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Hill Shading and the Reflectance Map
BERTHOLD K. P. HORN

Abstract -Shaded overlays for maps give the user an immediate ap-
preciation for the surface topography since they appeal to an important
visual depth cue. A brief review of the history of manual methods is
followed by a discussion of a number of methods that have been pro-
posed for the automatic generation of shaded overlays. These
techniques are compared using the reflectance map as a common
representation for the dependence of tone or gray level on the orienta-
tion of surface elements.

I. INTRODUCTION
/ f~ \ F THE SEVERAL ways of depicting surface form on
[I (maps, hill shading has the most immediate appeal and
^-^ provides for quick comprehension of the topography. In

this sense, hill shading is complementary to the use of con-
tours, which provide accurate terrain elevations but require
careful scrutiny if one is to ascertain the surface form. Shaded
maps are most important when the interpreter's time is limited,
as in aviation, for users that are not trained cartographers, and
for small scale maps, where contours degenerate into messy
tangles of lines.

Why then do we not see more shaded maps? One reason is
the expense of the present manual methods of production,
which require skilled artists with good insight into cartography.
Working from existing contour maps, ridge and stream lines
extracted from such maps, and at times aided also by aerial
photography, they wield airbrushes, in what is a slow, tedious,
and imprecise operation. Different individuals called upon to
create such images by manual methods will inevitably produce
different results because of the inherent subjective judgment.
The resulting differences in expression of the terrain character-
istics of the same surface at the same scale provide a particular
problem' for a map series, where adjoining sheets should match
in terms of hill-shading symbology. This justifies investigation
of an objective system which makes the treatment of all terrain
forms comparable and repeatable.

Attempts at automation began with the notion that the gray
levels used in the shading should derive from a model of how
light might be reflected from a surface. Ignoring shadowing
and mutual illumination effects, it seems clear that the re-
flected intensity will be a function of the local surface inclina-
tion. The choice of a method for calculating the gray tone
based on the orientation of each surface element has however
been the subject of occasionally bitter controversy for almost
two centuries. Much of the difficulty stems from a lack of a
common representation that would allow comparison of
methods which appear at first glance to be incomparable.

The recently developed reflectance map constitutes such a
common denominator. It is a simple device developed origi-
nally for work in machine vision where one is interested in
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Fig. 1. Block diagram of a system for the generation of relief shading.
The gray-value is calculated by applying the reflectance map to the
gradient estimate obtained by sampling neighboring points in the
digital terrain model.

calculating surface shape from the gray levels in an image.
This is clearly just the inverse of the problem of producing
shaded pictures from a surface model. The reflectance map is
a plot of apparent brightness versus two variables, namely the
slope of the surface element in the west-to-east direction and
the slope in the south-to-north direction. Producing a shaded
overlay for a map then is simply a matter of calculating these
two slopes for each surface element and looking up the
appropriate gray level in the reflectance map (see Fig. 1). This
is a very simple, local computation that can be carried out
efficiently even on enormous databases. The resulting gray
levels can then be fed to a graphic output device that will pro-
duce a continuous tone or halftone photographic transparency
from the given stream of numbers.

What reflectance map is to be used? Careful comparison of
more than a dozen proposed shading methods shows that some
of the simplest provide a good impression of the shape of the
surface. These experiments also show that the most com-
monly used assumptions about surface reflectance do not lead
to the best results, while simple monotonic functions of the
surface slope in the direction away from the assumed light
source work admirably. What matters is the visual impression,
not theoretical rules [ 1 ]. One goal of this paper is a review of
various hill-shading methods that have been proposed in the
past. Much can be learned from these efforts when they are
evaluated in terms of the corresponding reflectance maps.

II. EARLY HISTORY OF HILL SHADING
Chiaroscuro, the technique of using light and shade in

pictorial representation of three dimensional shapes, has been
used by artists for many centuries. Leonardo da Vinci put it
to good effect in his maps of Toscana, drawn in 1502 and
1503, that contained oblique shaded views of relief forms
illuminated from the left [ 1 ]. Woodcuts of the area around
Zurich in Switzerland drawn half a century later by Murer use
shaded sideviews as well. Overhead views using relief shading
appear for the first time in maps of the same area drawn a
century after that by Gygers, but these then gave way to less
desirable forms [ 1 ].

The choice of the representation for relief forms depend to a
great extent on the available reproduction technology. Wood-
cuts and engraving methods lend themselves to linear forms,
where brightness of an area in the reproduction is controlled
by the spacing and width of darkened lines. Useful directional,
textural effects can be generated by orienting these line frag-
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ments, or hachures (Schraffuren), along lines of steepest
descent. Crowding of such lines in steep areas may have given
rise to notions of "steeper implies darker."

Lehmann proposed the first rigorous relationships [2], [3]
between surface slopes and quantities measurable on the
printed map. In 1799, when his method (Boschungsschraffen)
was published anonymously, the techniques for measuring the
surface accurately at a large enough number of points did not
exist. Results of this first method of illustrating shape are in
some ways analogous to those one might obtain by illuminat-
ing a model of the surface from above, an arrangement that
gives rise to images that are difficult to interpret.

Partly as a result of this, an alternate form (Schatten-
schraffen) evolved [4]-[6], in which the line thickness is
varied according to the orientation of the local surface patch
with respect to a light source, usually assumed to be near the
top left of the map when it is oriented properly for viewing.
For maps with North at the top this corresponds to northwest.
Surface patches sloping downward in that direction are por-
trayed with a light tone, while those sloping upward in that
direction get a dark tone. Since flat areas have no lines of
descent, they remain white. Aside from this defect, this
method produces an image similar to one obtained by
obliquely illuminating a diffusely reflecting model of the sur-
face. Having flat areas appear white makes maps produced by
this method a little difficult to interpret. They are neverthe-
less superior to those made by the earlier method, as evidenced
for example by the "Dufourkarte" of Switzerland made be-
tween 1842 and 1864 using this approach [ 1 ]. These methods
for portraying surface shape preceded the widespread use of
contours [ 7 ], in part because the latter require detailed surface
measurements that were not available before the advent of
photogrammetry.

While lithography was invented by Alois Sneefelder in 1796,
it found little application in cartography until around 1850. It
permitted the production of multicolored maps, but more im-
portantly, led to the use of halftones, destined to ultimately
replace lines as a means of modulating the average reflectance
in the printed map. W. H. Fox Talbot invented a photome-
chanical halftone process in 1852, but commercial success
came only years after the patenting of the halftone screen by
Frederick von Egloffstein in 1865, and the crossline screen of
William A. Leggo in 1869.

Having access to these new reproduction schemes, Wiechel
[8] developed shading methods (Schraglichtschummerung) to
replace the use of hachures as described above. His funda-
mental paper, based in part on work by Burmester [9] on
shaded pictures of regular surfaces, placed the field of hill-
shading on a sound foundation. Wiechel discovered the error
regarding flat surfaces, for example, and developed a graphic
method for determining the gray value from contour interval
and direction. Unfortunately, the means for controlled genera-
tion of halftones as a function of surface orientation did not
then exist and his work was ignored for a long time.

III. HILL SHADING IN THIS CENTURY
Two methods based on lines, this time contours instead of

lines of steepest descent, were explored by KitirQ Tanaka in
the 1930's. His first method used the lines of intersection of
the terrain surface with uniformly spaced, parallel, inclined
planes [ 10], [11]. Tanaka's initiative gave rise to considerable
discussion [12]-[19], partly in the form of an acrimonious
debate [20]-[23]. His other method was based on portrayal
of a terraced model of the terrain [24]-[26], an approach that

had been used previously, unguided by his careful analysis
[27]-[29]. While line-based methods give rise to beautiful,
easy to interpret maps, they cannot show the fine detail of sur-
face topography possible with halftones and must be based on
smoothed, generalized information such as contours. These
lines also tend to interfere with others used to portray
planimetric information.

A shaded overlay can also be produced by photographing an
appropriately illuminated scaled model of the surface. If this
model has a matte or diffusely reflecting surface, a map over-
lay of high quality will result provided attention is paid to the
projection geometry. While this was an approach taken early
on [27], it really only became practical in the 1950's with the
introduction of milling machines that allow an operator to
carve a model by tracing contours on an existing map
[30]-[37]. This is still an expensive, slow process however, in
part because of the manual work required to smooth out the
resulting "terraced" model.

The Swiss school of cartography improved on earlier forms
[28]-[30], [38], [39] and developed shading to a fine art,
producing numerous outstanding maps in this time [40]-[48].
Imhof argues that automated methods, such as relief model
photography, cannot produce results nearly as impressive,
since the cartographer cannot easily influence the process [ 1 ].
The manual shading method is however slow and expensive,
and consequently has not been used except for small areas and
those of particular interest or military importance. One can-
not expect, with significant areas of the world still not mapped
at large scales, and the rising cost of labor, that shaded overlays
produced this way will be used in many maps.

Yoeli [49]-[57] saw the potential of the digital computer in
dealing with this dilemma. It is possible to implement Wiechel's
method based on oblique illumination of a diffusely reflecting
surface if terrain elevations can be read into a computer and
suitable continuous tone output devices are available. Yoeli
was hampered by the lack of such devices at that time.
Blachut and Marsik tried to simplify the required calculations
to the point where a computer might not even be required
[58], [59]. Peucker helped popularize the whole idea of
computer-based cartography [19], [60]-[62], and found a
piecewise linear approximation to the equation for the bright-
ness of a diffuse reflector that works well [61]. Many other
interesting reports appeared during this time on the subject of
hill-shading, too numerous to mention individually [63]-[70].

Brassel [71]-[74] took Imhof's admonitions seriously and
tried to implement as much as had been formalized of the
"Swiss manner." With the output devices available to him at
that time it was not easy to judge whether the added com-
plexity was worth the effort. All of these computer based
methods require detailed digital terrain models. The storage
capacity and techniques for handling this kind of information
now exist [32], [75]-[81] as do the photographic output de-
vices needed. There has been significant progress, too, in the
automatic generation of digital terrain models directly from
aerial photographs [81]-[87], partly as a byproduct of work
on orthophoto generation [8 8]-[91]. More compact and ap-
propriate representations for these terrain models are under
investigation [92]-[95], as are alternate methods for relief
portrayal such as block diagrams [96]-[ 102].

Considerable progress has been made recently in the com-
puter graphics area in the portrayal of regular objects with
simple surfaces [103]-[116]. Early models for the reflection
of light from matte surfaces [117]-[120] are being elaborated,
including some for the material on the lunar surface [121]-
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[ 130]. In this context, work on models of the microstructure
.of surfaces is relevant [131]-[136]. In a recent effort in the
machine vision area, a method was developed for portraying
the dependence of brightness on surface orientation using the
so-called reflectance map [137]-[141]. The reflectance map
can be determined if the detailed geometric dependence of re-
flection from the surface [142], [143] and the distribution of
light sources are known. Alternatively, it can be found
empirically, or derived directly by analyzing the interaction of
light rays with the surface microstructure.

As a result of the development of the reflectance map, the
availability of detailed digital terrain data, small computers
able to perform the simple calculations required, and geo-
metrically accurate gray-level output devices, we may say that
automatic hill shading has come of age.

IV. DIGITAL TERRAIN MODELS
For many applications of cartographic data it is useful to

have machine-readable surface representations. Such terrain
models are used for example in the design of roads and in
order to determine the region irradiated by a radio frequency
antenna. Initially, digital terrain models were generated
manually by interpolation from existing contour maps. This is
a tedious error-prone process producing a digitized version of
the surface represented by the contours, which in turn is a
smoothed, generalized version of the real surface.

The contour information on topographic maps is produced
by manual scanning of stereo pairs of aerial photographs.
Today, fortunately, stereocomparators often come equipped
with coordinate readouts that allow the extraction of informa-
tion needed for the generation of digital terrain models [144].
Conveniently taken during orthophoto generation [8 8]-[91],
the data tends to be accurate and detailed. Even more exciting
is the prospect for machines that achieve stereo fusion without
human help [81]-[87], since they will lead to the automatic
production of digital terrain models. In the past such ma-
chines had difficulties dealing with uniform surfaces such as
lakes, featureless surfaces, large slopes, and depth disconti-
nuities, as well as broken surfaces, such as forest canopies.
This is apparently still true when aerial photographs are used
with disparities large enough to ensure high accuracy.

Various representations can be chosen for the surface eleva-
tion information. Series expansion, a weighted sum of mathe-
matical functions such as polynomials, Gaussian hills or
periodic functions may be used. These tend to be expensive
to evaluate however and not accurate in approximating sur-
faces that have slope discontinuities. This is important for
many types of terrain, at all but the largest scales. Perhaps the
simplest surface representation is an array of elevations {z;,}
based on a fixed grid, usually square. Determining the height
at a particular point is simple and the interchange of terrain
models between users is easy since the format is so trivial.
One disadvantage of this kind of surface representation is the
high redundancy in areas where the surface is relatively
smooth. The illustrations in this paper are based on digital
terrain models consisting of arrays of elevation values.

Methods that achieve considerable data compression by
covering the surface with panels stretched between specially
chosen points have been developed [92]-[95]. "These exploit
the fact that real geographical surfaces are not arbitrary sets
of elevations but have definite structure and regularity. Such
representations may ultimately replace the simpler, more

voluminous ones, if users can be persuaded to accept the
greater programming complexities involved.

Digital terrain models may also be referred to as digital
elevation models if they contain no information other than
the elevation values.

V. THE REFLECTANCE MAP
The human visual system has a remarkable ability to deter-

mine the distance to objects viewed, as well as their shape,
using a variety of depth cues. One such cue is shading, the de-
pendence of apparent brightness of a surface element on its
orientation with respect to the light source(s) and the viewer.
Without this particular depth cue we would be hard pressed to
interpret pictures of smooth, opaque objects such as people,
since other cues like stereo disparity and motion parallax are
absent in a flat, still photograph. It can be shown that
shading contains enough information to allow the observer to
recover the shape. In fact, a computer program has been de-
veloped that can do this using a single digitized image [137].

Such work in the area of machine vision has led to a need to
model the image-forming process more carefully [138]. The
input to the visual sensing system is image irradiance, which is
proportional to scene radiance (here loosely called apparent
brightness) [ 140]. Scene radiance in turn can be related to the
underlying geometric dependence of reflectance of the surface
material and the distribution of light sources [142], [143].
Here we concentrate on the dependence of scene radiance on
the orientation of the surface element. Shaded overlays for
maps are interpreted by the viewer using the same mechanism
normally employed to determine the shape of three-dimensional
surfaces from the shading found in their images. Thus shaded
overlays should be produced in a way that emulates the
image-forming process, one in which brightness depends on
surface orientation. This is why the reflectance map, which
captures this dependence, is useful in this endeavor.

Consider a surface z(x, y ) viewed from a great distance above
(see Fig. 2). Let the .x-axis point to the east, the .c-axis north,
and the z-axis straight up. The orientation of a surface element
can be specified simply by giving its slope p in the x (west-to-
east) direction and its slope q in the y (south-to-north) direc-
tion. The slopes p and q are the components of the gradient
vector, (p,q). The apparent brightness of a surface element
R(p, q) depends on its orientation, or equivalently, the local
gradient. It is convenient to illustrate this dependence by
plotting contours of constant apparent brightness on a graph
with axes p and q. This reflectance map [138] provides a
graphic illustration of the dependence of apparent brightness
on surface orientation. The pq-plane, in which the reflectance
map is drawn, is called the gradient space, because each point
in it corresponds to a particular gradient.

Surface orientation has two degrees of freedom. We have
chosen here to specify the orientation of a surface element by
the two components of the gradient. Another useful way of
specifying surface orientation is to find the intersection of the
surface normal with the unit sphere. Each point on the sur-
face of this Gaussian sphere again corresponds uniquely to a
particular surface orientation. If the terrain is single-valued,
with no overhangs, all surface normals will point more or less
upwards and pierce the Gaussian sphere in a hemisphere lying
above an equator corresponding to the horizontal plane.
Gradient space happens to be the projection of this hemisphere
from the center of the sphere onto a plane tangent at the upper
pole.
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Fig. 2. Coordinate system and viewing geometry. The viewer is actu-

ally at a great distance above the terrain so that the projection is
orthographic.

While we will not use this representation in the calculation of
relief shading, it is helpful in understanding previous attempts
at graphical portrayal of the dependence of apparent brightness
on surface orientation. The first such method was developed
by Wiechel more than a century ago [8]. His brilliant analysis
appears to have been largely ignored partly because it de-
pended on mathematical manipulations that may have been
inaccessible to many of the intended users. Later, Kitiro
Tanaka invented another method showing the variation of
apparent brightness with surface gradient [10], [ I I ] , [24],
[25]. This second precursor of the reflectance map also ap-
pears to have found little following.

VI. POSITION DEPENDENT EFFECTS
Since the reflectance map gives apparent brightness as a

function of local surface gradient only, it does not take into
account effects dependent on the position of the surface
element. One such effect is illumination of one surface ele-
ment by another. Fortunately this mutual illumination effect
is small unless surface reflectance is quite high [138]. It is not
known whether mutual illumination effects aid or hinder the
perception of surface shape. They are difficult to calculate
and so have not been emulated in work on hill-shading.

Another position dependent effect on apparent brightness is
the blocking of light by one portion of the surface before it
reaches another. Cast shadows can be calculated by determin-
ing which surface elements are not visible from the point of
view of the light source [139]. Shadows cast by one compli-
cated shape on another are hard to interpret however and ap-
parently detract from the visual quality of shaded overlays
[I], [35], [36]. They are thus rarely included.

Scattering of light by air molecules and aerosol particles
changes the apparent brightness of a surface element viewed
through the atmosphere. The brightness is shifted towards a
background value equal to the brightness of an infinitely thick
layer of air. The difference between the brightness and the
background value decreases with the thickness of the gaseous
layer through which the surface is viewed [ 145]. The resulting
reduction in contrast as a function of distance is referred to as

aerial perspective and can be a useful depth cue, although there
is no general agreement that it aids the perception of surface
shape. It has been used at times by map-makers and can be
modeled easily [ I ] , [71],[73],[74]. The effect has not been
added to any of the hill-shading schemes presented here in
order to simplify comparisons.

VII. WHERE Do REFLECTANCE MAPS COME FROM?
A reflectance map may be based on experimental data. One

can mount a sample of the surface in question on a goniometer
stage and measure its apparent brightness from a fixed view-
point under fixed lighting conditions while varying its orienta-
tion. Instead, one can take a picture of a test object of known
shape and calculate the orientation of the corresponding sur-
face element for each point in the image. The reflectance map
is then obtained by reading off the measured brightness there.

Alternatively, one may use even more detailed information
about light reflection from the surface. The bidirectional re-
flectance distribution function (BRDF) describes how bright a
surface will appear viewed from one specified direction when
illuminated from another specified direction [142], [143].
By integrating over the given light source distribution one can
calculate the reflectance map from this information [140].
Crudely speaking, the reflectance map is like a "convolution"
of the BRDF and the source-radiance distribution.

Most commonly, reflectance maps are based on phenomeno-
logical models, rather than physical reality. The so-called
Lambertian surface, or perfect diffuser, for example, has the
property that it appears equally bright from all viewing direc-
tions. It also reflects all light, absorbing none. It turns out
that these two constraints are sufficient to determine uniquely
the BRDF of such a surface, and from it the reflectance map,
provided the positions of the light sources are also given.
Some reflectance-maps are based on mathematical models of
the interaction of light with the surface. Such models tend to
be either too complex to allow analytic solution or too simple
to represent real surfaces effectively. Nevertheless some have
come quite close to predicting the observed behavior of
particular surfaces [134]-[136],

Here, new reflectance maps will be determined, based on
proposed methods for producing shaded overlays for maps.
Their derivation will not depend on an understanding of the
image-formation process or the physics of light reflection.
Instead, they will require an analysis of how the brightness of
a point in the overlay depends on the gradient of the underly-
ing geographical surface.

Which reflectance map should be used? The answer to this
question must depend on the quality of the impression a
viewer gets of the shape of the surface portrayed. Various
methods for producing shaded overlays can be compared by
evaluating sample products and classified according to the
corresponding reflectance maps. It will become apparent that
in this way general conclusions can be drawn about a new
method just by inspecting its reflectance map.

VIII. NORMALIZATION OF GRAY TONE
A picture made by applying varying amounts of light absorb-

ing substances, such as ink, to an opaque, diffusely reflecting
material like paper, has a limited dynamic range. Reflectance
is limited at the low end by the properties of the ink and at
the high end by the paper, which will at most reflect all the
light incident upon it, unless it fluoresces. The diffuse reflec-
tance is thus always less than or equal to one. Similarly, if
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absorbing substances are used on a transparent substrate, a
limit applies, since transparency cannot be larger than one.

The problem of fitting a given image into the available dy-
namic range is fundamental to all methods of reproduction. A
normalization is applied so that the maximum apparent bright-
ness to be reproduced is represented by a reflectance of one
(or whatever the maximum is for the paper being used). This
scaling will have to be applied whenever relief shading is based
on models of image-formation by light reflected from thp
terrain surface.

IX. GRADIENT ESTIMATION
The apparent brightness of a surface element depends on its

orientation with respect to the viewer and the light source.
The orientation of the surface element is described fully by a
surface normal, or equivalently by the gradient. The compo-
nents of the gradient are the slopes p (in the west-to-east
direction) and q (in the south-to-north direction). These
slopes have to be estimated from the array of terrain eleva-
tions. It is convenient to use a short hand here for elevations
in the neighborhood of a particular point (see Fig. 3). In the
context of a single point at discrete coordinate (i, /'), we will
denote the elevation at that point by Zoo, while elevations of
the adjacent grid points to the west and east will be called z-o
and z+o, respectively. Similarly, elevations at the points to the
south and north will be denoted Zy- and ZQ+.

The simplest estimates for the slope p might be

Z-. Z.+ Z^

Z-o Z°o Z+o

Fig. 3. Short-hand notation for elevations of neighboring points.

X. GRADIENT SMOOTHING EFFECTS

More complicated slope estimators than the ones described
tend to introduce a smoothing e f f e c t , as can be seen by apply-
ing them near points of discontinuity in slope. To illustrate
this more clearly, consider two horizontal smoothing opera-
tions H+ and H- that modify the terrain model as follows:

H+:ZQO =(zoo+z+o) /2
and

H-:Zoo =(z-o +Zoo)/2.
It can now be seen that the central difference slope estimate

Pc on the original terrain model, equals the biased estimate p+
calculated from the terrain model smoothed using H-, or,
equivalently, the biased estimate p_ calculated from the terrain
model smoothed using H+. Next consider two vertical smooth-
ing operation V+ and V- in which the terrain model is modi-
fied as follows:

and
p+=(z+o - Zoo)/^x V+:zoo =(ZQO +zo+)/2

p- = (zoo - z-o )!^x and

where Ax is the grid interval in the west-to-east direction, ex-
pressed in the same units as the terrain elevations. These esti-
mates are biased, actually estimating the slope half a grid
interval to the right and left of the central point, respectively.
Their average however, the central difference, is unbiased,

Pc=(z+o-z-o)/2A;x.

Numerical analysis [146]-[149] teaches us that for certain
classes of surfaces an even better estimate is obtained using a
weighted average of three such central differences,

Pw = t(z++ + 2z+o + z+.) - (z-+ + 2z_o + z--)]/8Ax.
Symmetrically, one can estimate the south-to-north slope,

Qw = t(z++ + 2zo+ + z-+) - (z+- + 2zo- + z--)]/8A>'.
These expressions produce excellent estimates for the com-

ponents of the gradient of the central point. The results de-
pend on elevations in a IX 3 neighborhood, with individual
elevation values weighted less than they are in the simpler ex-
pression for the central difference. This has the advantage that
local errors in terrain elevation tend not to contribute as
heavily to error in slope. At the same time, more calculations
are required and three rows of the digital terrain model have to
be available at one time.

Care has to be taken to avoid corruption of the slope
estimates by quantization noise in the elevation values. Nu-
merical problems due to the division of small integers may
result when a terrain model is too finely interpolated, with
limited vertical resolution. If it is necessary to generate many
pixels in the output, it is better to interpolate the gray values
produced by the shading algorithm.

,V-:ZQO =(zo-+zoo)/2.

The complicated slope estimate py, can be shown to produce
the same result as the first difference p+ calculated from a
terrain model smoothed by applying H-, V+, and V-. Simi-
larly the slope estimate q^ equals <?+ calculated from a terrain
model smoothed by applying V-, H+, and H- (actually, since
all of these operations are linear, their order can be arbitrarily
rearranged). Perhaps any "smoothing" desired should be done
as a separate editing operation, combined with the removal of
"glitches" from the digital elevation model, rather than as part
of the slope estimation. Also for terrain models of relatively
limited size this smoothing may be undesirable. Some other
slope estimators are simpler and introduce less smoothing. For
example one can combine two biased estimates of the slope to
get,

Pi/2 = [ (z+++z+o)- (ZQ+ +Zoo)l/2Ax
and symmetrically,

fli/2 = t ( z+++zo+)~ (^•^o +^oo)l/2A.v.
Here the average gradient in the top-right quadrant (zoo, z+o,

z++, ZQ+) rather than at the central point is being estimated,
using elevations in a 2 X 2 neighborhood only. For the graphic
illustrations presented here, the expressions for p^ and q^
were used to estimate the gradient.

At this time some terrain models are still produced by hand
and have rather limited size. Rather than smoothing the ter-
rain, one may wish to increase apparent resolution by some
means. This can be done quite effectively by combining biased
slope estimates (see Fig. 4). For every point in the terrain
model, four gray values are produced corresponding to the



HORN: HILL SHADING AND THE REFLECTANCE MAP l!>

(p-,q+) (P+,q+)

(p-,q-)T(p4.,q-)

Fig. 4. Combinations of biased slope estimates can be used to plot
four times as many gray-tones as there are elevations values in the ter-
rain model. The limited amount of data in a small terrain model
may be stretched this way to produce reasonably detailed hill-shading
output.

four quadrants around it. Each is based on a different com-
bination of the slope estimates (p- or p+) and (<?- or (?+) as
appropriate for that quadrant. No miracles should be antici-
pated; this method cannot create information where there is
none, but it can stretch what is available to its limits.

More complicated slope estimators than those discussed here
do not seem called for, since the simple ones shown produce
excellent results. Furthermore, estimators having wider sup-
port, while known to be more accurate for certain classes of
functions such as polynomials, may perform worse on typical
terrain with its discontinuities in slope along ridge and stream
lines.

It has been cartographic practice to assume a light source in
the northwest at a 45° elevation above the horizon. It is help-
ful in this case to introduce a rotated coordinate system as
described in Appendix A.

XI. EXAGGERATION OF TERRAIN ELEVATIONS
Compared to objects of a size that allow, for easy manipula-

tion by a human observer, the surface of the earth is in many
places, though not everywhere, rather flat. The range of slopes
is often so small as to cause disappointment with correctly
proportioned models, so that height is often exaggerated in
physical models. Similarly, shading based on models of light
reflection from a surface tends to have undesirably low con-
trast. Here too terrain elevations may be exaggerated for all
but the most mountainous regions. This is equivalent to
multiplication of the components of the gradient by a constant
factor, and corresponds to a simple transformation of the re-
flectance map. For reflectance maps based on reflection of
light originating from an assumed source, a similar effect can
often be achieved by a decrease in the elevation of the source.
For flat surfaces the source may be lowered to a mere 10° or
20° above the horizon, where normally it might be at 45°.

XII. PRODUCING SHADED OVERLAYS
The generation of shaded images from a digital terrain model

using the reflectance map is straightforward (see Fig. 1). For
each point in the terrain model the local gradient (p,q) is
found. The reflectance map then provides the appropriate
brightness R(p, q), to be plotted on a suitable gray-level out-
put device. All computations are local and can be accom-
plished in a single pass through the image.

To illustrate these ideas a simple program is shown (see
Fig. 5) that does not incorporate any of the elaborations

procedure SHADING(N, M, DX, DY); integer N, M; real DX, DY;

begin array Z[0:N,0:M], B[0;N-1,0:M-1];

real procedure PE(I, .1); inti'Rrr I, .1;
PE := (Z[I,J] + Z[I-1,J] - Z[I,]-1] - Z[I-1,J-1]) / (2.0 X DX);

real procedure QE(I, J); integer I, J;
OE := (Z[I,]] + Z[[,J-1] - Z[I-1,J] - Z[I-1,J-1]) / (2.0 X DY);

real procedure R(P, Q); real P, 0;
RM := MAX(0.0, MIN(1.0, (1.0 + P - 0) / 2.0));

<read terrain elevations into array Z > •

for J := 1 step 1 until M—l do
for I := 1 step 1 until N—l do

B[I-1,J-1] := RM(PE(I, )), QE(I, J));

<wrili' brightness valves from array B>

end
Fig. 5. Simple program to generate shaded output from a terrain model.

described later on. Two arrays are used, Z to store the terrain
elevations and B to store the calculated brightness values. The
latter has one row and one column fewer, since its entries
correspond to points lying between those in the elevation array
(the formulas for pi/a and qi/^ are used). The spacing of the
underlying grid is DX in the west-to-east direction and DY in
the south-to-north direction. The procedures PE(I,J) and
QE(I, J ) estimate the slopes, while the procedure RM(P, Q)
calculates the corresponding brightness using a particularly
simple reflectance map. The resulting values range from
0.0 (black) to 1.0 (white) and have to be scaled appropriately
before they can be fed to a particular gray-level output device.

Typical terrain models are quite large and may exceed allow-
able array storage limits or even the address space of a corn- {

puter. Fortunately only two (or three) rows of the terrain
model are needed for the estimation of the local slopes. The
program given can be easily modified to read the terrain
model, and to write the calculated gray values, one line at a
time. This makes it possible to deal with terrain models of
essentially arbitrary size.

Next one should note that terrain models typically are stored
using integer (fixed point) representation for elevations to
achieve compactness and because elevations are only known
with limited precision (an elevation may be given in meters as
a 16-bit quantity for example). Similarly, gray values to be
sent to a graphic output device are typically quantized to
relatively few levels because of the limited ability of the
human eye to discern small brightness differences and the
limited ability of the device to accurately reproduce these
(a typical output device may take values between 0 and 255).
The calculations can thus be carried out largely in integer
(fixed point) arithmetic and even a simple computer is
adequate.

XIII. USE OF LOOKUP TABLES
Some of the formulas for reflectance maps discussed later on

are quite elaborate and it would seem that a lot of computa-
tion is required to produce shaded output using them. Fortu-
nately it is possible to make the amount of computation
equally small in all cases by implementing the reflectance map
as a lookup table, which is computed only at the beginning.
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Since elevations are quantized, so are the estimates of slope.
It is therefore not necessary that one be able to determine the
apparent brightness for all possible values of the gradient
(p, q). Further, it is reasonable to place an upper limit on
slope, so that only a finite number of possible values can occur
(For example, if slopes between -1.55 and +1.60 are con-
sidered, in increments of 0.05, then there are only 64 possibili-
ties for p and 64 for q, and a lookup table with 4096 entries
can be used). A second justification for the use of a lookup
table is the quantization of the gray values produced. It makes
little sense to calculate the apparent brightness with very high
precision only to coarsely quantize the result. A convenient
rule of thumb is that the number of possible discrete values for
each gradient component need not be more than the number
of gray levels available from output device. The final choice of
quantization must take into account both of the above
considerations.

One can separate the estimation of slope from the calcula-
tion of gray value, and produce an intermediate file of coded
surface gradient values. This file need not be larger than the
original terrain model if the gradient is quantized properly
(if p and q can each take on 64 values, each gradient can be
encoded as a 12 bit value). The code in the lookup table can
be based on ways of expression surface orientation other than
in terms of components of the surface gradient. In any case, a
file of surface orientation codes can be fed through a lookup
table procedure to produce the final output. In this fashion
different reflectance maps, encoded as different lookup tables,
can be applied to a terrain model easily, with little more effort
than reading and writing a file. The illustrations here were
produced this way.

Many gray-level raster displays have a translation table be-
tween the image memory and the digital-to-analog converter
driving the cathode ray tube intensity control. The quantized,
packed reflectance map can be loaded into this lookup table,
while the image memory is loaded with the coded slope
matrix. This allows one to view the same terrain with a
variety of assumed reflectance properties simply by reloading
the translation table, which is small compared to the image
memory.

XIV. TAXONOMY OF REFLECTANCE MAPS
Here we have discussed some of the issues one is likely to

encounter when developing a program that produces shaded
output. In the remainder of this paper we will analyze a num-
ber of proposed hill-shading methods in terms of their equiva-
lent reflectance maps. Notational tools will be introduced as
they are needed. Rather than proceed in strict historic order,
we will discuss relief shading methods in the following groups:

1) rotationally symmetric reflectance maps—gray tone de-
pends on slope only;

2) methods based on varying line spacing or thickness to
modulate average reflectance;

3) ideal diffuse reflectance and various approximations
thereto;

4) gray tone depends only on the slope of the surface in the
direction away from the assumed light source;

5) methods depending on more elaborate models of diffuse
reflectance from porous material, such as that covering
the lunar surface;

6) models for gloss and lustrous reflection-smooth surface,
extended source and rough surface, point source.

XV. AVERAGE REFLECTANCE OF EVENLY
SPACED DARK LINES

Some early methods for hill shading achieve the desired con-
trol of gray tone by varying the spacing between printed lines.
One advantage of this approach is the ease with which such
information can be printed, since it is not necessary to first
screen a continuous tone image. One disadvantage is the con-
fusion created when the lines used for this purpose are layed
on top of others portraying planimetric information. While
the directional textural effects of the lines are important in
conveying information about shape, we concentrate here on
the average reflectance.

Consider inked lines with reflectance r/, covering an area of
paper with reflectance r^ (see Fig. 6). The ratio of the area
covered by ink to the area not covered is the same as the ratio
of the width of the lines to the width of the uninked spaces.
This in turn equals b f w , where b is the width of the inked line
and w the width of the uninked space measured along any
direction not parallel to the lines. If we ignore diffusion of
light in the paper, then the average reflectance of the surface is

R = (wr^, + br^)j(w + b)

or

R = r^, - b(Ty, - rb)/(w + b).

If, for example, the paper reflects all the incident light, and
the ink none, then r^ == 1 and r<, = 0, so that R = 1 - b/(w + b).

XVI. SLOPE OF THE SURFACE IN AN
ARBITRARY DIRECTION

In the calculation of gray value produced by some methods
of hill shading it is necessary to know the slope of the surface
in an arbitrary direction, given the slope p in the west-to-east
direction and the slope q in the south-to-north direction. Note
that p and q are the first partial derivatives of the elevation z
with respect to x and y , respectively. Consider taking an
infinitesimal step dx in the x direction and an infinitesimal
step dy in the y direction. The change in elevation dz is given
by

dz =p dx + q dy.

Along a contour line for example, the elevation is constant, so
that for a small step dx = a ds and dy = b ds, we can write:

( p , q ) - ( a , b ) d s = 0

where "•" denotes the dot-product. The local direction of the
contours, (a, b) is of course perpendicular to the local gradient
(P,-?).

Now consider taking a small step in an arbitrary direction
(Po, '?o) ^y- That ls ̂ et ̂ x = Po ds and <^y = ̂ o ds- The length
of the step, measured in the ry-plane is,

Vpg + ql ds.

While the change in elevation'is,

dz = (pop + q^q) ds.
Consequently the slope, change in elevation divided by length
of the step, is

s = (PoP + <?o'?)/Vp§ +q§.

If we let a be the angle between the vector (po, qy) and the
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Fig. 6. Magnified portion of surface covered with lines. The average
tone depends on the fractional area covered by the lines, as well as
the reflectance of the paper and the ink.

x-axis, then, the above can also be written,
s = p cos a + q sin a.

The direction in the xj'-plane in which the slope is maximal
can be found by differentiating with respect to a. The direc-
tion of steepest ascent is (p, q) • and the maximum slope
equals Vp2 + q'1.

XVII. LEHMANN'S BOSCHUNGSSCHRAFFEN (A)
One of the earliest methods for depicting surface shape using

a form of shading is that of Lehmann [2], [3]. Illustrations
based on ad hoc scales of increasing darkness as a function of
slope ("Schwarzegradscalen") had been published before, but
there was no systematic analysis of this approach until the
appearance of an anonymous publication attributed to Leh-
mann. In his method, short lines in the direction of steepest
descent, called hachures, are drawn with spacing and thickness
specified by rules that ensure that the fractional area darkened
is proportional to the angle of inclination of the surface 6.
That is, steeper implies darker. The lines merge, producing a
continuous black area, when 9 exceeds some maximum value
BO, typically 45° or 60°. The slope of the surface equals the
tangent of the angle of inclination or "dip." Using the expres-
sion for the slope in the direction of steepest ascent, we get,

tan Q = Vp2 + q2.
Consequently, the average reflectance is,

R(P, l) = 'w - Ow - '•&) tan-1 Vp^^/Oo.

When the angle of inclination exceeds the maximum, the lines
coalesce and R(p,q)=r^. We can also write the above in
another form,

R'W, 0) =»H,-O», -»•„) (0/@o).

Here, <j>, the azimuth of the direction of steepest descent, does
not appear in the formula on the right, since apparent bright-
ness in this case depends only on the magnitude of the slope.
The direction and magnitude of the surface gradient can be
found from a map prepared according to Lehmann's rules.
The direction of steepest descent lies along the hachures, while
the slope is directly related to the average tone that results
from the width and spacing of these lines. In analyzing his
method we have concentrated on calculating the average re-
flectance produced in the printed product. It should be pointed
out that this method also gives rise to textural effects that will
not be discussed.

Another interesting aspect of Lehmann's method is that the
lines or hachures were drawn starting on one contour and end-
ing on the next. This greatly contributed to the later develop-
ment of the contour representation (Isohypsen) for terrain

Fig. 7. Spacing between successive contour lines along a given direction
on the topographic map.

surfaces, that was to ultimately replace most of these early
attempts at portraying surface shape [7].

XVIII. CONTOUR DENSITY (B)
Another method is based on the observation that lines on a

contour map are more crowded in steep areas and that this
crowding leads to darkening of tone or average gray value.
This side effect may be helpful in visually conveying informa-
tion about the nature of the surface. In order to calculate the
dependence of the average local reflectance on the gradient
(p, q), we have to determine the spacing of contour lines on
the map. We assume that the surface is locally smooth and can
be approximated by a plane, at least on the scale of the spacing
between contour lines (if this is not the case, aliasing, or under-
sampling problems occur in any case).

Consider a portion of the surface with slope s in some direc-
tion not parallel to the contour lines (see Fig. 7). Assume that
the map scale is k and the vertical contour interval 6. Then it
is clear that the spacing between contours on the map d can be
obtained from the formula for slope,

s = 8 / ( d / k ) .

If we take the cross section of the surface in the direction of
steepest ascent, then s = Vp2 + q1. As a result we can write,

d = k 6 / >
On the map, d = b + w. That is, the spacing between contours
is the sum of the width of the contour lines and the width of
the blank spaces between them. The average reflectance then
is,

R(P, <?) = 'w - (b/k8) (r^, - r^v/p^+q^
The result can also be expressed as,

R'(6,0) = r^ - (b/kS) (r^, - r,,) tan 6

where 9 is the inclination of the surface. The above expres-
sions only hold if w is not negative. When the slope is too
steep, contour lines overlap, and the average reflectance is
simply equal to T],. In the special case that r^, = 1 and T f , = 0,
the above simplifies to,

R(.p,q)=l-(b/k8)^/p2+ql.
Typically (b/k6) may equal 1 or 1/\/3".

XIX. DIFFUSE SURFACE UNDER VERTICAL
ILLUMINATION (C)

The methods discussed so far produce tones that depend on
the magnitude of the gradient only, not its direction. This is
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similar to the effect one would obtain if a physical model of
the terrain was illuminated vertically, with the light source
placed near the viewer. An ideal diffusing surface has an ap-
parent brightness that is proportional to the cosine of the inci-
dent angle i as discussed later. This is the angle between the
direction of the incident rays and the local normal, which, in
the case of vertical illumination, is just 6. Therefore,

R'(.6,<t>)=cos6

or
R(p,q)=\l^f[Tps~^.

Instead of illumination from a point source, one may consider
the effect of a distributed source. A uniform hemispherical
source illuminating a diffusely reflecting surface leads to a
result of the following form [ 140],

Fig. 8. Definition of the azimuth angle <f> and the zenith angle 8. Here,
azimuth is measured counter-clockwise from the x-axis in the xy-
plane, while the zenith angle is measured from the z-axis.

can then be given as an azimuth angle 0 measured anticlock-
wise from the jc-axis, and a polar or zenith angle 6 (see Fig. 8).
(In navigation, the azimuth angle is usually measured clock-
wise from north, and the elevation angle is given instead of the
zenith angle. These are just the complements of the angles
used here.) The unit vector in the direction so defined equals,

N = (cos <f> sin 6, sin 0 sin 6, cos 9).

^'(0,0)= cos2 (6/2) •• cos 6i .. iz ^ z
or

R(P, <?) = (1 + l/Vl+p^+q2)^.
This reflectance map leads to flatter, even less interpretable
pictures, since the range of reflectances has been halved and all
reflectances have been shifted upwards by a half. In the deri-
vation of the formula above, reflection from the surrounding
terrain surface is ignored. If the terrain surface diffusely re-
flects a fraction p of the incident light, the constant term in
the above expression is increased from ^ to (1 +p)/2, while
the coefficient of cos 0 decreased from i- to (1 - p)/2. It is at
times suggested that a component of surface brightness due to
distributed illumination from the sky be added to that result-
ing from oblique illumination. This however typically detracts
from the shaded result, rather than improving it.

To find the azimuth and zenith angle of the surface normal we
identify components of corresponding unit vectors. Then,

and

while

The methods discussed so far give rise to rotationally sym-
metric reflectance maps, that can be described adequately by a
single cross-section, showing tone versus slope [ I ] , [35], [36].
This representation has sometimes been misused for asymmetric
reflectance maps, where it does not apply. Rotationally sym- Conversely,
metric reflectance maps produce shaded images that are diffi-
cult to interpret. Moving the assumed light source away from
the overhead position gives rise to better shaded map overlays,
but forces us to introduce some new concepts.

and

and

sin 0 =-ql>

cos 0 = -p/Vp2 + q1

sin 0 = Vp2 + q1 /Vl + p2 + q2

cos0=l / \ / l+p 2 +q2.

p = -cos0 tan 0

q = -sin 0 tan 9.
XX. THE SURFACE NORMAL

The surface normal is a vector perpendicular to the local
tangent plane. The direction of the surface normal n can be
found by taking the cross-product of any two vectors parallel
to lines locally tangent to the surface (as long as they are not
parallel to each other). We can find two such vectors by re-
membering that the change in elevation when one takes a small
step dx in the x- direction is just dz = p dx, while the change in
elevation corresponding to a step dy in the .y-direction is dz =
q dy. The two vectors, (1, 0, p) dx and (0,1, q) d y , are, there-
fore, parallel to lines tangent to the surface and so their cross-
product is a surface normal

n = ( l , 0 , p ) X (0,1, q)=(-p, -q,l).
Note that the gradient (p, q) is just the (negative) projection
of this vector on the -icy-plane. A unit surface normal N can
be obtained by dividing the vector n by its magnitude n =
\/l+p2+q2.

While it is convenient to specify directions as vectors, it is at
times helpful to use spherical coordinates instead. A direction

We will find it convenient to use both vector and spherical
coordinate notation to specify direction.

XXI. POSITION OF THE LIGHT SOURCE
The reflectance maps discussed so far are rotationally sym-

metric about the origin, only the magnitude of the gradient,
not its direction affecting the resulting gray value. This cor-
responds to a situation where the light source is at the viewing
position. Most hill-shading methods have the assumed light
source in some other position, typically in the northwest, with
a zenith angle of around 45°(0o ^ 45°, 0o = 135°). The unit
vector,

S = (cos 0o "sin 9o, sin 0o sin Qy, cos By)

points directly at the light source. A surface element will be
illuminated maximally when the rays from the light source
strike it perpendicularly, that is, when the surface normal
points at the light, source. By identifying components in the
expression for the surface normal no = (~Po> ~qo, 1) with
those in the expression for the vector pointing at the source
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one finds that the components of the gradient of such a sur-
face element are,

Po = - cos 0o tan By
and

qo =-sin 0o tan(?o-
When the source is in the standard cartographic position, this
means,

Po = 1/V2'

qo=-llV2.

and

This standard position for the assumed light source was proba-
bly chosen because we are used to viewing objects lighted from
that direction [ 1 ]. When we look at nearby objects in front of
us, our body blocks the light arriving from behind us. Further,
when writing on a horizontal surface, many of use find our
right hand blocking light coming from that direction. We thus
often arrange for light sources to be to the left, in front of us.
While we can certainly interpret shading in pictures where the
light source is not in this standard position, there seems to be
a larger possibility of depth reversal in that case, particularly if
the object has a complex, unfamiliar shape.

Returning now to the specification of the position of the
light source, we find two identities that will be helpful later.

cos (0- 0o )= (Po P + Qo <?)/ [V^"? VpT^? 1

Po P + '?o Q = tan 6 tan 6y cos (0 - 0o).
It also follows that the slope of the surface in the direction
(Po> '?o) away from the light source is,

s = tan 6 cos (0 - 0o).

XXII. TANAKA'S ORTHOGRAPHICAL RELIEF METHOD (D)
A method proposed by Kitiro Tanaka in 1930 [10], [11],

involves drawing the lines of intersection of the surface with
evenly spaced inclined planes. These planes are oriented so
that their common normal points towards an equivalent light
source (see Fig. 9). Thus slopes tilted away from this direction
have contours spaced closely, giving rise to heavier shading
than that on horizontal surfaces, while surfaces lying parallel
to the inclined planes are lightest. As in Lehmann's method,
some information may be conveyed by the directional texture
of the contours. Here we concentrate on the average reflec-
tance only.

A contour is the intersection of the terrain's surface z =
z ( x , y ) with a plane. The equation z = 2 o applies to a hori-
zontal plane appropriate for ordinary contours. For "inclined
contours" an inclined plane is used with an equation of the
form

(~Po,~Vo, l ) ' ( x , y , z ) l ^ / } . +po+(?2 =z'o-

The vector (-po, ~i{o, 1) is perpendicular to the inclined
planes. Ordinary contours represent the locus of the solution
of z ( x , y ) a : ^ o , while inclined contours are the loci of solu-
tions of the equation,

[-Pox - qoY + z(x,y)]|^l+p2o+ql ••z'o.

We can now apply our analysis of the contour density model
to the modified surface z ' ( x , y ~ ) defined by the left-hand side

Fig. 9. Side-view of a hill cut by inclined planes. Viewed from above,
the lines of intersection crowd together where the surface slopes away
from the equivalent source. Conversely, there are no lines where the
terrain surface is parallel to the inclined planes.

of this equation! All we need are the slopes of this new sur-
face. Differentiating the above expression with respect to x
and y , we get,

P'=(P-Po)/Vl+Po+q§

<?'=( '?- <?o)/Vl +pl+ql-

Finally then,

V(P - Po)2 + (q - go)2

Vl+Po+ f fo
R(P,q)=rw-(b/k6)(r^-ri,)

We obtain the expression for contour density, derived earlier,
when po = qo = 0. Also, in the special case that r^ = 0, »•„, = 1,
Po = 1/\/2", and qo = -1/-\/2",

R(p, q) = 1 - (&/fe5)^/(p - 1/^i)2 + (q + l/V^)2/^.

It is sometimes useful to express the apparent brightness as a
function of the azimuth 0 and zenith angle 0 of the surface
normal. If we let 0o be the azimuth and 60 the zenith angle
of the normal to the inclined planes, then the formula can be
rewritten as follows:

R'(6, 0) = »w - Wk6) (r^ - r^) cos 60

• Vtan2 6 - 2 tan 6 tan 60 cos (0 - 0o) + tan260.

When OQ = 45°, r^ = 0 and r^ = 1, then, as Tanaka showed
[10],[11], ,

R'(6,0) = 1 - (6/fc6)Vl - sin 20 cos (0 - 0o)/(^ cos 6).

How does one choose the parameter (&/fc5)? Tanaka felt
that the shading produced by his method should match that
seen on a surface covered with an ideal material called a per-
fect diffuser. The apparent brightness of such a surface varies
with the cosine of the incident angle, between the surface
normal and a vector pointing at the light surface. He intro-
duced a parameter called the line factor. It is the ratio of the
width of the inked line b to the interval between inclined con-
tours for a horizontal surface fcS/sin 60. The line factor is just,

(ft/fcfi Npo+q'o/Vl+Po+q'o.

Tanaka proposed varying the line width b in order to produce
shading that matches that seen on a perfect diffuser, but
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Fig. 10. "Block-diagram" representation of terrain surface. This is an isometric projection of a series
of uniformly spaced vertical profiles of the surface viewed from the southeast. Note the shading
effect due to the variation in line spacing.

realized the impracticality of this approach for all but poly-
hedral surfaces [10], [11]. Resigned to using a fixed line
width, he chose to optimize the line factor by considering the
brightness distribution on a spherical cap extending to 45°
slope. With the source at 45° elevation, the least deviation
from the brightness distribution one would see if the surface
was a perfect diffuser is obtained when the line factor equals
0.3608. Consequently, (b/k6) = 0.3608-S/2'. Finally then,

R(p,q)= 1 - 0.3608/(p - 1/\/T)2 + (q + t^/2")2.

It is unfortunate that this method later gave rise to some mis-
understanding as well as a less rigorous hybridized form [15].

A common representation for relief form is the block dia-
gram, an oblique view of a series of equally spaced vertical
profiles [97]-[102]. The projection typically is orthographic,
although at times a perspective projection is utilized. Surfaces
not visible to the viewer are eliminated (see Fig. 10). Shading
can of course be applied to oblique views as may be done in
sophisticated flight simulators of the future. We concentrate
here on map forms that provide for superposition of plani-
metric information however, and digress only to point out that
part of the appeal of block diagrams lies in their implicit shad-
ing, due to the variation in the spacing of lines.

Following the discussion in the last section, it is clear that
the equivalent light-source position is in the horizontal plane
at right angles to the vertical cutting surfaces. The analysis
just presented then applies directly. Things are a little more
difficult if the result is to be expressed in terms of the coordi-

nate system of the surface rather than one oriented with
respect to the viewer. Details may be found in Appendices
B and C, where contour density shading and Tanaka's inclined
contour method are shown to be special cases of this more
general situation.

XXIII. WIECHEL'S CONTOUR-TERRACE MODEL (E)
Imagine a three-dimensional model of the terrain built by

stacking pieces of some material cut according to the shape of
the contours on a topographic map [8]. If the thickness of
the material is chosen correctly the model will be a scaled
approximation of the terrain, looking a little like a tiered cake.
Illuminating this construction with a distant point source will
give rise to a form of shading since each contour "terrace"
casts a shadow on the one beneath it (see Fig. 11). Wiechel
[8] was the first to analyze the reflectance properties of such
a surface. In order to calculate the average brightness of a
portion of the model, when viewed from above, we must
determine the width of the shadow relative to the width of the
terrace.

The width of the shadow, measured perpendicular to the
contours, varies, depending on the orientation of contours
relative to the direction of the rays from the source. For ex-
ample, when measured this way, the width is zero where the
contour is locally parallel to the projection of the rays on the
xy-plans. Measured in a vertical plane containing the light
source however, the width of the shadow is constant, since the
terrace has a fixed height (see Fig. 12).* If the light source has
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Fig. 11. Shadows cast in the contour terrace model. The width of the
shadows, measured perpendicular to the contours, varies with the di-
rection of the contours relative to the direction of the incident rays.

\ /

-0-

Fig. 12. Section of the contour terrace model in a vertical plane con-
taining the light-source. The width of the shadow b measured in this
plane is constant, while the width of the terrace b + w depends on the
slope of the surface in a direction parallel to the projection of the In-
cident rays on the ground plane.

tour interval and the map scale have cancelled, as one might
have predicted.

When (pop+C{oq)<-l, shadows coalesce and no further
increase in b/d is possible. When, on the other hand, (pop +
9o'?) ̂  0> the slope is facing towards the light source. This
means that no shadow is cast. In this model, shading only
occurs on slopes facing away from the source, while those
facing towards it are all uniformly bright. This is certainly
not what one would expect of a real surface and suggests that
the contour-terrace model has some shortcomings. This is not
surprising since apparent brightness depends on surface orien-
tation, not height, and while the model represents height with
reasonable accuracy it does a poor job of modeling surface
orientation. Indeed the surface of the model is mostly hori-
zontal, with some narrow strips of a vertical orientation. The
latter are not even visible from above.

Wiechel noted that light would be reflected from these verti-
cal surfaces onto the terraces [8]. The surface thus appears
brighter, viewed from above, near vertical surfaces facing
towards the light source. He made the simplifying assumption
that reflection produces uniformly bright patches with the
same shape as shadows that would be cast were a source to be
placed opposite the actual light source. This is not a reason-
able assumption unless the vertical surfaces are made of narrow
mirror facets, each oriented perpendicular to the direction of
the incident light! In this case, surfaces illuminated by reflec-
tion as well as by direct light have a brightness twice that of
those illuminated only by direct light. This version of the
model is fortunately simple enough to be amenable to analysis.
First note that, if we assume the surface to be an ideal diffuser,
then the brightness of horizontal surfaces that are neither
shadowed nor illuminated by reflection equals the cosine of
the zenith angle of the source. Therefore, let r^ = 0 and r^ =
cos By, where

cos 0o = 1/Vl + P o + < ? §
and so

a zenith angle 60, the contour interval is 5, and the map scale
k, then,

^ ( P , < ? ) = ( l + P o P + q ' o < ? ) / V l + ? § + < ? §
or

tan Qo •=• (b/k6) R'(.6, 0) = [ 1 + tan 6 tan 60 cos (0 - 0o)l cos Qo.
but

tan On

To calculate the average brightness we must know the width
d of the terrace in the model, measured in the same vertical
plane. The slope in this plane evidently is just

s = -fefi/d.

We know that the slope of a surface in the direction (po> f fo)
is,

s = (Po P + ffo <?)/Vp5 + <?5 •

Solving for d from the last two equations and for b from the
two before them, we get

b/d=-(pop+qod)-
For example, when the local surface normal (-p, -q, 1) is per-
pendicular to the direction to the source (-pn., -<?o> 1)> their
dot-product is zero and bid = 1. The terrace is then covered
exactly by the shadow. In the above expression both the con-

When the source is in the standard position (northwest at 45°)
this becomes,

R ( p , q ) = [ i + ( p - q ) / ^ / 2 ] l ^ / 2 .

Note that here apparent brightness already becomes equal to
one when the angle of inclination is about 30.36° towards the
light source. This may be contrasted with the case of the ideal
diffuser, to be discussed later, where it reaches one only for an
inclination of 45°. Wiechel used this model as the second
approximation to the ideal diffuser (the first will be discussed
later) and expressed his result as [8]

(cos i/cos e)

where i is the incident angle, and e is the emittance angle, here
equal fo 6. These angles will play an important role in the dis-
cussion of more recent methods later on.

According to Raisz and Imhof [1], [27]-[29] terraced con-
tour models were used in the late 1800's. An early example is
an alpine excursion map published in 1865 that employed
"contour shadows" [ 1 ]. The first attempts at photography of
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obliquely illuminated surfaces also used terraced terrain models
[27]. Wiechel probably was influenced by these early efforts
when he chose to develop this method for hill shading.

XXIV. WIECHEL'S HELLIGKEITSMAASSSTAB
Wiechel based his method for irregular surfaces on that de-

veloped earlier by Burmester for regular surfaces [9]. In order
to make his approach practical he needed a graphical device
for translating measurements of contour interval and direction
of steepest descent into gray tones. The "Helligkeitsmaass-
stab" (his spelling) is arranged so that these measurements can
be transferred directly, and the correct tone determined from
a series of isophotes, contours of constant brightness. Steep
slopes, with small contour intervals correspond to points near
the origin of this diagram, while those of gentle slope map into
points further away.

His diagram therefore is a sort ofinside-out reflectance map.
The main difference is that radial distance from the origin in
gradient space is proportional to tan 6, while it is proportional
to cot 9 in this early precursor. This corresponds to a con-
formal mapping operation referred to as inversion with respect
to the unit circle. Wiechel showed that his diagram corre-
sponded to the image of an appropriate illuminated logarith-
moid made of the desired material. The equation of this sur-
face is z = -log Vx2 + y2. The reflectance map, by the way,
can be thought of as the image of a paraboloid [138].

It is indeed unfortunate that Wiechel's construction was
ignored. Wiechel developed two shading methods that did not
require this two-dimensional diagram. In each case apparent
brightness depended only on the slope of the surface in the
direction away from the light source. This property manifests
itself in the reflectance map in the form of parallel straight-line
contours. The effect is less apparent in Wiechel's diagram,
where isophotes become nested circles through the origin, with
centers along the line in the direction of the light source.

XXV. TANAKA'S RELIEF CONTOUR METHOD (F)
Kitiro Tanaka, in 1939, developed an ingenious method

[24]-[26] for drawing the shadows one would see if one
looked at a contour-terrace model. His method is based on the
observation that the length of the shadow, measured in the
direction of the incident rays, is constant. Using a pen with a
wide nib one can trace the contours, while maintaining the
orientation of the nib parallel to the direction of the incident
rays (as in roundhand writing). Only those portions of the
contours are traced that correspond to slopes facing away
from the assumed light source. Tanaka used black ink on gray
paper for reasons that will become apparent. If the reflectance
of this paper is Tg then,

R(P,<l)=rg+(rg-ri,)(pop+qoq)

provided (pop + <o'?)<^ 0> otherwise R (p, q) = r,.
Tanaka also came up with a way of modulating the average

reflectance of the paper in areas that corresponded to slopes
facing towards the source. His approach is somewhat analogous
to taking the negative of a picture of the contour-terrace model
obtained by illuminating it from the other side. Thus white
"shadows" are cast in the opposite direction to the black shad-
ows. These can be drawn with white ink on gray paper using
the same method as before except that now the section of the
contours that correspond to slopes facing towards the light
source are traced. It is easy to see that the resulting average

reflectance will be,

R (P, <?)='•?- (rg ~ rw) (PoP + <lo <?)
where r^ is the reflectance of the white ink. When (poP+
qoq)<0, no "shadows" appear and R(p, q)=rg. Tanaka
combined the two methods, tracing contours using both white
and black ink. The corresponding reflectance map R(p, q)
equals one of the expressions above depending on whether the
slope locally faces away from or towards the assumed source.

He apparently also experimented with nibs of different width
for white and black ink. This corresponds to changing the ele-
vation of the assumed sources. If the width of the nib is b,
then the relationship is,

(b/k6) = tan 60 = Vpo+^S.

The results of this tedious manual method are most impressive
[24]-[26]. One can write the above expressions in the alter-
nate notation,

R'(6, 0) = rg + (rg - r,,) tan Q tan OQ cos (0 - 0o),
when cos (0 - 0o) < 0

R'(9, 0) = f g - (rg ~ rw)tan Q tan ^o cos (0 - 0o),
when cos (0 - 0o)>0.

Tanaka preferred a reflectance for the gray background half-
way between that of the black ink and the white ink. Placing
the light source in the standard position we get,

R ( p , q ) = [ l + ( p - q ) / \ / : 2 ] | 2

or

^ ' (0 ,0 )=[ l+ tan0cos(0-0o) ] /2 .

This result can also be expressed as, (cos i cos g)/cos e, where g
is the phase angle, here equal to By. Note that except for scaling
by cos g, this is the same result as that obtained by Wiechel for
his contour-terrace model. One effect of this scaling is that
apparent brightness rises to one only when the angle of inclina-
tion is 45°, on the other hand, horizontal surface now have a
gray value of only 0.5.

XXVI. TANAKA'S HEMISPHERICAL BRIGHTNESS
DISTRIBUTION

Tanaka needed a way to display the dependence of tone on
surface orientation to permit comparison of the results pro-
duced by his two methods and what would be seen if the sur-
face modeled were an ideal diffuser. He chose an oblique view
of the brightness distribution on a spherical cap extending to
45° inclination [ 10], [ 11 ], [24] -[26]. If the cap is increased
until it is a hemisphere, one obtains something like the reflec-
tance map. One difference is that radial distance from the
origin in gradient space is proportional to tan 0, while here it is
proportional to sinO. Thus, while the reflectance map is a
central projection of the Gaussian sphere onto a horizontal
plane, this is a parallel projection. Put another way: we are
dealing here with an image of a hemisphere, while the reflec-
tance map is the image of a paraboloid.

Tanaka's oblique views of the distribution of brightness
versus surface orientation do not provide the quantitative
information available in a contour representation such as
Wiechel's. His method is nevertheless very helpful and it is
unfortunate that few seem to have paid. any attention to it,
judging by the continued use of inappropriate forms. It is
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not uncommon for example to see the dependence of tone on
surface orientation shown as a curve depending on one vari-
able, slope, when it clearly depends on two, slope and the
direction of steepest descent, or equivalently, the two compo-
nents of the gradient.

XXVII. LAMBERTIAN SURFACES (G)
We now turn from graphical methods using variation in line

spacing and line thickness to those utilizing continuous tone or
halftone techniques. These are often based on a model of
what the terrain would look like were it made of some ideal
material, illuminated from a predetermined direction. The
result differs from an aerial photograph, since no account is
taken here of varying terrain cover, the light source is often
placed in a position that is astronomically impossible, and the
terrain model has been smoothed and generalized. Not being
like an aerial photograph is an advantage, since aerial photo-
graphs, taken with the sun fairly high in the sky, often do not
provide for- easy (monocular) comprehension of surface
topography.

The amount of light captured by a surface patch will depend
on its inclination relative to the incident beam. As seen from
the source the surface is foreshortened, its apparent (or pro-
jected) area equal to its true area multiplied by the cosine of
the incident angle. Thus the irradiance is proportional to cos;'.
Strangely, it is commonly assumed that the radiance (apparent
brightness) of the surface patch is also proportional to cos;'.
This is generally not the case since light may be reflected dif-
ferently in different directions, as can be seen by considering a
specularly reflecting material.

One can however postulate an ideal surface that reflects all
light incident on it and appears equally bright from all viewing
directions. Such a surface is called an ideal diffuser or Lam-
bertian reflector and has the property that its radiance equals
the irradiance divided by ir [142],[143]. In this special case
the radiance is proportional to the cosine of the incident angle.
No real surface behaves exactly like this, although pressed
powders of highly transparent materials like barium sulfate
and magnesium carbonate come close. Matte white paint, opal
glass, and rough white paper are somewhat worse approxima-
tions, as is snow [131]. Most proposed schemes for automatic
hill-shading are based on models of brightness distribution on
ideally diffusing surfaces [8], [10], [ I I ] , [49]-[57], [71],
[73], [74], even though there is no evidence that perception
of surface shape is optimized by this choice of reflectance
model. As we will see, reflectance calculations based on this
model are not particularly simple either.

The cosine of the incident angle can be found by considering
the appropriate spherical triangle (see Fig. 13) formed by the
local normal N, the direction towards the source S, and the
vertical V. One then finds the following, as Wiechel already
showed[8 ],

R'(6,0) = cos By cos 0 + sin 0o sin 0 cos (^ - 0o).

Alternatively one can simply take the dot-product of the unit
vector N normal to the surface and the unit vector S pointing
towards the source [138], [140]

(-P,-q, l)(-Po,-<?o, 1)
COS I = ——/ * —r / , , •

(V l+p '+ f l rWl+?§+<?§ )
The reflectance map (normalized so that its maximum is one)

Fig. 13. Spherical triangle used in calculating the incident angle ifrom
the azimuth and elevation of the light-source and the azimuth and
elevation of the surface normal. The direction towards the viewer is
V, the direction to the source is S, while the surface normal is N.

then is
R(p, q) = (1 + pop + (yo^AVl+P'+^Vl+Po+^o).

When (1 +poP+ '?o ( 7) < ^0 the surface element is turned away
from the source and is self-shadowed. In this case, R (p, q) = 0.

In the case of a point source of light at 45° zenith angle in
the northwest, the reflectance map becomes

R(p,q)=[l+(p-q)/^^]/^^/TV^Vp^Tq^].

XXVIII. PEUCKER'S PlECEWISE LINEAR
APPROXIMATION (H)

The computation of gray value using the equation for the
cosine of the incident angle is complicated and slow because of
the appearance of the square root. Peucker [61 ] experimented
with a number of approximations that are easier to compute.
He found that an adequate, piecewise linear approximation for
slopes less than one, is

0.3441p-0.5219<?+0.6599, f o r p + < ? > 0

0.5129p- 0.3441 q+ 0.6599, f o r p + q < 0
or

R (p, q) = 0.4285 (p - q) - 0.0844|p + q \ + 0.6599

where \p+q\ denotes the absolute value of (p+q). The
above approximation produces excellent shaded overlays, that
in fact seem easier to interpret that those produced using the
exact equation for a perfectly diffusing surface.

XXIX. BRASSEL'S ADJUSTMENT OF LIGHT
SOURCE POSITION (I)

Perhaps the most outstanding examples of shaded maps come
from Switzerland. Techniques for portraying the shape of the
surface and integrating this information with planimetric detail
have been perfected by a number of artists there [I] , [40]-
[47]. The results of automated methods as described here,
cannot compete with the beauty of their products. Neverthe-
less, automated methods do provide a systematic, accurate
way for generating shaded overlays. They will become of par-
ticular importance when good digital terrain models become
easily available. Brassel attempted to incorporate as much as
possible of the Swiss manner into his program [71]-[74].
He quickly realized two problems with methods based purely
on Lambertian reflectance models.

The first effect is explained as follows. Surface elements
sloping away from the source are dark, while those tilted
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towards the source are brighter. Brightest are those that have
the light rays falling perpendicularly on the surface. Surface
elements sloped more steeply, however, become darker again.
This lack of monotonicity of brightness with slope is apparently
disturbing and reduces the ability of the observer to correctly
interpret the shape. Brassel ameliorated this effect by reduc-
ing the elevation of the light source in regions where this prob-
lem occurred.

If the zenith angle of the source By is smaller than the zenith
angle of the direction defined by the surface normal 9 he moves
the source to a new zenith angle ()„ that is a weighted average
of 60 an^ 9. To be precise,

e , ,=max[0o,a6+( l -a)9o]
where

e = tan-19 = tan ' Vp- + q- .

In his thesis [71], the weighting factor a was one, so that
adjustment in elevation was complete. Curiously, this simple
method has the effect of lowering the light source even for
surface elements tilted away from the source, as long as the
slope is large enough. The above method can also be expressed
directly in terms of the components of the gradient. When
Pl+q^>pl+qlo, ____ ____

Pn = Po(Vp2 +<?2 I^Pl + <?§ )
and

<?n = qo(^P2 +q2 l^pl+ql)
where p,, and <?„ are the components of the gradient of a sur-
face element oriented to be maximally illuminated by the
adjusted light source. If there are no further adjustments of
source position, the reflectance map in the specified region
becomes,

l+(PoP+<?ofl)0R(P,q)=
(l+P^2)

XXX. ADJUSTMENT OF THE AZIMUTH OF THE SOURCE

Next, Brassel observed that ridge and stream lines become
indistinct when their direction was more or less aligned with a
direction toward the source. Opposite faces of a mountain or
valley may end up with similar gray values when the cosine of
the incident angle is similar for the two, even though they have
quite different surface orientations. Maximum contrast occurs
when a linear feature lies at right angles to the direction of the
incident light, and Brassel therefore moves the light source in
azimuth towards the local direction of steepest ascent or
descent (whichever is closer),

The amount of adjustment depends on two parameters (see
Fig. 14). The maximum amount of adjustment is specified by
w (55° for example), while the azimuth difference at which
this maximum occurs is specified by g (80° for example). The
details of the computation are not very important but are
given here for completeness. First, the azimuth of the direc-
tion of steepest descent is computed using

0=atan(-q,-p)
where atan (;>',.!»;) is the direction of the line from the origin to
the point (x,y) measured counterclockwise from the ^c-axis.
Next, the difference between 0 and the azimuth of the source
0o is reduced to the range -ff/2 to -l-ff/2 by adding or subtract-
ing integer multiples of ir. Let the result be A0. The adjusted

azimuth of the source is then calculated as follows,

<j>n = 0o + w sign (A0) min [ |A0|/^, (ff/2 - |A0|)/(7r/2 - g)}

where sign (A0) is +1 when A0>0, and -1 when A0<0.
Now one can calculate the gradient (?„, <?„) of the maximally
illuminated surface element, or instead, use Wiechel's formula
to get the cosine of the incident angle directly,

R'(9, 0) = cos On cos 9 + sin 6,, sin 9 cos (0 - 0n).

Here it should be pointed out that in Brassel's scheme the
gradient (p, q) used in the above formulas for adjusting the
azimuth of the source is a regional value derived from ridge
and stream lines in the area near a particular point. In this
way the cartographer can influence the final appearance of the
shaded overlay by altering these manually entered linear fea-
tures. This method involves rather complicated global calcula-
tions that do not lend themselves to implementation in the
straightforward way we have discussed. The apparent bright-
ness of a surface element depends on both its orientation and
some function of its surround.

A possible objection to this idea is that the distribution of
light sources does not vary from place to place in a real imag-
ing situation unless the sources are very close to the surface.
It must be pointed out, however, that people seem to have
little difficulty interpreting synthetic images where the as-
sumed light source position varies. In fact, few notice such
drastic changes in assumed light source position as are apparent
in a recent map of the polar regions of Mars [150]. This may
be related to the fact that our perception of shaded images
does not give us a good appreciation for global differences in
depth, instead giving us an excellent appreciation of local
surface orientation patterns.

Whatever the merits of this argument, the above method can
be modified to fit in with the notion of the reflectance map, as
defined earlier, if one uses the local gradient (p, q) in the cal-
culation of the adjusted source position. The illustration
shown here uses this modified version. Note that in Brassel's
scheme the adjustment in azimuth and zenith angle of the
source are independent and can be carried out in either order.

Brassel also adjusted the apparent brightness according to
the height of the terrain. This is a simple local computation
that can be easily added to any of the basic methods presented
here. It was not included here to simplify comparisons.

XXXI. ALTERNATE LIGHT SOURCE ADJUSTMENT
METHOD (J)

Brassel used a piecewise linear adjustment in azimuth. A
similar effect can be achieved using a smoothly varying func-
tion like

sin §0 = (f3/2) sin 2(0 - 0o) = (3 sin (0 - 0o) cos (0 - 0o).

That is,

sin60=)3[(po<?- q'oPXPoP+qo^l/KP2 +12) (Po +'?2)!.

Adjusting the azimuth of the source by 60 leads to a new posi-
tion specified by,

PS = Po cos 80 ~ qo sin 50
qs = Po sin 50 + qy cos 80,

Adjustment is complete for small angles when (3=1. The use
of trigonometric functions is avoided in the above calculations,
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Fig. 14. Sawtooth function giving adjustment of azimuth of the light
source as a function of the angle between "regional" ridge and valley
directions and the direction of the light source in Brassel's scheme.

since both the sine and the cosine of 50 can be computed
without them.

Next we turn to the adjustment in the elevation of the
source. To avoid the peculiar phenomena of the lowering of
the source even for surface elements turned away from it, we
adjust the elevation according to the projection of the surface
normal on a plane containing the source. When pjp + q^q >
P|+<?,2,

Pn =Ps(PsP + <?t'?)/(P2 + ̂ )

In = 1s(PsP + VS^KPJ + <?!)•

In this region then the reflectance map becomes,

R (P. q) = Vl +(P,P+^)2/(P! +^Wl +P2 +<?2.

Otherwise it is calculated as before, that is, the cosine of the
incident angle is

R(P, <!')=(! +PnP + '?n<?)/(Vl +P2 + <?2 Vl +PS +P2)-

The advantage of the above method of adjustment is that
simple calculation in terms of the components of the gradient
replace trigonometric equations in terms of azimuth and
zenith angles.

XXXII. WIECHEL'S PROJECTED INCIDENT ANGLE (K)
The first serious analysis of an approach based on the shad-

ing seen on the surface of an obliquely illuminated matte
object is that of Wiechel [8]. He started by assuming a per-
fectly diffusing surface and proposed connecting points of
equal apparent brightness by isophotes. He correctly deter-
mined the brightness of a perfect diffuser as already men-
tioned. In order to make calculations less unwieldy he also
suggested three approximations, the second of these being
the contour-terrace model already discussed. His first method
involved approximating the cosine of the incident angle ; by
the cosine of i', the projection of this angle onto a vertical
plane lying parallel to the rays (see Fig. 15). By applying the
analogue formulas to the lower spherical triangle (see Fig. 16)
we get,

sin i' cos i = cos i' sm i cos \.
Applying the analog formulas next to the whole triangle we
get

sin i cos x = cos 6 sin By - sin 0 cos 60 cos (0 - 0o )•
The second equation allows us to eliminate \ from the first

Fig. 15. Projection of the surface normal on a vertical plane containing
the assumed light-source. The projected normal is perpendicular to
the line in which the plane cuts the terrain surface.

Fig. 16. Spherical triangles used to calculate the projected incident angle
i' and the projected surface inclination 6'. The direction towards the
viewer is V, the direction to the source is S, while the surface normal
is N,

and obtain an expression for tan; . Using the identity cos;' =
1/Vl +tan2 i', we finally find,

R'(6,0) = cos //[cos 0Vl + tan2 6 cos2 (0 - 0o)]
where, using the cosine formula as before,

cos; = cos 0 cos OQ + sin 6 sin OQ cos (0 - 0o).
Alternatively one can project the vector n = (-p, -q, 1) onto
the plane with normal s = 0?o > ~Po> °)- The result will equal,

n =n - (n • s)s/s2

where s is the magnitude of the vector s. This projected vector
will be perpendicular to the line in which a vertical plane in-
cluding the light source cuts the surface:

n'= l-Po(poP+<lo <?)/(P2 +<?2),

-<?o(PoP+<?o<7)/(P2 +<72), I!-

Taking the dot-product of the projected vector and the vector
pointing at the source, then dividing by their magnitudes we
find,

(1 + Pop + go?)
= Vl +P2 +'^2Vl+(PoP+'^o<?)2/(P2 +<?2) '

This mathes the expression for perfectly diffuse reflection for
values of (p , q) along the line from the origin to the source
point (po, qo). When the source is in the standard position
the equation becomes

R(P, <?) = [1 + (P - <?W2']/[\/2'V1 + (p - q^/2 ] .
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While these equations are more complicated than the original
equations for the cosine of the incident angle i, it must be
pointed out that the angle ;"' can be estimated graphically by
measuring the contour interval in a direction parallel to the
incident light rays. The same is true of Wiechel's second ap-
proximation introduced earlier. This greatly simplifies the
manual construction of shaded maps from contour maps, and
makes it possible to use a simple one-dimensional scale for
brightness instead of Wiechel's more elaborate "Helligkeits-
maassstab". This property manifests itself in the reflectance
map by the appearance of parallel straight line contours. It is
also interesting to note that Wiechel's "approximations" pro-
duces results that seem better than those obtained using the
equation for the perfect diffuser. Unfortunately, experimen-
tation at his time was limited because of the lack of appropriate
technology for systematically generating continuous tone
patterns. Apparently no maps made by this method were ever
published [ 1 ].

XXXIII. WIECHEL'S MODIFIED BRIGHTNESS (L)
Finally, Wiechel postulated a material that would not appear

equally bright from all viewing directions, but instead had
brightness varying as the cosine of the emittance angle. This
was used in part to discuss the relationship between the con-
tour-terrace model and the original surface, but also put for-
ward as a third, "modified brightness" model that might be
used in calculating gray tone. In this case brightness varies in
proportion to (cos;' cos e). We can normalize his result here
by dividing by the maximum of this product, cos2 (.gll),
where g is the so-called phase angle, here equal to 60. (The
term phase angle stems from work on lunar photometry,
where this angle equals the phase of the moon). Then,

R (P> <?) = 2 (cos i cos e)/(l + cos g)

or

2(1 +poP+<?oq ' )
R(P.CI)-- (i + vri~p|T<?i) d+ p2 + <?2)

Using the expression for the projected normal n developed in
the last section, or, remembering the expression for the slope
in the direction (po, <?o)>cme can ^so show,

R(p,q)= 10(p»p+<!f»<^)/'/p^.

When pop+qoq >0, R(p, q)> 1 and so all surfaces facing
towards the light source are white. No information is avail-
able to the viewer regarding surface shape in these areas. If
the assumed light source is in the standard position we get the
simple formula,

^(p.^lO^-^/^2.

Marsik also limited the density to a maximum of 0.7 to avoid
interference with planimetric information on the map.

XXXV. LOMMEL-SEELIGER LAW (N)
Many surfaces have reflectance properties that differ greatly

from those of an ideal diffuser. The photometry of rocky
planets and satellites has intrigued astronomers for many years
[121]-[130]. Several models have been proposed to explain
the observed behavior. One of the earliest, developed by
Lommel [119] and modified by Seeliger [ 120], is based on an
analysis of primary scattering in a porous surface [126], [128].
Their model consists of a random distribution of similar par-
ticles suspended in a transparent medium and results in a
reflectance function that is given here in its simplest form,

1/[1 +(cose/cosi)]
unless cos i < 0, when the surface is self shadowed. Here i is
the incident angle, and e is the emittance angle, the angle
between the local surface normal and the direction to the
viewer, here equal to Q. The expression equals 1/(1 + cosg)
when i = 0 , where g is the phase angle, here equal to 0o- Using
this value for normalization and remembering the expression
for cos i one finds,

R'(6,0) = (1 + cos 6o)l[ 1 + cos 6/(cos Q cos OQ

+ sin 6 sin @o cos (0 - 0o))]
Incidentally, this function does not satisfy Helmholtz's reci-
procity law [124], and therefore cannot correspond to the
reflectance of any real surface illuminated by a point source.

XXXIV. MARSIK'S AUTOMATIC RELIEF SHADING (M)
Blachut and Marsik further modified Wiechel's approxima-

tion, partly as a result of their dissatisfaction with the fact that
a horizontal surface does not appear white when a perfectly
diffusing material is assumed [58], [59]. This may have
stemmed in part from early conventions in map-making where
horizontal surfaces were portrayed without hachures [4] -[6].
Marsik also aimed for simpler calculations and considered the
slope in the direction towards the source. For some reason,
he proposed making the density of the printed result equal to
the tangent of the projected slope angle 6' (see Fig. 15). Den-
sity is the logarithm (base 10) of the reciprocal of the reflec-
tance. Applying the analogue rule to the upper spherical tri-
angle (see Fig. 16) one can show that,

0 = cos 0 sin 6' - sin 0 cos 0' cos (0 - 0o).

Thus

tan Q' = tan 9 cos (0 - 0o),
RI(9,<^>)=lOtaneM!'(•'<>~t><>\

or

[ l + l / \ / l + p § + < ? 2 ]
R(P,q)=

[1 + V l + P o + < ? o / 0 + POP + <?o <?)]

unless (I + PoP+clo^^^' when R(p, q)=0. When the
source is in the standard position,

-, . ( l + l / \ / 2 ' ) [ l + ( p - < ? W 2 ' ]
R(p'q)= ( i+V2-)+(p-,)/V2-

The Lommel-Seeliger law has been used in automated relief
shading by Batson, Edwards, and Eliason [70].

Based on detailed measurements and modeling, Fesenkov
[123], [127] andlaterHapke[128]-[130] further improved
the equations for the reflectance of the material in the maria
of the moon, Hapke imagined the surface as an open porous
network into which light can penetrate freely from any direc-
tion. His result has three components: the Lommel-Seeliger
formula for reflection from a surface layer containing many
scattering points of low reflectance, Schonberg's formula
[122] for reflection from a Lambertian sphere and a compli-
cated factor resulting from mutual obscuration of the particles.
The results of such investigations are often expressed in terms
of angles other than the ones introduced so far. The Lommel-
Seeliger law, for example, can be expressed in a way which
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simplifies the problem of "calculating the shape of the lunar
surface from shading in a single image [137], [138], [151].
The angles needed, luminance longitude and luminance lati-
tude, are defined in Appendix D.

XXXVI. MINNAERT'S REFLECTANCE FUNCTION (0)
Minnaert discusses a large variety of models for the reflec-

tion of light from rough surfaces [126]. He also proposed a
class of simple functions of the form,

cos" i cos"-1 e
intended to fit observations of the radiance of lunar material
while obeying the reciprocity law [ 124]. Here K is a parameter
to be chosen so that the best fit with experimental data is
obtained. This parameter is meant to lie between zero and
one, with the above expression becoming equal to that for the
perfect diffuser when K = 1. We can normalize this expression
so it equals one when i = 0,

R(P, (D = cos" i cos""1 e/cos""1 g

^(p.<^)=[(l+PoP+<?o'^)/( l+P2+'^2)]K

• (Vl+p'+^/Vl+P2 +ql).

XXXVII. PARTICULARLY SIMPLE REFLECTANCE
MAPS (P)

Several methods discussed here have reflectance depending
only on the slope in the direction away from the assumed light
source, leading to parallel straight line contours in the reflec-
tance map. These include Wiechel's first and second "approxi-
mation," Tanaka's relief contour method, the "law" of Lom-
mel and Seeliger, Minnaert's formula when K = ^-, as well as
Marsik's automatic relief shading. These methods are quite
effective in producing overlays that are easy to interpret. One
can construct more such reflectance maps, including some that
are even easier to calculate. One possibility, for example, is,

^(P^-i+^P'+a)/*
where

P' = (Po P + <?o ci)lVpl^~ql
is the slope in the direction away from the source. Values less
than or equal to zero correspond to black, while values greater
than or equal to one correspond to white. The parameters a
and b allow one to chose the gray value for horizontal surfaces
and the rapidity with which the gray values changes with sur-
face inclination. The simple program shown earlier (see Fig.
5) uses this form with a = 0, b = 1/\/T and po = l/'s/2', do =
-1/V2'.

•A simple alternative, where all possible slopes are mapped
into the range from zero to one is,

R(p,q)=y+^(p'+ aW&^p'+a)2.

This has the advantage that the reflectance does not saturate
for any finite slope and all changes of inclination in the verti-
cal plane including the source translate into changes in gray
level.

Another way to achieve this effect is the following, some-
what reminiscent of Lehmann's approach,

R(P, q) = i+ (W tan-1 [(7r/2) (?'+«)/&].

These three formulas are given in a form where the rate at
which the gray value changes with surface inclination is the
same at (p + a) = 0.

Fig. 17. Spherical triangles used to calculate the first off-specular angle
s. It Is the angle between S, the center of the source, and S', the direc-
tion from which light is specularly reflected towards the viewer. Equiv-,_
alently, it is the angle between V, the direction of the viewer, and V',~}
the direction in which light from the center of the source is specularly
reflected.

XXVIII. GLOSSINESS-THE FIRST OFF-SPECULAR ANGLE
Not all surfaces are matte. Some are perfectly specular or

mirror-like. Since smooth, specularly reflecting surfaces form
virtual images of the objects around them, patches of high
brightness will appear when such a surface is illuminated by an
extended source, like a fluorescent light fixture, or by light
streaming in through a window. The size of the patches de-
pends on the solid angle subtended by the source as well as the
surface curvature, while the brightness distribution is that of
the source.

To study reflection of an extended source in a specular sur-
face, it is useful to introduce the "off-specular" angle s between
the direction S to the center of the source and the direction
S'', of the point that is specularly reflected to the viewer (see
Fig. 17). This, incidentally, is also the angle between the
direction to the viewer V and the direction V' in which the
rays from the center of the source are specularly reflected.

We assume a circularly symmetric source, with brightness
L(s) at eccentricity s. This is the brightness the viewer observes
in the specularly reflecting surface. Calculating the first off-
Specular angle s is simple using the appropriate spherical
triangles:

cos s = cos 1i cos g - sin 2i sin g cos \
cos e = cos i cos g - sin ;' sin g cos \.

Here,;' is the incident angle, between the local normal and the
direction to the source, e = Q, is the emittance angle, between
local normal and the direction to the viewer, while g = 60 is
the phase angle, between source and viewer. Eliminating
X from the two equations and expanding the sine and cosine
of 2i, one gets,

cos s = 2 cos i cos e - cos g.
Substituting expressions in p and q for cos i, cos e and cos g

one can rewrite this as,

cos^=[2( l+pop+(?o<?)/( l+P2 +<?2)- l]/VTTp^Tq^.

This result can also be obtained simply by finding the direc-
tion S' from which a ray must come to be specularly reflected
to the viewer V, by a surface element with normal N,

S'=2(V-N)N- V
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where V =(0,0, 1). The off-specular angle is the angle be-
tween S' and the center of the source S so

cos s = S • S' = 2(S • N)(V • N) - (S • V).

Note that the cosine of the first off-specular angle can be
calculated easily, without using trigonometric functions. The
contours of constant cos s turn out to be nested circles in
gradient space, with centers lying on the line from the origin
to the point (po,'7o). This can be seen by noting that the
locus of the point S', for constant s, is a circle about the point
S and that circles on the Gaussian sphere give rise to circles in
gradient space when projected stereographically [138].

The cosine of the off-specular angle s equals one when con-
ditions are right for specular reflection, that is, when e = i and
g = i + e. This can be seen by setting e = i = g f l in the trigono-
metric expression for cos s.

XXXIX. BUI-TUONG-S FORMULA-SPECULAR SURFACE,
EXTENDED SOURCE (Q)

Having seen how to calculate the off-specular angle s, we can
now make a reflectance map, by assigning the distribution of
source brightness L(s). This function should be nonnegative
monotonically decreasing with s, and equal to one when s = 0.
For ease of calculation one choice might be

W = cos" (s/2) =[?(!+ cos s)]"12

where n is a number that defines how compact the bright patch
is (a useful value might be around 20). So far, we have devel-
oped the reflectance map for a specular surface and a circu-
larly symmetric source. Many surfaces, such as glazed pottery
or smooth plastic, have both glossy and diffuse components
reflection. Specular reflection takes place at the smooth inter-
face between two materials of different refractive index, while
the matte component results from scattering of light that
penetrates some distance into the surface layer.

We can combine these two components as follows

R(P, <?) = [(1 - a) + <xL(s)] cos i/cos (g/1)

where a determines how much of the incident light is reflected
specularly. The expression is scaled so that its maximum is
(approximately) equal to one. Here we have assumed the
source, while distributed, is compact enough so that the diffuse
reflection component can be approximated as cos i. The above
expression obeys the reciprocity law of Helmholtz [124]
which applies to real surfaces illuminated by a point source.
Bui-Tuong used a reflectance function similar to the one de-
rived above in his computer graphics work [113]. He appar-
ently tried to model reflection from a surface that is not
perfectly smooth. This requires a different off-specular angle
however, as will be seen in the next section.

XL. LUSTER-THE SECOND OFF-SPECULAR ANGLE
Refulgency, gloss or shine can also appear when a point

source is reflected in a surface that is not perfectly smooth.
When a slightly uneven surface, of a material that gives rise
to metallic or dielectric reflection, is illuminated by a point
source, bright patches will be seen surrounding points where
the local tangent plane is oriented correctly for specular reflec-
tion. The size of these patches will depend on the roughness
of the surface and the surface curvature, while the distribution
of brightness will depend to some extent on the texture of
the microstructure of the surface.

Fig. 18. Spherical triangles used to calculate the second off-specular
angle s'. It is the angle between the actual surface normal N and a
surface normal N' oriented to specularly reflect rays from the source
towards the viewer.

In this case we will need to calculate the second off-specular
angle s' between the local normal N and the normal N' oriented
for specular reflection of rays from the source S towards the
viewer V (see Pig. 18). By considering the appropriate spheri-
cal triangles one finds,

cos s' = cos i cos (g/2) - sin ;' sin (g/'2) cos \
cos e = cos i cos g - sin ; sin g cos \.

Eliminating \ from the two equations and expanding the sine
and cosine of the phase angle g, one finds,

cos s' = (cos i + cos e)/(2 cos (gl2))

or

cos s' = (cos;' + cos e ) f ( \ f 2 Vl + cosg).

This result can also be obtained by finding the vector N',
normal to a surface element oriented to specularly reflect a ray
from the source in the direction of the viewer V. That is,

N'=(S+V)1\S+V\.

The off-specular angle is the angle between the actual surface
normal N, and this vector N'

c o s s ' = N - N ' = [ ( S - N ) + ( V - N ) ] l \ / 2 \ / ] . +(S- V).

The surface microstructure of an uneven surface can be
modeled by many randomly disposed mirror-like facets, too
small to be optically resolved, each turned a little from the
average local surface orientation. One can define a distribu-
tion P(s') describing what fraction oHhese microscopic facets
are turned away from the average local normal by an angle s'.
For ease of calculation one choice might be,

P(s')=cos'1 s'.

XLI. BLINN'S FORMULA—ROUGH SURFACE, POINT
SOURCE CRt

One can use the fact that a normal N' oriented for specular
reflection of the point source towards the viewer, lies in the
direction (-pi, -q\, 1), where

pi =-cos^o tan (0o/2)

and

qi =-sin 0o tan(0o/2).

We can also find N' by normalizing the vector (S + V), so that
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its third component equals 1:

P i = P o / [ l + V l + p g + < ? § ]

4i = < ? o / [ l + V l + P § + < 7 i h .
A surface with gradient (pi, <?i) is oriented just right to specu-
larly reflect a ray from the source to the viewer. This can be
seen by noting that when p = pi and q = q\,

cos i = cos e = 1/\/1 +p^ + q\
and

cos g= 21(1+p2l+q2l)- 1.

In any case,

c o s s ' = ( l + p l p + ( ^ l ( ^ ) / ( V l + p 2 + < ^ 2 V l+P? +<??).

Note that s' will tend to be (roughly) half of s when both
angles are small. Combining matte components of surface
reflection with those from the rough outer surface we get,

R(P, q)=[(l-a)+ aP(s')] cos i/cos (g/2).

The above reflectance map also obeys Helmholtz's reciprocity
law and is normalized so that its maximum is (approximately)
equal to one. Blinn and Newell give a similar reflectance func-
tion, claiming it was what Bui-Tuong had proposed [114].
The two are not the same however since the two off-specular
angles are different; in fact, the contours of constant s' are
nested ellipses in gradient space, while, as mentioned earlier,
the contours of constant s are nested circles. Indeed, Bui-
Tuong's model corresponds to reflection of an extended, rota-
tionally symmetric source in a specular surface, while the
model presented in this section applies to reflection of a point
source in a rough surface.

XLII. BLINN AND NEWELL'S MODEL FOR SPECULAR
SURFACES

One of the methods described by Blinn and Newell [114]
assumes a perfectly specular surface in which the world sur-
rounding the object is reflected. To make computations
feasible, they imagine the surrounding objects at a distance
great enough so that each part of the surround appears to lie in
essentially the same direction from every point of the surface
of the object. In this case one can imagine the brightness
distribution of the surrounding objects projected onto the
inside of a large sphere. The gray value used for a particular
surface patch then is found by computing the direction S' from
which a ray must come to be specularly reflected to the viewer
V, by a patch with surface normal N. We have already seen
that,

S'=2(V-N)N- V.

The appropriate gray value is then determined from the spher-
ical distribution of brightness. In practice the sphere is mapped
onto a plane by calculating the zenith angle, Oy and azimuth,
^o of S' [114]. The brightness distribution can be equally
well specified in gradient space [138], since it is also a projec-
tion of the Gaussian sphere.

Surface models incorporating randomly dispersed mirror-like
facets were first studied in the 1700's by Bouguer [118]. This
type of microstructure has been investigated extensively since
then, despite the difficulties of reasoning about the three-
dimensional nature of reflection from such surfaces. Recently,

Torrance and Sparrow further elaborated on these models
[134], [135] in order to match more closely experimental
data showing maximum brightness for angles of reflection
larger than the incident angle. They included in their consid-
erations the effects of obstruction of the incident and emer-
gent rays by facets near the one reflecting the ray. Blinn sim-
plified and explained their calculations [115] and used them
in producing shaded images of computer models of various
objects. The overall result can be broken into a product of
three terms, one dependent on the distribution of facet orien-
tations, the second being the formula for Fresnel reflection
from a flat dielectric surface, while the third is the geometric
attenuation factor accounting for partial occlusion of one
facet by another. We will not discuss these models in any
more detail here.

Models for glossy or lustrous reflection have been used with
great success in computer graphics to increase the impression
of realism the viewer has when confronted with a synthetic
picture of objects represented in the computer. Unfortunately,
these methods do not seem to improve the presentation of
surface shape for cartographic purposes.

XLIII. COLORED SHADING
It is often said that quantitative information about the sur-

face cannot be obtained from relief shading [ 1 ]. Contour
lines on the other hand do allow measurements of elevation
and estimation of the gradient. Shading does provide some
information about the gradient too, but cannot be used to
determine both of its components locally, since only one mea-
surement is available at each point. Since we can perceive the
shape of objects portrayed by shaded pictures, it seems that
these local constraints do lead to a global appreciation of
shape, apparently based on our assumption that the surface is
continuous and smooth.

If two shaded images, produced with the assumed light
source in different positions, were available however, two
measurements could be made at each point allowing one to
determine the gradient locally [141]. It is inconvenient to
work with two shaded overlays; fortunately though, they can
be combined by printing them in different colors. In fact, yet
another overlay can be added in a third color, but it adds no
new information, since the two components of the gradient
are already fully determined by the first two.

Colored shading corresponds to illumination by multiple
sources, each of a different color. The exact color at each
point in the printed result is uniquely related to the gradient
at that point. Thus quantitative information is available in
this new kind of map overlay. Further, ambiguities present
in black and white presentations disappear. By positioning the
light sources properly, one can avoid problems occasioned by
the accidental alignment of ridge or stream lines with the
direction of incident light. Thus the need for ad hoc adjust-
ments of the azimuth of the assumed light source is removed.

Colored shading is easy to interpret in terms of surface shape
and effective in portraying surface form. It is unlikely how-
ever that it will be widely used because of the added expense
of printing and conflict with existing uses of color in cartog-
raphy to distinguish various kinds of planimetric information.
Amongst other things, color is now used to code height and
surface cover. Further, yellow is used in ordinary shading for
sun-facing slopes, while violet is used for shaded regions [152].
This is thought to simulate the increased sky illumination
component in areas turned away from the sun.
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Fig. 19. Reflectance maps in the order in which they were introduced. The letter codes on subfigures match the letters found after the head-
ings of corresponding sections of this paper. Small crosses mark points in gradient space where slope-components are integer multiples of 1.
Where appropriate, a small square marks the gradient of a surface element that is perpendicular to the rays from the assumed light-source.

XLIV. SUMMARY AND CONCLUSIONS
After a brief review of the history of hill-shading an efficient

method for providing shaded overlays was described. It de-
pends on a lookup table containing sampled values of the
reflectance map. Traditional, manual methods were explored
in terms of their equivalent reflectance maps, as were phenom-
enological models used in the computer graphics community.

Methods that have been proposed for mechanizing the genera-
tion of relief shading were also treated. The automated method
described here is very flexible, since it can use any reflectance
map.

Eighteen of the reflectance maps described were plotted as
contour diagrams (see Fig. 19). The letter under a subfigure
corresponds to the letter appearing after the heading of the
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Fig. 19. (Continued.)

section in which the corresponding reflectance map is dis-
cussed. The first three (A, B, and C) are independent of the
direction of the gradient, depending only on the slope. These
give rise to rotationally symmetric diagrams. Six other dia-
grams (E, F, K, M, N, and J°) show parallel straight lines. These
correspond to reflectance maps which depend only on the
slope in the direction away from the source. Reflectance maps
for perfectly diffusing (G) and glossy (Q and R) surfaces are
also included.

Shaded images of a mathematically defined surface were
then created using these reflectance maps (see Fig. 20). Several
of the subfigures give one a good appreciation for the shape of
the object. Assumption of a perfectly diffusing surface (G)
and Wiechel's modified brightness function (L) lead to good
results, while the images corresponding to glossy surfaces
(Q and R) are perhaps the most vivid.

The same set of reflectance maps was then used to make
shaded images of a region in Switzerland for which a digital
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Fig. 21. Shaded images of a digital terrain model. The subfigures were made using the same reflectance maps as those used for the previous
figure.
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Fig. 21. (Continued.)
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Fig. 22. Shaded images of several digital terrain models. A particularly simple reflectance map was used. The lines in the subfigures correspond
to a length of 10 km on the surface, (a) Lake Louise, Alberta, Canada, (a) Gulf Islands. British Columbia, (c) Les Diablerets. Switzerland.
(d) Dent de Morcles, Switzerland. (3) Mexico City, Mexico, (f) Jewell Ridge, Virginia, (g) White Tail Butte, Wyoming, (h) Tehacnapi Moun-
tains, California, (i) Mount Index, Washington, (j) Mauritius, Indian Ocean.

terrain model was available (see Fig. 21). Some reflectance
maps appear much better than others in conveying an imme-
diate impression of surface shape. Rotationally symmetric
reflectance maps (A, B, and C), corresponding to overhead
illumination of the terrain, are not very good for example.
Perfectly diffuse reflectance (G) is not optimal either. In fact,
various approximations to the formula for a Lambertian re-
flector (H and K) seem to produce better results. Glossy
reflectance components (Q and R), while very useful in the
portrayal of regular objects, result in tones that are too dark
to be useful in a map overlay. We may also not be used to
seeing a geographical surface presented in this form.

Marsik's method (At), in which half of the surface is a fea-
tureless white, is clearly not very effective. Several of the
other methods require careful scrutiny before conclusions
about their adequacy cart be made. Amongst the best are
Wiechel's modified brightness method (L) and the modifica-
tion of Brassel's method presented here (J). Several of the
methods depending on the slope in the direction away from
the light source appear to be quite adequate (F, K, N, and P).
These are to be recommended unless there are good reasons to
prefer one of the other methods.

Shaded images were created from several other digital terrain
models (see Fig. 22) using one of these simple methods (P).
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Fig. 22. (Continued.)

The terrain models differ widely in their quality, resolution
and origin. They do show the utility of the methods described
here in presenting the information in a digital terrain model to
a human observer.

Shading is an important depth cue. The choice of reflectance
map should not be based on some ad hoc model of surface
behavior, experimental measurement of reflectance of some
material, or formulas that happen to be easy to calculate. In-
stead, one should use a reflectance map that gives rise to an
immediate, accurate perception of surface shape.

It is important to arrange for the range of gray tones in the
shaded overlays to be limited so as to avoid obscuring plani-

metric detail [153]. This is an area that has not received much
attention so far. Another important issue relates to the appro-
priate scale for shaded overlays. Shaded overlays are useful
for large scale maps. For small scale maps it is necessary to
generalize the surface to avoid the appearance of complex tex-
tures that may be difficult to interpret [1], [48], [73], [74],
[ 154], [155]. This nonlinear process of removing small hills,
ridges and valleys has not yet been satisfactorily automated.

An as yet unexplored possibility depends on finely sampled
terrain elevations. This is the ability of shading to show fine
detail. Contour maps have to be carefully generalized or
smoothed to avoid showing confusing detail on a scale smaller
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Fig. 22. (Continued.)

than the contour interval. This is not the case with shading,
although historically the manually produced maps have always
shown only quite coarse features. We do not yet know whether
the textures produced by the shading method when working
from really fine terrain models will be confusing, or of great
value in identifying different types of terrain.

APPENDIX A
ROTATED GRADIENTS

It has been cartographic practice to assume a light source in
the Northwest at a 45° elevation above the horizon. It is help-
ful in this case to introduce a rotated coordinate system (see
Fig. 23) with

and

p'=(p-q)lV2 Fig. 23. Rotated coordinate system that may be convenient when the
assumed light-source is in the northwest. The reflectance map is
symmetrical about the p'-axis.

q'=(p+<?)/V2. and q^
If Ax = Ay = A say, then the slopes in the Northwest to South-
east and in the Southwest to Northeast direction, can be esti-
mated particularly easily by combining the formulas for py,

P'w = K^o + z+- + ̂  - (^o + z-+ + z^ /4 V2 A

[(2o+ + z++ + z+o) - (20- + z- + ̂ o)! /4 \/2 A.<Tw
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If one wishes to estimate the slopes for the center of the top-
right quadrant (in the unrotated coordinate system) rather
than the central point one may combine the expressions for
Pi/2 and <?i/2 to get the simple formulas,

P'l/2 =(2+0 -Zo+)/V2A

and

<?'i/2 =(z^.+-Zoo)/^/2A.

One advantage of the rotated coordinate system stems from
the fact that models of surface reflectance considered here are
symmetric with respect to a line pointing towards the source.
That is, a surface element with slopes p' = p'o and q' = q'o say,
has the same apparent brightness as one with slopes p '=po
and q' = -q'o. Thus a lookup table based on the rotated coor-
dinate system can be smaller, since only that half of the table
corresponding to q' > 0 need be stored.

So far we have assumed that the grid of the terrain model is
aligned with the geographical coordinates. If instead the whole
model is rotated anticlockwise by an angle 6, then slopes
p" and q" can first be estimated from the model as described
and then transformed as follows:

p = p" cos 6 - q" sin 6

and

q=p" sin6+q" cos 0.

Alternatively, the model can be resampled to produce a new
version on a grid aligned with the axes.

APPENDIX B
SHADING APPARENT IN BLOCK DIAGRAMS

We can analyze the shading apparent in block diagrams by
calculating the spacing between lines as a function of the sur-
face orientation. Let a local surface normal be n = (-p, -q, 1).
A series of parallel planes, with common normal s, cuts the
terrain surface. The intersections of these planes with the sur-
face are viewed from a direction specified by the vector v. It is
assumed that the viewer is at a great distance so that the pro-
files are projected orthographically along lines parallel to i> (see
Fig. 24).

The line of intersection of one of the cutting planes with the
local tangent plane will be parallel to the vector n X s, since
the line lies in both planes and is therefore perpendicular to
the normals, n and s. Now construct a plane through the line
of intersection and the viewer. This plane, called the viewing
plane, contains both n X s and v. The normal e of the viewing
plane must therefore be perpendicular to both and can be
defined as,

e = (n X s) X v

or

e =(n • v)s - (s -v)n.

If we let p = (x,y, z), then the equation for the local tangent
plane can be written,

n • p = Cn

for some value of the constant <•„. Similarly, the equation of a
particular cutting plane is,

s - p = C s .

"B^ECTION

Fig. 24. The viewing plane contains the viewer and the line of intersec-
tion of the slicing plane with the terrain surface. Line spacing in the
block diagram equals the spacing between successive viewing planes.
The dotted line is parallel to the vector v.

Different values of c, correspond to different cutting planes.
The plane corresponding to the value Cs + dcy is separated
from the plane corresponding to the value c, by a distance
dcsis, where s is the magnitude of the vector s. The equation
for the viewing plane is just

e - p = C e .

Successive cutting planes will intersect the tangent plane in
parallel lines. These give rise to parallel viewing planes corre-
sponding to different values of the constant Cg. The spacing of
these viewing planes is of interest, since it equals the spacing
of the lines in the orthographic projection. The plane corre-
sponding to the value Cg + dcg is separated from the plane
corresponding to the value Cg by a distance of d c g / e , where
e is the magnitude of the vector e. In order to relate the
spacing of lines in the block diagram to the spacing of the
cutting planes we need to find the relationship between dCg
and dcy.

A point p on the line of intersection lies in all three planes
and therefore simultaneously satisfies the three equations
given above for these planes. Expanding the last one of these,
e • p = Cg, we obtain,

(n '• v)(s • P) - (s • v)(n • p) = Cg

or

(n -u)Cs- (s -v)Cn=Ce.

Here, (•„ is fixed and so the relationship between changes in
Cg and c, is simply

dee = (n • v)dcs.

If the interval between cutting planes is 5 and the map scale
is k, then dcs/s=(k6). Consequently the spacing between
lines in the block diagram dc^/e is

d=k8(n-v)(s/e)

where e is the magnitude of the vector e = (n • v)s - (s • v)n.
Finally, we remember that

R(P, Q) = 'w - Ow - r,,)(l>/d)
where b is the thickness of the lines. Thus

R(P, q)=rw- (bfk6)(r^ - ^)(e/s)(l/n • v).
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The view vector is tangent to the surface when n • v = 0. When
this dot product becomes negative, the surface is turned away
from the viewer and should not be visible. Also note that
d = k6, when s • v = 0. One should therefore choose s and v so
that they are not orthogonal, to avoid getting only evenly
spaced parallel lines.

In the case of perspective projection, line density will increase
with distance, and the resulting reflectance will be lowered
because of a change in the effective scale factor k. If the
projected profiles are plotted on a raster device, one has to
also take into account the fact that the number of dots per
unit line length is not constant. The dot density varies as
max [|cos0|, |sin0|], where 0 is the angle between the line
and the direction of the raster. This variation should be in-
cluded if an accurate reflectance map is to be derived for out-
put of this form.

APPENDIX C
ISOMETRIC VIEWS OF VERTICAL PROFILES

The transformation between the terrain coordinate system
and that of an observer viewing the terrain obliquely can be
found by multiplying a rotation matrix corresponding to rota-
tion by 0y about the x-axis with a matrix corresponding to
rotation by (ff/2 + 0u) about the z-axis, where 0u is the azimuth
and 6y is the zenith angle of the direction specified by the
vector v. If the coordinates in the observer's system are x', y ' ,
and z', one finds,

x' = -sin ^>yX + cos ̂ y
y' = -cos <t>v cos OyX - sin 4>u cos Q^y + sin OyZ

z' = +cos 0y sin QyX + sin 0y sin 0^y + cos QyZ.

In the case of orthographic projection, the values of x' and
y' are simply multiplied by the map scale k, to determine
coordinates in the block diagram.

The general formula derived in Appendix B applies to all
combinations of viewpoint and cutting plane orientation. It
is interesting to look at a few special cases however. We can,
for example, check our result for the contour interval in an
ordinary contour map. Here n = (-p, -q, 1), as always, and
s = (0, 0, 1), since we are considering the intersection of
the surface with horizontal planes. Further, v= (0,0,1)
since the viewer is vertically above the surface. Here then
s = 1, n • v = 1, and e = (p, q, 0). The line interval is, therefore,

d^feWVp^2.

The same reflectance map is obtained as before. Slightly more
complicated is the case of Tanaka's inclined contours, where
s = (-Po, -<7o, 1). Here, again, n • v = 1, while,

e =(p - po, Q - <?o, 0)

and

Fig. 25. Luminance longitude cr and luminance latitude f S of a surface
element are defined as the longitude and latitude of a patch on a
sphere with the same orientation. Longitude and latitude are measured
relative to the luminance equator through the light source S and the
viewer V.

diagram. Theni;= (1,-1, 1). Consequently, n -v= (1 - p +q)
and s • v = -1. Further, e = (-p, 1 - p, 1) and hence,

d = (kS)(l - p + q)!(V2 V l - P + P 2 ) .

So, if r f , = 0 and r^ = I ,

R(p, q) = 1 - \^2 (blk6) V l - p + p 2 ^ ! -?+<?) .

Similarly, for profiles running South to North, s = (1, 0, 0),
and,

R(p, q) = 1 - \^2 (b/k8) Vl + q + q2/(I - p + q).

At times two orthogonal sets of slicing planes will be used,
producing a mesh on the surface. The reflectance map corre-
sponding to this case can be found by adding the last two
formulas and subtracting one from the result.

APPENDIX D
LUMINANCE LONGITUDE AND LUMINANCE LATITUDE

A convention for specifying the orientation of the surface
element relative to the direction of a light source and the
viewer has become established in the work on planetary and
lunar photometry. Imagine a sphere illuminated by a light
source above the point S, viewed by an observer above the
point V (see Pig. 25). These two points define a great circle
which is called the luminance equator. Points on the sphere
can be referenced using the longitude a measured from the
point V along the equator, and the latitude (3.

All possible surface orientations can be found on the sphere,
and each surface orientation can be identified with some point
N say. The luminance longitude and luminance latitude corre-
sponding to a particular surface orientation are the longitude
and latitude o f N . It is not difficult to show that,

s = Vl + p2 + qi.

The line interval is, therefore,

d = (fc8)[Vl + pi + <?§/V(p - po)2 + (<? - <?o)2 ].

A result leading to the same reflectance map as the one derived
before.

Finally, consider profiles running West to East, that is,
s = (0, 1, 0). The resulting traces may be viewed isometrically
from the Southeast, a fairly common arrangement for a block

cos e = cos p cos a

and

cos i = cos p cos (a + g).

Conversely,

tan a = (cos e cos g - cos i)l(cos e sin g)

and

tan2 p = [ 1 + 1IEG - (I2 + E2 + G-2)] /[/2 - 1IEG + E2 ]
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where we have used the shorthand notation, I = cos f, E = cos e,
and G = cos g. These results can also be expressed in terms of
the components of the gradient:

tan a = (pop + <?o<?)/Vp2 +<?o.

So tan a is simply the slope in the direction away from the
source. Now,

(<?oP - Pog)2

l+2IEG-(I2 +E2 +G2)=

J2 -2IEG+E1 =

K l + p ' + ^ H l +P§+(?S)1

[(POP+<?og)2+(?§+<?§)]
[ ( l + p ' + ^ K l + P o + f l 2 ) ]

so,

tan <5 = (<?oP - Po<?)/V(PoP + <?o<?)2 + (Po + <?2).

The Lommel-Seeliger law can be expressed in terms of lumi-
nance longitude and luminance latitude as,

cos (a + g)f[cos a + cos (a + g)]

and it is clear from this form that scene radiance is indepen-
dent of luminance latitude.
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