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Direct Passive Navigation

SHAHRIAR NEGAHDARIPOUR anp BERTHOLD K. P. HORN

Abstract—In this correspondence, we show how to recover the mo-
tion of an observer relative to a planar surface from image brightness
derivatives. We do not compute the optical flow as an intermediate
step, only the spatial and temporal brightness gradients (at a minimum
of eight points). We first present two iterative schemes for solving nine
nonlinear equations in terms of the motion and surface parameters that
are derived from a least-squares fomulation. An initial pass over the
relevant image region is used to accumulate a number of moments of
the image brightness derivatives. All of the quantities used in the it-
eration are efficiently computed from these totals without the need to
refer back to the image. We then show that either of two possible so-
lutions can be obtained in closed form. We first solve a linear matrix
equation for the elements of a 3 X 3 matrix. The eigenvalue decom-
position of the symmetric part of the matrix is then used to compute
the motion parameters and the plane orientation. A new compact no-
tation allows us to show easily that there are at most two planar solu-
tions.

Index Terms—Eigenvalue decomposition, least-squares, optical flow,
planar surfaces, structure and motion.

[. INTRODUCTION

The problem of recovering rigid body motion and surface struc-
ture from image sequences has been the topic of many research
papers in the area of machine vision (the reader is referred to a
survey of previous literature [1]). Two types of approaches, dis-
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crete and continuous, have been pursued. In the discrete approach,
information about the displacements of a finite number of discrete
points in the image is used to reconstruct the motion. To do this
one has to identify and match feature points in a sequence of im-
ages. The minimum number of points required depends on the
number of images. In the continuous approach, the optical flow,
that is the apparent velocity of image brightness patterns, is used.

In much of the work on recovering surface structure and motion,
it is assumed that either a correspondence between a sufficient num-
ber of feature points in successive frames has been established or
that a reasonable estimate of the full optical flow field is available.

In general, identifying features involves determining gray-level
corner points. For images of smooth objects, it is difficult to find
good features or corers. Further, the correspondence problem has
to be solved, that is, feature points from consecutive frames have
to be matched.

The computation of the local flow field exploits a constraint
equation between the local intensity changes and the two compo-
nents of the optical flow. This only gives the component of flow in
the direction of the intensity gradient. To compute the full flow
field, one needs additional constraints such as the heuristic as-
sumption that the flow field is locally smooth [4], [5]. This, in
many cases, leads to an estimated optical flow field that is not the
same as the true motion field.

In this corrspondence, we determine the motion of an obscrver
relative to a planar surface directly from the image brightness de-
rivatives without the need to compute the optical flow as an inter-
mediate step. We restrict ourselves to planar surfaces since only
three parameters are needed to specify the surface structure. We
will first derive the image brightness constraint equation for the
case of rigid body motion. A least squares formulation allows us
to derive nine nonlinear equations, the so-called planar motion field
equations, in terms of the motion and surface parameters. We pre-
sent two iterative schemes for solving these equations. It is shown
that all of the quantities used in the iteration can be computed ef-
ficiently from a number of moments of the image brightness deriv-
atives that are accumulated through an initial pass of over the rel-
evant image region. We therefore do not have to refer back to the
image. We also show that a closed-form solution to the same prob-
lem can be obtained through a two-step procedure. We first solve
a linear matrix equation for the elements of a 3 X 3 matrix equation
using brightness derivatives (at a minimum of eight points). The
eigenvalue decomposition of the symmetric part of this matrix al-
lows us to compute the motion parameters and the plane orientation
easily.

II. PRELIMINARIES

We first recall some details about perspective projection, the
motion field, the brightness change constraint equation, rigid body
motion, and planar surfaces. This we do using vector notation in
order to keep the resulting equations as compact as possible.

A. Perspective Projection

Let the center of projection be at the origin of a Cartesian co-
ordinate system. Without loss of generality we assume that the ef-
fective focal length is unity. The image is formed on the plane z
= 1, parallel to the xy-plane, that is, the optical axis lies along the
z-axis. Let R be a point in the scene. Its projection in the image is
r, where

1
r=——R.
R-Z
The z-component of r is clearly equal to one, thatisr * £ = 1.

B. Motion Field

The motion field is the vector field induced in the image plane
by the relative motion of the observer with respect to the environ-
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ment. The optical flow is the apparent motion of brightness pat-
terns. Under favorable circumstances the optical flow is identical
to the motion field. The velocity of the image r of a point R is
given by

For convenience, we introduce the notation r, and R, for the time
derivatives of r and R, respectively. We then have

1 1
= RI_
R:Z (R -2

which can also be written in the compact form

n

3 (R, - DR,

1
= ————— (£ X (R, X R)),
r, R 27 Z X (R, )
sincea X (b X ¢) = (¢ *+ a)b — (a - b)c. The vector r, lies in the
image plane, and so (r, * ) = 0. Further, r, = 0. if R|IR, as
expected.
Finally, noting that R = (R * 2)r, we gct

r= ﬁ(z’ X (R, X r).

C. Rigid Bodv Motion
In the case of the observer moving relative to a rigid environ-
ment with translational velocity ¢ and rotational velocity @, we find

that the motion of a point in the environment relative to the ob-
server is given by

R, =
Since R = (R - Z)r, we can write this as
R =—-R- Do Xr—1t

Substituting for R, in the formula derived above for r,, we obtain

e —(ex (rx (rxw - 2 0)

It is important to remember that there is an inherent ambiguity here,
since the same motion field results when distance and the transla-
tional velocity are multiplied by an arbitrary constant. This can be
seen easily from the above equation since the same image plane
velocity is obtained if one multiplies both R and ¢ by some con-
stant.

-w X R -t

D. Brightess Change Equation

The brightness of the image of a particular patch of a surface
depends on many factors. It may for example vary with the orien-
tation of the patch. In many cases, however, it remains at least
aproximately constant as the surface moves in the environment. If
we assume that the image brightness of a patch remains constant,
we have

dE
— =0,
dr
or
0E dr OE
— 5 +t—==0
or dt or

where dE/or = (3E/dx, 0E/dy, 0)7 is the image brightness gra-
dient. It is convenient to use the notation E, for this quantity and
E, for the time derivative of the brightness. Then we can write the
brightness change equation in the simple form

E -rn+E =0

Substituting for r, we get

Now
E-(EXrx))=(EXD rxn=EXHXr- 4
and by similar reasoning
E - @XrXrXxm))=((E XDHXNXnN"o,

so we have
1
E,—(((E,xi)><r)xr)-m+R—_2((E,><2)><r)-t=0.

To make this constraint equation more compact, let us define ¢ =
E,s=(E X2 Xr,and v = —s X r; then, finally,

c+v: o+ t=0.

R-2°°

This is the brightness change equation in the case of rigid body
motion.

E. Planar Surface

A particularly impoverished scene is one consisting of a single
planar surface. The equation for such a surface is

R-n=1,

where n/|n}{ is a unit normal to the plane, and 1/{n| is the perpen-
dicular distance of the plane from the origin. Since R = (R - )r,
we can write this as

b
R-%

so the constraint equation becomes

r-n=

c+v-o+@F-nis-H=0

This is the brightness change equation for a planar surface.

Note again the inherent ambiguity in the constraint equation. It
is satisfied equally well by two planes with the same orientation
but at different distances provided that the translational velocities
are in the same proportions.

III. RECOVERING MOTION AND STRUCTURE

Given image brightness E(x, y, 1), and its spatial and time de-
rivatives, E, and E,, over some region [ in the image plane, we are
to recover the translational and rotational motions, ¢ and ®, as well
as the plane n. Using the constraint equation developed above, we
could do this using image information at just a small number of
points. At each point we get one constraint and we have nine un-
knowns to recover—or rather, eight, since we can recover the dis-
tance of the plane and the translational velocity only up to a scale
factor. We will first present the iterative method. The motion pa-
raineters and the plane orientation are obtained from the solution
of nine nonlinear equations derived from a least-squares formula-
tion for minimizing the error in the brightness change constraint
equation. We then present the closed-form solution to the same
problem that involves a two-step procedure. First, we solve for
nine intermediate parameters, the elements of a3 X 3 matrix, using
brightness derivatives at a minimum of eight points. We then solve
for the motion parameters and the plane orientation from the ei-
genvalue decomposition of the symmetric part of this matrix.

A. Iterative Method: Least-Squares Formulation

Image brightness values are distorted with sensor noise and
quantization error. These inaccuracies are further accentuated by
methods used for estimating the brightness gradient. Thus it is not
advisable to base a method on measurements at just a few points.
Instead we propose to minimize the error in the brightness con-
straint equation over the whole region / in the image plane. So we
wish to minimize

J = SSI[c+v-m+(r-n)(s-t)]zdxa'y
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by suitable choice of the translational and rotational motion vectors
t and , as well as the normal to the plane n.
For an extremum of J we must have

EY; aJ aJ
Y oo0%oo Y o
o Oy =0 oad 5
That is,

SS,[c+v'u)+(r-n)(s-t)]vdxdy=0,
SSl(r-n)[c+v-u)+(r-n)(s-l)]sdxdy=0,

Sgl(s-t)[c+v-u) + (r-n(s- Hlrdedy = 0.

These equations comprise nine nonlinear (scalar) algebraic equa- .

tion in terms of the observer motion, ¢ and ®, and the surface nor-
mal n. We will call them the planar motion field equations. Some
observations about these equations are in order. The first equation
is linear in , ¢, and n. The second equation is linear in @ and ¢,
but quadratic in n. Finally, the last equation is linear in ® and n,
but quadratic in ¢. We will exploit the linearity of these equations
to formulate two iterative schemes.

1) First Scheme: We can rearrange the planar motion field
cquations to gct

[SS (vv") dxdy} o+ [SS: (r- n)(vsT)dXd)’}l =
I

—Sglcvdxdy,

HSI r- n)(svT)dxdy] o + [SSI (r- n)2(ssT)dxdy]l =
—SS c(r - n)s dx dy,
'

[S SI (s - 0*rr’) dx dy}n = - S SI [c + (v wW)(s - Ordxdy.

The first pair can be grouped in the form
Gz w)(2) =)
7 MJ\t dy/)’

M, = SS, (vvTy dx dy, M, = SS: (r - n)(vsT) dx dy,

where

M, = H: (r - n)(ss”) dx dy,

d, = SS cvdxdy, and d, = SS c(r + n)s dx dy.
I I

This can be solved for t and w, given the surface normal n. The

last equation is

Ndn = -8,
where
N, = SS, (s * DXrrT) dx dy,
g= SS: [c + (v - @)](s - OHrdx dy,

and can be solved for the surface normal n, gi\}en the pair of vec-
tors ¢ and .
The motion vectors are given by

o= M;'M, - M;'M))"\(M['d, — M;'d),
t= MM, - M7™™M,)"'(M;Td, - M[\d),

where (~7) denotes the inverse of the transpose of a matrix. This
can also be written in the form

t= (M, - MIM'M) "(MIM{'d, — &),
-M{'\d + My),

I

@
or

o= M - MM;'M) \(MM;'d, — d)),

t=-M;'d, + Mlw).

The surface normal is simply given by

n=—-N;'g

All arrays are either 3 X 3 matrices or vectors of length 3, and
therefore, the solutions for , ¢, and n can be computed easily.
Actually, most of the indicated matrix inversions do not have to be
carried out explicitly, since it is computationally cheaper to solve
these linear matrix equations by elimination.

So, in summary, we start with an initial guess for n. Using the
above equations, we solve for f and ® in terms of the current value
of n, and then for n in terms of the current values of £ and w. After
this, we evaluate the improvement in the solution to either go to
next iteration or stop if the solution has not improved.

2) Second Scheme: The first pair of the motion and surface re-
covery equations depend linearly on ¢ and w. As before,

HS, (va)dxdy} o+ HS, (r - m(vs" dxdy}t =
~Sglcvdxdy,

HSI (r - m@se’) dxdy} o+ HS (r - miss? dxdy}t =
i

—SS c(r - n)s dx dy,
]

which can be solved for ¢ and @ in terms of n. Furthermore, the
first and last equations depend linearly on n and m:

HSI (v’ dxdy} o+ HSI (s - H(r") dxdy}n =

—jg cv dx dy,
I
HS, (s-0 (rv’)dxdy} o + HS (s - O%rr" dxdy}n =

I

- S SI c(s + Ordx dy.

Given ¢, these may be solved for n and ®. For simplicity, let M,
M;, M, N,, d,, and d, be as defined earlier, and let:

Nl = Ml, dl = &),

N, = SS, (s - H(orT)dxdy, and e, = SS, cls - Or dx dy.
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Then

et ) (2) = ()
(e )= -(0)

The solution of the above cquations is given by

o= M;'M - M;'M)'(M;'d, — M5'd),
M'M, — M5'"M)"\(M;'d, — M['d),

and

t

It

and

i

o = (N;'N, = NJ'NDYU(N e, — Niley),

n= (NN~ Ny'N)"'(N:Tey — Ni'e)).

These may be rewritten in either of two asymmetrical forms shown
carlier.

Again, most of the indicated matrix inversions do not have to be
carried out explicitly, since we can solve the equations by elimi-
nation.

In this scheme. we start with an initial guess for n. We solve for
and @ in terms of the current value of n, and update ¢, then solvc
for n and w in terms of the current value of ¢, and update n, and,
finally. cvaluate the improvement in the solution to either continue
with the next iteration or stop if the solution has not improved.

3) Division of Labor: These methods would not be very attrac-
tive. it we had to perform integrations over the whole image region
I during cach iteration, in order to collect the matrices and vectors
appcaring in the cquations. Fortunately, this is not necessary. One
can sce this by writing the equations for the components of the
matrices and vectors using the summation convention of tensor cal-
culus (that is, there is an implicit summation over any index that
appedrs twice in an cxpression):

S S v;v; dx dy,

!

‘ 3 S U;8;r; dx dy
1

{M,}; = J SS s;sjrer dx dy
/

M.},

{Ml}ij

n;,

nny,

N, .

{d\}, = S SI cv, dy dy, {d>}, = } SS os, 1y dy dy
'

{NM}; = § S v v; dx dy,
!

{N}, = Sl ;817 dx dy ‘1‘.

{N3,; = SI susyriry dy dy ilkl,.

{e,}, = SS cv;dvdy,  {ex}; = ‘ SS/ cs;r; dx d_\'ll,-‘

and

o= ||

M, = N, and d, = ¢, do not depend on w, ¢, or n, and so need
only be computed once. Also, (cv;), (v;v;), (¢5;1;), (rzv;s8;), and

e
=

cris; dx dyJ't]- + H‘ S/ ;1 v; dx (IyJI‘. W

(ryris5;5;) depend only on r, E,, and £, and so can be integrated
over the image once. This appears to be asetof 3 + 9 + 9 + 27
+ 81 = 129 numbers, but, because of symmetry in (v;v;), and
(ryrys;s;), only 81 numbers have to be stored. These accumulated
totals represent all the image information needed to solve the mo-
tion recovery problem.

In the first scheme, we only perform 279 multiplications per it-
eration; The updating of the coefficients of the planar motion field
equations involves 27 + 9 + 42 + 42 + 42 = 162 multiplications
to compute M,, d,, My, N,, and g (note that M; and N, are sym-
metric). The updating of @, ¢, and n, in comparison, requires 117
multiplications.

In the second scheme, 696 multiplications are carried out at each
iteration; we compute the matrices M,, M; and the vector d;, re-
quired for the first half of the iteration, in 27 + 42 + 9 = 78
multiplications. The same number of multiplications is needed to
compute the matrices N;, N, and the vector e, required in the scc-
ond half. Further, solving for ® and ¢ takes about 270 multiplica-
tions, as does solving for @ and n in the second half of cach iter-
ative step.

Through a selected example, we will show that the second
scheme has a much better convergence rate at the expense of more
computation per iteration.

B. Uniqueness

It is important to establish whether more than onc solution is
possible. In general, this is clearly so, since an image of uniform
brightness eould correspond to an arbitrary uniform surface moving
in an arbitrary way. So the brightness gradients, or lack of bright-
ness gradients, can conspire to make the problem highly ambigu-
ous, What we are interested in here is whether two different planar
surfaces can give rise to the same motion field given two different
translational and rotational motions of the imaging system.

In our terms then, the question becomes: given that the bright-
ness change equation is satisfied for the motion ¢ and ® and the
planar surface n, is there another motion ¢’ and ' and another
planar surface n’ that satisfies the same equation at all points in the
region [ and for all possible ways of marking the surface? Note that
we have to consider a whole image region, since the problem is
underconstrained if we only have information along a line or at a
point in the image. We also have to include the condition that the
constraint should be satisfied for all possible surface markings to
avoid the kind of ambiguity discussed above, where brightness gra-
dients fortuitously line up with the motion ficld to create ambigu-
ity.

1) Dual Sofution: Suppose that two motions and two planar sur-
faces satisfy the brightness change equation. Then, we have

c+v-w+(r-ns-H=0,
ct+v- +(r-n)s-t)=0.
Subtracting these equations, we get
v -)+r-mEs-H - -n)s-t)=0.
Now v = —s X r, s0
~sXnN (w-)Y+@Fr -mEs-H-@F -n)s-t)=20,
or
—r (W —-—0)XS)+(r-ms-H—(r-n)Xs-t')=0.
If we let @ = (v, wy, wy) T then we can write
0 -—wy +w
o Xs=8Qs, where Q= |+w; 0 -
—wy, tu 0

is a suitable (3 X 3) skew-symmctric matrix. The (7, j)th element
of Q equals wye,;, where ¢€;; is the permutation symbol. (It equals
+1 when the ordered set i, j, k is obtained by an even permutation
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of the set 1, 2, and 3, it equals —1 when the ordered set is obtained
by an odd permutation, and it is zero if two or more of the indexes
are equal.)

Using this notation we can now write

TR - s+ r'atys — r’(n'rT)s = 0,
or just
- -0+ m™ —nr’ls =0.
This is to be true for all points r in the image region [ and all
possible brightness gradients. So
—-Q@-Q)+m" —nt" =0,

where the zero on the right-hand side here represents a 3 X 3 ma-
trix of zeros. Now Q7 = —Q, since Q is a skew-symmetric, so
taking the transpose of the equation we get

+Q-QY+ " -t =0.

Adding the two equations allows us to eliminate (@ — '), and
we end up with
(ntT + tnT) = (n’t’T + t’n’T).

The trace (sum of the diagonal elements) of T is just (n - ¢), so
we see immediately that (n - £) = (n’ - '7). But the above matrix
equation involving the dyadic products of n and ¢ as well as of n’
and ¢’ is much more constraining.

Consider the following threc possibilities:

1) If [’} = O or |¢'| = 0, theh their dyadic product isa 3 x 3
matrix of zeros. In this case the above equation is satisfied if and
only if |[r} = Oor|f| = 0.

2) If n'lin, ¢t and |n|jt'} = |nj}#|, then the two sums of dyadic
products are equal and the above equation is satisfied.
3) Ifn’ll¢, ¢'limand |n’||¢'] = |n||¢], then the two sums of dyadic

products are also equal and the above equation is satisfied.

It turns out that there are no other ways to satisfy the equation.
This can be shown using elementary properties of dyadic products
(see [8]) or by inspection of the six components of the above equa-
tion (because of symmetry there are only six independent compo-
nents).

The first case above corresponds to purely rotational motion,
because either the translational motion is zero, or the planar surface
is infinitely far away, and the translation does not generate a per-
ceptible component of the motion field. The solution is unique in
this case, because we find (2 — ©’) = 0, when we substitute back
into the matrix equation. (This is nothing new, since it has been
known for some time that the solution is unique in the case of purely
rotational and purely translational motion [2].)

In the second case we find that nt” = n't’”, since the vectors are
parallel and the product of their size is constrained by the condition
n -t =n'-t, derived earlier. Thus once again (2 — Q') = 0.
Nothing new is obtained here, since we already know that we can
change the lengths of the vectors # and ¢ as long as the product of
their lengths remains constant.

The third case is the most interesting. Here we have tn” =
n't'" so that

QR -Q)+ " —tm") =0,
and thus
—(Q@-Q)x + (" —tn")x =0,
for an arbitrary vector x. That is,
XX(w—-0)+xx@mxH=0,
for an arbitrary vector x, so that
-0 +nxt=0,

or®' = @ + n X t. To summarize then, if we ignore scaling of
the normal and the translational velocity, we obtain a dual solution,

TABLE 1
THE TRUE MOTION AND SURFACE PARAMETERS, AND A SUMMARY OF THE
RESULTS OF A SIMULATION THAT CONVERGES TO THE TRUE SOLUTION
USING THE FIRST SCHEME

True Rotational Motion Parameters w; =.003 wy;=.001 w3=-.01
True Translational Motion Parameters ¢) = .0005 ¢, = —.005 {3 =.0125
True Parameters of the Surface ny =.2 ny=.4 n3 =10
Initial Guess for the Simulation ny =100. ny=>5. ny = -1

Iter. (Rotational Par's) (Translational Par's) (Surface Par’s)
No. w) wy w3 13 I} ty n na ns
10 00531 .00260 -.01016 -.00069 ~.00284 .01301 .35524 .1923 L
15 .00429 00178 -.01008 -.00006 -.00384 .01291 .27623 .2742 L
20 .00353 .00137 -.01002 .00024 -.00454 .01270 .23725 .3448 1
25 00318 .00117 -.01000 .00038 -.00485 .01257 .21718 .3814 1
30 00305 .00107 -.01000 .00045 -.00495 .01252 .20755 .3945 1.
35 .00302 .00103 -.0!1000 .00048 -.00499 .01250 .20323 .3984 1.
40 .00300 .00101 -.01000 .00049 -.00500 .01250 .20137 .3996 1
45 00300 .00101 -.01000 .0G250 -.00500 .01250 .20058 .3999 1
50 .00300 .00100 -.01000 .00050 -.00500 .01250 .20024 .4000 1.
§5 00300 .00100 -.01000 .00050 -.00500 .01250 .20010 .4000 1.
60 .00300 .00100 -.01000 .00050 -.00500 .01250 .20004 .4000 1.
65 .00300 .00100 -.01000 .00050 -.00500 .01250 .20002 .4000 1
70 .00300 .00100 -.01000 .00050 -.00500 .01250 .20000 .4000 1.
given by

n =t =n and 0 =0 +n XLt

Hay was the first to show the cxistence of the dual solution [3],
although the result has apparently been independently rediscovered
several times since then [6], [7], [9]. (The most recent papers [6],
[7] came to our attention only after completion of our version of
the proof.)

This dual solution is not different from the original one in the
special case that the motion is perpendicular to the planar surface,
that is, nl¢. In this case the solution is unique. Further, if t - £ =
0, then n’ - 2 = 0. This corresponds to a planar surface parallel to
the observer’s line of sight, and may be considered to be a degen-
erate case.

C. A Selected Example

We now present the results of a simulation. It is noteworthy to
mention that in all simulations performed, our algorithms have
converged to a solution. However, the number of itcrations for
convergence to a solution depends on the initial condition (as is the
case with all iterative schemes developed for solving nonlinear
equations). In this example, we will demonstrate the sensitivity of
both schemes to the initial condition. The image brightness func-
tion was generated using a multiplicative sinusoidal pattern {one
that varies sinusoidally in both x and y directions), a 45° field of
view was assumed, and the image brightness gradients were com-
puted analytically to avoid errors due to image brightncss quanti-
zation and finite difference approximations of the brightness gra-
dient. In practice, the brightness at image points in two frames
would be discretized first, and the gradient computed using finite
difference methods.

Table I shows the true motion and surface parameters, and the
results of a simulation that converged to the true solution using the
first scheme described earlier. In Table II, the dual solution for the
true motion and surface parameters, and the results of a simulation
that converged to the dual solution are tabulated. In both cases, the
solution after various number of iterations are given. The results
show that in the first case, the error in each parameter after less
than 30 iterations is within 10 percent of the exact value. In the
second case, this accuracy is achieved in less than 20 iterations.
Similar results are presented in Tables III and IV for the second
scheme. Here, very good accuracy is achieved in less than 10 it-
erations for the true solution and about 5 iterations for the dual
solution.
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TABLE 11
THE DUAL MOTION AND SURFACE PARAMETERS, AND A SUMMARY OF THE
RESULTS OF A SIMULATION THAT CONVERGES TO THE DUAL SOLUTION
USING THE FIRST SCHEME

Dual Rotational Motion Parameters wy =.013 wy=-.001 w;=-.0112
Dual Translational Motion Parameters ¢y = .0025 {3 = .005 t3 =.0125
Parameters of the Dual Surface nm=.04 ny=-4 ny=10
Initial Guess for the Simulation n=.5 ny =15 n3 = -1.
Tter. {Rotational Par's) (Translational Par’s) (Surface Par's)
No. wy wy wy 3 ta ty ny na n3
10 .01302 -.00120 -.01118 .002G66 .00503 .01247 .01941 -.4021 1.
15 .01299 -.00108 -.01119 .00256 .00500 .01249 .03220 -.3992 1.
20 .0129¢ -.00103 -.01120 .00253 .00500 .01250 .03692 -.3993 1.
25 .01300 -.00i01 -.01120 .00251 .00500 .01250 .03876 -.3996 1.
30 .01300 -.00101 -.01120 .00250 .00500 01250 .03950 -.3998 1.
35 01300 -.00400 -.01120 .00250 .00500 .01250 .03980 -.399 1.
0 01300 -.00100 -.01120 00250 00500 01250 .03092 -.4000 1.
45 01300 -.00100 -.01120 00250 .00500 .01250 .03997 -.4000 1.
50 01300 -.00100 -01120 00250 .00500 .01250 .03999 -.4000 1.
TABLE 111

THE TRUE MOTION AND SURFACE PARAMETERS, AND A SUMMARY OF THE
RESULTS OF A SIMULATION THAT CONVERGES TO THE TRUE SOLUTION
USING THE SECOND SCHEME

True Rotational Motion Parameters w =.003 wy=.001 wy=-.01
True Translational Motion Parameters ; =.0005 {3 = —.005 ¢ty =.0125
True Parameters of the Surface n=.2 ny=.4 ny =10
Initial Guess for the Simulation n, =100. n3=35. ny=-1

Tter. (Rotational Par’s) (Translational Par’s) (Surface Par’s)

No. w 1w wy 1 t3 ty n ny ny
5 .€0254 .00105 -.00990 .00039 -.00546 .01202 .20581 .44259 1.
10 .60296 .00100 -.00999 .00049 -.00504 .01246 .20039 .40375 1.
15 .60300 .00100 -.01000 .00050 -.00500 .01250 .20004 .40037 1.
20 .60300 .00100 -.01000 .00050 -.00500 .01250 .20000 .40004 1.
25 .00300 .00100 -.01000 .00050 -.00500 .01250 .20000 .40000 L

TABLE 1V

THE DuAL MOTION AND SURFACE PARAMETERS, AND A SUMMARY OF THE
RESULTS OF A SIMULATION THAT CONVERGES TO THE DUAL SOLUTION
USING THE SECOND SCHEME

Dual Rotational Motion Parameters wy =.013 wp=-.001 wy=-.0112
Dual Translational Motion Parameters t; = .0025 {3 = .005 t3 = .0125
Parameters of the Dual Surface np=.04 np=-4 n3 =10
Initial Guess for the Simulation n=.5% ng=15 ng = -1

Tter. (Rotational Par's) (Translational Par’s) (Surface Par’s)

No. w wq wy 4 t2 ts n na ny
H .01330 -.00102 -.01122 .00248 .00531 .01221 .03790 -.42663 1.
10 .01303 -.00100 ~.01120 .00250 .00503 .01248 .03979 -.40245 1.
15 .01300 -.00100 ~-.01120 .00250 .00500 .01250 .03998 -.40024 1
20 01300 -.00100 -.01120 .00250 .00500 .01250 .04000 -.40002 1.
25 01300 -.00100 -.01120 .00250 .00500 .01250 .04000 -.40000 1.

In similar tests, with various motion and surface parameters, ac-
curate results have been obtained in less than 40 iterations using
the first scheme and a variety of initial conditions. The same ac-
curacy for the second scheme required less than 15 iterations. More
importantly, both schemes eventually converged to one of the two
possible solutions. However, the results for the particular case
where the translational motion vector is (almost) parallel to the sur-

face normal have not been as satisfactory. In these cases, several
hundred iterations were required to achieve reasonable accuracy,
even with the second scheme. Although the nature of this behavior
has not been investigated in detail, it appears to resemble that ob-
served when the Newton-Raphson method is applied to a problem
where two roots are very close to one another.

D. Closed-Form Solution: Essential Parameters for Planar
Surfaces

The brightness change equation can be written as

c+(rXs)-o+ @ -n(-H=0
Using the identify (r X 5) * ® = r - (s X ®), we obtain
c—r-(@xs)+ @& -mis-nH=0.

We now use the isomorphism between vectors and skewsymmetric
matrices. Let us define

0 —s +w2
Q= +(A)3 0 —un .
—w, +uw 0

then, Qs = (® X s), and we conclude that
c—r’Qs + r'm)(t’s) = 0,

or
c+r’i(—Q + mtNHs = 0.
If we define
D P2 D3
P={ ps ps ps| = —Q +nt',
P1 Ps Py
we can finally write
c+r’Ps =0,

We will refer to {p;} as the essential parameters (in agreement
with Tsai and Huang {10]) since these parameters contain all the
information about the planar surface and motion parameters. The
above constraint equation is linear in the elements of P. Several
such equations, for different image points, can be used to solve for
these parameters. We will show how the special structure of P can
be exploited to recover the motion and plane parameters very eas-
ily.

Note that the essential parameters are not independent. This is
because P is not an arbitrary 3 X 3 matrix. It has a special structure
as a result of the fact that it is the sum of a skew-symmetric matrix
and a dyadic product. It takes three parameters to specify ® (and
hence ), three to specify n, and another three for f. The matrix
P, however, is unchanged if we replace n by kn and ¢ by (1/k)t for
any nonzero k. Thus, there are actually only eight degrees of free-
dom, not nine.

Equivalently, we can say that there is one constraint on P. Since
Q7 = —Q, it follows that

Px=P+P =nu" + "
A dyadic product has rank one, or less. The sum of two dyadic
products has at most rank two. So we conclude that
det (P + PTy = 0.

This constraint can be expressed in terms of the essential parame-
ters as

PPspe — pepg) + pa(p3ps — Pape) + pp2ps — p3ps) = 0.

We can use this equation, for example, to solve for py given p,,
P2 * -, pg. It is difficult to use this equation directly when one
attempts to find P from image brightness measurements.
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There is a simple way around this problem, however. Note that
r’s = 0, because s = ((E, X £) X r). So r'Is = 0, and
c+r'(P+IDs =0,
for arbitrary /. If we let P’ = P + [I, we can write
c+r’Ps=0,

and conclude that we cannot recover P from image brightness mea-
surements alone. To find P, we must impose the constraint det (P
+ P") = 0. To avoid dealing directly with the resulting nonlinear
relation between the essential parameters, we first find any P’ that
satisfies the above brightness change constraint equation for all im-
age points being considered, and then determine / such that P =
P’ — [I satisfies

det (P + PT) = 0.
Now,
det (P + P") = det (P' + P'" = 21I) = 0,
5o that 2/ must be an eigenvalue of the real symmetric matrix
P*=P + P,
It will becomc apparent, in the next section, that we ought to choose
the middle one of the three real eigenvalues of P'* for 21.

In summary, the overall plan is to find any matrix P’ that satis-
fies the image brightness constraint equation.

c+r’Ps =0,

at a suitable number of image points and consequently determine
P'*. We can then solve for the middle eigenvalue of P"* (which is
2[) so as to construct the singular matrix P = P’ — lI, and from
that we finally determine # and ¢ as well as £ (and hence w) using
the relationship

P=-Q + "

l) Recovering Essential Parameters: We are looking for a ma-
trix P’ that satisfies the brightness change equation,

c+r’P's =0,
at a chosen number of image points. Now,
r’P's = Trace {(sr")P'},

or

r’P's = Flat (sr7) - Flat (P"),

where Flat (M) is the vector obtained from the matrix M by ad-
joining its rows. So we can write the brightness change equation
in the form

c+a'p =0,

where
(- . [ nT
p' = (pl. p2 oY,
a = (1§, Sy, FiS3 P8, rasa, raSy, Fi8). Fyss. r.;x])’.

We first consider finding p’ from the image brightness deriva-
tives at the minimum number of points necessary. Later, we con-
sider instead a least-squares procedure that takes into account in-
formation in a whole image region.

From the dcrivatives of the brightness at the ith image point con-
sidered, we can construct the vector a; such that

alp = .

As discussed above, there are really only eight independent degrees
of freedom. So we can arbitrarily fix one of the components of the
vector p’. This means that we can solve for the other eight using
constraint equations derived from eight image points.

Let p’ = (pi, p5 *** , pb» 0)T denote the solution obtained by
setting the last element equal to zero. If we define

T
B =(pip PO,
. ! r
d = (1S, NS risy, 1Sy, rasy, 28y, 1S, 1),
then the above constraint equation reduces to

d;rp’ = —C;.
Using eight independent points, we can solve the following linear
matrix equation:

Ap' = —c,
where

A=(a dy -, d),c=(, "¢,

The solution of the above equation is
p=—A"lc

Image intensity values are corrupted with sensor noise and quan-
tization. These inaccuracies are further accentuated by methods
used for estimating the brightness gradient. Thus it is not advisable
to base a method on measurements at just a few points. Instcad we
propose to minimize the error in the brightness constraint equation
over the whole region / in the image plane. So we choosc the vector
p' that minimizes

S SI @p + o drdy.

The solution, in this case, is given by

(o) ([ o)

In either case, we construct p’ by adjoining a zero to the vector
p'. The result immediately gives us the matrix P'. We determine
the eigenvalues of P'* so that we can construct P* by subtracting
the identity matrix times twice the middle eigenvalue from P'*.
We can also determine P by subtracting the identity matrix times
the middle eigenvalue from P’. At this point, we are rcady to re-
covert?, w, and n.

Note that we do not have to repeat the eigenvalue-eigenvector
analysis, since P* has the same eigenvectors as P'*, and its eigen-
values are merely shifted so as to make the middle one equal to
zero. This follows from the fact that if # and X are an eigenvector-
eigenvalue pair of P'*, that is,

P'*u = \u.

p =

then u and (N — 2!/) are an eigenvector-eigenvalue pair of P*,
since

Py = (P'* =2l u = (N = 2))u.

2) Recovering Motion and Structure: We now show how to
compute the parameters of the translational motion and the plane
orientation from the essential parameters. When we havc done this,
we will be able to also find the rotational parameters using

Q=nmn" - P

As we saw before
Pr=P+P =t +nt

since Q is skew-symmetric. Let us use the notation o = |n|}¢|, and
T = A - I, where

n ~ t

A=—, and { = —,

|n| l]

are the unit vectors in the directions of the surface normal and the

translation vector, respectively. Then,

Trace (P*) = Trace (P) + Trace (P7) = 2n - t = 207.
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It turns out that A and £ can be easily recovered from the eigenvec-
tors of the matrix P*. In the following lemma, we show that the
eigenvectors of P* are combinations of the sought after vectors A
and /.

Lemma 1: Let P* = UAU be the eigenvalue decomposition of
P*=(nT + mtT). If n is not parallel to ¢, then,

A = Diag (o(r = 1), 0, a(7 + 1)),

and,

f-n ixa f(+48
- L/z(l -V =220 + r)}'
Proof: Note that
P* = gtn”T + Af7).
Now (f'x A) is the eigenvector with eigenvalue zero since
P x A) = o(fAT + A(TY({ x A)
= of(AiR] + oA [fAf] = 0.

Since P* is real symmetric, it has three orthogonal eigenvectors.
The other two eigenvectors must, therefore, be in the plane con-
taining ¢ and A. Let u = of + BA and N denote an eigenvector-
eigenvalue pair for some « and 3 (1o be determined). Then,

oiiT + AT (of + BR) = NMof + BA),
that becomes
ola(f - A) + B - A + olalf - H + BU - WA = haf + \BA.
Since (f -+ A) = 7, we can write

AN ()

For this pair of homogeneous equations to have a nontrivial solu-
tion for « and B3, the determinant of the 2 x 2 coefficient matrix
must be zero, that is,

(o1 = N> =02 =0,

or

A=o(r £+ 1.
Substituting for A into the earlier equations, we obtain
= +8.

Note that o(7 — 1) < O and o(7 + 1) > O because 7 < 1, as it is
the cosine of the angle between # and £. So one eigenvalue is neg-
ative and one is positive. (This is why we choose to make the mid-
dle eigenvalue zero when constructing P* from P'*.) We find that
eigenvectors corresponding to the eigenvalues \; = o(7 — 1) and
N =o(r+ aret - Aiand f + A, respectively. If we normalize
these, we obtain the unit vectors

{-a i+
U, = ————and u; = —
20 - T+

Note that we can determine o = |n||f] from
o= %( = A

|
The equations for u, and u; are linear in £ and A, and so can be
easily solved for these vectors:

= Vi(l + Nuy — V(1 — Duy,
f= Vi1 + Duy + V31 - Du,.

The sign of the eigenvectors are arbitrary. If we change the sign of
u,, we obtain instead

= VI + Du; + 10 = Du,
f=Vi(1 + Duy — J1(1 = nuy,

where A and £ are interchanged. This is the dual solution.

The signs of the two eigenvectors can be chosen independently.
This might suggest that there are a total of four different solutions
for A and {. We show next that two of these solutions can be dis-
carded because they correspond to viewing the planar surface ‘*from
behind.’” We assume that the visible part of the plane is the bound-
ing surface of some solid object. We chose to define the orientation
of the surface using the inward pointing normal n. The equation of
the planeisR - n = 1,0or(r - n)(R - 9) = 1, since

R=@R"- Hr

Now, R - £ = Z is positive for points in front of the viewer, and
so r + n must be positive for points on the visible portion of the
plane. The equation r - n = 0 corresponds to a line in the image.
Points on one side of this line, for which r - n > 0, can be images
of points on the plane defined by the inward pointing normal n.
Conversely, points on the other side of the line, where r - n < 0,
cannot. They can be thought of as images of points on a parallel
but oppositely oriented plane corresponding to the vector —n. We
are analyzing brightness gradients for a particular image region. If
r - n > 0 for points in this region, then n is a possible solution for
the surface normal. If r - n < 0 for points in this region, then —n
is a possible solution. If r + n > 0 for some points andr - n < 0
for others, then we are not dealing with the image of a single planar
surface.

Also, note that we can recover ¢ and n up to a scale factor. We
can let £ to be a unit vector without loss of generality. Then, n can
be found as follows:

= |n|# = |n||t|f = on,

using the known value of o.
So far, we have assumed that n and ¢ are not parallel. In the
special case that £]|A, we have

P* = o(in” + AiT) = 20hA7.

This dyadic product has rank one, that is, it only has one nonzero
eigenvalue. This is easy to show since any vector perpendicular to
A is an eigenvector with zero eigenvalue. Also, # is an eigenvector
with eigenvalue 20.

So if we find that P'* has two equal eigenvalues (that is P* has
two zero eigenvalues), then we conclude that # and £ are parallel
and equal to the eigenvector corresponding to the remaining eigen-
value.

We then solve for the rotation parameters by substituting the
solutions for n and ¢ into the equation

Q=m"-P
Even though we gave a complete and compact proof of the dual
solution earlier, it is intriguing to confirm those results with our
closed-form solution. We showed that the two solutions are related
by

n=nlt,t' = —, o

I I’
where we have arbitrarily set |¢ff = 1. The two solutions given
earlier for n and ¢ already satisfy the duality relationship given
above. The identity

=W +n Xt

(ntT - tnT)x =x X (n X1,
holds for any vector x. Using this in
O Xx=+rXHXx=0Xx+@nXHXux,
we arrive at

o Xx=0Xx— (" —-tmHx,
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or
Qx =@ —-nt’ + tnHx.
If this is to be true for all vectors x, we must have
Q=Q—nt’ +m’.

So, we finally obtain

-Q +ntT=-Q+nt’ —tm +m’,
or,
-Q+nt’ =P

We conclude that »', ¢, and w’, as defined above, constitute a
second solution since they lead to the same set of essential param-
eters.

~Q + 't =

IV. SUMMARY

The problem of recovering the motion of an observer relative to
a planar surface directly from the changing images (direct passive
navigation) was investigated and two solution procedures were pre-
sented.

We first formulated an unconstrained optimization problem.
Using conditions for optimality, it was reduced to solving a set of
nine simultaneous nonlinear equations that we termed the planar
motion field equations. Two iterative schemes for solving these
equations were given. It was shown that all information in the im-
age concerning motion recovery can be captured by the moments
of the image brightness derivatives that constitute the coefficients
of the planar motion field equations. These moments are computed
during an initial pass over the relevant image regions so that there
is no need to refer back to the image after every iteration. This
reduces the computation to accumulating 81 moments and perform-
ing less than 300 multiplications per iteration in the first iterative
scheme and approximately 700 multiplications in the second one.

We also gave a compact proof that the problem can have at most
two planar solutions. Through a selected example with synthetic
data, it was shown that both schemes may converge to either of the
two solutions, depending on the initial condition. In practice, once
a solution is obtained, the other can be computed using the equa-
tions given for the dual solution.

In the tests carried out, both algorithms have converged to a
possible solution, and accurate results have been obtained in less
than 40 iterations using the first scheme, and in less than 15 itera-
tions in the second one. As mentioned earlier, the results have not

been as satisfactory when the translational motion component is
perpendicular to the planar surface. These cases required several
hundred iterations of either scheme for accurate solutions. It is con-
ceivable that this special case that results in a unique planar solu-
tion can be handled more appropriately by exploiting the fact that
the translational motion is in the direction perpendicular to the sur-
face.

Even though both schemes require approximately the same num-
ber of computations for convergence to a solution (second scheme
converges faster but requires more computation), the second one
seems more appropriate for parallel implementation.

We also presented a closed-form solution to the same problem.
We first employed the brightness change constraint equation that
we developed for planar surfaces to compute 9 intermediate param-
eters, the elements of a 3 X 3 matrix, from brightness derivatives
at a minimum of eight image points. We reterred to them as essen-
tial parameters. The special structure of this matrix allows us to
compute the motion and plane parameters easily.
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