t.
The bound is particularly poor, as a result, where
r is nearly parallel to t, that is, near the focus of ex-
pansion (or the focus of compression) in th e
image .

3.3.1 Depth Known-The Case of Pure Translation .
If we know the depth, as earlier, we can minimiz e
the total error in the time derivative of bright-
ness :

Jf [E 1 +(h1z) .t] 2 a. dy

	

(47)

by differentiating with respect to t. Setting th e
result equal to zero give s

[JJ(1/z) 2ss T]tdxdY = - Jf(1/Z)E,s dxdy

(48 )

which is just equation (19) with IIcll = 0. This is a
set of three linear equations in the three com-
ponents oft (U, V, and H') . The coefficient matrix
is symmetric and only the right-hand sid e
depends on the time derivative of brightness .
Note that in equation (48) we attach less weight to
information from points where Z is large .

The method is accurate if the correct values o f
depth are given . If estimates are used, the quality

(41 )

(42)

(45 )

(46)
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of the result will depend on the quality of the es-
timates . The accuracy of the result also depend s
on the size of the field of view, as we sho w
later.

We get slightly different results if we weight th e
integrand in equation (47) differently . Multiply-
ing by Z, for example, gives [ZE, + s • t] for the in -
tegrand and

	

= - f fZE,s dxdy

	

(49 )

for the solution . Alternatively multiplying by Z/E,
gives [Z + (11E,)s • tl for the integrand an d

[J1(1

	

dx dy I t

	

= -fJ(Z/E,)s dxdy

	

(50 )

for the solution . In this case we are minimizing
the error in depth, rather than the error in the tim e
derivative of brightness, as in equation (48).

The two alternate solutions given in equation s
(49) and (50) have the advantage that the depth Z
does not appear in the integrals on the left-hand
side . This means that they are particularly wel l
suited for iterative schemes where Z is rees-
timated on each cycle . The solution of equation
(49) has the. further advantage that neither Z nor
Er appear on the left-hand side . This makes it easy
to compute an ensemble average for this integral .

3.3.2 Distribution of the Directions of s . To under -
stand the properties of the above algorithms fo r
recovering t, we must examine the matrix ob-
tained by integrating multiples ofss T. Once again,
we can think of the direction of s as identifying a
point on the unit sphere and of a multiple ofIIsll as
the mass of a particle placed there . The integra l
considered is related to the inertia matrix of th e
set of particles on the unit sphere .

Now just as the directions of v lay in a band o f
width equal to the width of the field of view,
because v • r = 0, so do the directions of s, since
s • r = O . The distribution of points within th e
band is not quite the same, but we will ignore suc h
details for now. First of all, assuming again a un-
iform distribution within the permissible band ,
we get the same estimate of the condition numbe r
as in section 3 .2 .2, namely

1 +(112)cos' 0 u _ 312 _ 1
sin ''-0 r,

	

sin'0,

	

2

Accuracy in the determination of W, the Z com-
ponent of t, will be reduced relative to that of th e
other two components when the field of view i s
small . Experiments confirm that for small field s
of view, the estimate of the component of transla -
tion along the optical axis is disturbed more b y
noise than the other two . Hence a wide field o f
view is called for.

The integral of s s T varies from image to image .
In order to better understand the matrix define d
by ss T , we would like to examine a typical image .
Since it is difficult to define such an image . in-
stead, as in section 3 .2 .4, we can take an averag e
over an ensemble of images containing all possi-
ble directions for the brightness gradient at eac h
image point. It' we take into account the distribu-
tion of directions of s and the weights IsM . we find
(in Appendix B) that

1 0

	

0

JJS S T dX dY = k,

	

0 1

	

0

	

(51 )

0 0 r;/ 2

where rL, is the radius of the image and the con-
stant ks depends on the size of the field of view a s
well as the distribution of magnitudes of th e
brightness gradient . In practice we can find k, b y
noting tha t

trace (JjssTdxdy )

= Jjtrace(ss r)dxdy

= Jfs 'S dxdy (52 )

so

2k s (1 + r14) = JJs • s dxdy (53)

Note that the condition number is just min (r ;,/2 .
2/r) which reaches a minimum of l whe n
r~ = VT. In the case of pure translation, the com -
ponent of translation along the optical axis i s
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found with more accuracy than the other tw o
when the field of view has a half-angle wider tha n
BU = tan - ' VT= 54 .74 . . . degrees, since r?,I2 then
is larger than one .

Some simplifications of the method for re-
covering the translational velocity based on th e
above analysis are discussed by us in referenc e
[101 .

3 .4 Translation with Rotation Know n

In this section we deal with the problem of deter -
mining the direction of translation and dept h
Z(x,y) given the rotation vector co.

3.4.1 The Importance of a Wide Field of View. In
the general case, the need for a wide field of vie w

Fig. 8. The intersection of the permissible band on the s-shape

	

pansion within field of view. (b) Focus of expansion outsid e
and the compatible hemisphere for two cases . (a) Focus of ex-

	

field of view.
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is very clear . In a small image region near the cen -
ter of the image, for example, rotation about they -
axis looks the same as translation along the x -
axis, while rotation about the x-axis looks th e
same as translation along the (negative)y-axis . As
is well known in stereo-photogrammetry, a large
field of view is needed to separate these com-
ponents of the transformation between two
camera positions 111, 12] .

If we take note of this ambiguity, and the uncer-
tainty with which the components of rotation an d
translation along the optical axis can be deter-
mined, we see that locally, out of six parameters ,
only two combinations can be estimated . These
two quantities are just the components of the mo -
tion field . The same argument can be made fo r
points at some distance from the principal poin t
of the image .

There is a difference between the case when the
motion is predominantly along the optical axi s
and the case where it is predominantly parallel t o
the image plane. The transition between the two
situations occurs when the direction of the vecto r
t moves outside the cone of directions of the fiel d
of view, that is, when the focus of expansion (o r
compression) moves outside the image . When the
focus of expansion is inside the image, then th e
great circle defined by s t = 0 lies entirely insid e
the permissible band on the unit sphere (figure
8a) . The measured values of s then provide con-
straint all the way around the great circle . Conver-
sely, when the focus of expansion lies outside th e
image, the great circle cuts the permissible band
(figure 8b) . In this case the known values of s pro-
vide constraint only along two segments of th e
great circle . These segments get shorter and shor -
ter as the vector t becomes more and mor e
parallel to the image plane . It should be clear tha t
in this case the direction of the vector t can b e
determined with somewhat lower accuracy tha n
when the focus of expansion is near the prin-
cipal point .

3.4.2 The s-Bar Projection . The integrals on the
right-hand side of the equations fort developed in
section 3 .3 .1 contain positive multiples of the
vecto r

i = -sign (E,)s

	

(54)

(Here we only care about the directions of the vec -
tors, so we ignore scale factors .) Now in the case o f
translation with known rotation, we have (fro m
equation (41))

E,= -(1/Z)s• t

and

i t = (1/Z) sign (s t)s • t

_ (I/Z)Is•tl>0

	

(55 )

since Z > 0. We are only interested at this point i n
the sign of i • t, so we can use any convenient posi -
tive multiple of s such as

-(1/E,)s, -sign (E,)s, or -E, s

in the discussion that follows .
Equation (55) states that i can only lie in th e

hemisphere that has t as its navel . We call this th e
compatible hemisphere in the case of translatio n
with known rotation . Since s is a multiple of s . i t
must also lie in the permissible band . Thus can
only lie in the intersection of the permissibl e
band and the compatible hemisphere. We will ex -
ploit this geometric insight shortly.

Our task can be viewed as that of finding th e
hemisphere that contains all of the direction s
specified by the vectors s derived from the image .
Note that the solution may not be unique and tha t
there may not be any solution . Later we will mod -
ify the problem definition somewhat to deal with
these possibilities .

If there is a rotational component to the mo-
tion, by the way, the points will not be confine d
to a hemisphere . This provides a convenient test
to see whether the methods presented here can b e
applied or not .

3.4.3 Motion Determination as a Linear Program-
ming Problem . We wish to find a vector t tha t
makes i • t > 0 at all image points . We can think o f
this as a gigantic linear programming problem . '
There are three unknowns and one inequality fo r
every picture cell . (Actually, since we do not care
about the magnitude of t, there are only two
degrees of freedom . )

We do not wish to suggest, by the way. that linear program-
ming algorithms could be fruitfully applied to this problem .
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Fig. 9. The s-sphere showing great circles for many imag e
points . Circles for critical points (emphasized) constrain loca-
tion of t.

Since we do not have a criterion function to b e
extremized, we will have an infinite number o f
solutions-if there are any solutions at all . All of
these solutions will lie in a convex polygon on th e
unit sphere. The sides of this polygon are portion s
of great circles corresponding to constraint s
which we will call critical constraints (see figure 9).
With data from a large number of cells we expect
this solution polygon to be small . We may choos e
its center as the "best" solution .

Typically, the solution polygon will hav e
relatively few sides . Thus data from a small num-
ber of critical picture cells fully constrain the solu -
tion. First of all, note that each side of thi s
polygon corresponds to an equality of the form
i t = 0 for some picture cell . From the brightnes s
change constraint equation we know that E, = 0
when • t = O . Thus the critical constraints are
provided by picture cells where E, is small (and i
is not) . This is an important observation, whic h
can be used to reduce the size of the linear pro-
gramming problem; we simply disregard the ine-
qualities arising from picture cells where E, i s
large .

(There is a class of points for which s t is arbit-
rary, even though E, is small ands is not; these are

image points for which Z is large. Such points
provide false constraints on t . For a practical sys -
tem, some means must be found for identifyin g
these points. One way of doing this, for image s
with large depth range, is based on the following
observation. In a real image, regions for which Z
is large, that is, the background, tend to encom-
pass a significant area with all points in the area
having E, x 0 . On the other hand, points with
s t = 0 and i large are usually isolated and sur-
rounded by regions for which Er O. The above
difficulty appears in all of the methods of deter-
mining motion; it is harder to determine t when
the depth range is large. )

We observe in passing that the points most use-
ful in constraining the translational motion vec-
tor are the very same points where it is difficult to
calculate depth accurately! One may also make
the observation that a method for segmenting the
scene into foreground and background region s
would be very useful in the case of general mo-
tion, since the background regions can then b e
used to recover the rotational component. The
known rotational velocity can then, in turn, be
used to recover the translational component fro m
the foreground regions .
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The linear programming method of determin-
ing t discussed above uses relatively little of the
image data . In fact, only points at the edge of th e
compatible hemisphere influence the solution at
all . While this is a sensible procedure if the data i s
trustworthy, it will be quite sensitive to noise . For
noisy-that is, real images, it may be worthwhil e
to consider other points, such as those in a ban d
for which E, is less than small cutoff value .

3.4.4 The Perceptron "Learning" Algorithm . One
way of finding the solution of a large number of
homogeneous inequalities is by means of th e
iterative perceptron "learning" algorithm (Min -
sky and Papert [131 ; Duda and Hart [141). Given a
set of vectors {s; [, this procedure is guaranteed t o
find a vector t that satisfies t > 0, ifsuch a vec-
tor exists . It even does this in a finite number of
steps, provided there exists some E such that t
> s for all in the given set (which almost always
happens when the set is finite) .

The idea is to start with some nonzero vector t°
and to test whether the inequalities are satisfied .
(A reasonable choice for t° is one of the vectors s, . )
If the inequality is not satisfied for a particula r
vector in the set, then the smallest adjustment i s
made to make the dot-product zero . (Note that
this may disturb inequalities that have passed th e
test already.) Suppose that the present estimate
for the direction of the translation vector is the
direction oft" . We now test the dot-product • t" .
If it is negative, we adjust our estimate of the vec-
tor t according to the rul e

t" + ' = t" + St"

	

(56)

where

or " =

	

S1't "
-

	

s ;
S : S ;

Note that t" + ' = 0 and that the magnitude of s ;
does not matter . (Also, the test above can be
replaced with a test that checks whether -s; • t "
has the same sign as E, . )

If the inequalities are inconsistent, that is, if the
s; are not confined to a hemisphere (or nearly so),
as will happen in practice due to noise, the
algorithm will not converge . Furthermore, ther e
is no guarantee that the guess at any stage is par-
ticularly good. We discuss several simple refine-

ments that can help in this case in reference
[10] .

The vector t" in the perceptron "learning"
algorithm is obviously a linear combination o f
vectors drawn from the set [M . Vectors in this set
have directions that correspond to points in the
permissible band. Now suppose that this band i s
very narrow. Then, to build a vector with a signifi -
cant z-component one has to add many of these
vectors . In order to keep the x- andy-component s
small, these vectors must almost come in pairs
from opposite ends of the narrow band . Not sur-
prisingly, the algorithm performs rather poorly in
this situation; it is much happier with vectors
sprinkled uniformly in direction over a ful l
hemisphere .

It should also be noted that in a real-time ap-
plication, we do not expect the velocity estimate s
to change rapidly. Thus the previous value of the
velocity is likely to be an excellent first estimat e
for the current value oft. This means that very few
iterations will be needed to get an acceptable ne w
value . A considerable amount of computatio n
can be saved this way . just as it can in the com-
putation of the optical flow (Horn and Schunc k
[61) . We discuss a parallel perceptron algorithm
in reference [10] .

3.4.5 Minimizing the Integral of Z'. In this section
we assume that the depth range Z,R3x /Z. in is finite.
This will generally be the case in robotic ap-
plications. The method discussed in this sectio n
can also be applied to images in which the back -
ground has very large Z, if, as discussed in sectio n
3 .4.3, these regions are excised from the image
before the motion vector is calculated .

We have seen that we can compute depth whe n
the motion t is known using equation (44 )

Z = -(1/E,)s t

Now if we use the wrong value t' in this formula ,
we get the wrong depth value :

Z' = -(1/E,)s t' = Z(s • t')/(s • t)

	

(58 )

We expect only positive values for Z, but this for-
mula may give us negative values, since (s t ' )
may be negative where (s • t) is positive and vic e
versa. More interestingly, we may obtain very
large values for Z (both positive and negative).

(57)



70

	

Horn and Weldon

since (s t) may be almost zero while (s t') is not .
That is, the magnitude ofZ will often be very large
near points where E, O. We may conclude that
we could determine the correct value for t by
minimizing the integral of Z2 over the image, tha t
is by minimizing the quadratic for m

ff(1/E1 )2(s . t) 2 dxdy

= tT
L
f f(1/E,)ss r dxdy] t

	

(59)

subject to the constraint IIth = 1 . The solution i s
the eigenvector of the real symmetric 3X3 matrix

m = Jf(1/E)ssTdxdy

	

(60 )

associated with the smallest eigenvalue . We can
prove this by minimizing the su m

S = tTMt + X(1 - trt) (61 )

where A. is a Lagrangian multiplier. Then

dS =2Mt-2At=0 (62)
at

which yield s

Mt=At (63)

Thus A is an eigenvalue of M, and t is the corres -
ponding eigenvector . Substituting equation (63 )
into equation (61) gives the result S = X. Thus
tTMt is minimized by taking the smallest of the
three eigenvalues of M for X.

To minimize problems due to noise, we ca n
add a small positive constant to E? commensurate
with the expected noise in E . That is, we take a s
our solution the eigenvector of

M'=ffE; + n2
ssr dxdy

	

(64)

associated with the smallest eigenvalue .
If e is an eigenvector, so is -e. But we want Z t o

be positive . Rather than test this condition at a
single point, we compute an average like

io = -f f(1/E,)s dxdy

	

or

so = - f f	 E ` , s dxdy
+n-

and check whether

sa t0

	

(66 )

If it is not, we simply change the sign of the solu-
tion t .

As before, we may choose to weight the integra l
of equation (59) according to some measure o f
how trustworthy are the data from each picture
cell .

The method presented in this section produces
an estimate of the translation vector t in closed
form and with high accuracy. Of course, a cubi c
must be solved to obtain the eigenvalues-but
there is an analytic method for doing that . The
corresponding eigenvectors can then be found b y
taking cross products of two rows of a 3x 3
matrix .

The preceding method of calculating t ha s
another justification that some readers might find
more persuasive . From equation (41) we kno w
that s t z 0 for points with E, 0 (again ignorin g
background points) . Thus we are basically look-
ing for a vector t that makes s t 0 whenever E t
0 . The points where the time derivatives are small
provide most constraint, as already discussed . We
could try to minimize something lik e

ff(s t )
2

	

(67)

where C is the set of image points where E, x 0 .
Rather than use a strict cutoff on E„ we may con-
sider a weighting scheme in an integral lik e

fjw(s • t) 2 dxdy

	

(68)

over the whole image where the weighting func-
tion w is chosen to emphasize points where E, O.
A reasonable choice, w = 1/(Er + n 2 ), leads to in-
tegral given in equation (64) . The eigenvector cor -
responding to the smallest eigenvalue is a norma l
of the plane that best fits the weighted set of point s
(see figure 10).

If there is a rotational component of the mo-
tion, by the way, the vectors where E, is small wil l
not lie near a great circle . In this case the smalles t
eigenvalue will not be small . This provides a con -
venient test . We discuss a method that avoids the
need to find eigenvalues and eigenvectors i n
reference ]10] . Related methods for finding th e

(65 )
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Fig. 10. The great circle corresponding to the motion t which best fits the points on the s-sphere for which E, z- O.

Fig. 11. Plot of several noisy estimates of the translation vector
t on the s-sphere (200 pixels/estimate, 1% noise in bright-
ness measurements) .
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focus of expansion are discussed in reference
[1S] .

Figure 11 shows a scatter plot of positions o n
the unit sphere for t recovered from noisy syn-
thetic data. Each estimate is based on brightness
gradient at 200 picture cells with I% noise in th e
derivatives of brightness . Note the elongation of
the cluster of points in a direction parallel to th e
optical axis . When tens of thousands of picture
cells are used, instead of hundreds, the algorith m
can tolerate considerably more noise . While
further experimentation is called for, we found
that this algorithm behaves at least as well, if no t
better, than the others we have investigated .

4 Conclusions

We have developed methods for recovering mo -
tion directly from the first derivatives of bright-
ness in an image region in the cases of pure rota -
tion and pure translation (and general motio n
when the rotational component is known) . We
have tested these methods on synthetic imag e
data and, to a limited extent, on some kinds o f
real-image sequences. In the case of pure rotatio n
we give an exact simple solution to the obviou s
least-squares problem . In the case of pure transla-
tion we give several methods with different trade -
offs between accuracy, noise-sensitivity and com -
putational expense . While we have preliminary
ideas about the relative merits of these methods ,
detailed conclusions will have to await furthe r
careful experimentation with real images . Some
further results on both synthetic and real-imag e
data are reported in references [10] and [15] .

We show that it is trivial to recover depth whe n
the motion is known and that it is trivial t o
recover the motion when depth is known . We em -
phasize the importance of a large field of vie w
and point out difficulties arising in the pure tran-
slation case when there is a very large depth
range. We also note that image points where th e
brightness derivative is small provide most con -
straint on the translation vector while the depth a t
these points is hard to recover. We show that it i s
difficult to recover the translational motio n
toward, and rotational motion about, the line
connecting the projection center to the image

region of interest, when that region is small . We
emphasize the need for adequate low-pass filter-
ing in both spatial and time dimension befor e
sampling in order to ensure that estimates o f
derivatives are accurate .

The discussion is facilitated by introduction of
the auxiliary vectors s and v . The directions o f
these vectors have been shown to be constraine d
to lie in the intersection of apermissibleband and a
compatible hemisphere on the unit sphere . These
geometric concepts help lend intuitive support t o
the algebraic results .
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Appendix A : The Brightness Change
Constraint Equatio n

The brightness change constraint equation i s
based on the assumption that the brightness o f
the image of a patch on the surface does not
change as the observer moves relative to the sur -
face . Expansion of the total derivative in the
equation dE1dt = 0 by means of the chain-rul e
leads to the constraint equatio n

aEdx + aE dy + aE
- 0

ax dt

	

ay dt

	

a t

or

uEx + vEy + E r = 0

	

(A2)

where Ex , Ey , and E r are the partial derivatives o f
brightness with respect tox,y, and t, while u and v
are the time derivatives of x and y .

In practice, the brightness of a patch rarely
remains exactly the same . The brightness chang e
constraint equation is nevertheless a useful ap-
proximation, as long as the change in brightnes s
at an image point due to the motion is much
larger than the change in brightness due to othe r
effects, such as change in viewing direction or il -
lumination . This will be the case as long as there
is good contrast at high spatial frequencies, as wil l
be shown next .

Suppose that the brightness of a patch does i n
fact change due to changes in viewing direction o r
changes in illumination . In most cases the rate o f
change of brightness will be relatively small . Let
us say that dE/dt = e, and so

Er = -(uEx + vEy) + e

	

(A3)

Consider now a simple grating pattern in th e
image that, at a particular time, is described by th e
equation

E = Ea[ 1 + sin (ax + by)]

	

(A4 )

Then the components of the brightness gradi-
ents are

Ex = aEa cos (ax + by)

E,, = bEo cos (ax + by) (A5)

Consequently

uEx + vE y --(au + bv)Eo cos (ax + by)

(A6)

It is clear that the error in E„ the rate of change o f
brightness at a point in the image, resulting from
changes in the brightness of .the surface, i s
relatively small, as long as (au + bv)E0 is large
compared to e. (This term, (au + bv)EQ, will be
zero when the image motion happens to be
parallel to the ridges of the grating. In practice ,
however, surface markings will contain many
spatial frequency components and most of thes e
will not be aligned in this special way.) We con-
clude that the relative error in the rate of chang e
of brightness with time is small, as long as there i s
significant contrast at the higher spatial fre-
quencies .

The approximation breaks down when the sur -
face markings are weak and the changes o f
brightness due to changes in viewing direction o r
illumination are rapid . This happens, for exam-
ple, in the rare situation where a specular surface
momentarily lines up exactly to reflect the ligh t
from a point source toward the viewer . It also hap -
pens when an object moving relative to a poin t
source enters a cast shadow.

A number of additional factors help keep th e
relative error in E, small . First of all, some sur-
faces have the property that they appear equall y
bright from all viewing directions . A Lambertia n

(Al)
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surface is a very special case of this, where th e
brightness varies as the cosine of the inciden t
angle. The image brightness is not affected at al l
by the motion of the observer when a surface o f
this type is fixed relative to the light source . Whil e
most real surfaces do not appear equally brigh t
from all viewing directions, brightness typicall y
varies slowly with changes in observer positio n
(slowly enough that we are usually not aware of
any such changes).

Brightness variations resulting from changes i n
surface orientation are most severe when there i s
a single point source . These variations are
reduced when there are multiple sources or an ex-
tended source . In the extreme case of a scene il-
luminated from all sides, for example, imag e
brightness does not depend on surface orienta-
tion at all, even if the surface is specular!

Similarly, a lens occupying a large solid angle ,
as seen from the object . will smooth out changes
in brightness resulting from changes in viewe r
position . One can see this easily in the extrem e
case of a glossy reflection, which will be seen onl y
over a small range of positions if a small lens o f
pin hole is used . A large entrance aperture on th e
other hand will smear out the highlight effect ove r
a larger range of viewing positions . This is not a
big help in many imaging situations, however ,
since objects are far from the sensor relative t o
the size of the sensor, except in the case o f
microscopy.

To summarize : The brightness of the image of a
patch may change somewhat as the observe r
moves relative to the surface . The brightness
change constraint equation nevertheless provides
a good way of estimating the rate of change o f
brightness with respect to time at a point in th e
image. The relative error in this estimate will b e
small when there is significant contrast in the sur -
face markings at higher spatial frequencies.
(There will be no error at all when the surface ap -
pears equally bright from all viewing directions
and the object does not move relative to the
light source . )

Appendix B: Ensemble Averages

Some of the integrals that appear in this paper,
while functions of the scene content, tend to lie

close to average values when evaluated over suf-
ficiently large textured regions . These average
values can be useful in two different enterprises :

• analyzing the relative stability of the com -
ponents of the solution, an d

• developing simplified methods for recovering
the solution (as shown in reference 110]) .

In order to compute these averages we have t o
make some assumptions about the probabilit y
distribution of brightness gradients . We assum e
here that this distribution is rotationally symmet -
ric and independent of image position . That is, o n
average we see the same brightness gradients a t
every image point, and all directions of the bright -
ness gradient are equally likely. The distribution -
of magnitude of this gradient is left arbitrary .
however, since it does not directly affect th e
main results.

B.1 Moment Integrals for the Uniform Ban d

Before we start, let us quickly obtain the equiva-
lent results under the assumption that data points
(s or v) are uniformly distributed over the permiss-
ible band . Let rl denote the latitude and the lon-
gitude on the unit sphere . We see that the area o f
the band is just

n

K= f l e ,
Qu cosrldid =4nsin0,

	

(BI )

The Cartesian coordinates of a point on the uni t
sphere are given by p = (_x,y,z)T where

x = cos rl co s

y = cos rl si

n z = sinn

Let the integral of pp T be

Ixx Ix,. Ir :
I, T

	

I, .,,

	

(B3 )

I: ,.

Then
n= f f e u

x- cos rl di di;
n B u

n

	

9u

	

= J cos2dJcos3 i dl

	

(B4)
n

	

9u

(B2)

ppr di dg _
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that is,

IrC = IT
[3 sin 0, + (113) sin 30, 1

4 si=

	

n 0,11 + (112) cos' 0, ]

whil e

I .,

	

f=

	

, f ©u z- cos r~ dry

a z= f d f
a„

sin' rl cos rf drl

	

(B6)

that is .

I_ =
= 3r sin 3 0,

	

(B6 )

Also, by symmetry. 4 = 4. and the off -diagonal
terms, I4,, I . and Imo , are all zero. We have

1,, = (K/3)

	

+ (112) cos' 0,1 = 1,.

	

(B7)

and

_ (K13) sin' 0 U

	

(B8)

so

I. + I y}. + I,_ = K

	

(B9)

The moment matrix is diagonal and so I„,,,, , and
I_ are the three eigenvalues . The condition num -
ber is the ratio of the la rgest to the smallest o r

1 + (112) cos' 0 ,

sin' 0 ,

These results give us a quick estimate of the en -
semble averages of the intergrals is ssr and vvr. To
do better, we have to take into account the actua l
distribution of s and v in the permissible band .

B.2 Ensemble Average of the Integral of ss T
It is convenient to use polar coordinates in th e
case of a circular image . We have

x=rcos0

	

-n<0<+n

	

(B11 )
yrsin 0

	

0(r<r~

Similarly, we may use polar coordinates for th e
brightness gradient

Ex =pcos4

	

-n4 (+ n

E, = psin4)

	

0 p

Let the probability of seeing a brightness gradien t
with magnitude lying between p and p + Sp be
2npP(p)E p . Now

---Ex
s =

	

-E,

xE x + yE ,

Consequently

s s = p 2 ]1 +r 2 cos' (0-r ) ]

Consider first the integral of s s :

f
11 fo rs (s . s)r dr d0

-Tr

	

P(p)

	

(s • s)r dr d0 p dp d 4

To obtain the desired ensemble average we in-
tegrate over p and 4) as follows :

(BI6)

This integral can be split into two parts :

J p3P( p ) dp f T d
o

	

n

	

C r,,

	

n

	

rdr

	

dO = 2rr 'P 2ru (B17)
6

and

F p3P ( p ) dp f T df r r 3 dr

	

R

	

a

f cos-' 0' dB' = Z P,r, (B18)

where 0' = (0 - 4)) an d

We note in passing that P2 is a measure of the av -
erage squared magnitude of the brightness gradi -
ent . Combining the two parts above we find
tha t

(B5 )

(B10)

(B 12 )

=p(

-cos 4) )

- sin 4

rcos(0-4)}

(B13 )

(B14)

(B15)

P2= 1
'0~ p3P ( p ) dp

	

(B19)
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Jfs s dx dy = 2n`P 2 r!(1 + r!/4)

	

(B20 )

Similarly we obtain

Ixx

	

P (P )f_N J
LJ ~j p` cos` r dr d0lp dp d~

= J' p3P(p) dpI'

f cos2 4' dep J rU rdr JdO
n

	

o

	

n
= n 'P ,r i'

	

(B21 )

and

I. : = J nf P(P)[ f n for" P2r 2

cos' (O - 4))r dr dO] p dp dI

	

= f p 3P(p)dpJd4)

	

(B22)
0

	

n

J U3
dr J cos` 0' d0 '

n`=
4 P2 r4,

while Iyy = Ixx .
The moment matrix is diagonal, so L ,Ivy , and

I; are the eigenvalues. The condition number i s
the ratio of the largest to the smallest o r

for°

This result does not depend o n

	

for r," <2

	

and

(B23 )

for r,' >2

r+Ey. + y(xE,, + yE Y.)

v =

	

-Ex - x(xEx + yE ).)

yEx - xEy.

+ sin 4) + r-2 sin 0 cos (0 - 4) )

P

	

- cos 4) - r 2 cos 0 cos (0 - 4) )

L

	

rsin(0-4))

(B24 )

and

v•v= p'(1 +r`)[l +r'-cos-(0-4))]

	

(B25)

which follows from v = s X r, s • r = 0, r • r = 1 +
r'- and

s s = p-(1 + r- cos' (0 - 4))]

	

(B26)

After some tedious manipulations, similar t o
those in the last section, we find

Jfv v dx dy = 2- P,r3( 1 + 3r2 + 6

(B27)

and
2

Ixx = n 2 P 2r, 1 + 2 +
J

and

L.I,, = n2P, 2 j

	

(B29)

Again, the matrix is diagonal and so I ,Iyy , andI:
are the eigenvalues . The condition number i s
just

r2+1+ 3

	

(B30)

2

r
2

(B28)

earlier.
P25 as stated which is independent of P2 once more.

B.3 Ensemble Average of the Integral ofvvT

Here we proceed much as in the previous
section with
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