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It is well known that a function can be decomposed uniquely into the sum of an odd and an even function.
This notion can be extended to the unique decomposition into the sum of four functions – two of which are
even and two odd. These four functions are eigenvectors of the Fourier Transform with four different
eigenvalues. That is, the Fourier transform of each of the four components is simply that component multi-
plied by the corresponding eigenvalue. Some eigenvectors of the discrete Fourier transform of particular
interest find application in coding, communication and imaging. Some of the underlying mathematics
goes back to the times of Carl Friedrich Gauss.
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BACKGROUND
A function f can be uniquely decomposed into a sum of an

even component, fe , and an odd component, fo:

where R is an operator that reverses a function, i.e., (Rf )(x) =
f(–x). Noting that R(fe + fo) = fe – fo, we can easily find the even
and odd components using

We can rewrite this as fe = Pe f and fo = Po f, where

are operators that project a function into the subspaces of even
and odd functions, respectively, with I being the identity oper-
ator.

As behoves projection operators, P Pe e
2 = and P Po o

2 = , –
which can be seen by noting that R2 = I. R has exactly two
eigenvalues, namely +1 and –1, since, from R2 = I, we get the
equation λ2 = 1 for the eigenvalues. Note that each of the
projection operators is degenerate since it maps vectors that lie
in the other subspace to zero, and so must have a zero
eigenvalue.

There is a subspace of even functions and a subspace of odd
functions and any function can be uniquely decomposed into
the sum of two functions, one from each of these two
subspaces. With respect to the operator R, all even functions
have eigenvalue +1 and all odd functions have eigenvalue –1.

While we are here, note that,

if fe and fo are even and odd, respectively, where F is the Fourier
transform operator, and * denotes the complex conjugate. All
this is well known.

SPLITTING A FUNCTION INTO FOUR COMPONENTS
First, recall that the inverse Fourier transform is much the

same as the forward Fourier transform, except for a sign change
of the product in the exponent (for convenience we use the
unitary Fourier transform here). As a result, if, “by mistake,” we
apply the forward Fourier transform, instead of the inverse

Fourier transform to Ff, then, instead of getting back f, we get f
reversed, i.e., F(Ff ) = F2f = Rf. It follows from F2 = R that F4 =
R2 = I. Hence F has exactly four eigenvalues, namely +1, –1, –i
and +i, since from F4 = I we get the equation λ4 = 1 for the
eigenvalues. Again, this is known (McCellan & Parks, 1972;
Grünbaum, 1982), although, the idea of eigenvalues of the
Fourier transform may seem at bit odd at first.

Following the example of decomposition into even and odd
components above, we note that there are four subspaces,
each containing functions with one of these four eigenvalues
with respect to F. Thus we might look for a unique decomposi-
tion of a function f into four components, one from each of the
four subspaces:

with Ff+1 = f+1, Ff–1 = –f–1, Ff–i = – if–i and Ff+i = if+i. We note that

so that, if it should turn out that we could find this decomposi-
tion cheaply, then we would have a really cheap way of
computing the Fourier transform.

FINDING THE FOUR COMPONENTS
Using this last equation, and what we know about the

properties of R and the even and odd components, we can
show that the four components are given by:

or

where

are operators that project a function into the four subspaces.
Again, as required of projection operators, P P P+ + −= =1

2
1 1

2, ,
P P Pi i− − −=1

2, and P P i+ +=1
2 , as can easily be verified using F2 = R

and R2 = I. Also note that,
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Horn: Interesting eigenvectors of the Fourier transform 101

and that all four components of a function can be computed
using a single Fourier transform (since FR = F*).

Perhaps somewhat surprisingly, the four projections of a real
function are also real, as can be seen by inspecting the projec-
tion operators. For example, in applying P+1, only the even
component of the function is used and the transform of an even
(real) function is real (and even). Similarly, in applying P+i, only
the odd component of the function is used and the transform of
an odd (real) fuction is imagenary (and odd). Multiplying by i
turns the imaginary partial result into real. And so on.

There remains one issue, which is what to call these
subspaces. By analogy with the “even” and “odd” subspaces,
the following names are proposed “recto even,” (λ = +1),
“verso even,” (λ = –1), “recto odd” (λ = –i) and “verso odd,”
(λ = +i). Suggestions for more intuitive names would be
appreciated.

Finally, with regret, but no real surprise, we note then that the
obvious implementation of the required projection operators
involves Fourier transforms. So apparently the “super cheap”
Fourier transform based on the four-way decomposition of a
function is not a viable approach.

DISCRETE VERSION
A particular instance of the general analysis above may help

illuminate these ideas.
Consider discrete sequences of period n. In this case, R is an

n × n symmetric matrix with Ri,j = δi + j – (n – 1) – that is, with 1’s
along the “anti-diagonal,” and 0’s elsewhere. It is easy to see
that R2 = I. We have already shown that the eigenvalues of R
are +1 and –1, but what about the eigenvectors? For a symmetric
n × n matrix we expect to be able to find n independent
eigenvectors. But here we only have two distinct eigenvalues,
so the eigenvectors are not uniquely defined. But we can easily
find some basis for each of the two subspaces.

For the even subspace we can, for example, use the basis {ei},
with e0 = [1, 0, 0...0, 0], e1 = [0, 1, 0...0, 1], e2 = [0, 0, 1...1, 0], etc. For
the odd subspace we can use the basis {oi}, with o1 = [0, 1, 0...0,
–1], o2 = [0, 0, 1... – 1, 0], etc. (note that there are slight differ-
ences between the case when n is even and when n is odd, and
that the two subspaces do not have the same dimensions).
There are, of course, an infinite number of alternate bases for
the two subspaces.

Moving on to the (unitary) discrete Fourier transform (DFT)
now, we see that F is an n × n symmetric matrix, with Fk l, =
( / ) /1 2n e i kl n− π for k = 0 to n – 1 and l = 0 to n – 1. We have
already shown that there are four eigenvalues, but what about
the eigenvectors?

Here again, it may seem odd that the DFT should have
eigenvectors, but note that the matrix F is orthonormal ((FT)*
F = I ) and so represents a kind of “rotation” of an n dimen-
sional space – with the inverse transform (F–1 = F*) performing
a counter-rotation. This view of the DFT perhaps makes the
notion of eigenvectors appear less surprising.

While F has a full complement of n eigenvectors because it is
unitary, the eigenvectors are not uniquely determined, since
there are only four distinct eigenvalues (the number of
eigenvectors corresponding to each eigenvalue depends on
the congruence class of n mod 4 (McClellan & Parks, 1972)).
Several sets of basis vectors have been investigated based on
different criteria for what make “nice” bases. Some have been
motivated by the notion of a “fractional” DFT (Bailey &
Swarztrauber, 1991; Almeida, 1994). The idea is that if the DFT
represents a rotation, then one should be able to consider a
smaller rotation that, say, goes only halfway, but that, when
repeated, yields the full rotation.

DETAILED EXAMPLE OF DISCRETE CASE
To explore the notion of the projection operators that yield

the four components, consider, as a specific example, the case
n = 4, where

a symmetric matrix with characteristic equation

or (λ – 1)2(λ + 1)(λ – i) = 0. (Note that, in this particular case, the
root λ = –i is “missing” and that the root λ = +1 is repeated.)
We construct

Here P+1 directly provides two eigenvectors for the “recto
even” subspace, namely [3, 1, 1, 1]T and [1, 1, –1, 1]T (Note that
P+1 only has rank two because the third column equals the
difference of the first and twice the second, and the fourth
column is the same as the second.) Next,

Here P–1 yields the eigenvector [1, –1, –1, –1]T for the “verso
even” subspace. Further

where P+i yields the eigenvector [0,1,0,–1]T for the “verso odd”
subspace. Finally,

For n = 4, F does not have the eigenvalue –i, so there is no
“recto odd” subspace and indeed the projection matrix P–i is
zero. Note that all four of the projection matrices are real, as
expected, and also symmetrical. For n > 4, all four subspaces
exist. As can be seen, in general the four subspaces do not have
the same dimensions.

As an exercise, the reader may wish to work out the details for
the case n = 3, where the three eigenvalues are +i, –1 and +1,
with no repeated roots.

EIGENVECTORS OF THE DFT WITH PARTICULARLY
INTERESTING PROPERTIES

While there is an inifinite number of eigenvectors of each of
the four subspaces, some are of particular interest. Consider,
for example, eigenvectors that have components that are
restricted to take on the values +1 and –1 (except for a 0 for the
0-th component). Exhaustive search for small n yields some
candidates. For example, the even sequence

for n = 5 has the (real) transform
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while the (odd) sequence

for n = 7 has the (purely imaginary) transform

It is perhaps surprising that a sequence composed merely
of +1’s and –1’s could be an eigenvector. It turns out that this is
not just a curiosity, but has important practical implications.
The power spectrum of such a sequence is flat (except for the
zero frequency, or DC, term, which we shall silently ignore
from now on), since the power spectrum is the magnitude
squared of the transform, and here, the transform is the sequence
itself multiplied by a (possibly complex) eigenvalue of unit
magnitude.

Sequences with a flat power spectrum are of particular inter-
est in coding and communications. One reason is that if a signal
is convolved with such a waveform (on the sending end), then
deconvolution (on the receiving end) amplifies noise equally at
all frequencies because the deconvolution filter (inverse of the
coding filter) also has a flat spectrum. If a coding filter is used
that does not have a flat spectrum, then the decoding filter
must have a higher response at frequencies were the coding fil-
ter has low response. This means that noise at some frequencies
will be amplified more than at others, leading to an overall loss
in signal-to-noise performance (for fixed signal power).

The decoding sequence here has the same spectrum as the
original coding sequence, except that the phases are all reversed
(so that the product of the transforms of the coding and decod-
ing sequences has the same value at all frequencies).

It is well known that impulses and chirps have flat power
spectra. These waveforms are widely used in radar, for example.
Here we find another class of waveforms that have flat power
spectra. Such waveforms are used, for example, in cell phone
communication and coded aperture imaging.

IDEAL BI-LEVEL AUTO-CORRELATION
An equivalent way of understanding the above is to consider

the auto-correlation of such a sequence with itself. Correlation
with a sequence corresponds to convolution with that sequence
reversed. Reversing a sequence flips the sign of the phases in
the Fourier transform. Convolution of two sequences corre-
sponds to multiplication of their transforms (scaled by n in
the case of the unitary DFT). So we find that the transform of
the auto-correlation here is the same for all frequencies (except
for the zero frequency term). Inverse transforming, we obtain a
large value for zero shift and a constant (small) value for all
other shifts. Thus these special sequences have the so-called
bi-level auto-correlation feature. As a result, the sequence itself
can be used effectively in decoding.

For such a sequence { }lk of period n we have

where indices are treated mod n (see Appendix B for a proof). It
is illuminating to correlate the sample sequences shown above
for n = 5 and n = 7 with themselves to check this property. It is
remarkable that sequences with this property exist.

A small modification is needed for some practical applications
of these sequences. A coded aperture used in imaging with
radiation that cannot be refracted or reflected, for example, can
only have a hole in a mask, or no hole, at each point on a regular
grid of points (Fenimore & Cannon, 1978; Horn et al., 2010). So
incoming radiation intensity can in effect be multiplied by +1
(open hole) or 0 (no hole) – but not by –1. We can arrive at a

usable hole pattern by picking only the +1’s (or the –1’s for that
matter) in the sequence to drill a hole. Equivalently, we can add
1 to the sequence and divide the result by 2, to get a binary
pattern{ ’}lk , where l lk k

’ ( ) /= + 1 2, which can be represented by
holes (1’s) and blocked areas (0’s) in a mask (except for the 0th
term of the sequence, which we will not consider here).

The addition of a constant to all elements of the sequence
adds an impulse at zero frequency to the transform and so does
modify the result a bit. Such binary sequences still have the
ideal bi-level auto-correlation property (now something like
(nδm – 1 + n)/4). That is, there is one (large) correlation value for
zero shift, and another (smaller) value for all other shifts –
although now the “smaller” value is about half the size of the
larger one, rather than very much smaller. In deconvolution
this non-zero value leads to a constant background “pedestal”
which can be subtracted out after deconvolution. The constant
background is not without disadvantage, however, since, in
practice, measurements are corrupted by noise, and so the
“constant” background will not be quite constant, and the
signal-to-noise ratio will be adversely affected by this
compromise forced on us by our inability to drill “negative
holes”.

GENERATING EIGENVECTORS WITH SPECIAL
PROPERTIES

Aside from brute force search, is there some systematic way
of finding eigenvectors with these special properties?

One way is to exploit quadratic residues from number theory.
A number n is a quadratic residue mod p if there exists a number
i such that i n2 ≡ mod p. When no such number exists, then n is
a quadratic non-residue mod p. We can find all the quadratic
residues mod p simply by taking all numbers from 0 to (p – 1)
(actually 0 to (p – 1)/2 suffice), squaring them, and taking the
result mod p. By convention, 0 is not considered a quadratic
residue (while 1 is obviously always a quadratic residue, for
all p). It is easy to see that the quadratic residues from a group,
and that the non-residues form the coset of that group.

If one finds the quadratic residues for p = 5 and p = 7, and
puts a +1 in the sequence for every quadratic residue and –1
for every quadratic non-residue, one obtains the sample
eigenvector sequences presented above. This construction can
be written using the Legendre symbol:

Then the special sequences of length p that we are interested
in are just {ln}, where ln is the Legendre symbol.

At this point we have almost enough to try and formally
prove that such sequences are eigenvectors of the DFT when p
is a prime, and that they have the ideal bi-level auto-correlation
property. One way to determine the value of the Legendre
symbol that is useful in proving such results is Euler’s criterion

The value of the expression on the right will always be 0, +1,
or –1 if we pick the residue of smallest magnitude (rather than
using a residue in the range 0 and p – 1). In this regard, note that
(p – 1) ≡ –1 mod p.

Using these ideas, one can show that the eigenvalue is +1
when p ≡ 1 mod 4 while the eigenvalue is –i when p ≡ 3 mod 4.
Actually, it turns out that this is not quite as easy as it
might appear at first sight. Fortunately Gauss (1965) provided
formulae for what are now called Gauss sums in his work on
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Horn: Interesting eigenvectors of the Fourier transform 103

“quadratic reciprocity” that are helpful in this endeavour. See
Appendix A for proof of the eigenvector property of the
Legendre symbol sequences. See Appendix B for proof of
the bi-level auto-correlation property of the Legendre symbol
sequences.

EXTENSIONS TO TWO DIMENSIONS
For imaging, coded aperture masks typically need to be

two-dimensional (Fenimore & Cannon, 1978; Horn et al., 2010).
The above ideas can be extended to two-dimensional patterns
using Gaussian integers and Eisenstein integers. Gaussian
integers are of the form (a + bi), where a and b are “rational”
integers (our usual numbers) and i2 = –1. Gaussian integers
correspond in a natural way to points on a square lattice in the
plane. We can, of course, easily generalise the usual arithmetic
operations on rational integers to those on Gaussian integers,
including multiplication

using i2 = –1. The squared norm is the product with the conju-
gate, and so the squared norm of (a + bi) is a2 +b2. “Units” are
Gaussian integers of norm one (+1, –1, –i and +i – i.e., powers
of i ).

Gaussian primes are Gaussian integers that cannot be decom-
posed into products of Gaussian integers – other than products
involving units. Gaussian integers have many of the properties
of ordinary integers, such as being uniquely decomposable
into products of Gaussian primes (where “unique” means
ignoring multiplication by units). As a result, we can use
Euler’s criterion to generalise the Legendre symbol, custom-
arily defined only in terms of “rational” integers, to work with
Gaussian integers. We can then generate doubly periodic
patterns of +1’s, –1’s (and occasional 0’s) on a square grid in the
plane (see e.g. Fig. 1).

Hexagonal lattices have certain advantages over square
lattices. We can develop patterns for hexagonal lattices using
a similar approach, just starting with Eisenstein integers
instead of Gaussian integers. Eisenstein integers are of the form
(a + bω), where ω3 = –1, with ω ≠ –1. From ω3 + 1 = 0 we obtain
(ω + 1)(ω2 – ω + 1) = 0, and, because ω ≠ –1, we find ω2 = ω – 1.

Eisenstein integers correspond in a natural way to points on a
hexagonal lattice in the plane. Again, arithmetic operations on
rational integers can be generalised to Eisenstein integers.

Multiplication can be written

using ω2 = –1 – ω. Conjugation needs to be defined using
(a + bω*) = (a + b) – bω and so the squared norm of (a + bω)
is a2 + ab + b2. Again, units have norm one and here are ω, –ω*,
–1, –ω, +ω* and +1 (i.e., powers of ω).

We can use Euler ’s criterion to generalise the Legendre
symbol to Eisenstein integers using the above arithmetic opera-
tions. Consequently we can generate doubly periodic patterns
of +1’s, –1’s (and occasional 0’s) on a hexagonal grid in the plane
(see e.g. Fig. 3).

FOURIER TRANSFORMS OF TWO-DIMENSIONAL
PATTERNS

When we compute the Fourier transforms of the two-
dimensional patterns described above, we find that they once
again resemble the patterns themselves (see e.g. Figs 2 and 4).
First, being discrete and periodic, the transform will be periodic
and discrete (albeit generally not lined up with the spatial grid
itself). Then, the magnitude of the transform is constant (except
for the zeros). Further, the pattern of phases matches the origi-
nal pattern, except they are reflected about a line through the
origin (or equivalently, mirror image reversed and rotated). So
they may be considered “eigenvectors” of the two-dimensional
Fourier transform, with the “eigenvalue” now being a complex
scale factor and a reflection in the plane.

EXTENSION TO LOWER FILL FACTORS
Half the numbers from 1 to p –1 are quadratic residues and

half are not, so a coded aperture mask made using the method
described above will be about half holes and half blocked areas.
The fraction of open holes is called the fill factor, f say, and is
about 50% for this method of generating coded patterns. This
means that the background pedestal described above is rather
large and its deleterious effect on the signal-to-noise ratio
significant.

One can do better with lower fill factor, for, while the signal is
proportional to the fill factor, f, the background pedestal is
proportional to the fill factor squared, f 2. That is, even as the
signal is reduced with lower fill factors, the signal-to-noise ratio
(or more precisely contrast-to-noise ratio) may be improved
with lower fill factors. But do patterns with lower fill factor exist
that have the ideal bilevel auto-correlation properties?

Figure 1. Doubly periodic pattern with a basic repeating pattern
containing p = 29 (p = 52 + 22) points.

Figure 2. Fourier transform of the doubly periodic pattern, with basic
repeating pattern outlined. The L-shaped region is a reflection of the
basic repeating pattern in Figure 1.
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The answer is in the affirmative. For example, for certain
values of p, bi-quadratic residues – where we replace squaring
with raising to the fourth power in the above – have only about
25% fill factor and have the desired autocorrelation property. It
is possible to show that, in this case, the bi-quadratic residues
form a group, and that this group has three cosets.

These extensions can be analysed using a generalisation of
the Legendre symbol to also include the power to which the
number is to be raised (here the fourth). We can try and gener-
alise Euler’s criterion using the definition

In this case, the result can take on four values (rather than
just +1 and –1). The sets defined by the four different values
correspond to the bi-quadratic residue group and its three
cosets. As an example, here is the result for p = 5:

Now (+2)2 ≡ –1 mod 5 and (–2)2 ≡ –1 mod 5, so we can think
of +2 and –2 as square roots of –1. Replacing them with +i and
–i, we obtain the sequence

In this fashion we obtain periodic sequences consisting
of +1’s, –1’s, –i’s and +i’s (instead of just +1’s and –1’s).

Sequences defined by the above generalisation of the Euler
criterion, suprisingly, still have the bi-level auto-correlation
property – as long as we take correlation of two complex
sequences to mean addition of products of terms from one
sequence with the complex conjugate of corresponding terms
from the other sequence. For a sequence of period p, the
auto-correlation for zero shift is (p –1), while it is –1 for all other
shifts, as before.

These sequences also have a kind of eigenvector property
with respect to the DFT. Namely, the DFT of the sequence
equals the complex conjugate of the sequence multiplied by a
complex factor of magnitude one (i.e., no longer just +1 or –i).

For practical applications we typically need a real binary
sequence. These can be obtained by considering all positions
where the residue computed in this fashion have the same
value, e.g., +1. Unfortunately, while quadratic residue patterns

with the bi-level auto-correlation property are ubiquitous,
bi-quadratic patterns with this property are rarer: the prime p
has to be of the form 16k(k + 1) +5 or 16k(k + 1) +13 for some
integer k.

Octic residue patterns have only about 12.5% fill factor,
which is even better from a signal-to-noise point of view. The
octic residues form a group, and there are seven cosets of that
group. If we try to generalise Euler’s criterion as

we obtain a result that can take on eight values. These corre-
spond to the octic residue group and its seven cosets. As an
example, here is the first half of the result for p = 17:

(the second half is the same sequence in reverse order, since this
sequence is even).

Now (+4)2 ≡ –1 mod 17 and (–4)2 ≡ –1 mod 17, so we can think
of +4 and –4 as the two square roots of –1. Further, (+2)4 ≡ –1
mod 17 and (–2)4 ≡ –1 mod 17, (+8)4 ≡ –1 mod 17 and (–8)4 ≡ –1
mod 17,so we can think of +2, –2, +8 and –8 as the four fourth
roots of –1. If we let w = (1 – i)/ 2 , then w2 = +i, (w*)2 = –i.

This leads to an even sequence, the first half of which is:

The result can be called a “phase sequence”, a periodic
sequence of complex values of unit magnitude.

What may appear to be a somewhat ad hoc process can be
formalised by noting that the eight values themselves from a
group that can be generated from a primitive root. In this
example, 2 is a primitive root (while 1 and 4 are not), and 20 ≡ +
1, 21 ≡ +2, 23 ≡ +8, 24 ≡ –1, 25 ≡ –2, 26 ≡ –4 and 27 ≡ –8 (all
taken mod 17 of course). If we assign w to the primitve root,
then powers of that root can be assigned to all elements of the
periodic sequence.

Sequences defined by the above generalisation of the Euler
criterion still have the bi-level auto-correlation property (as
long as we define correlation of two complex sequences as
above). Their DFT also is equal to the complex conjugate of the
sequence itself multiplied by a complex constant of magnitude
one.

104 Transactions of the Royal Society of South Africa Vol. 65(2): 100–106, 2010

Figure 4. Fourier transform of the doubly periodic pattern, with colour
indicating phase. The phase pattern is a reflection of the mask pattern
in the spatial domain, shown in Figure 3.

Figure 3. Doubly periodic pattern with a basic repeating pattern
containing p = 643 (p = 182 + 18 × 11 + 112) points (red dot +1, green dot
–1). The fill factor is 322/643 or about 50.07%.
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Horn: Interesting eigenvectors of the Fourier transform 105

Again, we can derive useful binary sequences from the
periodic phase sequences using the technique described for
bi-quadratic residues. Sadly, octic residue patterns obtained
this way with the bi-level auto-correlation property are rare.
The first few values of p for which octic residue patterns exist
are p = 73, p = 26, 041, p =104, 411, 704, 393, p = 660, 279, 756,
217, p = 160, 459, 573, 394, 847, 767, 113. Now p = 73 is too small
to be useful for imaging (one would have only 73 independent
pixels in the resulting image), and no one plans to drill a coded
aperture mask with a few hundred billion holes or more.

The above generalisation of Euler’s criterion can be used to
define periodic phase sequences for arbitrary m > 1 for any odd
prime p such that p ≡1 mod m. Such sequences can be one-
dimensional or two-dimensional, using another generalisation
of the Euler criterion. Methods for mapping these periodic
phase sequences to binary sequences, however, only work for
particular values of the prime p, which depend on the value of
m chosen.

CONCLUSIONS
An arbitrary function can be decomposed into four functions,

each being an eigenvector of the Fourier transform, the four
differing in eigenvalue. This generalises the decomposition
into even and odd parts. Unfortunately, this does not appear to
provide a cheap way for computing the Fourier transform.

The operators projecting a function into the four subspaces
can be conveniently illustrated in the discrete case, where the
DFT is a symmetric n × n matrix and periodic sequences can be
treated as n-vectors. The four projection operators are degenerate
symmetric real matrices.

The eigenvectors are not unique because there are only 4
distinct eigenvalues. Some eigenvectors with particularly
interesting properties are used in coding, communications and
coded aperture imaging. Number theory is an aid to generating
sequences with these special properties. Extensions to two-
dimensional patterns are possible using Gaussian integers and
Eisenstein integers.
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APPENDIX A

The DFT of the Legendre symbol sequence
The unitary DFT {Lk} of the Legendre symbol sequence {ln} is

given by

This can be rewritten as follows, given the definition of ln, and
noting in particular that l0 = 0:

where R is the set of quadratic residues mod p, and N is the set
of nonresidues (where we exclude 0 as is customary). If k = 0,
the above sum is simply the difference between the number of
quadratic residues and nonresidues lying between 1 and (p – 1).
The difference is zero since there are as many quadratic
residues as quadratic nonresidues. So L0 = 0, which is not
surprising given that the sum of the terms in the sequence {ln}
is 0 (the zero frequency component is proportional to the sum
of the elements of the sequence).

Now any number from 1 to (p – 1) is either in R or in N, so we
can rewrite the sum in the alternate form

The set R∪N consists of all the numbers from 1 to (p – 1).
Now if k ≠ 0, then

Hence the same sum starting with n = 1, instead of 0, must
equal –1. Consequently, for k ≠ 0, the difference above can be
written

Now the number n is in R if there exists j such that n ≡ j2

mod p. This suggests replacing the sum over all n�R with a sum
over j, and replacing n with j2 in the terms being summed. In
particular, the expression j2 mod p for j = 1, 2 ... (p – 1) generates
all of the quadratic residues mod p. Larger values of j do not
produce new values since (p + j)2 ≡ j2 mod p.

Actually, the above expression produces each quadratic
residue exactly twice since (p – j)2 ≡ j2 mod p. Hence the sum
over n�R in the above expression corresponds to a sum over
j = 1 to (p – 1)/2 in

The sum can be expanded using Euler’s formula to yield

We first compute L1 and then show that Lk, for k ≠ 1, equals
either L1 or –L1. From equation 1.344 of Gradshteyn & Ryzhik
(1980) we have

When n is odd, the cosine terms on the right equal 0. The sine
terms equal +1 for n ≡ 1 mod 4 or –1 for n ≡ 3 mod 4. Further,

so the terms in the sum from (n + 1)/2 to (n – 1) are equal to the
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terms from 1 to (n – 1)/2 (in reverse order). So

(note the change of lower limit in the sum), and

Applying these results to the formula for Lk, with k =1,

To find Lk for k > 1, we distinguish two cases:
(1) When k is a quadratic residue mod p, then

generates the quadratic residues (twice, in various permuted
orders depending on k), since kj2 ≡ (j’j)2 mod p for some j. So in
this case Lk = L1.
(2) When k is not a quadratic residue mod p, then

generates the non-residues, since kj2 /≡ (j’j)2 mod p for any j. So
in this case the result can be obtained by taking the sum over
all n and subtracting the sum over values of n that are quadratic
residues mod p:

The first of the two sums in the brackets equals –1 as
explained above. So

Comparing this to the earlier equation for Lk when k =1, we
finally see that Lk = –L1 when k is not a quadratic residue mod p.
Overall then

We know that L1 = 1 for p ≡ 1 mod 4, and L1 = –i for p ≡ 3
mod 4.

Comparing the equation with L1 =1 with the equation for the
Legendre symbol makes it clear that the transform {Lk} is the
same sequence as the original Legendre sequence {lk}.
Similarly for L1 = –i we see that the transform is simply the
Legendre sequence multiplied by –i. So finally we obtain

That is, the DFT of the Legendre symbol sequence is simply a
multiple of the sequence itself.

APPENDIX B

Auto-correlation of Legendre symbol sequence
Consider the Legendre sequence {ln}, where

with lo = 0. By Euler’s criterion

If p is a prime there will exist a primitive root g such that
gk mod p, for k =1 to p – 1, generates all of the numbers from
1 to p – 1 exactly once (in some permuted order). The “index”
(or “logarithm”) of n with respect to g is then defined by

for n /≡ 0 mod p. Consequently

for n /≡ 0 mod p, but

so

That is, for n /≡ 0 mod p, ln equals +1 or –1 depending on
whether indg (n) is even or odd.

The (periodic) auto-correlation of the sequence {ln} is

where the indices are taken mod p. For m = 0 this is the sum of a
zero and (p – 1) ones, (since ln

2 = +1 for n /≡ 0 mod p) and so
c0 = (p – 1). For m /≡ 0

where we omit the two terms involving l0, since l0 = 0, and
made use of the fact that (–1)–m = (–1)m. So finally

The difference in the exponent assumes all integer values
between 1 and (p – 2), mod (p – 1), exactly once over the indi-
cated range of n (i.e., omitting n = 0 and n + m ≡ 0). Thus there
is one more –1 raised to an odd power than –1 raised to an even
power in the sum, and so cm = –1 for m /≡ 0.

So we see that the auto-correlation comes to (pδm – 1), and so
the Legendre symbol sequence has the ideal bi-level auto-
correlation property.
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