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Direct Passive Navigation 

SHAHRIAR NEGAHDARIPOUR A N D  BERTHOLD K. P. HORN 

Abstmct-In this correspondence, we show how to recover the mo- 
tion of an observer relative to a planar surface from image brightness 
derivatives. We do not compute the optical flow as an intermediate 
step, only the spatial and temporal brightness gradients (at a minimum 
of eight points). We first present two iterative schemes for solving nine 
nonlinear equations in terms of the motion and surface parameters that 
are derived from a least-squares fomulation. An initial pass over the 
relevant image region is wed to accumulate a number of moments of 
the image brightness derivatives. All of the quantities used in the it- 
eration are efficiently computed from these totals without the need to 
refer back to the image. We then show that either of two possible so- 
lutions can be obtained in closed form. We first solve a linear matrix 
equation for the elements of a 3 x 3 matrix. The eigenvalue decom- 
position of the symmetric part of the matrix is then used to compute 
the motion parameters and the plane orientation. A new compact no- 
tation allows us to show easily that there are at most two planar solu- 
tions. 

Index Terms-Eigenvalue decomposition, least-squares, optical flow, 
planar surfaces, structure and motion. 

I .  INTRODUCTION 

The problem of recovering rigid body motion and surface struc- 
ture from image sequences has been the topic of many research 
papen in the area of machine vision (the reader is referred to a 
survey of previous literature [I]). Two types of approaches, dis- 
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Crete and continuous, have been pursued. In the hiscrete approach. 
information about the displacements of a finite number of discrete 
points in the image is used to reconstruct the motion. To do this 
one has to identify and match feature points in a sequence of im- 
ages. The minimum number of points required depends on the 
number of images. In the continuous approach, the optical flow. 
that is the apparent velocity of image brightness patterns, is used. 

In much of the work on recovering surface structure and motion, 
it is assumed that either a correspondence between a sufficient num- 
ber of feature points in successive frames has been established or 
that a reasonable estimate of the full optical flow field is available. 

In general, identifying features involves determining gray-level 
comer points. For images of smooth objects, i t  is difficult to find 
good features or comers. Further, the correspondence problem has 
to be solved, that is, feature points from consecutive frames have 
to be matched. 

The computation of the local flow field exploits a constraint 
equation between the local intensity changes and thc two compo- 
nents of the optical flow. This only gives the component of flow in 
the direction of the intensity gradient. To compute the full flow 
field, one needs additional constraints such as the heuristic as- 
sumption that the flow field is locally smooth [4], [ 5 ] .  This, in 
many cases, leads to an estimated optical flow field that is not the 
same as the true motion field. 

In this corrspondence, we determine the motion of an obscrver 
relative to a planar surfacc directly from the image brightness dc- 
rivatives without the need to compute the optical flow as an inter- 
mediate step. We restrict ourselves to planar surfaces since only 
three parameters are needed to specify the surface structure. We 
will first derive the image brightness constraint equation for the 
case of rigid body motion. A least squares formulation allows us 
to derive nine nonlinear equations, the so-called planar motion field 
equations, in terms of the motion and surface parameters. We pre- 
sent two iterative schemes for solving these equations. It is shown 
that all of the quantities used in the iteration can be computed ef- 
ficiently from a number of moments of the image brightness deriv- 
atives that are accumulated through an initial pass of over the rel- 
evant image region. We therefore do not have to refer back to the 
image. We also show that a closed-form solution to the samc prob- 
lem can be obtained through a two-step procedure. We first solve 
a linear matrix equation for the elements of a 3 x 3 matrix equation 
using brightness derivatives (at a minimum of eight points). The 
eigenvalue decomposition of the symmetric part of this matrix al- 
lows us to compute the motion parameters and the plane orientation 
easily. 
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We first recall some details about perspective projection, the 
motion field, the brightness change constraint equation, rigid body 
motion, and planar surfaces. This we do using vector notation in 
order to keep the resulting equations as compact as possible. 

A. Perspective Projection 

Let the center of projection be at the origin of a Cartesian co- 
ordinate system. Without loss of generality we assume that the ef- 
fective focal length is unity. The image is formed on the plane z 
= 1 , parallel to the xy-plane, that is, the optical axis lies along the 
z-axis. Let R be a point in the scene. Its projection in the image is 
r. where 
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ment. The opricalj7ow is the apparent motion of brightness pat- 
terns. Under favorable circumstances the optical flow is identical 
to the motion field. The velocity of the image r of a point R is 
given by 

For convenience, we introduce the notation r, and R, for the time 
derivatives of r and R, respectively. We then have 

which can also be written in the compact form 

since a X ( b  X c)  = ( c  . a)b  - ( a  . b)c. The vector r, lies in the 
image plane, and s o  (r,  . 2) = 0.  Further, r, = 0,  if R,IlR, as 
expected. 

Finally, noting that R = ( R  . Z)r, wc gct 

C. Rigid Borly Moriotl 
In the case of the observer moving relative to a rigid environ- 

ment with translational velocity t and rotational velocity w, we find 
that the motion of a point in the environment relative to the ob- 
server is given by 

Since R = ( R  . i ) r ,  we can write this as 

Substituting for R, in the formula derived above for r,.  we obtain 

It is important to remember that there is an inherent ambiguity here, 
since the same motion field results when distance and the transla- 
tional velocity are multiplied by an arbitrary constant. This can be 
seen easily from the above equation since the same image plane 
velocity is obtained if one multiplies both R and t by some con- 
stant. 

D. Brighrness Change Equariott 
The brightness of the image of a particular patch of a surface 

depends on many factors. It may for example vary with the orien- 
tation of the patch. In many cases, however, it remains at least 
aproximately constant as the surface moves in the environment. If 
we assume that the image brightness of a patch remains constant, 
we have 

where aElar = (aElax, aElay, O ) T  is the image brightness gra- 
dient. It is convenient to use the notation E, for this quantity and 
E, for the time derivative of the brightness. Then we can write the 
brightness change equation in the simple form 

E, - r, + E, = 0 .  

Substituting for r, we get 

Now 

E, . (2 X ( r  X t ) )  = (E, X 2) . ( r  X t )  = ((E, X 2) X r)  . t ,  

and by similar reasoning 

so we have 

I 
E, - (((E,  x 2) x r) x r )  . o + - ((E, X 2) X r )  . t = 0.  

R . 2  

T o  make this constraint equation more compact, let us define c = 
El. s = (E, x 2)  x r ,  and u = - s  X r; then, finally, 

This is the brightness change equation in the case of rigid body 
motion. 

E. Planar Surface 
A particularly impoverished scene is one consisting of a single 

planar surface. The equation for such a surface is 

where nilnl is a unit normal to thc plane, and l l l r r l  is the perpen- 
dicular distance of the plane from the origin. Since R = ( R  . i ) r ,  
we can write this as 

so the constraint equation becomes 

This is the brightness change equation for a planar surface. 
Note again the inherent ambiguity in the constraint equation. It 

is satisfied equally well by two planes with the same orientation 
but at different distances provided that the translational velocities 
are in the same proportions. 

Given image brightness E(x, y, t), and its spatial and time de- 
rivatives, E, and E,, over some region I in the image plane, we are 
to recover the translational and rotational motions, t and w, as well 
as the plane n.  Using the constraint equation developed above, we 
could do  this using image information at just a sniall number of 
points. At each point we get one constraint and we have nine un- 
knowns to recover-or rather, eight, since we can recover the dis- 
tance of the plane and the translational velocity only up to a scale 
factor. We  will first present the iterative method. The motion pa- 
rameters and the plane orientation are obtained from the solution 
of nine nonlinear equations derived from a least-squares formula- 
tion for minimizing the error in the brightness change constraint 
equation. We then present the closed-form solution to the same 
problem that involves a two-step procedure. First, we solve for 
nine intermediate parameters, the elements of a 3 X 3 matrix, using 
brightness derivatives at a minimum of eight points. We then solve 
for the motion parameters and the plane orientation from the ei- 
genvalue decomposition of the symmetric part of this matrix. 

A. Irerarive Merhod: Leasr-Squares formula riot^ 

Image brightness values are distorted with sensor noise and 
quantization error. These inaccuracies are further accentuated by 
methods used for estimating the brightness gradient. Thus it is not 
advisable to base a method on measurements at just a few points. 
Instead we propose to minimize the error in the brightness con- 
straint equation over the whole region I in the image plane. S o  we 
wish to minimize 

I = s s , [ c  + u - o + ( I .  n ) ( s .  t ) ] ' d , d y  
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by suitable choice of the translational and rotational motion vectors and can be solved for the surface normal n ,  given the pair of vec- 
t  and w ,  as well as the normal to the plane n .  tors t  and w .  

For an extremum of J we must have The motion vectors are given by 

That is, 

aJ - -  aJ aJ - 0 ,  - = 0, and - = 0. 
aw at an 

o = (M;lMI - M;'M;)-'(M;'d2 - M y 1 d l ) ,  

t  = ( M r 1 M 2  - M ; ~ M ~ ) - ' ( M ; ~ ~ ~  - M ; ' d , ) ,  

where ( - T )  denotes the inverse of the transpose of a matrix. This 
can also be written in the form 

~ ~ l [ c + v - w + ( r - n ) ( s ~ t ) ] v ~ d y = O .  . 
t  = (M4 - M : M ; ~ M ~ ) - ' ( M ~ M ; ~ ~ ,  - d2), 

These equations comprise nine nonlinear (scalar) algebraic equa- . 
tion in terms of the observer motion, t  and w ,  and the surface nor- 
mal n .  We will call them the planar moriotlfield equations. Some 
observations about these equations are in order. The first equation 
is linear in w ,  I ,  and n .  The second equation is linear in w and I ,  
but quadratic in n .  Finally, the last equation is linear in w and n ,  
but quadratic in t .  We will exploit the linearity of these equations 
to formulate two iterative schemes. 

I )  First Srh~t,ie: Wc can rearrange the planar motion field 
cquations to gct 

The surface normal is simply given by 

All arrays are either 3 x 3 matrices or vectors of length 3, and 
therefore, the solutions for a ,  I ,  and n can be computed easily. 
Actually, most of the indicated matrix inversions d o  not have to be 
carried out explicitly. since it is computationally cheaper to solve 
these linear matrix equations by elimination. 

So, in summary, we start with an initial guess for n .  Using the 
above equations, we solve for t  and w in terms of the current value 
of n ,  and then for n in terms of the current values of t  and w .  After 
this, we evaluate the improvement in the solution to either go to 
next iteration or  stop if the solution has not improved. 

2)  Second Scheme: The first pair of the motion and surface re- 
covery equations depend linearly on t  and w .  As before. 

The first pair can be grouped in the form 

which can be solved for t  and w in terms of n .  Furthermore, the 
first and last equations depend linearly on n and w :  

where 

M l = ~ ~ l ( o o T ) d r d y ;  M 2 =  ! Sl ( r . n ) ( v s T ) d r d y .  [ S S I ( v u ~ ) d i d y ] w  + [ I !  ( s - f ) ( o r T ) d r d y  1 n = 

M4 = 1 ] ( r  . n)  ( s sT)  L dy. 
I 

d l  = 1 Sl co dr dy, and d2 = S S c(r . n)s dr dy. 

This can be solved for t  and w ,  given the surface normal n .  The 
last equation is 

where 

N, = 1 1  ( s  . f)'(rrT) dr dy. 
I 

- S SI C(S - f )r  dr dy. 

Given I ,  these may be solved for n and w .  For simplicity, let M I ,  
M2, M4, N4, d l ,  and d2 be as defined earlier, and let: 

N2 = 5 S l ( s  - t ) (vrT)dr-dy,  and r, = o r a k d y .  
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Thcn 

and 

The solution of the above cquations is given by 

w = (M;'M, - M ; ~ M ; ) - - ~ ( M ; ' ~ ~  - M T ' ~ , ) ,  

t = ( M c 1 M 2  - M;'M,)-'(M;'~~ - M M ; ' ~ , ) ,  

and 

Thcsc m;ly hc rcwrittc~i in cithcr of two asymrnctrical fornis shown 
c;~rlicr. 

Again. most ol'the indicated matrix inversions do not havc to be 
carricd out explicitly, since we can solve the equations by elimi- 
nittion. 

In this scheme. wc st;lrt with an initial gucss for 11. We solvc ti)r 
I :~nd w in Icl.ms of' the currcnt vi~luc ot 'n .  and update I ,  then solvc 
l'or ti ;111d w in tcrIiIs of thc current value of I, and updatc n ,  and. 
linally. c\';~luatc the inipn)vcnicnt in the solution to either continue 
with thc ncxt itcr;~tion o r  stop if thc solution has not improved. 

-3) Di~isiotr  oflcrhor: Thcsc methods would not be very attrac- 
tive. i f '  wc had to pcrforni integrations over the wholc image region 
I during c i~ch itcration. in order to collect thc matrices and vectors 
appearing in thc cquations. Fortunatcly. this is not nccessary. One 
can scc this by writing the cquations for the components of thc 
~ii;~triccs and vcctors using the summation convention of tensor cal- 
culus (that is, thcrc is an implicit summation over any index that 
appcars twice in an cxprcssion): 

and 

M I  = Nl  and d, = e, d o  not depend on w ,  t, o r  n ,  and so  need 
only be computed once. Also, ( c v ~ ) ,  (uiv,), (csirj), (rkvisj), and 

(rkr,s,sj) depend only on r ,  E,, and E,, and so  can be integrated 
over the image once. This appears to be a set of 3 + 9 + 9 + 27 
+ 81 = 129 numbers, but, because of symmetry in (uivj) ,  and 
(rkr,s,sj). only 8 1 numbers have to be stored. These accumulated 
totals represent all the image information needed to  solve the mo- 
tion recovery problem. 

In the first scheme, we only perform 279 multiplications per it- 
eration; The updating of the coefficients of the planar motion field 
equations involves 27 + 9 + 4 2  + 4 2  + 4 2  = 162 multiplications 
to compute Mz,  d?,  M,, N,, and g (note that M, and N, are sym- 
metric). The updating of W ,  I ,  and r r ,  in comparison, requires 117 
~nultiplications. 

In the second scheme, 696 multiplications are carricd out at each 
iteration; we compute the matrices M2, M, and the vector d2 ,  re- 
quired for the first half of the iteration, in 27  + 4 2  + 9 = 78 
multiplications. The same number of multiplications is needed to 
compute the matrices N2. N, and thc vector e2 requircd in the scc- 
ond half. Further, solving for w !.md I takes about 270 niultiplica- 
tions. as  does solving for w and n in thc second half of cach iter- 
ative stcp. 

Through a selected example, we will show that the second 
scheme has a much better convergence rate at the expense of rnorc 
computation pcr itcration. 

It is important to establish whether more than ons solution is 
possible. In gcneral, this is clearly so,  sincc an image of uniform 
brightness could correspond to an arbitrary uniform surface moving 
in an arbitrary way. So the brightness gradients, o r  lack of bright- 
ness gradients, can conspire to make the problcm highly ambigu- 
ous. What we are interested in here is whether two different planar 
surfaces can give rise to the same motion field given two different 
translational and rotational motions of the imaging system. 

In our terms then, the question becomes: given that the bright- 
ness change equation is satisfied for the motion I and w and the 
planar surface n ,  is there another motion t' and w' and another 
planar surface n '  that satisfies the same equation at all points in the 
region I and for all possible ways of marking the surface? Note that 
we have to consider a whole image region, since the problem is 
underconstrained if we only have information along a line o r  at a 
point in the image. We also have to include the condition that the 
constraint should be satisfied for all possible surface markings to 
avoid the kind of ambiguity discussedabove, whcre brightness gra- 
dients fortuitously line up with the motion ficld to create ambigu- 
ity. 

I) Dual Solurion: Suppose that two motions and two planar sur- 
faces satisfy the brightness change equation. Then, wc havc 

Subtracting these equations, we gct 

u . (W - w ' )  + ( r  . N)(S . 1) - ( r  . n ' ) ( s  - 1') = 0 .  

N o w u  = -s x r, so  

-r . ((w - w' )  X S) + (r . n ) ( s  . I) - ( r  . n l ) ( s  . t ' )  = 0. 

If we let w = (w,, w2, then we can write 

w x s = Rs. where R = 

is a suitable (3 x 3) skew-symmetric matrix. Thc ( i ,  j) th elcment 
of Q equals n7$,,k, where eijk is the permutation symbol. (It equals 
+ I  when the ordered set i ,  j, k is obtained by an even permutation 
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of the set 1, 2, and 3, i t  equals - I when the ordered set is obtained 
by an odd permutation, and it is zero if two or more of the indexes 
are equal.) 

Using this notation we can now write 

-rT(R - R ' )  s + rT(ntT) s - rT(nltlT)s = 0, 

or just 

This is to be true for all points r in the image region I and all 
possible brightness gradients. So 

where the zero on the right-hand side here represents a 3 x 3 ma- 
trix of zeros. Now R T  = -a, since R is a skew-symmetric, so 
taking the transpose of the equation we get 

Adding the two equations allows us to eliminate (R - R ' ) ,  and 
we end up with 

(ntT + tnT) = (nitrT + t'ntT). 

The trace (sum of the diagonal elements) of nt is just (n . t), so 
we see immediately that (n . t) = (n' . trT). But the above matrix 
equation involving the dyadic products of n and t as well as of n '  
and t' is much more constraining. 

Consider the following threc possibilities: 
I) If In'l = 0 or 11'1 = 0, theh their dyadic product is a 3 x 3 

matrix of zeros. In this case the above equation is satisfied if and 
only if J n J  = 0 or It) = 0. 

2) 1f n'lln, t'llt and Inllt'( = InJItl, then the two sums of dyadic 
products are equal and the above equation is satisfied. 

3) 1f n'llt, t'lln and In'l lt'l = In1 ltl, then the two sums of dyadic 
products are also equal and the above equation is satisfied. 

It turns out that there are no other ways to satisfy the equation. 
This can be shown using elementary properties of dyadic products 
(see [8]) or by inspection of the six components of the above equa- 
tion (because of symmetry there are only six independent compo- 
nents). 

The first case above corresponds to purely rotational motion, 
because either the translational motion is zero, or the planar surface 
is infinitely far away, and the translation does not generate a per- 
ceptible component of the motion field. The solution is unique in 
this case, because we find ( R  - a ' )  = 0 ,  when we substitute back 
into the matrix equation. (This is nothing new, since it has been 
known for some time that the solution is unique in the case of purely 
rotational and purely translational motion [2].) 

In the second case wc find that nt = n'trT, since the vectors are 
parallel and the product of their size is constrained by the condition 
n . t = n' . t ', derived earlier. Thus once again (R - R ' )  = 0. 
Nothing new is obtained here, since we already know that we can 
change the lengths of the vectors n and t as long as the product of 
their lengths remains constant. 

The third case is the most interesting. Here we have tnT = 
n't' so that 

and thus 

for an arbitrary vector x. That is. 

x x (w - w') + x X (n x t) = 0, 

for an arbitrary vector x, so that 

or w' = w + n x t. To summarize then, if we ignore scaling of 
the normal and the translational velocity, we obtain a dual solution, 

TABLE 1 
THE TRUE MOTION A N D  SURFACE PARAMETERS, A N D  A SUMMAKY 01: T H E  

RESULTS OF A SIMULATION THAT CONVERGES TO THE TRUE SOLUTION 
USING THE FIRST SCHEME 

True Rotational Motion Pivmetera wl  = ,003 wr = .001 w, = -.01 
l h e  'hanslational Motion Parameters 11 = ,0005 fr = -.W5 1, = .0125 
l h c  Parameten of the Surface nl = .2 nl = .4 ns = 1.0 

Initial Guess for the Sirnulalion nl = 100. nl = 5. nt = -1. 

Iler. (Rotational Par1#) (Translational Par's) (Surface Pula)  
No. WI wr w t l  11 1s nl nr nt 

given by 

n'  = t, t' = n and w' = w + n X t. 

Hay was the first to show the existence of the dual solution 131. 
although the result has apparently been indepcndcntly rcdiscovcrcd 
several times since then [6], [7], [9]. (The most recent papers 161, 
[7] came to our attention only after completion of our version of 
the proof.) 

This dual solution is not different from the original one in the 
special case that the motion is perpendicular to the planar surface, 
that is, nllt. In this case the solution is unique. Further, if t . 2 = 
0, then n' . & = 0. This corresponds to a planar surface parallel to 
the observer's line of sight, and may be considered to be a degen- 
erate case. 

C. A Selected Example 
We now present the results of a simulation. It is noteworthy to 

mention that in all simulations performed, our algorithms have 
converged to a solution. However, the number of itcrations for 
convergence to a solution depends on the initial condition (as is the 
case with all iterative schemes developed for solving nonlinear 
equations). In this example, we will demonstrate the sensitivity of 
both schemes to the initial condition. The image brightness func- 
tion was generated using a multiplicati've sinusoidal pattern (one 
that varies sinusoidally in both x and y directions), a 45" field of 
view was assumed, and the image brightness gradients were com- 
puted analytically to avoid errors due to image brightness quanti- 
zation and finite difference approximations of the brightness gra- 
dient. In practice, the brightness at image points in two frames 
would be discretized first, and the gradient computed using finite 
difference methods. 

Tablc I shows the true motion and surface parametcrs. and the 
results of a simulation that converged to the true solution using the 
first scheme described earlier. In Table 11, thc dual solution for the 
true motion and surface parameters, and the results of a simulation 
that converged to the dual solution are tabulated. In both cases, the 
solution after various number of iterations are giver,. The results 
show that in the first case, the error in each parameter after less 
than 30 iterations is within 10 percent of the exact value. In the 
second case, this accuracy is achieved in less than 20 iterations. 
Similar results are presented in Tables 111 and IV for the second 
scheme. Here, very good accuracy is achieved in less than 10 it- 
erations for the true solution and about 5 iterations for the dual 
solution. 
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TABLE 11 
THE DUAL MOTION AND SURFACE PARAMETERS. AND A SUMMARY OF THE 

RESULTS OF A SIMULATION THAT CONVERGES TO THE DUAL SOLUTION 
USING THE FIRST SCHEME 

Dual Rotational Motion Parameters w1 = ,013 wa = - .MI wl = -.OI12 
Dual Translational Motion Parameters t1 = ,0025 la = ,005 t1 = ,0125 
Parameters of the Dud Surface n l  = .04 nr = -.4 n l  = 1.0 

Initial Guess for the Simulation n! = .5 na = 1.5 n l  = -1. 

Iter. (Rotational Pu's) (Translational Par's) (Surface Par's) 
No. WI wa WI tz 13 n l  n t  na 

TABLE 111 
THE. TRUE MOTION AND SURFACE PARAMETERS, AND A SUMMARY OF THE 

RESULTS OF A SIMULATION THAT CONVERGES TO THE TRUE SOLUTION 
USING THE SECOND SCHEME 

?tue Rotational Motion Parameters wl = ,003 y = .001 WJ = -.01 
?tue Translational Motion Parameters t1 = .0005 ta = -.MIS 13 = .0125 
?tue Parameters of the Surface nr = .2 tq = .4 n, = 1.0 

Initial Guess for the Simulation n l = l 0 0 .  n a = 5 .  n ~ = - 1 .  

Iter. (Rotational Pu's) (lhnrlational Par'.) (Surface Pu's) 
NO. ~1 Y WJ 11 12 13 n l  nz n) 

TABLE 1V 
THE DUAL MOTION AND SURFACE PARAMETERS. AND A SUMMARY OF THE 

RESULTS OF A SIMULATION THAT CONVERGES TO THE DUAL SOLUTION 
USING THE SECOND SCHEME 

Dual Rotational Motion Parmeters wl = .013 y = -.WL wa = -.0112 
Dual Translational Motion Parameters t1 = ,0025 la = .005 13 = .O125 
Parameters of the Dual Surface n l  = .04 na = -.4 n l  = 1.0 

Initial C u e s  for the Simulation n l  = .5 n, = 1.5 nr = -1. 

Iter. (Rotational Par'm) (Translational Pun#) (Surface Par'#) 
No. WI wa W) 11 fz 1s n l  n l  n~ 

In similar tests, with various motion and surface parameters, ac- 
curate results have been obtained in less than 40 iterations using 
the first scheme and a variety of initial conditions. The same ac- 
curacy for the second scheme required less than 15 iterations. More 
importantly, both schemes eventually converged to one of the two 
possible solutions. However, the results for the particular case 
where the translational motion vector is (almost) parallel to the sur- 

face normal have not been as satisfactory. In these cases, several 
hundred iterations were required to achieve reasonable accuracy, 
even with the second scheme. Although the nature of this behavior 
has not been investigated in detail, it appears to resemble that ob- 
served when the Newton-Raphson method is applied to a problem 
where two roots are very close to one another. 

D. Closed-Form Solution: Essential Parameters for Planar 
Surfaces 

The brightness change equation can be written as 

Using the identify (r  x s) . w = r . (s x w), we obtain 

We now use the isomorphism between vectors and skewsymmetric 
matrices. Let us define 

then, Q s  = (w X s), and we conclude that 

If we define 

we can finally write 

c + rTps = 0. 

We will refer to {p i}  as the essential parameters (in agreement 
with Tsai and Huang [IO]) since these parameters contain all the 
information about the planar surface and motion parameters. The 
above constraint equation is linear in the elements of P. Several 
such equations, forhifferent image points, can be used to solve for 
these Darameters. We will show how the s~ec ia l  structure of P can 
be exploited to recover the motion and plane parameters very eas- 
ily. 

Note that the essential parameters are not independent. This is 
because P i s  not an arbitrary 3 x 3 matrix. It has a special structure 
as a result of the fact that it is the sum of a skew-symmetric matrix 
and a dyadic product. It takes three parameters to specify w (and 
hence Q), three to specify n ,  and another three for I. The matrix 
P ,  however, is unchanged if we replace n by kn and t by (1lk)t for 
any nonzero k. Thus, there are actually only eight degrees of free- 
dom, not nine. 

Equivalently, we can say that there is one constraint on P. Since 
Q T  = -f2, it follows that 

A dyadic product has rank one, or less. The sum of two dyadic 
products has at most rank two. So we conclude that 

det ( P  + P') = 0. 

This constraint can be expressed in terms of the essential parame- 
ters as 

We can use this equation, for example, to solve for p9 given p , ,  
p2, . - . pa. It is difficult to use this equation directly when one 
attempts to find P from image brightness measurements. 
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There is a simple way around this problem, however. Note that 
rTs = 0, because s = ((E, x i) X r ) .  S o  r?s = 0, and 

for arbitrary I. If we let P' = P + 11, we can write 

and conclude that we cannot recover P from image brightness mea- 
surements alone. T o  find P,  we must impose the constraint det ( P  
+ P " )  = 0. T o  avoid dealing directly with the resulting nonlinear 
relation between the essential parameters, we first find any P' that 
satisfies the above brightness change constraint equation for all im- 
age points being considered, and then determine 1 such that P = 
P' - I1 satisfies 

det ( P  + p T )  = 0. 

Now. 

det ( P  + P T )  = det (P' + P ' ~  - 211) = 0.  

so  that 21 must be an eigenvalue of the real symmetric matrix 

It will becomc apparent, in thc next section, that we ought to choose 
the middle one of the three real eigenvalues of PI* for 21. 

In summary, the overall plan is to find any matrix P' that satis- 
fies the image brightness constraint equation. 

c + rTP's  = 0 ,  

at a suitable nuiiiber of image points and consequently determine 
PI*. We can then solve for the middle eigenvalue of P'* (which is 
21) so  as to construct the singular matrix P = P' - 11, and from 
that we finally determine n and 1 as well as Q (and hence w) using 
the relationship 

I) Recovering Essential Parameters: We are looking for a ma- 
trix P' that satisfies the brightness change equation. 

at a chosen number of image points. Now, 

rTP's = Trace { ( s r T ) p ' ) .  

r T p ' s  = Flat ( s r T )  . Flat ( P ' ) ,  

where Flat ( M )  is the vector obtained froni the matrix M by ad- 
joining its rows. So we can write the brightness change equation 
in the form 

where 

p' = (pi. p;. . . ' . p a :  

We first consider finding p' from the image brightness deriva- 
tives at the minimum number of points necessary. Later, we con- 
sider instead a least-squares procedure that takes into account in- 
formation in a whole image region. 

From the dcrivatives of the brightness at the ith image point con- 
sidered, wc can construct the vector a, such that 

As discussed above, there are really only eight independent degrees 
of freedom. So we can arbitrarily fix one of the comvonents of the 
vector p'. This means that we can solve for the other eight using 
constraint equations derived from eight image points. 

Let p' = (p i ,  p i ,  - . . , pi, O)T denote the solution obtained by 
setting the last element equal to zero. If we define 

P' = (p i ,  p i ,  . . . , p a T ,  

then the above constraint equation reduces to 

Using eight independent points, we can solve the following linear 
matrix equation: 

where 

The solution of the above equation is 

Image intensity values are corrupted with sensor noise and quan- 
tization. These inaccuracies are further accentuated by methods 
used for estimating the brightness gradient. Thus it is not advisable 
to base a method on measurements at just a fcw points. Instcad wc 
propose to minimize the error in the brightness constraint equation 
over the whole region I in the image plane. So we choosc the vcctor 
p' that minimizes 

The solution, in this case, is given by 

In either case, we construct p' by adjoining a zero to the vector 
p' .  The result immediately gives us the matrix P'.  We dctermine 
the eigenvalues of PI* s o  that we can construct P* by subtracting 
the identity matrix times twice the middle eigenvalue from PI*. 
We can also determine P by subtracting the identity matrix times 
the middle eigenvalue from P'. At this point, we are rcady to re- 
cover 1. 0,  and n .  

Note that we do not have to repeat the eigenvalue-eigenvector 
analysis, since P* has the same eigenvectors as PI*, and its eigen- 
values are merely shifted s o  a s  to make the middlc one cqual to 
zero. This follows from the fact that if u and X are an eigenvector- 
eigenvalue pair of PI*, that is, 

then u and (A - 21) are an eigenvector-eigenvalue pair of P * ,  
since 

2 )  Recovering Motiotr and Structure: We now show how to 
compute the paranieters of the translational motion and the plane 
orientation from the essential parameters. When we havc done this, 
we will be able to also find the rotational parameters using 

As we saw before 

P* = P + p T =  t n T +  ntT, 

since C? is skew-symmetric. Let us use the notation o = In1 1 1 1 ,  and 
r = ti . t ,  where 

n . . t  
A =-, and 1 =-, 

Inl 111 

are the unit vectors in the directions of the surface normal and the 
translation vector, respectively. Then, 

Trace ( P * )  = Trace ( P )  + Trace ( p T )  = 2 ,  . t = 207. 
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It turns out that A and i c a n  be easily recovered from the eigenvec- 
tors of the matrix P* .  In the following lemma, we show that the 
eige!vectors of P *  are combinations of the sought after vectors A 
and t. 

Lemrna I: Let P *  = U A U ~  be the eigenvalue decomposition of 
P *  = (tn + ntT). If n is not parallel to t, then, 

A  = Diag ( 4 7  - I), 0, u(7 + I)), 

and, 

i - A  i x h  

Proof: Note that 

P* = u(idT + hiT). 

Now ( i  x A) is the eigenvector with eigenvalue zero since 

~ * ( i  X A) = u ( h T  + A p ) ( i  X A) 

Since P* is real symmetric, it has three orthogonal eigenvectors. 
The other two eigenvectors must, therefore, be in the plane con- 
taining t and A. Let u = a t  + PA and A denote an eigenvector- 
eigenvalue pair for some a and P (to be determined). Then, 

o(t"A + Ap)  (at" + PA) = A(ai + PA), 

that becomes 

Since ( i  . A) = 7, we can write 

For this pair of homogeneous equations to have a nontrivial solu- 
tion for cu and B, the determinant of the 2 x 2 coefficient matrix 
must be zero, that is, 

Substituting for A into the earlier equations, we obtain 

Note that u(7 - 1) < 0 and u(7 + 1) 0 because 7 < 1, as it is 
the cosine of the angle between A and t. So one eigenvalue is neg- 
ative and one is positive. (This is why we choose to make the mid- 
dle eigenvalue zero when constructing P *  from PI*.) We find that 
eigenvectors corresponding to-the eigenvalues X I  = u(7 - 1) and 
A3 = u(7 + 1) are t - f i  and t + A,  respectively. If we normalize 
these, we obtain the unit vectors 

i- A i + A  

U1 = 
and u3 = -- m. 

Note that we can determine o = In1 111 from 

a = ;(A3 - A,). 

w 
The equations for u ,  and u3 are linear in [and A, and so can be 

easily solved for these vectors: 

The sign of the eigenvectors are arbitrary. If we change the sign of 
u l ,  we obtain instead 

where A and i a r e  interchanged. This is the dual solution. 
The signs of the two eigenvectors can be chosen independently. 

This might suggest that there are a total of four different solutions 
for A and t. We show next that two of these solutions can be dis- 
carded because they correspond to viewing the planar surface "from 
behind." We assume that the visible part of the plane is the bound- 
ing surface of some solid object. We chose to define the orientation 
of the surface using the inward pointing normal n. The equation of 
the plane is R . n = I ,  or ( r  . n)(R - fJ = 1, since 

Now. R 2 = Z is positive for points in front of the viewer, and 
so r . n must be positive for points on the visible portion of the 
plane. The equation r - n = 0 corresponds to a line in the image. 
Points on one side of this line, for which r . n > 0, can be images 
of points on the plane defined by the inward pointing normal n. 
Conversely, points on the other side of the line, where r n < 0, 
cannot. They can be thought of as images of points on a parallel 
but oppositely oriented plane corresponding to the vector -n. We 
are analyzing brightness gradients for a particular image region. If 
r . n > 0 for points in this region, then n is a possible solution for 
the surface normal. If r n < 0 for points in this region, then -n 
is a possible solution. If r n > 0 for some points and r . n < 0 
for others, then we are not dealing with the image of a single planar 
surface. 

Also, note that we can recover t and n up to a scale factor. We 
can let t to be a unit vector without loss of generality. Then, n can 
be found as follows: 

using the known value of a. 
So far, we haye assumed that n and r are not parallel. In the 

special case that t IIA, we have 

P *  = o(iA + Ap) = 2oAA T. 

This dyadic product has rank one, that is, it only has one nonzero 
eigenvalue. This is easy to show since any vector perpendicular to 
A is an eigenvector with zero eigenvalue. Also, A is an eigenvector 
with eigenvalue 20. 

So if we find that PI* has two equal eigenvalues (that is P *  has 
two zero eigenvalues), then we conclude that A and t are parallel 
and equal to the eigenvector corresponding to the remaining eigen- 
value. 

We then solve for the rotation parameters by substituting the 
solutions for n and t into the equation 

Even though we gave a complete and compact proof of the dual 
solution earlier, it is intriguing to confirm those results with our 
closed-form solution. We showed that the two solutions are related 
by 

where we have arbitrarily set 11) = I.  The two solutions given 
earlier for n and t already satisfy the duality relationship given 
above. The identity 

(ntT - tnT) x = x x (n X t), 

holds for any vector x. Using this in 

we arrive at 
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R'x = (R - ntT + tnT)x. 

If this is to be true for all vectors x, we must have 

R' = - ntT + tnT. 

So, we finally obtain 

We conclude that n' ,  t ', and o', as defined above, constitute a 
second solution since they lead to the same set of essential param- 
eters. 

IV. SUMMARY 
The problem of recovering the motion of an observer relative to 

a planar surface directly from the changing images (direct passive 
navigation) was investigated and two solution procedures were pre- 
sented. 

We first formulated an unconstrained optimization problem. 
Using conditions for optimality, it was reduced to solving a set of 
nine simultaneous nonlinear equations that we termed the planar 
motion field equations. Two iterative schemes for solving these 
equations were given. It was shown that all information in the im- 
age concerning motion recovery can bc captured by the moments 
of the image brightness derivatives that constitute the coefficients 
of the planar motion field equations. These moments are computed 
during an initial pass over the relevant image regions so that there 
is no need to refer back to the image after every iteration. This 
reduces the computation to accumulating 8 1 moments and perform- 
ing less than 300 multiplications per iteration in the first iterative 
scheme and approximately 700 multiplications in the second one. 

We also gave a compact proof that the problem can have at most 
two planar solutions. Through a selected example with synthetic 
data, it was shown that both schemes may converge to either of the 
two solutions, depending on the initial condition. In practice, once 
a solution is obtained, the other can be computed using the equa- 
tions given for the dual solution. 

In the tests carried out, both algorithms have converged to a 
possible solution, and accurate results have been obtained in less 
than 40 iterations using the first scheme, and in less than 15 itera- 
tions in the second one. As mentioned earlier, the results have not 

been as satisfactory when the translational motion component is 
perpendicular to the planar surface. These cases required several 
hundred iterations of either scheme for accurate solutions. It is con- 
ceivable that this special case that results in a unique planar solu- 
tion can be handled more appropriately by exploiting the fact that 
the translational motion is in the direction perpendicular to the sur- 
face. 

Even though both schemes require approximately the same num- 
ber of computations for convergence to a solution (second scheme 
converges faster but requires more computation), the second one 
seems more appropriate for parallel implementation. 

We also presented a closed-form solution to the same problem. 
We first employed the brightness change constraint equation that 
we developed for planar surfaces to compute 9 intermediate param- 
eters, the elements of a 3 x 3 matrix, from brightness derivatives 
at a minimum of eight image points. We referred to them as essen- 
tial parameters. The special structure of this matrix allows us to 
compute the motion and plane parameters easily. 
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