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Filtering Closed Curves
B. K. P. HORN AND E. J. WELDON, JR.

Abstract—A, closed curve in the plane can be described in several
ways. We show that a simple representation in terms of radius of cur-
vature versus normal direction has certain advantages. In particular,
convolutional filtering of the extended circular image leads to a closed
curve. Similar filtering operations applied to some other representa-
tions of the curve do not guarantee that the result corresponds to a
closed curve. In one case, where a closed curve is produced, it is smaller
than the original. A description of a curve can be based on a sequence
of smoothed versions of the curve. This is one reason why smoothing
of closed curves is of interest.

Index Terms—Curvature; edges, lines, and contours; filtering; im-
age representation; matching; 2-D shape description.

I. INTRODUCTION
Given a simple closed rectifiable curve in the plane, how can it

be smoothed to produce a similar closed curve? One can try con-
volution-like filtering operations on various representations of the
curve. In most cases the result is not a closed curve. In the one
case that a closed curve is obtained, it is smaller than the original
curve, as we shall see. We here propose a new representation that
guarantees that convolutional filtering will produce only closed
curves.

In machine vision one needs descriptions of the shape of closed
contours corresponding to object features. Such descriptions can
be built up using a multiscale sequence of smoothed curves. It is
useful then to have a way of smoothing curves which preserves
closure.

II. REPRESENTATIONS OF CLOSED CURVES
One of the ways to represent a curve in the plane is to give x

and y as a function of some parameter that varies monotonically
along the curve. In the simplest case this would be the arc-length
s, measured along the curve from some arbitrary starting point:

x = x(s) and y = y(s).
Now x(s) and y(s) are periodic, with period equal to the perimeter
P of the curve. Conversely, any pair of periodic functions that have
the same period define a closed curve in the plane (although it may
not be a simple curve). For example, a circle of radius R, with
center at the origin can be represented by the equations:

——}{ i r R -x(s) =• R cos and y(s) = R sin
[2^)

We define a smoothing filter as one whose impulse response is
nonnegative. It is easy to see that the magnitude of the frequency
response of such a filter at any frequency has to be less than or
equal to its response at zero frequency. Such a filter can also be
normalized so that the integral of its impulse response equals one.
In this case the magnitude of the response at any frequency other
than zero will be less than one. This means that the amplitude of
the x and y components of the curve are attenuated, even at the
fundamental frequency I f P. Thus the size of the curve is reduced.
This may be undesirable if a description of the curve is to be based
on a multiscale sequence of smoothed curves.

III. WHEWELL AND CESARO FORMS
Among intrinsic equations for a curve in the plane is Whewell's

form, which gives a (possibly implicit) relationship between the
direction of the normal ^ and the arc-length s along the curve [2].
The direction is measured with respect to some arbitrary reference
direction. For the circle given above we have:

^(s) = s/R.
This form has been used in machine vision in shape description
[3], as well as in classification [4].

Another related intrinsic equation for a curve in the plane is Ces-
aro's form, in which curvature K is related to arc-length $ along the
curve [2]. Curvature can be defined as the rate of change of the
direction of the normal as a function of arc length. That is,

,, ^
K(S) = ——.ds

For the circle we find
K(S) = \IR.

Note that Whewell's and Cesaro's forms are insensitive to the po-
sition of the curve in the plane, unlike the first representation we
introduced above.

It may be tempting to apply a convolution filter to n(s) [5]. Un-
fortunately there is no guarantee that the result will correspond to
a closed curve. In general it will not.

IV. EXTENDED CIRCULAR IMAGES
By analogy with the extended Gaussian image, which is a way

of representing the shape of a convex three-dimensional object [6],
we may define an extended circular image. In the extended circular
image, one is given the radius of curvature R as a function of nor-
mal direction ^. The integral of the extended circular image over
some angular interval is equal to the length of the curve which has
normal direction falling in that interval. This can also be expressed
as follows:

s(^ + <=) - s(\l/ - t) _ ds_
If. ~ d^'RW lim

<-o
Filtering x(s) and y(s) by means of convolution results in closed
curves, beause the result is still periodic [1]. Filtering can only
attenuate or amplify the frequency components already present, it
cannot produce new frequencies.
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That is, the extended circular image is the derivative of the inverse
of the Gauss map.

In the case of the circle we simply have:
RW = R.

For a convex curve, the relationship between this new representa-
tion and Cesaro's form is

RW = I/K(S),
where \1/ in RW identifies the same point on the curve as does s in
K(S).

0162-8828/86/0900-0665$01.00 © 1986 IEEE



666 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-8, NO. 5. SEPTEMBER 1986

Polygons can be treated in this fashion. Each side of the polygon The equation for s is an elliptic integral (of the third kind),
is mapped into an impulse of area equal to the length of the side.

f* aV
Jo [a2 cos2 r, + b2 sin2 r,f2 r1'

The angle where this impulse appears is just the normal direction , =
of the corresponding side,

so it is more complicated to express x and y as functions of s.
As we see next, the extended circular image of a closed curveRW = S W - ^),

has no fundamental frequency component. Since filtering cannot
where n is the number of sides, while /, is the length, and ^, the introduce new frequency components, this means that the filtered
normal direction of the fth side. This result can be obtained by extended circular image of a closed curve corresponds to another
considering each side as the limit of a sector of a circle as the radius closed curve.
of the circle tends to infinity. It is sometimes useful to think of the
extended circular image as a mass density distribution along the
circumference of a unit circle. In the case of a polygon, this dis-

VI. FUNDAMENTAL THEOREM
We first show how the equation for a curve, in both Whewell

and Cartesian forms, can be recovered from an extended circulartribution is made up of a number of point masses.
A set of scaled vectors normal to the sides of a closed polygon image.

add up to zero. This gives us the equality: Since R(\l/) = (ds/d^), the equation of the curve in Whewell
n form is just
S /,(cos ^,, sin ^,) = (0, 0).

s(1,) = R(r,) an.
Jo

Cartesian coordinates x and y can be recovered with equal ease
from R(\f>), by noting that

This, in turn, is equivalent to the statement that the center of mass
of the point masses on the unit circle must be at the center of the
circle.

(One could, by the way, use the tangent direction instead of the
normal direction in the definition of the extended circular image.
This merely amounts to a rotation of 90 degrees.)

and so

dx . dy— == —sin \f/ and — = cos \l/,ds ds

V. THE EXTENDED CIRCULAR IMAGE OF AN ELLIPSE
As an example, consider an ellipse with semimajor axis a and

semiminor axis b. If we align the major axis with the x-axis, we
can write an implicit equation for this curve: and

x(s) = x(0) - \ sin \l/(t) dt

© + ® = 1.

It is easier to use a parametric form instead:
x = a cos t and y = b sin r.

We then have

W
\dt

(dx\
W

(^
\dt

= a2 sin2 / + b2 cos2 (,

while
a sin t

sin <!/ =
Va2 sin21 + b2 cos2 t

and
b cos t____

Va2 sin21 + b2 cos2 ('
so that

COS ^ =

ab
a2 sin21 + b2 cos2 t'

and since

d^
dt

ds dsldt
RW a^ a^/ar'

we finally have the extended circular image,
_ _____aV_____

Rw ~ [a2 cos2 ̂  + b2 sin2 ̂ 12'

Using methods developed in the next section, one can now easily
recover the Cartesian coordinates,

a2 cos \{>
•va2 cos2 ^ + b2 sin2 ^

b2 sin ^
and

y =
Va^os2^ + b2sinl\|''

y(s) = .y(O) + I cos ^(t) dt,Jo
where (x(0), y(0)) is the arbitrary starting point where s = 0. For
a closed curve of perimeter P, x(P) = x(Q) and y ( P ) = y(0), thus

,./• r./-
1 cos \l/(s) ds = 0, and \ sin <l/(sY) ds = 0.
Jo Jo

If the curve is convex, there will be a monotonic relationship
between ^ and s, and so we can change variables and obtain:

1^)
x(s) = x(0) - sin r,R(ri} dt,,

A(O>

and

{*(.!)

y(s) = y(0) + cos r,RW dr,.
W)

since R(^/) = (dsld\l/). We see that a convex curve can be recovered
uniquely (up to translation) from its extended circular image.

Suppose now, that for convenience, we choose the starting point
to be the point where ^ = 0. Then, integrating over the whole
curve, we get

r2r

x(P) = x(0) - \ sin W^) d\l/.

and
,2x

y(P) = y(0) + I cos >W^) d^.
Jo

So a curve is closed if and only if
J.2T ^

\ cos ^RW d^ = 0. and I sin ^RW d^ = 0.Jo Jo
One way to interpret the above result is that the center of gravity

of the circular mass distribution must be at the center of the unit
circle, since

f2'I R(\l/)(cos V', sin V') dip = (0, 0).
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Equivalently, we see that the circular convolution of an extended
circular image with the cosine function (R(\l/) 8> cos ^) is identi-
cally equal to zero:

R(ri) COS (^ - ri) dri
p2x 1.2,

= cos ^ i R(i]) cos ri di\ + sin ^ I /?(»;) sin i\ ib\,
Jo Jo

which is 0 for all ^. Thus R(\l/) has no components at the funda-
mental frequency.

Convolutional filtering of the extended circular image R(\l/) pro-
duces a closed curve, since linear operations cannot introduce new
frequency components. Thus smoothed versions of a closed curve
can be obtained by application of a smoothing filter to the extended
circular image.

We can also conclude that any nonnegative function RW that
satisfies the closure condition corresponds uniquely (up to trans-
lation) to a convex curve defined by the equations forx(s) and y(s)
given above.

VII. CONVOLUTION WITH A FILTER
The circular convolution of an extended circular image /?(^) with

a filter function H ( i f / ) can be written as follows:
r2»r7W = H(i - r,) R(r,) dr,,
Jo

where it is assumed that H is periodic, so that its value for argu-
ments outside the range [0, 2v] can be found. The extended cir-
cular image, as here defined, is nonnegative. If the impulse re-
sponse of the filter is nonnegative, that is, if it is a smoothing filter,
the result will also be nonnegative. For other filters, the possibility
exists that the result is negative in places, and so does not corre-
spond to an extended circular image as here defined.

To show that the filtered result corresponds to a closed curve we
need to show that the convolution of 7W with cos ^ is zero. Now
convolution is associative and commutative, so

T <9 cos = (R 8> H) <S> cos
= (H <S> R) 8) cos = H <S (R <8> cos).

The result is zero, since, as we showed above, R(\f/) S? cos V> =
0.

Sometimes it is more convenient to use a slightly different form
of the filtering equation. Changing variables (from \f/ to s) and not-
ing that R(rf/) = ds/d\l/, we get

rP
7W = H(^ - ^(s)) ds,

or, equivalently,

•/I:K(S) = 1/j HWs) - W) dt.
This form is particularly well suited for numerical calculations.

The two key differences between this and earlier methods for
smoothing closed curves are:

• use of radius of curvature R instead of curvature. K;
• use of the normal angle V> instead of the arc-length s as inde-

pendent variable.
As an example, consider convolving a square with a simple rect-

angular filter. The result is a figure composed of four circular arcs
(see Fig. 1). We can see this by noting that the extended circular
image of a square with sides of length L is composed of four im-
pulses of weight L separated by 90°. Further, note that the area
under the rectangular pulse has to be unity, in order for it to pro-
duce a figure with the same perimeter as the original curve. Thus,
if the filter has angular extent 6, its amplitude must be (1/0). So
the result of the convolution will be four rectangular pulses of am-
plitude (L/6) with angular extent 9. Each of these corresponds to a
circular arc of radius (LIB) and length

k^L.

(a) (b)

Fig. 1. Squares filtered with low-pass rectangular filters of various angular
extents, (a) 9 = 0°. (b) 6 = 30°. (c) 9 = 60°. (d) 9 = 90°.

Shown in Fig. l(b) and (c) arc closed curves constructed by filter-
ing the extended circular image of the square, shown in Fig. l(a),
with rectangular filters of angular extend 30° and 60°, respec-
tively. If 9 = x/2, these arcs are tangent where they touch, and a
circle is produced, as shown in Fig. l(d). Finally, if 9 > v/2, the
figure is actually composed of eight circular arcs, four with radius
(L/6) and four with radius 2(L/6). In this case there are no discon-
tinuities in tangent direction.

VIII. SUM OF Two CLOSED CURVES
One can add the extended circular images of two convex curves.

The result is the extended circular image of a new convex curve,
with perimeter equal to the sum of the perimeters of the original
curves. To see that the sum satisfies the closure condition, note
that the sum of two functions with a zero fundamental frequency
component is another function with a zero fundamental frequency
component. Equivalently, the center of mass of the combination of
two mass distributions lies along the line connecting the centers of
mass of the two distributions. If both are at the center of the unit
circle, the center of mass of their combination must also lie there.

The sum of the extended circular image of two convex polygons
corresponds to the mixed polygon obtained from the two. Such ob-
jects find application in spatial reasoning [7]. They can also be
computed by Boolean convolution of point sets in the plane.

An extended circular image can be scaled by multiplying it by
some constant. The result corresponds to a closed figure of the same
shape, but reduced or enlarged, depending on whether the constant
is less than or greater than one.

One can consider all convex combinations of two extended cir-
cular images. If each is interpreted in terms of vectors to all points
within the region that the curves enclose, then the result corre-
sponds to the Minkowski sum [8]-[10]. The figures obtained by
Boolean convolution are the same as the figures corresponding to
the Minkowski sum.

As an example, consider the mixture of a square and a circle.
The result is a figure composed of four circular arcs and four straight
lines (see Fig. 2). We can see this by noting that the extended
circular image of a square is composed of four impluses, while that
of a circle is constant. In this particular case one can construct the
result simply by cutting the circle into four quadrants and splicing
these four sectors into the comers of the square. The exact shape
of the result will depend on the relative sizes of the original figures.

We introduce the concept of the mixed figure here, because it
provides us with another way of thinking about the smoothing op-
eration described earlier. One may consider the convolution inte-
gral as the limit of a sum of products of values of one function with
values of a shifted version of the other. That is,
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(a) (b) ments. One simply determines the length and tangent direction of
each segment and adds the length to the histogram bin correspond-
ing to that tangent direction. This shows clearly that the calculation
of the extended circular image R(\j/) does not require taking higher
derivatives, as does the computation of the curvature ic(s) from ^(s).

The discrete approximation also suggests a possible extension to
nonconvex curves:

RW = S ———S1=1 K(S,)\ '
(c)

Fig. 2. Combinations of squares and circles, (a) Square, (b) j square, ^
circle, (c) } square, j circle, (d) Circle.

where s, identifies the fth place on the curve where the tangent
equals ^. The result will be an extended circular image that satis-
fies the condition for closure given above. As a result it corre-
sponds uniquely to a particular convex curve.

Note that we do not allow the contribution from a concave pan
of the curve to be negative. Otherwise, this natural extension would
cause the closure condition to be violated. It also would require
higher derivatives in the computation of the extended circular im-
age.

We obtain the extension to nonconvex curves, shown above, by
considering the integrals for x(s) and y(s) first broken up into n
integrals over segments where curvature has constant sign, before
changing variables. Suppose that n zero crossings of curvature oc-
cur at s = s,, for (' = 1 to n. Then, the convenience, let Sy = 0 and

!2x " / 2ir\
HW R(^ - r,)dri = lim £ H (i —o ,1-0°'=o \ n /

R^-i^Y-1-\ » / n
Since addition of extended circular images corresponds to mixing
of figures, one can regard the filtered version of a curve as the limit
of the mixture of many scaled and rotated copies of the figure. This
idea is sometimes helpful in visualizing the effects of particular
filtering operations on given closed figures.

IX. INTEGRAL OF THE EXTENDED CIRCULAR IMAGE
Note that R(1/) is periodic, as is ic(s). Their integrals, s(<l/) and

i/(s), however, are not. Filtering operations on R(\l/) and ic(s) do
not, in general, have the same effect as similar filtering operations
on s(^) and il/(s). This may seem surprising since differentiation is
a linear process and thus should commute with convolution. The
problem is that we are dealing with circular convolution which ap-
plies to periodic functions only. When integrals involving sW, for
example, are expanded using integration by pans, one obtains not
only the appropriate integral containing J?(^), but an additional term
which is nonzero because s(^) is not periodic.

When necessary, one can define the following periodic functions

and '̂(s) = ^(s) - p (2ir),s'W = ̂ ) - ̂  P

whose derivatives are
P 2»

— and K'(S) = K(S) - -p.R'W = RW

Filtering operations on R'W are equivalent to filtering operations
on s'W. This is a useful relationship, since it is sometimes easier
to see what is happening by looking at the s(^) curve than directly
considering the extended circular image R(i/). The integrals of the
products of s'(\l/) and R'W with cos ^ and sin ^ are zero. Note
however that R'W does not correspond to an extended circular
image, as defined here, since it will be negative in places.

X. DISCRETE APPROXIMATION
To represent an extended circular image in a computer one may

choose to discretize directions and collect a direction histogram.
The direction histogram is the two dimensional analog of the ori-
entation histogram used to represent extended Gaussian images [6].
It shows for each angular interval how much of the curve has tan-
gent directions falling into that angular interval. An approximation
can be calculated easily by dividing the curve into many short seg-

= P.

I P n r s .+i
cos il/(s) ds = £ I cos \l/(s) ds.

0 1=0 Js,

So, upon changing variables,

( P n c^(i.*i)

cos ^(s) ds = S cos ^G,W d^.
0 1=0 jMs.)

Then
f f f^
1 cos \l/(s) ds = \ cos iG(il/) d\l/,
Jo Jo

where
G(V-) = S |G,W|,

and G,(^) = dsld^ in the (th segment. (We have to take the ab-
solute value in the sum to account for the fact that we are integrat-
ing from larger angles to smaller angles in those segments of the
curve where G(^) is negative.)

XI. CONCLUSION
We have shown that a novel representation of a simple, convex,

closed curve makes it possible to obtained smoothed, closed ver-
sions by a simple convolution operation. We have yet to determine
whether this approach is applicable to nonconvex curves.
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