
166 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACNlNE INTELLIGENCE,VOL. IS, NO. 2,FEBRUARY 1993 

[12] P. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection. 
New York: Wiley, 1987. 

[13] S. Barnard and W. Thompson, “Disparity analysis of images,” IEEE 
Trans. Patt. Anal. Machine Intell, vol. PAMI-2, pp. 333-340, July 1980. 

(141 W. Thompson and J. Kearney, “Inexact vision,” in Proc. Workshop 
Motion: Representation Analysis, 1986, pp. 15-21. 

Impossible Shaded Images 

Berthold K. P. Horn, Richard S. Szeliski, and Alan L. Yuille 

Abstract-In this correspondence, we show that images that could not 
have arisen from shading on a smooth surface with uniform reflecting 
properties and lighting exist. Much work has been done on recovering 
surface shape from images, and there has been some attention paid to 
the question of uniqueness. It has been shown, for example, that singular 
points curtail ambiguity. However, little has been said about the existence 
of solutions, perhaps because in practice, the given image is assumed to 
have arisen from a uniform, smoothly curved surface, and therefore, one 
knows that there must be at least one solution. What if, however, the 
reflecting properties of the surface vary from place to place? What if the 
actual surface does not reflect light the way one has assumed or that the 
light source is not where it was thought to be? Will the solution only 
be warped by these departures from the ideal model, or may there- in 
fact be situations where there is no smooth surface that could have given 
rise to the given shading pattern? Can the fact that a shaded image of 
some surface with spatially varying surface reflectance is impossible in 
this sense he used to detect surface albedo variations? 

Index Terms- Existence, impossible shape from shading, 

I. INTRODUCTION 

The problem of shape from shading has a history almost as long 
as that of computer vision itself [ 131. Aside from the development of 
algorithms for recovering shape from shaded images, some attention 
has been paid to the problem of uniqueness of the solution. It has been 
shown that singular pionts of brightness in the image (corresponding 
to isolated global extrema in the reflectance map) play an important 
role in limiting the number of possible solution surfaces [2]-[5], [19]. 

Thus far, little has been said, however about the existence of 
solutions (but see [19]). Surfaces with continuously varying surface 
orientation give rise to shaded images. Are there brightness patterns 
that could not have arisen this way? Can such impossible shaded 
images be detected directly from their brightness patterns without 
explicitly solving the shape-from-shading equations? We show here 
that this is indeed the case.’ In this correspondence, we will assume 
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‘This work arose from a conjecture by one of us. Following initial confir- 

mation of the conjecture by the co-authors and others (see Acknowledgment), 
we received note of work by Oliensis [17], that demonstrates that small 
fluctuations in intensities could indeed make most images “impossible.” 

that the distribution of light sources and the reflecting properties of 
the surface are known and that the reflecting properties of the surface 
are uniform. We also assume that the surfaces are smooth, by which 
we will mean that they have continuous first derivatives. 

II. REFLECTANCE MAP AND IMAGE IRRADIANCE EQUATION 

The brightness at a point in the image (the image irradiances) is 
proportional to the brightness of the corresponding point on an object 
(the scene radiance [ll]). The latter depends on a) the reflecting 
properties of the surface material, b) the distribution and intensity of 
the light sources, and c) the surface orientation. 

Surface orientation has two degrees of freedom and can be specified 
in several different ways. The slopes 11 = (o-/a./.) and (I = (0:/O!/) 
in two orthogonal directions are convenient for this purpose, where 
;(.r. y) is the height of the surface above some reference plane 
perpendicular to the direction of projection of orthographic image 
formation.’ Surface orientation may also be specificed by means of 
the unit normal. which can be obtained from the components of the 
gradient p and ~1 as follows 7i = (t-1). -,I. l,T/~~). 

The reflectance map R(p, 4) gives scene radiance as a function of 
surface orientation and encodes information about both the surface 
reflecting properties and light source distribution [lo]. It can be 
computed given the bi-directional reflectance distribution function 
(BRDF) [14], [ll] or determined experimentally using the image of 
a calibration object. 

The (normalized) image irrudiance equation is E(.r. 0) = 
Z?(ll(.c. y]. y(.r. !I)), where E(.r. !I) is the image irradiance at the 
point (.r. .v) in the image, whereas 1ji.r. y) and y(,r. y)are the partial 
derivatives of ~(.r. ~1) at the corresponding point on an object in the 
scene [lo], Ill]. 

The shape-from-shading problem is that of recovering the surface 
.z(.T. !I) given the image E(.r. y) and the reflectance map R(p. q). The 
image irradiance equation can be viewed as a first-order nonlinear 
partial differential equation; therefore, it can be solved using the 
method of characteristic strips [7], [9], (1 I]. 

A. Phenomenological Models of Rejlection 
Some of the impossible images we will present depend on par- 

ticular properties of a class of reflectance maps, such as rotational 
symmetry. At other times, it is useful to have a very specific 
reflectance map in mind, such as that of a Lambertian surface 
under point source illumination. Let us consider a simple imaging 
situation where we are dealing with an idealized surface material 
that satisfies two conditions: a) It appears equally bright from all 
viewing directions, and b) it reflects all incident light. Such a surface 
is called an (ideal) Lambertian surface, and it can be shown that 
when illuminated by a single light source, it satisfies Lambert’s 
cosine law [ 111. In this case, brightness depends on the cosine of the 
incident angle, the angle between the incident rays, and the surface 
normal and is independent of the direction towards the viewer. If 
there is a single light source in the direction given by the unit vector 
i = ((-p. -qs. lii-/dm), then we use the fact that the 
cosine of the incident angle is equal to (fi g) and therefore obtain 

ZThe shape-from-shading problem can be formulated in the case where the 
imaging system performs a perspective projection (181, [7] and when the light 
sources are near the objects being viewed, but this makes rhe analysis harder 
since scene radiance then depends on position as well as surface orientation. 
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Fig. 1. (a) Cross-section of rotationally symmetric shaded image, (circu- 
lar) shown in (b), which could not have arisen from a (smooth) surface 
with continuous first derivatives if we assume that the reflectance man is 
R(p,q) = l/~~~ 

the (normalized) reflectance map 

R(p, (I) = max 
1 
0, 1+ PSP + rlsq 

I diqFqJ. 

A particularly simple case arises when the light source lies in the 
same direction as the viewer, that is, when, (ps, qs ) = (0,O) because 
then, R(~,Q) = (l/d-). This special case can be used 
when a concrete example of a rotationally symmetric reflectance map 
is needed with brightness decreasing monotonically with surface slope 
s, where s  = dm. 

III. IMPOSSIBLE SHADED IMAGES 

A. Circularly Symmetric Dark Blotch 
Suppose we are given the image 

1/ diTG?G. -wT.Y) = 1 c. for r < ~12: 
for r 2 ir/2 

where T = dm (shown in Fig. l), with reflectance map 

WP. 4) = 
1 

diTjvF 

Then, there is a “solution” 

Although this function is smooth almost everywhere, it has a conical 
singularity at the origin. Does there exist a solution that has contin- 
uous first derivatives everywhere? The answer is “no,” as we show 
next (generalizing to an even wider class of impossible images). 

B. Compact Dark Blotch on Unit Brightness Background 
Suppose we are told that the reflectance map has a unique isolated 

global maximum of one at the origin, that is 

R(P. ‘I) 
{ 

= 1. for (11. (I) = (0.0): 
< 1. otherwise. 

In this case, a surface facing the viewer directly has brightness one, 
and surface patches oriented differently are always darker (as would 
be the case if the surface was a Lambertian reflector with the light 
source in the direction towards the viewer). Suppose that image 
brightness is less than one in some simply connected compact region 
D, whereas brightness equals one outside this region, that is 

E(.r. y) 
1 

< 1. for (x. y) E D: 
= 1. otherwise. 

Note that outside the region D, the surface gradient (p. q) must be 
zero since that is the only gradient for which R(p. q) = 1. If p = 0 
and q = 0 in some connected region, then surface height :(.r. y) must 
be constant in that region. Now, either the surface :(.c. y) is constant 
in the region D or it has at least one extremum there. However, the 
surface cannot be constant in D because that would imply that the 
brightness there equaled one; therefore, it must have an extremum. 
The first partial derivatives must vanish at that extremum since we 
are assuming that the surface Z( .r. y) has continuous first derivatives. 
However, this implies that the brightness at the extremum must be 
one, which contradicts the assumption that brightness is less then one 
everywhere in the region D. Thus, there is no surface with continuous 
first derivatives that will give rise to the given image. 

We note that a compact dark blotch on a unity brightness back- 
ground needs to have at least one interior point where brightness 
equals one if it is to be the shaded image of some surface with 
continuous first derivatives. 

C. Source Not at Viewer 
It is possible to extend the result of the previous section to 

reflectance maps that have their unique isolated global extremum 
somewhere other than the origin in gradient space. Suppose the 
extremum in the reflectance map occurs at (11. (I) = (ps. q,9), as 
happens with a Lambertian surface when the light source is away 
from the viewer. Then, the surface orientation outside the region D 
is fixed, and the surface there is planar with surface normal 

We can then use a similar argument to that in the previous section by 
using a new coordinate system oriented with the 3 axis parallel to ti. 
The only potential problem arises from the possibility that the point 
where the surface exhibits an extremum in the light-source coordinate 
system may be obscured by another portion of the surface when seen 
from the viewing direction. However, this can only occur if there 
is a fold in the surface, as seen from the viewing direction, and the 
derivatives of surface height are discontinuous at the fold. 

D. Singular Points Are Not Required 
The above examples might appear to suggest that singular points 

are crucial to the construction of impossible shaded image examples 
since the exterior of the region D consists entirely of singular points, 
where surface orientation can, in fact, be recovered locally, but this is 
not so. Consider, for example, a reflectance map that has brightness 
one for zero slope with brightness falling off with slope in such a 
way that one can write 

f(s) 5 R(p. q) 5 g(s) wheres = VFG 
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If R(p.ql 

Fig. 2. In this generalization, the reflectance map need not be radially 
symmetric but must be bounded above and below by two radially symmetric, 
monotonically decreasing functions. 

Fig. 3. For the impossible image discussed here, brightness is low inside 
the region D, high outside the region F, with a smooth transition in part of 
F that is not also in D. A curve of steepest descent that passes through the 
center of the largest circle that can be inscribed in D can be constructed. A 
contradiction is indicted if the change in height along this curve in the region 
D is greater than the change of height along the perimeter of region F. 

for two monotonically decreasing function f(s) and (l(s) (see Fig. 2). 
A special case of this is a rotationally symmetric reflectance map 

with brightness dropping monotonically with slope. A particular 
instance of this special case is a Lambertian surface with the source 
at the viewer, as mentioned above. 

Now, suppose that there is a compact, simply connected region D 
in which the brightness is low, nested inside another compact simply 
connected region F, outside of which brightness is high (see Fig. 3). 

In the part of F that is not in D, brightness makes a smooth 
transition, that is 

0 < E(.c. y) < E,: for t.7. y) E D. 
Ez 5 E(s. y) 5 E,: for (,r. y) E F - D. 
Eo < E(x.y) < 1; otherwise. 

There are no singular points since E(.r. .y) < 1 everywhere; yet, as 
we show next, we can chose E, and E, such that there is no smooth 
surface giving rise to this shading. 

We have, for the slope of the surface inside the region, D : s  2 
sz  = f-‘(E, ), whereas the slope outside F satisfies s  5 s, = 
g-i (E,). Now, inside the region F, the slope is guaranteed to be 
nonzero; therefore, the surface Z(X, y) has a unique nonzero gradient 
at every point. This gradient field can be integrated out to yield lines 
of steepest ascent on the surface. Such steepest ascent curves cannot 
cross or terminate in F, and so can therefore be followed a11 the way 
from one point on the boundary of F to another, Such a steepest 
ascent curve passing through a point in D will similarly cross the 
boundary of D in two places. 

Suppose that UI is the diameter of the largest inscribed circle of 
the region D. Then, the steepest ascent curve passing through the 
center of this circle must have length at least K and, hence, a change 
in 2 from one end to the other of at least 11’s~. Now, suppose that 
p is the perimeter of the region F. Then, the shortest distance along 
the boundary of F between the two points where this steepest ascent 
curve touches the boundary is at most p/2, and therefore, the change 
in 2 is at most (n/2).9,. Given u’ and p, we can now chose E, and 

E,, and, hence, .s, and s,,, such that UN, > (p/2)s,, which leads to 
a contradiction. 

Note: The only reason that two nested regions are needed in this 
construction is to allow brightness to vary smoothly in the transition, 
as it must, since we have assumed that the first derivatives and, hence, 
brightness is continuous. 

E. Nested Iso-Brightness Contours 
The above construction can be extended to nested isobrightness 

contours of monotonically increasing brightness from the inside to 
the outside. 

Suppose that we have a dark blotch in the image that increases 
monotonically in brightness from the inside outward so that one 
can construct a set of nested isobrightness contours for brightness 
0 < EO < El < Ez.. < E,, < 1, where Eo is the brightness of 
the darkest point in the image. Suppose that the minimum distance 
between the two isobrightness contours for E = E, and E = E,+l 
is (I’, Note that the slope of the surface on points lying between these 
two isobrightness contours is constrained by s  > S, = f-l(E)+, ). 
Consider the curve of steepest ascent passing through the point where 
E = Eo. The change in height along this contour between the points 
where it crosses the isobrightness contour E = E,, is bounded below 
by +I,, > 2 c:&r S,l,‘r while at the same time bounded above 
by b--,, 5 (p,, /2)S,,, where p,, is the length of the isobrightness 
contour E = E,, and S,, = I/-’ (E,, ). We have an impossible image 
unless 2 c:z.,r hi P, < (1~,,/2).?,, for all n. This provides a way of 
constructing a variety of impossible images. It also provides a limit 
on how dark a blotch on a bright background can be before it can no 
longer be interpreted as shading on an inclined portion of the surface. 
These topics are explored further in [15]. 

F. Fold in Riemann Sheets on Gaussian Sphere 
Imagine that we have a rotationally symmetric reflectance map that 

drops to zero at infinity in gradient space, such as the Lambertian 
surface with the source at the viewer. For what we will do next, it is 
convenient to think of the reflectance map as a function of position 
on the Gaussian sphere rather than as a function of the components 
of the gradient. The reflectance map plotted on the Gaussian sphere 
here has a peak of one at the “pole,” corresponding to the viewing 
direction, and drops off to zero at the “equator,” corresponding to 
points on the occluding boundary of the object being viewed.3 

Now, suppose that we are given an image that has nonzero 
brightness in the interior of some compact simply connected region 
D with zero brightness on the boundary i3D of this region. Then, the 
boundary 8D is a silhouette, that is, the projection of an occluding 
contour on the object being viewed. If we assume that surface 
orientation varies continuously, there is a mapping from the object’s 
surface to the surface of the Gaussian sphere that covers every point 
in one hemisphere (at least once). We can see this by noting that 
for any orientation in the hemisphere, there must be a point on the 
surface with that orientation since a plane with that orientation as its 
normal approaching from infinity will touch the surface somewhere 
[6] (if the object is convex, the Gauss map is invertible). Note that 
the occluding boundary maps onto the “equator” of the hemisphere. 

It should, first of all, be clear that there must be at least one point 
in the image where the brightness equals the maximum brightness in 
the reflectance map since the pole of the hemisphere must be covered. 
How many such extrema can there be in the image of a single object 
with continuous first derivatives? We can have more than one if the 
object is not convex since the mapping from the surface onto the 

“The Gaussian sphere approach to the analysis of shading was introduced 
in [16]. 
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sphere then folds over itself. However, every time we fold it over in 
order to cover the pole more than once, we add two new places where 
the surface is oriented for maximal reflection of light. This suggest 
that there must be an odd number of bright spots in the image. There is 
one exception to this rule: If the fold on the Gaussian sphere happens 
to cross the pole, it will yield only one maximum instead of two. Of 
course, in this special case, any slight change in the orientation of 
the object with respect to the viewer will change this. Therefore, this 
does not apply if we assume that the viewer is in “general position.” 

The other possibility is that the part of the surface carrying one of 
the two points happens to be obscured by another part of the object, 
but in this case, the surface :(.c. y) is not a continuous function of .r 
and y  within in the region D. Furthermore, the occluding boundary 
is not a simply closed curve, and parts of the occluding boundary 
lie within D, but this is impossible since the brightness is nonzero 
inside D. 

G. Multiple Viewpoints or Multiple Lighting Conditions 
Thus far, we have been trying to determine the “impossibility” 

of surfaces from a single image. This problem (naturally) becomes 
a lot easier if we have several images of the surface corresponding 
to different lighting conditions or different viewpoints. We can, for 
example, make use of certain photometric invariants [16], [20] that 
relate properties of the surface geometry to properties of the image 
brightness, assuming only a generic form for the reflectance map 
R(p.q) and constant albedo. One specific result [20], extending 
a result of [16], is that the directions of the isophotes (the lines 
of constant image brightness) must always lie along the directions 
of principal curvature at parabolic lines (lines of zero Gaussian 
curvature); hence, these isophote directions will be invariant as 
we alter the viewing conditions-this has been exploited by [2]. 
Moreover, for generic surfaces, these are the only lines with this 
property. Thus, given several images, we can use these results to 
determine the parabolic lines of the surface. For regular (that is, 
not “impossible”) surfaces, the parabolic lines will either be closed 
contours or will terminate at the boundaries of the viewed object. If 
we find parabolic lines that terminate inside the object, or have other 
undesirable behavior, then we have an “impossible” surface. 

H. Iterative Solution Applied to Impossible Image 
It is of interst to see what the iterative algorithm [ 121 will do when 

presented with an impossible shaded image. It is shown [15] that it 
finds the “solution” 

This function is smooth 
has a conical singularity. 

everywhere except at the origin, where it 

IV. DETECTING SPATIAL VARIATIONS OF ALBEDO 

If a surface has a spatially varying reflecting properties, or if the 
illumination has spatial variations, then the normal shading rules for 
the image are altered. An extreme example of this is a photographic 
print, where all the brightness variations are due to spatially varying 
reflectance, and there is no shading resulting from spatial variations in 
surface orientation. Given the limited information in a single image, 
it often is not possible to separate the contributions to the brightness 
pattern that come from spatially varying surface orientation and those 
that come from spatial variations in reflectance or illumination. 

As we have demonstrated in this paper, however, it is sometimes 
possible to show that the given image could not have arisen from 
a uniformly illuminiated smooth surface with uniform reflecting 

properties (that is, it is an impossible shaded image). The way this 
manifests itself when iterative algorithms are used for recovering the 
surface shape is that the functional cannot be reduced to zero and that 
discontinuities and cone-shaped singularities in surface orientation 
remain in the estimated solution. 

When we look at images taken of the surface of rocky planets like 
Mars, we can get a clear impression of the shapes of surface features 
such as impact craters, yet we can also be aware of the fact that 
surface albedo varies from place to place. Our ability to separate 
shading and albedo variations suggest that there is some way of 
distinguishing the two. Quite often, what distinguishes shading from 
surface markings is that the latter have sharp transitions between 
regions of relatively constant reflectance, whereas shading typically 
varies smoothly. What is needed, then, is a simultaneous solution of 
the shading and the lightness problems [8], [l].4 At least there now is 
a diagnostic test that tells us when the assumptions of uniform albedo 
and uniform illumination are being violated. 

Similarly, if the assumed light source is in the wrong position, there 
will typically not be a solution to the shape-from-shading problem. 
This again manifests itself as a residual error in the iterative scheme. 
It has been found possible, for example, to refine an estimate of the 
light source position by searching for the position that minimizes the 
residual errors [ 121. 

V. CONCLUSIONS 

We have shown in this paper that shaded images that cannot have 
originated from a uniformly illuminated, smooth continuous surface 
with uniform albedo exist. The typical condition where this occurs 
is when we have a dark area (corresponding to a region of high 
gradient) surrounded by a lighter region (with low gradient). For this 
to correspond to a real surface, we can establish that there must be 
a local extremum or area of lower gradient inside the dark region. 
This, in turn, will show up as either a light area in the image or 
an orientation discontinuity in the surface (thus violating either our 
intensity or smoothness constraints). We can also sometimes establish 
the impossiblilty of a shaded image by counting the number of 
extrema inside a region corresponding to an isolated surface patch. 

The theoretical arguments we have presented are in agreement with 
the effects observed with numerical shape-from-shading algorithms. 
When presented with an “impossible shaded image,” the algorithm 
will find a solution that is smooth almost everywhere but has isolated 
orientation singularities (“peaks” or “cusps”). We thus have two 
methods for detecting when the assumptions behind our shape-from- 
shading algorithm are being violated. First, we can examine the 
intensity image to check if any of the theoretical conditions for 
impossible shading exist, Second, we can monitor the output of 
our numerical shape-from-shading algorithm to see if isolated or 
connected singularities exist in the final solution. Detecting these 
violations will hopefully lead us to more robust and more general 
shape-from-shading algorithms, which can detect albedo variation and 
discontinuities in the reconstructed surface. 
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Cluster Analysis by Binary Morphology 

J. -G. Postaire, R. D. Zhang, and C. Lecocq-Botte 

Abstract-A new approach to unsupervised pattern classification, which 
is based on the use of mathematical morphology operations, is developed. 
The way a set of multidimensional observations can be represented as a 
mathematical discrete binary set is shown. Clusters are then detected as 
well separated subsets by means of binary morphological transformations. 

Index Terms-Binary morphology, cluster analysis, dilation, erosion, 
unsupervised classification. 

I. INTRODUCTION 
The aim of cluster analysis is to divide a set of objects into subsets 

according to their similarities and dissimilarities. The objects are 
generally represented by .y-dimensional vectors of observed features. 
Among the various types of procedures for clustering such sets, 
the most popular are the hierarchical, the nonhierarchical, and the 
statistical approaches [l]. 

Independent from this research in pattern classification, math- 
ematical morphology has been developed as an algebra of set- 
theoretic operations in Euclidean space for quantitative description 
of geometrical structures. As introduced by Matheron and Serra [2], 
[3], this approach has been mainly concerned with image analysis [4]. 

The intent of the present paper is to introduce the use of mor- 
phological filters in the field of cluster analysis. Since the language 
of mathematical morphology is that of set theory, it is first shown 
how any finite set of multivariate observations can be considered in 
terms of a mathematical set in a multidimensional Euclidean space. 
In Section II, we propose a fast preprocessing technique that yields a 
data representation suitable for binary morphological transformations. 
Morphologically filtering a data set corresponds to a sequence of 
dilations and erosions, which are the basic morphological operations. 
These operations are iteratively applied to eliminate irrelevant details 
in the shape of the clusters without geometric distortion (Section III). 
A new clustering procedure based on the detection of cluster cores 
by means of this nonlinear filtering technique is proposed (Section 
IV). The performance of this procedure is demonstrated in Section V 
using real and artificially generated data sets. 

II. REPRESENTATION OF A SET OF MULTIDIMENSIONAL 
OBSERVATIONS AS A DISCRETE BINARYSET 

Let us consider a set of & X-dimensional observations 

Y’ = {li.l;~..Yq:..YQ} 

such that 

In order to extend the theory of mathematical morphology to cluster 
analysis, this set of available observations must be represented as a 
mathematical discrete set in a Euclidean space. The procedure here 
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