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Abstract. In the course of designing an integrated system for locating the focus of expansion (FOE) from a
sequence of images taken while a camera is translating, a variety of direct motion vision algorithms based on
image brightness gradients have been proposed (McQuirk, 1991 ; McQuirk, 1996) . The location of the FOE is the
intersection of the translation vector of the camera with the image plane, and hence gives the direction of camer a
motion . This paper will describe two approaches that appeared promising for analog very large scale integrate d
(VLSI) circuit implementation . In particular, two algorithms based on these approaches are compared with respec t
to bias, robustness to noise, and suitability for realization in analog VLSI . Based on these results, one algorithm
was chosen for implementation and this paper will also briefly discuss the real-time analog CMOS/CCD VLS I
architecture realized in the FOE chip.

Keywords : Focus of Expansion, Motion Vision, Passive Navigation, Analog VLS I

1. Introduction

In recent years, some attention has been given to the
potential use of custom analog VLSI chips for early vi-
sion processing problems such as optical flow (Tanner
and Mead, 1986), smoothing and segmentation (Yang
and Chiang, 1990; Keast and Sodini, 1993) orienta-
tion (Standley, 1991), depth from stereo (Hakkarainen
and Lee, 1993), edge detection (Dron, 1993) and align-
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9117724 . Ignacio S. McQuirk was supported by an NSF graduate
fellowship and a Cooperative Research Fellowship from AT&T Bell
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ment (Umminger and Sodini, 1995) . The key features
of early vision tasks such as these are that they involv e
performing simple, low-accuracy operations at eac h
pixel in an image or pair of images, typically resultin g
in a low-level description of a scene useful for highe r
level vision . This type of processing is often well suited
to implementation in analog VLSI, resulting in com-
pact, high speed, and low power solutions . Through a
close coupling of processing circuitry with image sen-
sors, these chips can exploit the inherent parallelism
often exhibited by early vision algorithms, allowin g
for an efficient match between form andfunction . This
paper details some of the algorithms developed in th e
application of this approach of focal plane processin g
to the early vision task of passive navigation .
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Fig. !. Illustration of the passive navigation scenario, showing the definition of the focus of expansion as the intersection in the camera fram e

of reference of the camera velocity vector with the image plane .
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Fig. 2 . Viewer-centered coordinate system and perspective projection .

An important goal of motion vision is to estimate the
3-D motion of a camera in an environment based only
on the measured time-varying images . Traditionally,
there have been two basic approaches to this problem .
In feature based methods, an estimate of motion and
scene structure is found by establishing the correspon-
dence of prominent features such as edges, lines, etc.,
in an image sequence (Jain, 1983 ; Dron, 1993). In mo-
tion field based methods, the optical flow (Horn and
Schunk, 1981) is used to approximate the projection
of the three dimensional motion vectors onto the im-
age plane and from this an estimate of camera motio n
and scene depth can be found (Bruss and Horn, 1983) .
Both the optical flow calculation and the correspon-
dence problem have proven to be difficult in terms o f
reliability and, more importantly for us, implementa-
tion. In keeping with our paradigm of local, low-level ,
parallel computation, we have explored methods whic h
directly utilize image brightness information to recover
motion (Horn, 1990 ; McQuirk, 1991) .

The introduction of the focus of expansion (FOE)
for the case of pure translation simplifies the general
motion problem substantially. The FOE is the inter-
section of the translation vector of the camera with the
image plane. This is the image point towards which
the camera is moving, as shown pictorially in Fig-
ure 1 . With a positive component of velocity along th e
optic axis, image features will appear to move awa y
from the FOE and expand, with those closer to th e
FOE moving slowly and those further away moving
more rapidly. Through knowledge of the camera pa-
rameters, the FOE gives the direction of 3-D camer a
translation . Once the location of the FOE has been

ascertained, we can estimate distances to points in the
scene being imaged. While there is an ambiguity i n
scale, it is possible to calculate the ratio of distance
to speed. This allows one to determine the time-to-
impact between the camera and objects in the scene.
Applications for such a device include the control of
moving vehicles, systems warning of imminent colli-
sion, obstacle avoidance in mobile robotics, and aid s
for the blind.

There are a variety of direct methods for estimat-
ing the FOE that were explored for implementation i n
analog VLSI; two of the more promising algorithms
considered are presented in this paper. We chose one
for actual realization in an integrated system and th e
architecture used for this FOE chip will also be de -
scribed .

2. The Brightness-Change Constraint Equatio n

The brightness-change constraint equation (BCCE)
forms the foundation of various algorithms for rigi d
body motion vision (Negahdaripour and Horn, 1987a;
Horn and Weldon, 1988) and is also the basis for th e
variants that we have explored for potential implemen-
tation in analog VLSI . This equation relates the ob-
served brightness gradients in the image with the mo-
tion of the camera and the depth map of the scene . It
is derived from the following three basic assumptions :

• A pin-hole model of image formation.
• Rigid body motion in a fixed environment .
• Instantaneously constant scene brightness .
Following (Bruss and Horn, 1983 ; Negahdaripour

and Horn, 1987a ; Horn and Weldon, 1988), a viewer
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based coordinate system with a pin-hole model of im-
age formation is adopted as depicted in Figure 2 . A
world poin t

R (X,Y,Z)T

	

(1)

In practice, the constant brightness assumption has
been shown to be valid for a large class of image se-
quences (Horn and Schunk, 1981) .

Differentiating the perspective change equation an d
substituting both the rigid body and constant brightnes s
assumptions, we find the general brightness-change
constraint equation (BCCE) :

is mapped to an image poin t

r°-(x,y,f)T

	

(2)

E=+y-w+ s t = 0f

	

R•i (6)

using a ray passing through the center of projection
placed at the origin of the coordinate system . The im-
age plane Z = f, where f is the principal distance, i s
positioned in front of the center of projection for con-
venience. The optic axis is the perpendicular from the
center of projection to the image plane and is paralle l
to the Z-axis . The x- and y-axes of the image plane
are also parallel to the X- and Y- axes and emanate
from the principal point (0, 0, f) in the image plane .

The world point R and the image point r are related
by the perspective projection equation (Horn, 1986) :

where s and v are strictly properties of the imag e
brightness gradients along with the x and y positio n
in the image :

- f Er
s =

	

-fEy
xEr+yEy
+f2 Ey +y(rEr +yEy )

v = -f2Er- x (xE + yEy)

	

(7 )
f(yEE - zEy )

In order to investigate the case for translation only, we
set w = 0 and define the FOE as the intersection of the
translational velocity vector t with the image plane :

r _ R.
(3)

ftf R i ro = (xo, yo, f) = t

	

(8)

Assuming that the camera moves relative to a rigid en -
vironment with translational velocity t = (tr, ty , t,)T
and rotational velocity w = (car , w y , w, )T , the motion
of a world point R relative to the camera satisfies :

dR _ - t (wxR)

	

(4)

A common method used to relate the apparent motio n
of image points to the measured brightness E(x, y) i s
through the constant brightness assumption . We as-
sume that the brightness of a surface patch remain s
constant as the camera moves, implying that the total
derivative of brightness is zero :

d~

	

+ DE
dt - 0

	

(5)

Et= i
OE

	

OE

	

T

, DE=(Er,Ey,d)T = ~Ox 9.

'o)

Simplifying the constraint equation in this case results
in :

Eg+ (VE•(r-ro)) =0

	

(9 )

and rewriting this gives our final result for the BCC E
under translation only :

rEt+(x-xo)Er+(y-yo)Ey=O (10)
r Zit,

The time-to-impact r is the ratio of the depth Z to the
velocity parallel to the optic axis . This is a measure
of the time until the plane parallel to the image plane
and passing through the center of projection intersect s
the corresponding world point . The time-to-collisio n
of the camera is the time-to-impact at the focus o f
expansion .

Examining Equation 10, we note that the time to
impact map r is a function of x and y, while the FO E
is a global parameter. Given a time-to-impact map or
assuming a special form of scene geometry such as a
plane (Negahdaripour and Horn, 1986), the proble m
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Fig. 3 . An illustration of the simple geometry associated with stationary points using a Mondrian image consisting of a dark disk . The FOE i s
located at the intersection of the tangents at the stationary points ..

is overdetermined and we can recover the FOE usin g
least-squares minimization approach . However, we
are interested in the more general case where th

e time-to-impact map and the motion are both unknown . In
this situation, the problem is underdetermined and a
more creative method must be found .

3 . Two Algorithms Suitable for Analog -VLSI

The paramount consideration we used when examinin g
algorithms for estimating the FOE was the feasibilit y
of implementing them in analog VLSI. Adhering to the
focal-plane processing approach in the analog domai n
necessitates algorithms which use low-level computa-
tions operating locally on image brightness . Further-
more, in order to get a reasonable degree of parallelism ,
any algorithm we propose must be exceedingly sim-
ple in order to have any chance of actual implemen-
tation . The BCCE gives a useful low-level relation -
ship between the location of the focus of expansion i n
the image plane and the observed variation of imag e
brightness, and we would like to exploit this to estimat e
the FOE . Unfortunately, this relation also includes the
unknown time-to-impact r . In order to still use th e
BCCE without knowledge of r, two approaches have
been proposed. In the first approach, image points
where brightness is instantaneously constant are iden-
tified . Ideally, the FOE would be at the intersection

of the tangents to the iso-brightness contours at thes e
"stationary" points . In the second approach, the obser-
vation is made that when given an incorrect estimat e
of the location of the FOE, solving the BCCE for r
gives rise to depth estimates with incorrect sign . How-
ever, depth is positive and thus an estimate for the FOE
can be found which minimizes the number of negative
depth values.

3.1. The Stationary-Points Algorith m

Image points where Et = 0 provide important con-
straints on the direction of translation ; they are referred
to as stationary points (Horn and Weldon, 1988) . With
Et = 0, the first term of the BCCE drops out and th e
constraint at the stationary points becomes one of or-
thogonality between the measured s and the translatio n
vector t :

s t = 0

	

(11 )

Previous approaches utilized these special constraint s
to estimate t directly as opposed to finding the FOE.
A least-squares minimization sum over the stationary
points can be formed with an additional term utilizin g
a Lagrange multiplier to insure that the magnitude of t
is normalized to unity. This normalization is necessary
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in order to account for the inherent scale factor ambi-
guity in t . The solution to this minimization problem i s
itself an eigenvector/eigenvalue problem: the estimate
for t which minimizes the sum is the eigenvector cor-
responding to the smallest eigenvalue (Negahdaripou r
and Horn, 1987a; Horn and Weldon, 1988). Calcula-
tion of eigenvectors and eigenvalues in analog hard -
ware is possible, but difficult (Horn, 1990) .

To find a solution more amenable to implementa-
tion, we can instead perform a similar minimization
now in terms of the FOE, and this leads to a simple
linear problem . The constraint at the stationary points
becomes :

VE . (r - ro) = (x - zo)EE+(y - y0)Ey = 0

Figure 3 demonstrates the simple geometry of a sta-
tionary point . For illustrative purposes, we have con-
structed aMondrian image consisting of a dark circular
disk on a white background . As such, the image bright-
ness gradient OE points everywhere outward from th e
disk . A stationary point occurs on the disk when the
brightness gradient is perpendicular to the vector em-
anating from the FOE. The focus is located at the in-
tersection of the tangents to the brightness gradient a t
these points .

Of course, in a real image these tangent lines will
not precisely intersect . In such a case, we can then fin d
a solution by minimizing the sum of the squares of the
perpendicular distances to these constraint lines :

min V' W (E:) (OE • (r - ro))

	

(12 )
ra

*El

Here the sum is over the entire image I and a weighting
function W( Et ) is used to allow only the contributions
of those constraints that are considered to correspon d
to stationary points . As such, this function weighs in-
formation more heavily at image points where Et O .
The closed form solution to this minimization problem
is the linear system:

E W(E t )(OEOET) ro
rer

	

(13 )
>W(Et)(VEOET) r
rE l

It is important to note that the actual functional form
of the weighting with Et is not essential, as long as

the weight is small for large E t and large for small E t .
Thus, in practice we are able to use a simple functio n
such as a cutoff on the absolute value of Et :

W(E:, n)=~
1 if 1E:1< rl
0 otherwise

Posing the problem in terms of the FOE leads to a
simple linear solution and it is this which is quite ap-
pealing for realization in analog VLSI . However, there
are two main drawbacks to this approach . First, our es-
timate of the FOE relies on information garnered fro m
the stationary points, and these points usually form a
small subset of the overall image. The small number
of points contributing to the solution as well as the se-
lection of these points via the weighting function raises
the question of noise immunity . Secondly, it is impor-
tant to note that the algorithm can fail if the range of r
is too large . For example, if the horizon is in the scene
then we have Z -+ co at the horizon . This implies
that all points along the horizon will have E_ 0 even
though they need not satisfy VE • (r - ro) = 0 and
hence the solution will be strongly biased. This prob-
lem is characteristic of all methods which emphasize
information obtained from the stationary points .

3.2. The Depth-Is-Positive Algorithm

The depth-is-positive approach was formulated in a n
attempt to remedy the problems associated with th e
stationary-points algorithm . This method for estimat-
ing the FOE is based on the idea that the depth cal-
culated from the BCCE with the correct location of
the FOE should be positive (Negahdaripour and Horn ,
1987b). Since the BCCE only involves the ratio o f
depth to forward velocity, there is a overall sign am-
biguity since this velocity can be either positive or
negative. In the latter case the focus of expansio n
would become a focus of constriction . However, if we
assume a priori that we have forward motion then w e
can require that the estimated r found by solving th e
BCCE be positive:

sign(r) = -sign (Et vE • (r - ro)) > 0

Returning to our simple Mondrian image, Figure 4
illustrates the constraint line found by imposing pos-
itive depth . For each image point, the tangent to the
brightness gradient can be drawn . If the FOE esti -

(14)
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Fig. 4. An illustration of the constraint provided by imposing positive depth at an image point. The tangent to the image brightness divides th e
image plane into permissible and forbidden half-planes.

mate is placed on one side of this line, r will evaluat e
positive, whilst on the other side it will evaluate neg-
ative . Hence, each image point constrains the FOE to
lie in a permissible half-plane and the true' FOE mus t
therefore lie in the region formed by the intersectio n
of all the permissible half-planes of the points in th e
image . Each constraint provided by imposing posi-
tive depth is weaker than that provided by a stationary
point. However, the depth-is-positive constraint ap-
plies at all image points, not just a select few, and thi s
observation holds out the possibility that our solution
can potentially rely on substantially more points and
may be more robust as a consequence .

To cast the depth-is-positive constraint in terms of a
minimization problem, we can formulate an error su m
using only the sign of the calculated depth :

min Eu (-r(ro) )
rO rEf

	

(15 )

where u(t) is the unit step function . The solution to
this problem attempts to find the location of the FOE
that minimizes the number of image points which give
negative depth values . This is a difficult problem to
solve since the sum is not convex . To ameliorate this

difficulty, we can include convexity in addition to the
sign information in the minimization sum . To motivat e
the form of this convexity, we can make the followin g
observation. If we use an incorrect value for the FO E
of r'a, we find that the resulting r' satisfies:

r, r ( q
E•(r-ro)

	

(16 )
DE•(r-ro )

and hence not only can we get negative depth values fo r
an incorrect FOE location, but they can also be larg e
in magnitude. Thus, it seems a reasonable to augment
the error sum of Equation L5 to :

z
minE (Etr(ro)) u (-r(ro)) _

rE!

	

(17 )
2

min E (VE . (r - ro)) u (Et q E • (r - ro) )
rEL

where not only do we attempt to minimize the number
of negative depth values, but we also attempt to mini-
mize their magnitudes as well . Clearly, any even power
in this sum would suffice to give the desired convexity .
Hence the choice of a quadratic is rather arbitrary an d
in fact is motivated solely by its simplicity, a necessary
feature from our implementation standpoint .

By weighting the sum with Et , we can potentiall y
alleviate the other objection raised with the stationary -

minE u (EtVE . (r - ro) )
rEf
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Fig. 5. A sample motion sequence with the POE placed in the upper left hand corner as indicated by the cross .

points algorithm-the inability to differentiate between

stationary points constraining the location of the FOE

and distant background points which do not . In both

of these cases Et :.-,. 0 and hence should not contribute
to the sum . Weighting with E t should also help with

noise robustness, because we naturally have a higher

confidence in the data for larger E t .

The minimization problem of Equation 17 is no w

convex, and as such a global minimum can occur . Of

course, the solution must be found iteratively, as there

is no closed-form solution . This is not necessarily a

drawback, as the original conception of the FOE chi p

utilizes a feedback loop to find the solution, and as

such is amenable to such an iterative approach neces-

sary with this formulation .

Table 1. Summary of FOE chip camera calibration parameters .

Imaging Parameter Calibrated Valu e

f

	

79 .86 pixels
c:

	

31 .33 pixels
cy

	

33 .39 pixels
K1

	

5 .96e-051 pixe12
K2

	

t .03e-481 pixel4
0 .815°

3.3. Algorithm Performance

In order to compare the performance of our two ap-
proaches, we took raw image data during a motion
transient and processed it with each algorithm. Fig-
ure 5 shows a sample series of images taken from the
64 x 64 embedded imager on the FOE chip durin g
a motion transient. A simple scene consisting of a
grid of black disks on a white background was con-
structed, resulting in Mondrian-like images such as the
ones that we have described. Camera motion was al -
ways forward towards the target with the orientation
of the camera viewing direction relative to the motio n
set precisely by way of rotation stages. This allowed
the placement of the FOE anywhere inside the field o f
view.

Of course, the mapping from the 3-D motion pro-
duced in the lab and the resulting location of the FO E
requires explicit knowledge of the camera parame-
ters, most notably the location of the principal poin t
in the image plane as well as the principal distance .
These were obtained using an internal camera calibra-
tion technique based on rotation (Stein, 1993) . Under
pure rotation, the position of a point in the image afte r
rotation depends only on the camera parameters and
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Fig. 6. Algorithmic results using real image data. The actual FOE was strobed over the image plane ; its position is indicated by the x's. The
results of processing by the stationary-points algorithm is shown as o's and the depth-is-positive algorithm by +'s .

the location of the point in the image before rotation.
Thus, to estimate these parameters, we take a serie s
of images for various rotations of the camera about
two independent axes . Feature detection to locate the
centers of the disks in the images is performed and
the resulting correspondences from unrotated to ro-
tated images noted . This correspondence information
is then fed to the nonlinear optimization code of (Stein,
1993) which estimates the principal distance f, the lo-
cation of the optic axis (cx , cy), as well as the radia l
distortion parameters (K1 , K 2 ) and the axes of rotation
used . Table 1 shows typical calibration parameters for
the FOE chip found using this method .

With these calibration parameters, we can predic t
the location of the FOE in the image plane. A se-
ries of experiments were performed wherein the FO E
was placed in a grid across the image plane and raw
image data was acquired during the associated mo-
tion transients. Figure 6 shows the results of both th e
stationary-points algorithm and the depth-is-positive
algorithm. First centered differencing was used to es-
timate the brightness gradients Ex, E y , and . Et. Of

course, because we have Mondrian images the regions
where the brightness gradient V E is nonzero naturall y

occur only on the boundary of the disks in the image.
In fact, the majority of the image has gradients nea r

zero, and in order to prevent these from strongly bias-
ing the solution, a threshold on the image brightnes s

gradient ES + E: was used in practice to segment thes e
out of the computation.

For estimating the location of the FOE using the
stationary-points algorithm, the closed form solutio n
of Equation 13 was utilized and for estimation usin g
the depth-is-positive algorithm, an iterative Newton's
method was employed. The Iocation predicted by the
calibration technique is denoted by the x's, while th e
mean locations over the trajectories found using th e
stationary-points algorithm are shown as o's and the
depth-is-positive algorithm are shown as +'s. Both
techniques produce good results near the optic axis.
However, as the location of the FOE nears the imag e
boundary, the error in the estimation increases dramat-
ically.



10

	

McQuirk, Horn, Lee, and Wyatt

Fig. 7. Simple geometry of a band about a stationary point_

A variety of effects come into play when the FOE i s
near the image boundary, typically resulting in a devi-
ation of the estimate towards center. Both algorithm s
involve minimization of the sum of the squared perpen -
dicular distance to the various constraint lines. This
has the effect of biasing the solution towards nearb y
information, as moving the estimate away from the fi-
nal solution changes the distance to nearby constraint
lines, and hence their contribution to the overall error
sum, much more drastically than far away. ones.

For the stationary-points algorithm, there is the ad-
ditional localizing effect due to the selection by the
weighting function of points which contribute to the
computation. These points form bands about the sta-
tionary points. The overall range of the time derivative
Et increases the further away from the FOE a fea-
ture is . Thus, the brightness goes through zero more
rapidly for more distant stationary points . As a re-
sult, the simple cutoff function that we use then select s
fewer points for inclusion in the band. Bands nearby
then have larger numbers of pixels contributing to th e
error sum than bands further away, and this once agai n
indicates that the solution is more sensitive to nearby
information .

When the FOE is placed near the image boundary,
the nearby constraints are substantially affected by lens
distortion, which was quite large in practice due to th e
wide field of view employed in the system. In our test
setup, the field of view angle was 59° along the imag e
diagonal, and 43 .6° along the image edge.

The bands in the stationary-points algorithm cause
bias in yet another way. Each stationary point by it-
self should only provide a 1-D constraint . However,
inclusion of points in a band about a stationary point

augments this constraint. Figure 7 shows the simple
geometry of a band about the stationary point .

Overall, we would ideally like the band to behav e
as a single constraint line given by the stationary point ;
distance perpendicular to this line would contribut e
to the error sum. However, each point in the band
provides a constraint line and clearly the least-squares
solution when we neglect the contributions of the othe r
bands in the image falls inside the region bounded b y
the band itself and the constraint lines provided by th e
points at the band edges. In effect, each band not only
penalizes perpendicular distance to the overall con-
straint as desired, but also the distance away from the
band itself. In practice, the image data used has fairly
uniform distribution of bands throughout the image.
When the FOE is placed away from the center of th e
image, the attraction of the bands tends to draw th e
solution in towards the image center. This effect is
further exacerbated by the fact that, due to the finit e
extent of the image, the bands are no longer uniforml y
distributed about the FOE when it is placed near th e
image edge.

The depth-is-positive algorithm also displays band-
like properties . The original conception of this ap-
proach was to rely on data away from the stationar y
points to form a solution. The idea behind this was
to enhance robustness with respect to noise and dis-
tant backgrounds. This turns out to not be the case.
as stationary points are indeed crucial to the depth-is-
positive algorithm as well . If we use a test location o f
the FOE different from the true location and observ e
where the negative depth values actually occur, we fin d
that they cluster about the stationary points in band s
as shown in Figure 8 . As the test location approaches
that of the actual FOE, then the width of these bands
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Fig. 8. When a test FOE differing from the true FOE is used to calculate tau, the resulting negative depth values are clustered around the stationar y

points .

goes to zero about the stationary points . In practice,
as the noise power in the image increases, so does the
effective size of the bands and hence the overall bias .

We would like to make a quantitative compariso n
of the performance of the two approaches in order t o
choose one for implementation . From a circuit de-
sign standpoint and given the architecture chosen fo r
the FOE chip, the complexity in terms of transisto r
count of the two methods is roughly the same. and
thus insufficient to choose one or the other for real-
ization in hardware. Comparing the two algorithms
solely using the data of Figure 6 can be misleading .
For the stationary-points algorithm, larger widths i n
the weighting function lead to more data contributin g
to the overall solution and hence increased robustness .
On the other hand, we have seen that the bands se-
lected around the stationary points by the weighting
function lead to bias with larger widths leading to mor e
bias . Thus the selection of the width of the functio n
embodies a tradeoff between robustness and accuracy.
In order to examine this tradeoff more quantitatively,
synthetic images were generated to closely match the
measured ones so that we could explicitly corrupt the
images E with additive white Gaussian noise n to get
the resulting noisy images E' :

E'=E+n

	

(18 )

We define the signal to noise ratio SNR as

a
SNR = 10 log 10

	

(19)

where we have used the sample variance. The perfor-
mance metric we construct for comparison purposes
should penalize both bias in the solution as well as
degradation due to noise . In practice, we sum the noise
variance in the solution with the squared error betwee n
the mean location found by each algorithm and th e
predicted location found by the calibration technique .
Since the bias is spatially dependent, we average th e
results over the N locations of the FOE used in our
experiments, resulting in an overall metric delta intende d
to quantify algorithm performance:

delta = NE[Ilro-iia+era ]	(20 )
so

For the stationary-points algorithm, 6 is obviously a
function of both the signal to noise ratio and the weight-
ing function width 9. However, delta shows a marked
minimum with respect to q, and hence we can find th e
optimal width to use in practice . Figure 9 shows th e
optimal S as a function of SNR for both the stationary -
points algorithm and the depth-is-positive algorithm .

One important feature that one should note fro m
these two curves is that 6 does not go to zero even i n
the limit of noise-free image data. The reason for thi s
is two-fold. Bias always remains, especially with the
FOE near the image edge, even in the absence of noise .
Furthermore, the imaging and finite-differencing pro-
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Fig. 9. Algorithmic results using synthetic image data comparing the performance of the stationary-points algorithm (I's) versus the depth-is-
positive algorithm (+'s) .

cess itself results in a variation in the estimated image

	

Equation 13 and solve for the location of the FOE
gradient directions during a motion transient. The con-

	

off-chip by matrix inversion. This would require the
tribution due to this variation is always present, and can

	

on-chip calculation of five complex quantities over th e
be thought of as an equivalent "noise" source .

	

entire image and this makes such an approach pro-
For large signal-to-noise ratios, the optimal

	

hibitively expensive. Instead, we can design a system
stationary-point behavior is slightly better than depth-

	

to estimate the location of the FOE using a feedback
is-positive, whilst for small signal-to-noise ratios the

	

technique such as gradient descent. By using this kind
converse is true . Overall, the curves appear markedly

	

of approach, we can trade off the complexity of the re-
similar, and do not in and of themselves provide a

	

quired circuitry with the time required to perform the
definitive means for choosing one algorithm over the

	

computation .
other for implementation . However, due to the flex-

	

Given a convex enmr function f (a) of a paramete r
ibility in explicitly setting the accuracy versus noise

	

vector a = (a°, • •, aN_ t )T with a minimum, we can
robustness tradeoff and because typical SNRs ex-

	

minimimize this function via :
petted from the FOE chip were in the 30dB range,

	

da
the stationary-points algorithm was chosen for imple-

	

di
= -/3Va f (a)

	

(21 )

mentation .

4. The FOE Chip

Having chosen the stationary-points algorithm for im-
plementation, we could design a system to calculate
the individual elements of the 2x2 linear system of

where J3 is a positive definite matrix . Since we have
used the L 2 norm for f in practice, the function is
convex and a global minimum can exist.
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Applying this idea to our particular problem result s
in the system :

dro =QEW(Et ,ri)VEVET (r-ro) (22)
dt

	

rE 1

To implement this, we could use the approach of (Tan-
ner and Mead, 1986) and design a pixel-parallel chi p
consisting of an n x n array of analog processors. With
a photo-transistor as the imaging device, each proces-
sor would estimate the brightness gradient in timeusing
a differentiator, and the brightness gradient in space us -
ing finite differencing with adjacent pixel processors .
Based on the measured image gradients, the processor
at position (x, y) in the array would calculate two cur-
rents proportional to the term inside the summation of
Equation 22 . Each processor then injects these currents
into global busses for the voltages xo and ya respec-
tively, thereby accomplishing the required summatio n
over the entire image. For a capacitor, the derivative o f
the voltage is proportional to the injected current, so i f
we terminate the busses with capacitances CC and Cy
we naturally implement Equation 22 .

The major difficulty with this elegant solution is tha t
of area. The output currents that the processors cal-
culate require four multiplies in addition to the cutoff
weighting function. Including all of this circuitry pe r
pixel in addition to the photo-transistors creates a very
large pixel area and, given the constraints of limited sil -
icon area, the number of pixels that we would be able to
put on a single chip would be quite small . The actual
number of pixels contributing to our computation is
already small to begin with because the number of sta-
tionary points in the image is only a fraction of the tota l
number of pixels in the image and thus a large number
of pixels is desirable overall to enhance the robustness
of the computation . Additionally, a fully parallel im-
plementation would be inefficient, again because only
a small number of processors would be contributing at
any one time, with the rest idle.

To increase the number of pixels and make more
efficient use of area, the solution that was decide d
upon was to multiplex the system using a column -
parallel processing scheme. Instead of computing the
full frame of terms in our summation in parallel, w e
calculate a column of them at a time, and process the
column sums sequentially. Of course, we can no longer
use the simple time derivative in the right hand side of
Equation 22 . We can use a forward difference approx -

imation, resulting in a simple proportional feedbac k
system :

ro'+1) = ro' ) + h > W(Et , r))OEVET(r - ro )
rE 1

where h is the feedback gain. This system is now
a discrete-time analog system as opposed to th e
continuous-time analog system we discussed earlier.
This implementation method will allow us to put more
pixels on the chip at the expense of taking longer to
solve the problem. It is interesting to note that if we
had implemented the depth-is-positive algorithm, the
term in the sum would merely replace W(Et , q) with
u(EtVET (r - ra)) in this equation.

For the stationary-points algorithm, we can define :

A=EW(Et ,q)VEVET
rE1

(23)

b = > W(Et, rl)VEVE T r (24)
rE I

and then the equation that our system should solve i s
the 2 x 2 matrix problem :

Ara = b

	

(25 )

We can rewrite our solution method into the following
form:

ro'+1) = r(o') + h (b - Ar (o') )

	

(26)

This is the Richardson method, the simplest iterative
technique for solving a matrix equation . The transient
solution to this equation is:

r (o') = A- lb + (I - hA) ' ea

	

(27)

where A- l b is the desired solution and ea is the initial
error. Clearly, in order for this system to be stable, w e
require that the error iterates go to zero . We must there-
fore guarantee that the spectral radius of the iteratio n
matrix is less than unity . Examining the eigenvalues
a' of the iteration matrix we find that they are relate d
to the eigenvalues ) of the matrix A by :

A' = 1 - ha

	

(28 )

Since A is symmetric and positive semi-definite (typi-
cally definite in practice), we know that theeigenvalue s
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Fig. -10. Block diagram representation of the system architecture of the actual POE chip.

of A are real and positive. Requiring the spectral ra-
dius of the iteration matrix to be less than unity result s
in the following requirement on h for stability :

0<h<
2

Xmas

Additionally, we can choose the optimal h to minimize
the convergence time of the iteration. This h ops solves:

fr om = min (max (I 1 - h Amin 1,11 - hamaxl)) _n
	 2	 _	 2	 (30)

Amin + Amax ErEI W(Et, q )IIVE Il 2

At a minimum, we therefore require our sys-
tem to calculate three quantities: the matrix resid-
ual b - Ar (oi) , the weighted squared image gradi-
ent Ere, W(Et , ri)IIVEII2, and a fourth quantity,

~rE l I Et I , useful in practice for setting the width rl
of the weighting function (McQuirk, 1991) .

The approach that was decided upon to imple-
ment the discrete time system we have described uses
charge-coupled devices (CCDs) as image sensors . If
we expose a CCD to light over a short period of time,

it stores up a charge packet which is linearly propor-
tional to the incident light during this integration time.
Arrays of CCDs can be manipulated as analog shift
registers as well as imaging devices . This allows us
to easily multiplex a system which uses CCDs. Since
we intend to process image data in thevoltage/current
domain, we must convert the image charge to volt-
age and this can be done nondestructively through a
floating gate amplifier. Thus, we can shift our imag e
data out of a CCD array column-serial and perform our
calculations one column at a time . Instead of n 2 com-
putational elements corresponding to the parallelis m
of a continuous-time system, we now only have n .
Clearly, we can increase our pixel resolution signifi-
cantly and design more robust circuitry to perform th e
computations as a result.

The system architecture used in the FOE chip i s
shown in Figure 10 . It is composed of four main sec-
tions: the CCD imager with storage and an input/output
serial shift register, the array of floating gate amplifier s
for transducing image charge to voltage, the CMOS
array of analog signal processors for computing the
required column sums, and the position encoder pro -

(29)
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Fig. 11. Block diagram indicating the structure of analog row processor in the CMOS processing array .

viding (x, y) encoding in voltage to the CMOS array
as data is processed.

The input/output CCD shift register at the left side
of the block diagram allows us to disable the imager,
and insert off-chip data into the computation . This
shift register can also clock data out of the CCD im-
ager, letting us see the images that the system is com-
puting with . Thus we have four basic testing modes:
i) computer simulated algorithm on synthetic data, ii )

computer simulated algorithm on raw image data taken
from the imager, iii) chip processing of synthetic data
input from off-chip, and iv) chip processing of raw im-
age data acquired in the on-chip imager. With these
four testing modes, we can separately evaluate algo-
rithm performance and system performance .

The function of the interline CCD imager with stor-
age is to acquire the two images in time necessary to es-
timate the brightness gradients. Once two images have
been acquired, we shift them to the right one column
at a time . The floating gate amplifiers transduce this
charge signal into voltages which are applied to the ana-
log signal processors . As input, these processors als o
require the current estimate in voltage of the location

of the FOE driven in from off-chip, r (o:) = (x (e` }
, y

ot) ) ,

and the present r = (x, y) position of the data, pro-
vided in voltages by the position encoder at the far righ t
of the diagram.

The encoder uses the voltage on a resistive chain
to encode the y position up the array . A CMOS digi-

tai shift register is utilized to select the appropriate z
value over time as columns are processed . Initially, th e
register has a logic I stored in the LSB, while all the
rest of the bits are logic O . This logic 1 is successivel y
shifted up the shift register. enabling a pass transistor
which sets z to the value of voltage on the resistor
chain at that stage. In this manner, x increases in the
stair-step fashion necessary as the columns of data ar e
shifted through the system.

From the image data, the pixel position, and the
FOE estimate, the processors in the array compute the
four desired output currents which are summed up th e
column in current and sent off-chip . The block diagram
for the analog processors is shown in Figure 11 .

To estimate the three brightness gradients, eight in -
put voltages representing the 2 x 2 x 2 cube of pixel s
needed for the centered differencing are input to the
processor. Four MOS source-coupled pairs are used
to transduce these voltages into differential currents
which are then added and subtracted using current mir-
roring to form the brightness gradients . An absolute
value circuit computes [ Er I and a copy of this signal is
then summed up in current along with all the contribu-
tions of the other processors in the array. The resultin g
overall current forms the first main output of the chip,
E l, [ Ed .

Another copy of [Es ~ is subtracted from a reference
current In and injected into a single-ended latch . The
result of this latch is the weighting function decision .
In-line with the brightness gradient currents Er, Ey
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Fig. 12. Comparison of the results from the stationary-points algorithm using raw image data (shown as o's) and the output from the FOE chi p

(shown as *'s) .

are pass-gate switches whose state is controlled by the
weighting decision . lithe processor is not tocontribut e
to the error sum because '& 1 > eta and therefore is not
considered a stationary point, these gates are turned
off by the output of the latch preventing signal flow to
the rest of the processor and thus enforcing the weight-
ing decision . The weighted brightness gradients are
copied using current mirrors three times - the first i s
used for the pair of current-mode squarers needed to
compute the squared gradient magnitude . This signal
is then summed up in current along with all the con-
tributions of the other processors in the array and the
resulting overall current forms the second main output
of the chip, Ey W(Et , 11)11 VE ~ 2 .

The second gradient copy is used by the first layer
of multipliers to compute W(Et, q)OE (r - re) . The
multipliers used on the FOE chip are all simple MO S
versions of the standard four-quadrant Gilbert bipo-
lar multipliers (Gilbert, 1968) . These multipliers have
as input both a differential voltage and a differential
current . The output is a differential current which ap-
proximates a multiplication of the two inputs . The

dot product resulting from the first layer of multiplier s
is transduced from differential current to differentia l

voltage using an MOS triode based circuit . This sig-

nal is then used as the voltage input to a second layer

of multipliers whose other input is the third gradient

copy. The resulting two final differential currents are

the contribution to the matrix residual for that pro-
cessor. They are summed in current along with the
contributions from the other processors in the array ,

and form the final two outputs from the chip .

To complete the iterative feedback loop, we sum the

output currents from the column of analog processor s

as the image data is shifted out a column at a time

from the imager. Once a whole frame of data has bee n
accumulated, we use the residual to update the FOE

estimate using the proportional feedback loop. While

this certainly could be done on the chip, this was done
off-chip in DSP for testing flexibility . Due to the diffi-
culty in re-circulating image data on-chip, we furthe r
acquire new image pairs for each successive iteration of
the feedback Ioop. We could alleviate this problem by
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moving our imager off-chip and adding a frame buffer ,
but our architectural goal was a single-chip system .

A series of experiments were once again performed
wherein the FOE was placed in a grid across the imag e
plane. Figure 12 shows the final results from the FO E
chip comparing the mean output of the proportiona l
feedback loop enclosing the chip with the results o f
the algorithm on the raw image data .

5 . Summary

This paper discussed the application of integrated ana-
log focal plane processing to realize a real-time system
for estimating the direction of camera motion . The
focus of expansion is the intersection of the camera
translation vector with the image plane and capture s
this motion information . Knowing the direction o f
camera translation clearly has obvious import for the
control of autonomous vehicles, or in any situation
where the relative motion is unknown . The mathe-
matical framework for our approach resulting in the
brightness change constraint equation was developed .
Several promising algorithms for estimating the FO E
based on this constraint and suitable for analog VLSI
were discussed, including the one Chosen for final im-
plementation. A special-purpose VLSI chip with a n
embedded CCD imager and column-parallel analog
signal processing was constructed to realize the desired
algorithm. The difference between the output of th e
FOE chip enclosed in a simple proportional feedbac k
loop and the location predicted by the stationary-point s
algorithm operating on raw image data was less tha n
3% full scale. A more complete discussion of the FO E
chip will be submitted to the IFFF Journal of Solid
State Circuits .
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