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Machine Vision to Alert Roadside Personnel of
Night Traffic Threats
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In memory of the late Prof. Seth Teller who initiated the underlying idea for a “Divert and Alert” system

Abstract—In the United States, every year, several people
whose job takes them to the sides of roads, are injured or killed
by roadside collisions. This could be avoided if a warning signal
could be sent to them. In this paper, we describe a machine-
vision based alerting system which detects and tracks headlamps
of cars in night traffic. The system automatically computes a
“normal traffic” region in the image. Unusual trajectories of
cars are detected when the images of their headlamps move out
of that region. The system promptly sends a warning signal once
a risk has been identified. The system runs on the Android smart
phones, which are mounted on cars or on roadside fixtures.

Index Terms—“blob” detection, multi object tracking, danger
identification, alerting system, convex hull updating.

I. INTRODUCTION

ROADSIDE collisions represent one of the leading causes
of death for on duty police officers. Statistics show that

since 2009 an officer is hit and killed by a motor vehicle in the
U.S. on average once a month. As stated by Colonel Marian J.
McGovern (superintendent of the Massachusetts State Police),
“Along with other police departments around the country,
we have paid a dear price for accepting the risks faced by
troopers working on the side of busy highways. Dozens of
troopers have been injured in recent years.” Since 2010, three
Massachusetts police officers have been killed (and more have
been hit) because their cruisers were struck by other drivers.
The most recent tragedy of this type involved Massachusetts
state trooper Thomas Clardy.

We can try to reduce the accident rate and save lives
using two approaches simultaneously: One is to use a vehicle-
mounted system to project bright patterns onto the road in
order to divert some of the drivers who might otherwise come
too close to a stopped emergency vehicle. The other is to detect
anomalous or hazardous behavior of drivers using machine-
vision based technology and to promptly send a warning signal
to roadside personnel when such behavior is detected. We call
this two-pronged strategy the “Divert and Alert” System. In
this paper, we focus on the “Alert” part — see [4] for details of
the “Divert” part. The most dangerous situations (and almost
all of these types of accidents) occur at night. Thus, in this
paper, we focus on night traffic.

Object detection and tracking is a well-studied problem in
the machine vision field. There are several relatively mature
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methods, e.g. [5]–[11]. In order to implement these algorithms
(in Java) on an Android smart phone, we needed to simplify
and optimize existing methods, particularly in view of the
needs of this particular application. Specifically, (1) the system
is to work at night, so the scene is relatively simple, e.g.
some headlamps and stationary road-lamps on a mostly dark
background; (2) we focus on identifying potential threats
as fast as possible, rather than say counting the number of
headlamps, thus, we analyze small track sections directly,
rather than first connecting them into complete long tracks.

We describe the implementation of the three modules of
the alerting system: (1) headlamp detection and identification;
(2) adaptive matching and tracking of headlamps; (3) iden-
tification of dangerous trajectories. The first two modules
could be viewed as simplification and optimization of existing
approaches (such as [12]) to better suit the Android platform.
The third module is based on new work reported here. Typ-
ically, the vehicle of the roadside personnel will not appear
in the field of view (FOV) of the camera. Thus, rather than
use a fixed “alerting image region” preset by the user, we
determine a “normal traffic” image region automatically, based
on initial observation of traffic. We present methods to identify
and update the normal traffic region based on new headlamp
matching results as they are computed. Using this adaptive
method for detecting and updating the “normal traffic” region,
and exploiting geometrical properties of the convex hull, we
build a robust risk assessment system.

The whole system has been implemented using Android
Studio and tested on several smart phones (e.g. Samsung Note
3, LG Nexus 4, Motorola Nexus 6 and Huawei Nexus 6P). It
works in real time. Compared to other implementation, s.a.
on a laptop in the car, or, using custom electronic equipment,
the smart phone presents a convenient and relatively cheap
platform that is easy to carry, and can be easily mounted on
cars or on roadside fixtures using simple clip-on fixtures.

II. SYSTEM ARCHITECTURE

Figure 1 shows the architecture of the vision-based alerting
system. The smartphone camera mounted on the car (or other
roadside object) digitizes images of oncoming traffic, and
sends the image frames to the alerting system. The system
analyzes the image stream and sends alarms to the wearable
signal receiver, s.a. an Android watch, carried by the police
officer or other roadside personnel, if it observes what appears
to be dangerous behavior on the part of a motorist.

Note that the camera will typically be facing away from
the user (such as looking back along the road into oncoming
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Fig. 1. The architecture of the alerting system. The camera mounted on the
police car images the road environment. The system analyzes the video (image
frames), and sends an alarm signal promptly upon identifying a potential
danger (s.a. the car marked in red).

traffic and hence away from the stopped vehicle). Thus the
police car or the stopped car will typically not appear in the
field of view (FOV) of the camera. We need to detect and
update the “normal traffic” region automatically, and identify
headlamps that either move outside the normal traffic region or
can be predicted to move outside it soon (See Fig. 9). We do
also allow for an alternate physical setup, where the stopped
car and the police officer are within the field of view of the
camera. We provide a friendly user’s interface for them to
specify an “operating region” on the display screen, where he
or she will appear in the camera’s FOV (See Fig. 11(b)).

The system performs this task using three procedures se-
quentially: (i) detect bright “blobs” in the image frame, and
calculate their geometric properties (such as position, area
and some measures of shape); then (ii) track these blobs, and
make adjustments based on the tracking result, for instance,
check whether the blob is moving (or whether it is perhaps
just a street lamp or traffic light); finally (iii) detect potential
dangers and send the alarm signal if needed. Thus, the system
is implemented using three cascaded modules (See Fig. 1). We
discuss these three modules in detail next.

III. HEADLAMP IDENTIFICATION

First, a binary image B is generated from the input image
frame E by the following threshold process:

Bi,j =

{
1, if Ei,j ≥ C,
0, otherwise. (1)

where Bi,j (and Ei,j) denotes the entry of B (and E) in row
i and column j. In order to restrict attention to very bright or
saturated pixels, the threshold constant C is typically chosen
to be fairly high. Users can adjust the value of C conveniently
by dragging a “seekbar” (see Fig. 11(a)).

A. Region Detection

The next step is to find the “blobs” (connected regions)
in the binary images. We use a simple sequential labeling

(a) A binary image (b) Sequential labeling result

(c) Graphic representation of the labels

Fig. 2. The region grouping process. (a) is a binary image (The values of
the “empty” pixels are all zeros.); (b) the labeling result using the sequential
labeling algorithm [5]; (c) during the labeling process, a graph G is generated
based on the equivalence of regions with different labels. The numbers in (c)
are labels assigned to pixels. If two regions with different labels are connected
in (b), then the corresponding labels are connected in this graph.

algorithm (pp. 69 in [5]) to detect the blobs. Figure 2 demon-
strates the basic process. The binary image is scanned row
by row. For each row, the pixels are scanned from left to
right. For the pixel (i, j), if Bi,j = 1, check the labels of the
2 neighbouring pixels that have already been processed, i.e.
(i − 1, j) and (i, j − 1). If the values of these 2 pixels are
all zeros, then assign pixel (i, j) a new label. Otherwise, pixel
(i, j) is labeled by one of the labels of its 2 neighbouring
pixels. If the 2 neighboring pixels contain different labels (i.e.
the pixels marked by red squares in Fig. 2(b)), then a record
is made in a table that these different labels — which will be
called “equivalent labels” in this paper — belong to pixels of
the same connected component.

After sequential labeling, the equivalence relation of the
labels can be represented as a (undirected) graph G = {V,E}
(See Fig. 2(c)). The list of vertices V stores the labels, and
the list of edges E contains pairs of equivalent labels. The
edge-list is E = {{2, 3}, {2, 4}, {3, 5}, {6, 7}, {7, 8}} for the
example in Fig. 2. The graph G consists of isolated subgraphs,
and each subgraph corresponds to a connected region in B.
In the case of Fig 2(c), there are three subgraphs, and these
correspond to the three connected regions in Fig. 2(a). Note
that each subgraph can be represented by a spanning tree Ti

(which is called the tree-list). Thus, the whole graph is a list
of tree-lists, i.e. G = {T1, T2, · · · }. For the example in Fig.
2, G = {{1}, {2, 3, 4, 5}, {6, 7, 8}}. The final step is to find
the spanning tree Ti for each subgraph. That is, regrouping
the equivalent labels in V by searching the edge-list E. This
process is summarized in Algorithm 1.

Here, we use the breadth first search (BFS) [13], [14] to
generate the spanning tree (i.e. line 4 in Algorithm 1).
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Algorithm 1 Equivalent-labels regrouping
1: Initialization: generate an empty list G.
2: while V is not empty do
3: Choose the first entry vi in V .
4: Generate the spanning tree Ti from the root vi.
5: Append Ti to G, i.e. G = {G,Ti}.
6: Delete the edges contained in Ti from E.
7: Delete Ti from V .
8: end while

B. Geometric properties of the regions

For further processing, we need some of the geometric
properties of the connected regions — namely those that can
be computed from the zeroth, first and second moment of the
regions. These moments can actually be computed without first
relabeling the binary image based on the output of Algorithm
1. We just need to record the moments of the components
during the first labeling process. Then, based on the result
of Algorithm 1, we can combine these partial results to find
the corresponding characteristic geometric quantities of the
combined regions, as discussed next. Let Ai1 be the zeroth
moment of the pixels labeled i1, that is, the total number of
the pixels labeled i1. If i1, i2, · · · im are the equivalent labels in
the tree Ti, i.e. Ti = {i1, i2, · · · im}, then the zeroth moment
(or area) of the whole region i is simply:

Ai =

m∑
j=1

Aij (2)

Next, let Xi1 and Yi1 be the first moments of the pixels labeled
i1, that is [5],

Xi1 =
∑
k

∑
l

B
(i1)
k,l l and Yi1 =

∑
k

∑
l

B
(i1)
k,l k (3)

where k and l are the row and column index of the pixel (k, l),
and B

(i1)
k,l is an indicator function, that is, if the label of pixel

(k, l) is i1, then B
(i1)
k,l = 1, otherwise, B(i1)

k,l = 0. The first
moment of region i (with Ti, i.e. Ti = {i1, i2, · · · im}) is:

Xi =
m∑
j=1

Xij and Yi =
m∑
j=1

Yij (4)

It follows that the centroid (xi, yi) of region i is [5]:

xi = Xi/Ai and yi = Yi/Ai (5)

The centroid (xi, yi) is used for tracking, and the area Ai is
an important feature used in determining how likely it is that
region i is the image of a headlamp. If Ai is too small, then
region i will not be used for tracking, because it could be a
different type of light source, or a headlamp that is still too far
away for reliable tracking. Due to the limit of computational
power, in this paper, we use a fixed value, e.g. 50 pixels,
rather than an adaptive threshold (e.g. based on the tracking
results) for the threshold of the size of Ai. Users can adjust
this threshold easily by dragging a “seekbar” (see Fig. 11(a)).

For even more reliable headlamp detection, two more prop-
erties of a “blob” are used. One is whether region i is moving.

The other is whether region i is more or less “round”. The
first one depends on the tracking result, and the second one
depends on the second moments (denoted by ai, bi and ci) of
region i. By definition [5],

ai =
∑
k

∑
l

B
(i)
k,l(l − xi)

2 =

(∑
k

∑
l

B
(i)
k,ll

2

)
− X2

i

Ai
(6)

Note that ∑
k

∑
l

B
(i)
k,ll

2 =

m∑
j=1

(∑
k

∑
l

B
(ij)
k,l l

2

)
(7)

and
∑

k

∑
l B

(ij)
k,l l

2 can be calculated in the first labeling
process. Both Xi and Ai are results of calculations detailed
above (2) and (4). Thus, ai can be calculated from the existing
results. Similarly,

bi =
m∑
j=1

(∑
k

∑
l

B
(ij)
k,l lk

)
− XiYi

Ai
(8)

ci =
m∑
j=1

(∑
k

∑
l

B
(ij)
k,l k

2

)
− Y 2

i

Ai
(9)

That is, bi and ci can also be calculated from the results record-
ed in the first labeling process. The “roundness” or symmetry
of region i depends on the ratio of the two eigenvalues of the
matrix [5]: (

ai bi
bi ci

)
(10)

These two eigenvalues are (pp. 63 in [5]),

λ
(i)
1 =

(ai + ci)− di
2

, λ
(i)
2 =

(ai + ci) + di
2

(11)

where di =
√
(ai − ci)2 + 4b2i . The ratio of λ

(i)
1 and λ

(i)
2

depends on how “round” region i is. It is 0 for a straight line
and 1 for a circle (pp. 53 in [5]). In order to ignore some
elongated lights and reflections, we set a threshold, e.g. 0.6,
for headlamp identification that will discard those with low
values of this measure of roundness.

Figure 3 shows the result of headlamp detection in a typical
image frame. The numbers in Fig. 3 are the ratios of these two
eigenvalues. Note that some street lamps (marked by a blue
circle in Fig. 3) may also pass the test based just on their
geometric properties (area and roundness). However, they can
be identified, and ignored, based on their lack of motion —
which is information obtained from tracking (See Fig. 9).

IV. ADAPTIVE MATCHING AND TRACKING

Suppose that after headlamp identification (i.e. blob detec-
tion and filtering), we have detected m regions (whose centroid
are r1, r2, · · · , rm) in the current image frame, and we have n
regions (whose centroid are q1, q2, · · · ,qn) in the previous
image frame. The next task is to match these two sets of
detected regions. That is, generate min{m,n} pairs {qj , ri},
where qj and ri each appear at most once in those set of pairs.
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Fig. 3. In the region grouping result, possible headlamps are identified based
on geometric properties, i.e. area and symmetry, of the connected regions.
Some large, round “blobs” are selected for further tracking processing. The
numbers in the red boxes shows the ratios of the two eigenvalues in (11).

A. Distance based matching

For fast implementation, only the distance from the expect-
ed position is used for matching. We actually use the distance
squared (in order to avoid taking a square root):

di,j =
(
xi − (xj + uj)

)2
+
(
yi − (yj + vj)

)2
(12)

where ri = (xi, yi) and qj = (xj , yj), and (uj , vj) is
the estimated velocity of qj (in pixels per frame). Thus,
(xj +uj , yj + vj) is the position (in the current frame) where
the point qj (from the previous frame) is expected to appear.
We are faced here with a classic “chicken and egg” problem:
The velocity (uj , vj) depends on the matching result; yet
the distance dij used for matching also depends on (uj , vj).
One reasonable solution, and the one we adopt, is to use the
previous matching result {pk, qj} to estimate velocity (uj , vj),
i.e. (uj , vj) ≈ qj − pk.

To further improve the prediction, we can fit a straight line
sx − cy + ρ = 0 (with c2 + s2 = 1) to the apparent image
motion from the tracking history of a headlamp by least square
regression. The regression result provides the average direction
of motion — i.e. the direction of the line (c, s). A more
accurate estimate of the velocity can then be generated by
projecting the vector qj − pk onto the straight line, i.e.

(uj , vj) =
(
(qj − pk) · (c, s)

)
(c, s) (13)

where “·” denotes the inner product of two vectors. Figure 4
demonstrates this process. We call this approach the adaptive
matching and tracking process. If the velocity (uj , vj) is very
small (let’s say less than ±5 pixels per frame time) in several
successive frames, then the tracked region is considered to be
a road lamp (See Fig. 9).

The pairwise distances {di,j} form an m × n matrix D.
Finding the optimal matching pairs based on the “score ma-
trix” D is a well-studied problem. Some classical algorithms,
e.g. the Hungarian method [15], can be used to solve this
problem directly. Note that the Hungarian method only uses
the ordering of the entries in D (not their actual numerical
values dij). This may lead to some obviously wrong matching
result, that is, some matched pairs may have unreasonably
large distances dij . If these were accepted, then the track
being followed could be corrupted. In our implementation,

Fig. 4. The velocity of headlamp qj (the red arrow) is estimated based
on the previous matching result qj − pk (the dashed arrow) and the average
motion direction of all tracked points for this headlamp (the black line).

we set a threshold on dij : all entries in D with values larger
than the threshold are excluded from matching. This additional
procedure reduces the computational cost and increases the
robustness of the matching process.

B. Robust least square regression

It is common to estimate the two parameters k and m of
a straight line represented as y = mx + c (with N points
(xi, yi)). However, this method is not robust. For a start, there
is a singularity when the line is vertical, since then k →∞—
and there is no reason a headlamp track cannot be vertical in
the image. Perhaps more importantly, this least square method
assumes that somehow the x components of the positions of
the points are accurate, while the measurement error is entirely
in the y component. But, of course, x and y are both image
position measurements, equally subject to measurement error.

Thus, we are moved to use a more robust least square re-
gression approach that minimizes the (weighted) perpendicular
distance from the line sx−cy+ρ = 0 (s.t. c2+s2 = 1). That is,
we find the axis of least inertia [5]. To find the best fit values
of s, c and ρ we minimize the weighted sum of squares

N∑
i=1

wi(sxi − cyi + ρ)2 (14)

s.t. c2 + s2 = 1. By tedious calculation (in Appendix A), we
find the unit vector (c, s)T that minimize (14), i.e.

(c, s)T =
1√

2d(d− (a− c))
(2b, d− (a− c))

T (15)

where d =
√
(a− c)2 + 4b2, and a, b, c are the (weighted)

second momentums of the N points, i.e.

a = A−Wx̄2, b = B −Wx̄ ȳ, c = C −Wȳ2 (16)

where W =
∑

i wi is the sum of weights, and

A =
N∑
i=1

wix
2
i , B =

N∑
i=1

wixiyi, C =
N∑
i=1

wiy
2
i (17)

and (x̄, ȳ) is the weighted centroid of the points, i.e.

x̄ =
1

W

N∑
i=1

wixi and ȳ =
1

W

N∑
i=1

wiyi (18)

Here, the weight wi is chosen to decay exponentially, i.e. wi =
ηN−i (with 0 < η < 1) with time. This approach emphasis



5

new points over old ones, and yet does not require keeping a
history of old values1. The accumulated sums can be updated
incrementally. When a new point (xN+1, yN+1) is added, the
centroid (x̄, ȳ) is updated by

x̄← τ x̄+ (1− τ)xN+1 (19)
ȳ ← τ ȳ + (1− τ)yN+1 (20)

with the coefficient τ = (η − ηN+1)/(1 − ηN+1). Note that
A B C and W are also updated incrementally, i.e.

A← ηA+ x2
N+1 (21)

B ← ηB + xN+1yN+1 (22)

C ← ηC + y2N+1 (23)
W ← ηW + 1 (24)

The new a, b and c are calculated directly using eq. (16). Note
that τ ≈ η when N is large. Thus, we can let e.g. τ = η = 0.9
when N ≥ 10, to save even more on computational cost.

Some other tracking techniques, e.g. multi hypothesis track-
ing [7], and some other features, e.g. geometrical similarity
[16], [17], could also be used to improve the robustness of the
tracking results. For instance, when a car is approaching, the
image of its headlamps will become larger and larger. This
observation can be used as an additional constrain to improve
the distance based matching process discussed in section IV-A.
In order to keep the computational cost down, we didn’t use
these more sophisticated strategies in our implementation.

V. INTELLIGENT IDENTIFICATION OF POTENTIAL THREAT

Based on the tracking result, we need to identify whether the
trajectory of a car is potentially dangerous. Note that typically
the car of the roadside personnel will not appear in the FOV
of the camera. Thus, an “intelligent” approach is needed to
initially identify a “normal traffic” region (NTR), i.e. an image
area covering the positions of headlamps seen during an initial
setup period. Once that is done, dangers can be identified
automatically, just by checking whether there are headlamps
moving outside the NTR. Moreover, the identified NTR should
be updated intelligently, to match the new situation caused by
changes in traffic conditions and unexpected small movements
of the camera. In addition, in case the police car is in the
FOV, an “operating region” can be designated. Any headlamp
trajectories heading for this operating region will also trigger
an alarm. A more efficient implementation is to check whether
there is an overlap between the NTR and “operating region”.

A. Generating the convex hull
One way to automatically define the “normal traffic” region

is to compute the convex-hull containing all the tracked points
pi = (xi, yi). We not only need to generate the convex hull
initially, during a short startup session, but also need to update
the existing convex hull efficiently later. This is mostly to
accommodate small changes in the camera orientation. We
use an approach to finding the convex hull based on boundary-
points as illustrated in Figure 5.

1The most recently added points provide most of the weight of information
used in fitting the straight line. Thus, even if the car’s trajectory is a curve,
this process provides a good approximation to the tangent of the curve.

(a) The second boundary point is found by maximizing α

(b) The third boundary point is found by maximizing β

Fig. 5. The Process of finding the boundary points. (a) The first boundary
point is chosen as the rightmost point. The second boundary point is found
by maximizing α. (b) The third boundary points is found by maximizing β.
This process is repeated until the first boundary point is encountered again.

First, choose the rightmost point as the start point (also the
first boundary point) pb1

. Another special point is the centroid
pc of all the given N points,i.e. pc =

1
N

∑N
i=1 pi. Note that the

centroid pc will lie inside the convex-hull. These two special
points provide a vector pc−pb1

. For any point pi, we can find
the angle α between these two vectors pc− pb1

and pi− pb1
.

The second boundary point pb2
is chosen as the point with

largest α (See Fig. 5(a)). Note that

cosα =
(pc − pb1

) · (pi − pb1
)

∥pc − pb1
∥∥pi − pb1

∥
(25)

where “·” denotes the inner product of two vectors. Thus, pb2
is easy to find by minimizing sign(cosα) cos2 α. The sign of
cosα is determined by the sign of (pc − pb1

) · (pi − pb1
). In

this fashion the calculation of square roots suggested by eq.
(25) can be avoided.

Now, we obtain a vector pb1
− pb2

. Similarly, for any point
pi, we can find the angle β between pb1

−pb2
and pi−pb2

. The
third boundary point pb3

is chosen as the point with largest
β (See Fig. 5(b)). Repeat this process until the newly found
boundary point is the first boundary point pb1

.

B. Updating the convex hull

The system should adjust “intelligently” to changing traffic
condition, as well as to small changes in the orientation of
the camera (which may be caused by small motions of the
vehicle it is mounted on). Making small adjustments to the
convex hull allows us to keep a realistic, up to date, estimate
of the “normal traffic” region in the image.

In the interest of computational efficiency, we update the
convex hull using the ordered boundary points of the previous
convex hull rather than recomputing the convex hull from
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(a) Find the (inside) normal of the boundary

(b) Check whether pj is outside the convex hull

Fig. 6. Updating the convex hull with a new input pj . (a) For a convex
region, 0 < φ < π. Thus θ = |φ − π/2| ≤ π/2, and the inner product of
the two edges of θ must be greater than zero. (b) According to the (inside)
normal direction, we can check whether the new point pj is outside the convex
hull, and then identify the boundaries of the new convex hull.

scratch using saved headlamp positions. Note that, for this, we
need only save the boundary points, not all headlamp positions,
thus, this approach saves storage space, and is very efficient
computationally.

Given a new point pj = (xj , yj), the convex hull should
be updated as follows. First, in order to detect whether pj is
inside the convex hull, the (inside) normal direction of the
boundaries of the convex hull is needed. Thus, during the
process of finding the (ordered) boundary points, we should
also record the (inside) normal direction of every boundary
edge. Fig. 6(a) demonstrates this process.

For the boundary edge pbk+1
− pbk

, the normal direction is
obtained by rotating pbk+1

− pbk
by π/2. Or

nk+1 =
(
(ybk+1

− ybk),−(xbk+1
− xbk)

)T (26)

However, we want to find the normal direction nk+1 pointing
inside the convex hull. For a convex polygon, every inner angle
0 < φ < π. Thus, the angle θ = |φ− π/2| in Fig. 6(a) must
be less than π/2. We can calculate (pbk+2

− pbk+1
) · nk+1. If

this value is greater than zero, then, nk+1 = nk+1. Otherwise,
the inside normal nk+1 = −nk+1.

When a new point pj is added, if pj − pbk+1
is on the

opposite direction of the (inside) normal nk+1 of the boundary
pbk+1

−pbk
, i.e. (pj−pbk+1

) ·nk+1 < 0, then pj becomes the
new boundary points next to pbk

(See Fig. 6(b)). We should
keep checking the normal of the next boundary pbk+2

−pbk+1
.

If (pj−pbk+1
)·nk+2 > 0, then pbk+1

is still the boundary point
next to pj . Otherwise, pbk+1

becomes an inside point, and we

Fig. 7. The shrinking process for a convex hull. Choose an arbitrary point
O inside the convex hull, and split the convex hull into a set of triangles (e.g.
△OAB) with the boundaries (e.g. AB). Shrink each triangle △OAB into
a similar triangle △OA1B1. Then the original convex hull (the black one)
is shrunk into a smaller convex hull (the red one).

should keep on checking the next boundary point pbk+3
(and

so on) until (pj−pbk+m
) ·nk+m+1 > 0. Now, pbk+m

becomes
the boundary point next to pj and all previous boundary
points pbk+1

, pbk+2
, · · · , pbk+m−1

become inside points in the
new convex hull. This updating process requires just a few
multiplications. Thus, it can be implemented efficiently.

C. Shrinking the convex hull
The convex hull can only expand during the updating

process described in section V-B, and so cannot ever adapt
by getting smaller. If the camera is rotated slightly (perhaps
because the vehicle it is mounted on moves a bit), for example,
the normal traffic region will appear in a new (shifted) position
in the image plane and the overall convex hull will end up
being enlarged to cover both the new and the old regions.

One way of solving this problem is to record the frame
numbers that each boundary point has been last updated. If this
time is large (e.g. 100 frames ago), then, remove this boundary
point and generate the new convex hull again. However, extra
storage space is need for this approach; moreover, it is more
complicated to regenerate the convex hull than to update
a convex hull. In our implementation, a simpler and much
more efficient method is used, that is, we let the convex hull
shrink a bit automatically at certain times. Fig. 7 demonstrates
this shrinking process. The continuous appearance of new
headlamp tracks counteracts the shrinking process and a kind
of equilibrium is established after some initial “learning”.

To implement this, first, choose an arbitrary point O inside
the convex hull. The convex hull can then be divided into a
set of triangles (e.g △OAB in Fig. 7) with all the boundaries
(e.g AB in Fig. 7). Now, shrink each triangle △OAB into a
similar triangle △OA1B1 with a fixed ratio 0 < α < 1. That
is, OA1 = αOA and OB1 = αOB. Note that the new triangle
△OA1B1 is similar to the original triangle △OAB. Thus, all
the new triangles form a convex hull similar to the original
convex hull. Thus, this shrinking process not only preserves
the convexity, but also preserves the (inside) normal of all the
boundaries. Thus, it can be easily implemented in combination
with the updating process described in section V-B.
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The only problem left is how to choose an inside point O.
One choice is the centroid of all the boundary points. Another
reasonable choice is an interior point pO (e.g. the middle point)
of the line segment connecting the centroid and the highest
boundary point. The new boundary point p′

bl
(corresponding

to pbl
) after shrinking is pO + α(pbl

− pO), or

p′
bl
= αpbl

+ (1− α)pO (27)

Note that the shrinking process makes the convex hull smaller,
while adding new points makes the convex hull larger. Thus,
the shape and position of the convex hull can adapt to the ever
changing image data. However, if there are no new points out-
side the convex-hull added for a while, the convex hull could
shrink a great deal. We can prevent this by setting a threshold
on the ratio of the area of the convex hull and the area of
the whole image frame (i.e. the “Convex-Hull Area Ratio” in
Fig. 9 and 11). If this “Convex-Hull Area Ratio” is too small,
e.g. less than 5%, then we suspend the shrinking process. The
area of the convex hull can be calculated efficiently from its
boundary points. Let (x1, y1), (x2, y2), · · · , (xN , yN ) be the
all successive N boundary points of a convex hull, then the
area of the convex hull is:

S =
1

2

∣∣∣∣∣
N∑
i=1

xi(yi+1 − yi−1)

∣∣∣∣∣ (28)

Note that the indices in these formulae “wrap around”, that
is, the index 0 is equivalent to the index N , and the index
N + 1 is equivalent to the index 1. The derivation of (28) is
summarized in Appendix B.

VI. TRIGGER AN ALARM

In the default setting of our Android software, the algorithm
learns the NTR in the first tens of (e.g. 40) updates of the
convex-hull. Then, if any headlamp moves outside the NTR, an
alarm will be triggered and sent to the android watch (e.g. LG
G Watch R W110). Vigorous vibration of the android watch
will alert the police officer to the potential danger2.

One way of identifying whether the newly detected head-
lamp is outside the “normal traffic” region is to check each
edge of the convex-hull. Another method, easily added to
the normal update of the convex hull in our system, is to
check whether the area of the convex-hull become larger
after it is updated. The convex hull normally shrinks a very
small amount, e.g. α = 0.999 in (27). An alarm will be
triggered if the ratio of the areas of the convex-hull after
and before updating is larger than a threshold (e.g. 1.05).
In this simple implementation, some headlamps of cars that
do not present a real threat may trigger a false alarm. The
false alarm rate can be reduced using a number of additional
heuristic methods. One such method is to have two copies
of the convex hull, one of which at any given time is used
for detection of dangerous trajectories, while the other one
is “adapting” using the shrinking and updating procedures

2In our test, the Bluetooth connection works well up to 10 meters. The smart
phones take about 10 ms to ”notify” the alarm signal. The alarm message is a
few hundred bytes long. (The transfer rate by Bluetooth is larger than 1 Mb/s
[19]). There is no noticeable delay of vibrations on the android watch.

described above. The two copies are periodically swapped. In
this way, the adaptation to inadvertent camera motions happens
“behind the scenes” without directly affecting the convex hull
used in threat determination (See Fig. 10). Another way is
to only warn about headlamps passing through the bottom
boundaries of the convex-hull. Users can choose different
“Level of Safety” for triggering an alarm.

We also provide a friendly user interface to set an “operating
region.” If the user chooses this mode, then an alarm will be
triggered if there is an overlap between the “normal traffic”
region and the “operating region”. This can be implemented
by checking: (1) whether any boundary point pbk

= (xk, yk)
of the “normal traffic” region is inside the “operating region”,
or (2) any of the four corners of the “operating region”, i.e.
(Xleft, Yup), (Xleft, Ydown), (Xright, Ydown) and (Xright, Yup), is
inside the “normal traffic region.” Task (1) is relatively easy.
We just need to check whether

Xleft < xk < Xright and Ydown < yk < Yup (29)

Task (2) is more complicated. For e.g. the left-up corner Plu =
(Xleft, Yup), it is inside the convex-hull if and only if(

Plu − pbk

)
· nk > 0, (for all k = 1, 2, · · ·N) (30)

where nk is the (inside) normal of the boundary connecting
pbk

and pbk−1
. If either the criterion (29) or (30) is satisfied,

then an alarm will be triggered promptly (see Fig. 11(b)).

VII. EXPERIMENTS

The alerting system has been run on Android smart phones
mounted on a fixed roadside tripod. For test purposes, a camera
is mounted on another tripod behind the smartphone to record
the results on the smart phone (See Fig. 8). The camera
resolution is set as 720×1028 pixels. The down-sampled (by 4)
image, i.e. a 180× 257 matrix, is sent to the alerting system.
The camera’s ISO is set to 100. In our online dataset [20],
we provide: 1). videos of night traffic and the corresponding
results, 2). the real-time experimental results on smart phones
and 3). the test and validation of each module of the system.

Fig. 8. The system is running on smart phones. A camera is mounted on
another tripod behind the smart phone to record the experimental results. The
triggered alarm signal will be sent to an android watch.

Figure 9 shows some experimental results (on Nexus 6P).
The “normal traffic” region is learned and updated automati-
cally. The road lamps (marked by blue circles) are identified,
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(a) The experimental environment

(b) Identify the street lamps

(c) Trigger an alarm

Fig. 9. The alerting system running on Huawei Nexus 6P. (a). The tripod
is set at a fork in the road, where most cars move directly in a straight line,
some will turn left and run towards the tripod. (b). The “normal traffic” region
is learned and updated automatically. The road lamps (marked by blue circle)
are identified, and will not be used to update the convex-hull. (c). The car is
turning and running towards the camera, an alarm is triggered promptly.

and will not be used to update the convex-hull. To allow safe,
but realistic testing of the alarm condition, the tripod is set at
a fork in the road (See Fig. 9(a)). Most cars move directly in
a straight line, some (e.g. the left-most car in Fig. 9(b)) will
turn and travel towards the tripod during part of the turning
maneuver, which will cause the expansion of the “normal
traffic” region. Then, an alarm will be triggered promptly. In
Fig 9(c), the bright long-rectangular region on the top of the
smartphone is a notification of triggering an alarm, and the
bright region bellow the smartphone is a headlamp of a car
travelling towards the tripod. In our test [20], such obvious
threats (in Fig. 9) are detected all the time. However, the false-
alarm rate is also relatively high (every four or five passing
cars). The heuristic methods discussed in section VI reduce the
false alarm rate effectively (every several tens of cars3). Fig.
10 shows the result of using lower “Level of Safety”. In the
“working” period, the NTR doesn’t shrink. False alarms due to

3In the testing experiments [20], we set the “learning” period as 100 updates
and “working” period as 500 updates. The false alarms almost happen in the
transition between the “learning” and “working” periods. In really application,
the “working” period can be set much longer. Then the false alarm rate can
be reduced further. Then the false alarm rate can be reduced further more.

(a) During “working” period

(b) During “learning” period

Fig. 10. Users can chose lower “level of safety” to reduce false alarms. (a).
In the “working” period, the “normal traffic” region doesn’t shrink. (b). In the
“learning” period, a fixed convex-hull (i.e. the one with green boundaries) is
used for detect potential threats.

the shrinkage of NTR are avoided. In the “learning” period,
a fixed convex-hull is working in the background. Potential
threats can still be detected. See [20] for more testing results.

Fig 11 shows the frames of other results (on Samsung
Note 3). The system provides a friendly user’s interface, in
which some options can be configured, such as “No Red
Channel”, whether or not the user wishes to specify an
“operating region”, and so on. Users can also adjust the
thresholds for headlamp detection easily by dragging the
corresponding “seekbars” (See Fig. 11(a)). Users can drag the
yellow rectangle with text “Region of Interest” using their
fingers to specify the “operating region” easily (See Fig.11(b)).
If there is an overlap between the “normal traffic” region and
“operating region”, an alarm will be triggered promptly. The
bright long-rectangular region on the top of the smartphone in
Fig.11(b) is a notification of triggering an alarm.

Table I gives the analysis of our algorithm on seven video
clips. All the videos and experimental results are available on
our online data set [20]. The first 5 video clips are taken by
Huawei Nexus 6P (with ISO 100 and shutter time as 1/500
sec). The last 2 video clips are taken by Samsung Note 3 with
auto mode. First, a detected headlamp (H.L.) is defined as
an effective headlamp (E.H.L.) for tracking if most (≥ 90%)
of the detected images of the same H.L. appear successively
(≥ 10 successive fames). Moreover, a headlamp track (H.L.T.)
is defined as an effective track (E.T.) if most (≥ 90%) of
the images in every successively detected piece of the same
E.H.L. are tracked correctly. Table I also gives the number
(#) of false detection (F.D.), the undetected headlamps outside
the convex-hull (U.O.), the falsely detected headlamps outside
the convex-hull (F.O.), the falsely detected tracks (F.T.), the
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(a) friendly user’s interface

(b) specify the “operating region”

Fig. 11. The system running on another smart phone (Samsung Note 3).
(a) The software provides friendly user’s interface. (b). users can specify the
“operating region” conveniently. An alarm will be triggered promptly if there
is an overlap between the “normal traffic” region and the “operating region”.

undetected dangerous tracks moving outside the convex-hull
(D.T.) and the false tracks outside the convex-hull (F.T.O.),
which may include the detected street lamps (D.S.). Note that
U.O. and D.T. are part of the F.T., and F.O. and F.T.O are part
of F.T. Moreover, # F.T. is less than or equal to # F.D.

Video 1(N) to 5(N) do not suffer from severe light pollution
from the environment; thus, their numbers of F.D. and F.T are
much lower than the ones in video 6(S) and 7(S). However,
some headlamps’ images also become dimmer and smaller.
Thus, the ratios E.H.L./H.L. and E.T./H.L.T. are also relatively
low. False alarms can be reduce by only using long tracks for
threat identification. However, some potential danger may also
be missed. We focus more on safety, thus, shorter tracks are
also used for threat identification in our system.

VIII. CONCLUSION

Every year, on-duty police officers are killed in roadside
collision. Some of these tragedies could be avoided if a
warning signal could be sent. Development of machine vi-
sion technology provides the tools for saving the lives of
roadside personnel. Object detection and tracking has been
studied for a long time in the machine vision field, and
the corresponding technologies are relatively mature. In this
paper, we provide an “alerting system” based on detecting
and tracking cars’ headlamps. We simplify and optimize the
“detecting and tracking” algorithms to make it possible to
perform this task in real time on an Android smartphone. The
roadside person can set up the smartphone easily, and carry an
alerting device such as an Android watch, without interfering

with normal operations. Smartphones are mass produced and
cheaply provide considerable computing power and imaging
capabilities. They are thus to be preferred to alternate potential
implementation, such as using a laptop computer or custom
electronics. We described the basic modules of the system,
and provide an approach for “intelligent” identification of
the normal traffic-region. This method matches the traffic
condition automatically, and prevents problems that could be
caused by small unexpected motions of the camera during
operation. Our work is just the first-step in attempting to save
roadside personnel’s lives by the “Divert and Alert” approach.
Here we focus on night traffic, and smart phones that are
fixed in position. Some more robust vehicle detection and
tracking methods, e.g. [21]–[24], can be used in the future
to handle more complicated situations, e.g. in heavy raining
or foggy conditions, (when more processing power becomes
available). Moreover, the naive area-ratio based criterion can
also be improved, as we have indicated in Section VI.

APPENDIX A
FIND THE AXIS OF LEAST INERTIA

Physically, (14) is also known as the inertia corresponding
to the line (or axis) sx− cy + ρ = 0 (with c2 + s2 = 1) [5].
By differentiating (14) w.r.t ρ and setting the result equal to
zero, it is easy to show that the line has to pass through the
centroid (x̄, ȳ), that is, sx̄ − cȳ + ρ = 0, where (x̄, ȳ) is the
(weighted) centroid in (18). If we now refer all coordinates
to the centroid (i.e. subtract (x̄, ȳ)), then ρ drops out, and
we need to minimize

∑N
i=1 wi(sx

′
i − cy′i)

2 again subject to
c2 + s2 = 1, where x′

i = xi − x̄ and y′i = yi − ȳ. That is,
minimize [

s −c
] [a b

b c

] [
s
−c

]
(31)

subject to c2 + s2 = 1, where a, b and c are the second
momentums in (16). Note that the two unit vector (s,−c)T
that minimize and maximize the quadratic form (31) are the
two (unit) eigenvectors of the 2×2 (symmetric) matrix in (31).
By tedious calculation (See pp. 63 in [5]), we can find the unit
eigenvector corresponding to the smaller eigenvalue:

(s,−c)T =
1√

2d(d− (a− c))
(d− (a− c),−2b)T (32)

where d =
√
(a− c)2 + 4b2. The axis of least inertia is in the

direction (c, s)T , which is exact eq. (15).

APPENDIX B
THE AREA OF A CONVEX HULL

Let the three points in Fig. 7 be A = (xi+1, yi+1), B =
(xi, yi) and O = (xO, yO). Then the two edges of the triangle
△OAB are OA = (xi+1 − xO, yi+1 − yO) and OB = (xi −
xO, yi − yO). The area of △OAB is [18]:

Si,i+1 =
1

2
det
(

xi − xO xi+1 − xO

yi − yO yi+1 − yO

)
(33)

where “det(M)” denotes the determinant of the matrix M. By
tedious calculation, the expression for Si,i+1 is
1

2
(xiyi+1 − xi+1yi) +

xO

2
(yi − yi+1) +

yO
2

(xi+1 − xi)
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TABLE I
ANALYSIS OF THE EXPERIMENTAL RESULTS. “(N)” DENOTES NEXUS 6P AND “(S)” DENOTES SAMSUNG NOTE 3.

video # Image Accuracy of Detection Accuracy of Tracking
index Frames #E.H.L./#H.L. ( %) # F.D. # U.O. # F.O. (#D.S.) #E.T./#H.L.T ( %) # F.T. # D.T. #F.T.O (#D.S.)
1 (N) 4727 45/52 (86.54%) 5 4 3 (0) 44/52 (84.61%) 1 0 1 (0)
2 (N) 1477 28/32 (87.50%) 7 2 5 (2) 28/32 (87.50%) 1 1 4 (2)
3 (N) 2181 49/54 (90.74%) 2 0 7 (3) 45/54 (83.33%) 2 0 3 (3)
4 (N) 3727 77/84 (91.67%) 7 1 3 (0) 74/84 (88.10%) 1 0 1 (0)
5 (N) 2976 27/31 (87.10%) 3 5 2 (2) 26/31 (83.87%) 2 2 2 (2)
6 (S) 4147 59/60 (98.33%) 67 0 21 (1) 59/60 (98.33%) 53 0 12 (1)
7 (S) 2689 32/32 (100%) 41 3 20 (1) 32/32 (100%) 21 0 14 (1)

The area of the convex hull is the sum of all the Si,i+1, i.e.,

S =
N∑
i=1

Si,i+1 =
1

2

N∑
i=1

xi (yi+1 − yi−1) (34)

Note that
∑N

i=1 (yi − yi+1) = 0 and
∑N

i=1 (xi+1 − xi) = 0.
Still, the indices in these formulae “wrap around”, that is, the
index 0 is equivalent to the index N , and the index N + 1 is
equivalent to the index 1. Also, the boundary points are chosen
counterclockwise order. Otherwise, Si,i+1 would be negative.
That’s the reason why we use the absolute value in eq. (28).
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