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Abstract

There has been much concern with ambiguity in the recovery of motion and structure from time-varying
images. I show here that the class of surfaces leading to ambiguous motion fields is extremely
restricted—only certain hyperboloids of one sheet (and some degenerate forms) qualify. Furthermore,
the viewer must be on the surface for it to lead to a potentially ambiguous motion field. Thus the motion
field over an appreciable image region almost always uniquely defines the instantaneous translational
and rotational velocities, as well as the shape of the surface (up to a scale factor).

1 Introduction

An important question in motion vision research
is whether a given motion field could have arisen
from two different motions with two correspond-
ing surface shapes. I felt originally that the
answer to this question should be “No” [1, 2], and
so was startled by results showing that, in the
planar case, two solutions are possible [3, 4, 5, 6].
I was further taken aback when the two-way am-
biguity persisted when quadratic patches were
considered [7, 8]. Fortunately, [ have been able to
restore my faith in the uniqueness of the solution.
I show here that an ambiguous motion field can
arise only from a hyperboloid of one sheet (or a
degenerate form) viewed from a point on its sur-
face. This is a subset of measure zero of all possi-
ble smooth surfaces and viewing positions.
Furthermore, a surface has to be in front of the
camera to be imaged—so the “depth” must be
positive. Surfaces leading to ambiguous motion
fields correspond to positive depth values only in
certain image regions. A motion field can be am-
biguous only if our knowledge of it is confined to
an image region in which both “solutions” hap-

*Research for this article was conducted while the author was
on leave at the Department of Electrical Engineering, Univer-
sity of Hawaii at Manoa, Honolulu, Hawaii 96822, and was
supported by the National Science Foundation under Grant
No. DMC85-11966.

pen to be positive. There can be no ambiguity if
the image region under consideration includes
areas where one of the two solutions changes
sign.

The ambiguity problem is, however, likely to
continue to plague those who use purely local
analysis techniques. In a sufficiently small patch,
the estimated motion field may not be dis-
tinguishable from one resulting from a hyper-
boloid of one sheet viewed from a point on its
surface. That is, while the estimated motion field
itself is very unlikely to be ambiguous, it may be
equal to an ambiguous motion field corrupted by
a small amount of noise. (In any case, the prob-
lem of motion estimation becomes ill-condi-
tioned as the size of the image region shrinks
1) |

Why start with the motion field? In practice we
deal with image sequences and have to estimate
the motion field either at discrete points using
some form of matching, or derive an optical flow
from the brightness gradients. We have the time
derivative of brightness at each picture cell (one
variable), not the motion field (two variables). It
is nevertheless valuable to study what can be
achieved using the motion field, since this puts
an upper bound on what one can do with images,
and separates the problems occasioned by inade-
quate surface texture contrast from the purely
geometric problems that are common to a variety
of approaches to the motion vision problem.
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2 Critical Surface Are Hyperboloids of One Sheet

The question usually posed is whether two dif-
ferent motions—and two corresponding sur-
faces—could have yielded a given motion field. I
turn this question around here to ask instead
what surfaces could lead to the same motion
field, given two different motions. This new ques-
tion is easier to answer and, indirectly, helps
answer the original one.

I call two surfaces yielding the same motion
field for two given motions a critical surface pair. 1
show that each member of such a pair must be a
hyperboloid of one sheet or one of its degenerate
forms. (It had been noted previously that only
quadric surfaces can give rise to potentially am-
biguous flow fields [10, 11]). I show further that
each of these hyperboloids must be viewed from
a point on its surface. Vector notation allows
compact derivations [12]—this notation will now
be briefly reviewed.

2.1 Review of Notation

Without loss of generality, let the focal length be
unity and suppose that the optical axis lies along
the Z-axis. The center of projection is at the
origin and the image is formed on the plane
Z =1 1f r = (x,y,1) is the image of the point
R = (X,Y,Z)", we have the perspective projection
relationship’

1

R-iR

r=

We are interested in the motion of the image
point r induced by motion of the point R. If we
multiply the above equation by (R - 2), differen-
tiate with respect to time, and solve for the time
derivative of r we obtain

1
R-1

r, =

(R, = (R, 2)r)

Now suppose that the observer is moving with in-
stantaneous translational velocity t = (U,V,W)"
and instantaneous rotational velocity © =

1A unit vector in the z-direction is denoted 2.

(4,B,CY . Then the velocity of a point in the fixed
environment relative to the observer will be

Ri=—-t—RXo
or, upon substituting for R in terms of r,
Ri=—-t—(R-2)rXo

We now substitute this expression for R, in the
equation above for r,, and finally arive at’

r = ﬁ((t-i)r—t) +rozlr—-rX o
This is the equation for the motion field r, =
(u,v,0)" as a function of the image position
r = (x,y, )" and the motion {t, ®}. The first part
of the expression is the translational component,
which depends on the depth Z = R - z, while the
last two terms constitute the rotational compo-
nent, which does not depend on depth.

2.2 Equality of Motion Fields

Suppose we have a motion {t;,, »;} along with
depth Z(x, y) that yields the same motion field as
does a motion {t,, ®,} along with depth Z,(x, y).
Then

Zi((t,-i)r— t)+ [ro Z]lr—r X o,
1

= E]‘((tz'i)l' —t)+[razfr—rXao,
2
or, more compactly,
1 . 1 X
Z ((tl “Z)r — tl) - ‘Z_;((tz -Z)r — tz)

=[rdwzr—r X dw

where 8w = w, — w;. Note that the two motion
fields are changed equally by equal changes in
instantaneous rotational velocity, and so only the
difference of the two rotational velocities is
relevant.

The above equation represents a powerful con-
straint on critical surface pairs and the corre-
sponding motion. Let us suppose that we are

23quare brackets enclosing three vectors denote the triple
product of the three vectors.



given the two motions {t,, ®,} and {t,, ®,} and are
to find two surface Z(x, y) and Z,(x, y) such that
the resulting motion fields are equal. The con-
straint equation above can be solved for Z, and
Z, by taking the dot-product with judiciously
chosen vectors, as we see later.

2.3 General Case

It is convenient to postpone analysis of a large
number of special cases until later. For now we
assume that there are no special relationships be-
tween the three vectors, t,, t,, and 8w. Thus

t; t,#0
dw-t; #0
dw-t, #0

as well as
[[€, X t,]| # 0
|8 X t,[|# 0
18w X t,|| # 0

This implies that the three vectors have nonzero
length and are neither pairwise parallel nor pair-
wise orthogonal. We further assume, for reasons
that will become apparent later, that

(t2 X t]) '(tz X 8(1)) +* 0
and
(tz X tl) '(t[ X 80)) # 0

These conditions ensure that neither the plane
containing dw and t,, nor the plane containing d®
and t,, are orthogonal to the plane containing t,
and t,.

To find the surface Z,, we take the dot-product
of the constraint equation with t, X r. Vectors
parallel to t, or r yield zero and we are left
with just

ZL[tztlr] +(I'X5(.o)'(t2)<l')=0
1

Symmetrically, taking the dot-product with ¢; X r
we obtain an equation for the other surface

i[tztlrl"‘(l’)(s()))'(t])(r)=0
Z, A
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We can solve these equations for Z, and Z,. The
resulting formulas give depth as a function of
image position r = (x,y,1)". (A formula of this
form for the ambiguous surface was apparently
first derived by Maybank [11]). We are not accus-
tomed to the hybrid parameterization of surfaces
and would most likely not recognize the type of
surface we are dealing with from these formulas.
Itis helpful then to express everything in terms of
scene coordinates R = (X,Y,Z)" instead. If we
substitute Z;r = R into the equation of the first
surface, we obtain

(RX 8w)-(t, X R) + [t,t, R] = 0

Similarly, substituting Z,r = R into the equation
of the second surface, we obtain

(R X 80)-(t; X R) + [t,t, R] = 0

These two equations can also be written in the
form

(R-t,)(dw-R) — (t,-8w)(R-R)
+(t,Xt) R=0
and
(R-t)Bw-R) — (¢t;-8w)(R-R)
+(t,Xt)-R=0

The expressions on the lefthand sides of these
equalities are quadratic in R. That is, written out
in terms of the components X, ¥, and Z, we ob-
tained a second-order expression. To see this, just
note that the dot-products R-t; and R-t, are
linearin X, Y, and Z, while R-R=X*+ Y> + Z2

2.3.1 Scaling of Motion Parameters. Before we go
on, it may be worthwhile considering how the
critical surfaces change if we scale the given mo-
tion parameters t,, t,, and 8w. Replacing t, by kt,
does not change the second surface and scales
the first by k (that is, the translational motion
field component is not changed if we multiply the
translational velocity and the depth by the same
factor). Similarly, if we replace t, by kt,, the first
surface is unchanged, while the second is scaled
by k.

This implies that we could, if wished, treat the
translational velocity vectors t, and t, as unit vec-
tors. Replacing 8w by k8w, on the other hand,
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leads to a change in the shape of the surface that
is more complex than simple scaling.

2.4 Quadric Surfaces

We conclude that both surfaces must be quadrics
(for a discussion of the properties of quadrics see
references [13] and [14]). There are several cate-
gories of quadrics.® In the case of a proper central
quadric, it is possible to rotate the coordinate sys-
tem and translate the origin so that the equation
for the surface is transformed into standard form,
where linear terms and products of different
components drop out.* The result is something of
the form

(5 (5= (2 -

The new origin is called the “center” of the quad-
ric surface and the new coordinate axes are the
intersections of the planes of symmetry of the
quadric surface. The lengths of the semi-major
axes are given by the quantities 4, B, and C.

If all three signs are positive, we have an ellip-
soid. If two signs are positive, we are dealing with
a hyperboloid of one sheet. If only one sign is
positive, we have a hyperboloid of two sheets.
Finally, if all signs are negative, we have an im-
aginary ellipsoid (no real locus).

It may happen that some of the second-order
terms are missing, in which case we are dealing
with a degenerate form such as an elliptic cone or
a noncentral quadric such as a hyperbolic para-
boloid. A degenerate noncentral surface of par-
ticular interest is that formed by two intersecting
planes, as we note later.

2.5 Hyperboloids of One Sheet

If we substitute R = kt, into the equation of the
first surface

3For classification of quadrics, see section 3.5-3 in Korn and
Korn [13].

4The coefficient matrix of the quadratic form appearing in the
equation of a proper central quadric has three nonzero
eigenvalues.

(R-t;)(8w - R) — (t,- 80)(R-R)
+(t,X¢t) R=0

we find that the linear term drops out and that
the first two terms become equal to one another.
We conclude that a line parallel to t, passing
through the origin lies entirely in the surface.
This means that the surface cannot be an ellip-
soid or a hyperboloid of two sheet (or one of their
degenerate forms). It must be a hyperboloid of
one sheet (or one of its degenerate forms).

The line R = kt, is one of the rulings of the first
surface. A hyperboloid of one sheet has two sets
of intersecting rulings (see [13, 14]). We expect
therefore that a second line passing through the
origin is embedded in the surface. It can be
verified that R = kt; where

to=((t; X t;) X 8w) X (t, X t,)

is the equation of this second line.

Note that the hyperboloid passes through the
origin—there is no constant term in the equation
of the surface (this is not an artifact introduced
by the substitution Z;r = R, as one can show by
taking the limit as Z — 0). We conclude that the
viewer must be on the surface being viewed.

The perspective projection equation, r =
(1/R-2)R, does not enforce the condition that
Z > 0, where Z = R- 2. We find that the motion
field corresponds in some image regions to
points on the surface lying in front of the viewer
and in other image regions to points on the sur-
face behind the viewer. A real ambiguity can only
arise if attention is restricted to image regions
where both Z,> 0 and Z,> 0. If either one
changes sign in the region there is no ambiguity.
We analyze these image regions in detail later.

A second-order polynomial in X, Y, and Z has
nine coefficients. The surface defined by setting
this polynomial equal to zero is not altered,
however, if we multiply all coefficients by some
nonzero quantity. Surfaces defined by such an
equation thus belong to an eight-parameter
family of surfaces. Can an arbitrary hyperboloid
of one sheet be a member of a critical surface
pair? That is, can we generate an arbitrary
second-order polynomial (lacking a constant
term) by suitable choice of t,, t;,, and &w? The
answer to this question is most likely “no,” since



multiplying 8w by k while dividing t, by k does
not change the polynomial and because t, ap-
pears only in the cross-product t, X t,. We show
later that only certain hyperboloids of one sheet
can occur as members of critical surface pairs.

2.6 Rareness of Ambiguity

Let us summarize what we have learned so far:
only a hyperboloid of one sheet passing through
the origin can lead to a potentially ambiguous
motion field. We have mentioned, but not prov-
en, additional restrictions. In any case, it is clear
that ambiguity will be extremely rare. The reader
wishing only to be reassured on this point may
wish to stop right here.

It is interesting, however, to study the geometry
of critical surfaces further. It is hard to do this
using the vector form of the equations of their
surfaces; so in the next section we use matrix
notation. This makes it easier to discover the cen-
ter of the quadric, as well as its axes, tangent
planes, asymptotes, cross sections, and rulings.
We also still need to discuss various degenerate
cases that may occur.

3 Geometric Properties of Critical Surfaces

Note that
(R t)(6w-R) = (t,- 80} (R-R)
= R7(t,dw")R — (t,- 50)RTR

since we can write a-b = a’b if we consider the
column vectors a and b as 3X 1 matrixes. We can,
as a result, rewrite the equation of the first surface
in the form

R'MR +2L'R=0
where the matrix M, is given by
M, = 807 + Swtl — 2(t, - dw)l

while L = t, X t,. Similarly, the equation of the
second surface can be written in the form

R’M,R + 2L'R = 0

where
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M, = t,80” + dwt] — 2(t, - Sw)I

The matrices M, and M, have been constructed in
such a way that they are symmetric, in order that
the products R"MR and R'M,R are quadratic
forms. Each of the matrixes M, and M, thus has
three real eigenvalues with three corresponding
orthogonal eigenvectors.

The matrix M, determines the shape of the first
surface in the critical surface pair—it depends on
t, and dw. (The vector L only controls the size and
position of this surface.) Similarly, M, determines
the shape of the second surface—it depends on t,
and 8. (The vector L controls its size and posi-
tion also.)

When there is no likelihood of confusion, we
will discuss surfaces of the form

R'MR + 2L'R =0

without specifying whether the matrix in the
quadratic form happens to be M, or M,.

3.1 Center of the Quadric

The surfaces we are interested in have been
defined in implicit form by an equation of the
form f(R) = 0. They turn out to be centrally sym-
metric about a point C where the gradient of f'is
zero, that is, where

aof
A = O
OR jg-c
In our case, this leads to
MC+L=0

The significance of the so-called center C is that
the linear term disappears from the implicit
equation of the surface if we shift the origin to C.
To see this, let

R=C+ R’
then
(C+R)YM(C+R)Y+2L(C+R')=0

which, upon expanding and substituting MC +
L = 0, becomes just

(RYMR' = ¢

where the constant term is given by
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¢c=C'MC

The directions of the axes of the quadric surface
are the directions of the eigenvectors of the ma-
trix M, while the lengths of the axes depend on
the eigenvalues of M and the constant ¢, as we
see later.

3.2 Eigenvalue— Eigenvector Decomposition

We are dealing with matrices of the form
M = tdo” + SotT — 2(t - dw)I

where t = t, for M, and t = t, for M,. What are the
eigenvalues and eigenvectors of such a matrix?

Let t and 8® be unit vectors in the directions t
and dw respectively. Also, let

o=|t|llldw]  and

It is clear that 6 > 0 and 0 < |t|< 1. It is easy to
verify that

M(t X dw) = —2(t- bw)(t X dw)

so tX 8w is an eigenvector with eigenvalue
—2(t - 8w). The other two eigenvectors must lie in
a plane perpendicularto t X dw, that is, they must
be linear combinations of t and éw. In fact,
(t+8®) is an eigenvector with eigenvalue
(Il 18w || — t - dw), while (t — &) is an eigenvec-
tor with eigenvalue (— | t|| ||Sw || — t- dw).

We see then that the unit eigenvectors and cor-
responding eigenvalues of M are

1

T=1t-3®

6, = ——— (i + 8@ Ay =o(l —
é \/2(1+1:) (t + 6®) o( T)
éo = *\—/1%1:2'(? X 6(;)) }\.0 = =207
1 ~
= —-8‘ }\‘_=_ 1
\/-———2(1_1:)0 ®) o(l + 1)

NotethatA. < 0,A, > 0,0 #0andA, = A, +A_.
This last constraint tells us that M cannot be an
arbitrary symmetric matrix.

One axis of symmetry of the first surface is per-
pendicular to both t, and 8w. Another one points
in a direction bisecting the angle between t, and
8w, while the third lies in a direction that bisects
the angle between t, and —dw.

3.3 Constant Term in Transformed Equation

To determine the length of the axes and to verify
that the surface can only be a hyperboloid of one
sheet we need to find the constant ¢ = CTMC in
the equation

(R)MR' = ¢
Now
C'™MC =—-C'L=L"M"L

since MC+ L=0. Using the -eigenvector-
eigenvalue decomposition of M we have

C™MC = Ay (&, - C)? + (& - C)?
+ A_(é_-C)*

and

- 1 1
LTM IL=_ A . 2 2 (a . 2
(€L (@)
+}3__(é_-L)2

At this point we need to be specific about which
of the surfaces in the critical pair we are inter-
ested in. Consider the first surface, for which

M, = t,00" + dwt] — 2(t,- dw)I
Noting that L = t, X t,, we find
[t t, dw]

é,L=
V2(1 + 1)
& L= (6, X 8w) - (t, X t;)
/1 -1}
é ‘L=— [t; ¢, Sw]

v2(1 — 1)

where o, = ||t, || | 6w ||and t, = t, - 8. We see that
LML = (&, L)?
Ao

since the first and third terms cancel. So ¢ has the
same sign as A, Using Ay = —2m,t, we finally
obtain
_ K

265t(1 = 13)

where k, = (t, X dw) - (t, X t,). Similarly,

¢, = LTM;'L =



__k
)

where k, = (t, X dw) - (t, X t)).

(:2 = LTM2_1L= -

3.4 Signs of the Eigenvalues

If ¢ is non-zero, we can transform the equation
(R)YMR' =¢

into the form
(RI)TMIRI — 1

using M’ = (1/c)M. The lengths of the axes are
given by the square roots of the inverse of the ab-
solute values of the eigenvalues of M'. The type of
the surface is determined by the signs of the
eigenvalues of M’

The eigenvalues of M are equal to the eigen-
values of M divided by c. Let

)»'_=—>i:,)\6=&g,)»i,=£whenc>0
c c c
and
A=t grste g oA gpene <o
c c c

We see that A_ is always negative, while A} is
always positive. Finally, and most importantly, A,
is always positive since ¢ has the same sign as
Ao
So M has two positive eigenvalues and one
negative one. This confirms our earlier conclu-
sion that the surface is a hyperboloid of one
sheet. Now A, + A_ = Agsince A, + A_ = Ay, S0 wWe
conclude that

’

where a% = 1/A}, a3 = 1/A;, and a®> = —\_ are the
squares of the lengths of the half-axes of the
quadric surface. Hyperboloids of one sheet with
a given center and given axes form a three-
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parameter family of surfaces. The above con-
straint on the semi-major axes implies that criti-
cal surfaces form a two-parameter subset of this
family. Only certain hyperboloids of one sheet
can be critical surfaces.

3.5 The Center Revisited

The center of the first surface is given by

C] = _Ml_lL
The eigenvectors of M;' are the same as the
eigenvectors of M,, while the eigenvalues of M}’

are the algebraic inverses of the eigenvalues of
M. So we have

1 1
C,=——(é,-L)é, — —(¢&-L)é
1 }\+(e+ )e. ) (& -L)é,

-l e

Using the values of (é,-L), (&-L), and (é_-L)
found earlier, we obtain

63(1 — )C, = —vo,t, + szzfz X &
2

where v = [t, t; w]. It is possible to verify that the
linear term in

R’MR+2L-R=0

disappears when we substitute R=C, + R'. In
this endeavor it may be helpful to note that, by
definition, M,C, = —L and that

it X 8w l|* = o3(1 ~ ©3)

For | C, || = 0 we must have
v = [tztlsm] = 0
and

k2=(t2Xt,)'(tZX8(D)=0

This in turn implies that ||t, X t,[|=0 or
| t, X 8wl = 0. These are both special cases, to be
dealt with later, which do not involve a proper
central quadric. We conclude that the center can-
not be at the origin. (The same conclusion can be
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reached by noting that a nonsingular quadric
does not pass through its own center).

3.6 Tangent Planes
A normal to the surface defined by the implicit

equation f(R) = 0 at the point R, is given by the
gradient of f there:

No 2|
oR R=R,

In our case then
N=MR;+L

We see that at the origin N = L. Thus the normal
to the surface where it passes through the projec-
tion center is just t, X t; (Longuet-Higgins [15]
already showed that t, is tangent to the quadric
surface.)

The tangent plane to the surface at the pointR,
is given by the linear equation

N-R=N-R,
or
RIMR + L'R = RIMR, + L'R,
At the origin this simplifies to L'R = 0 or
[Lt, R] =0

3.6.1 Critical Image Line. Before we transformed
to scene coordinates, we derived the equation

Zi[tztlr] +(rXéw)(t;Xr)=0
1

for the first critical surface. We can solve this for
Z, to obtain

- [ty ¢ r]

Z - —
{ (r- )80 1) — (t,- d0)(r - 1)
Similarly, for the second critical surface
Z,= [t ¢, r]

T t)Be 1) — (t - Se)(r-T)

These expressions show that the depth of a criti-
cal surface is the ratio of a linear polynomial in
image coordinates and a quadratic polynomial
in image coordinates.

We also note that Z, = Z, =0 when |t,t,r]
= 0. The triple product [t, t, r] is linear in image
coordinates and so defines a straight line. This
line connects the focus of expansion for the
first motion

to the focus of expansion of the second motion

6= —
tz'z

This line will here be called the critical image
line.

Note that Z, and Z, change sign as one crosses
this line. The critical image line is the intersec-
tion of the image plane with the tangent plane to
the critical surface at the origin. A ray from the
center of the projection on one side of this
tangent plane will meet the critical surface in
front of the viewer, while a ray on the other side
will meet the critical surface behind the viewer.

A line intersects a quadric surface in at most
two points (unless it is entirely embedded in the
surface) [14]. Points in the image correspond to
rays through the center of projection. In our case,
the center of projection lies on the quadric sur-
face. A ray through the center of projection then
will intersect the guadric in at most one other
point (unless it is a ruling of the surface). In the
case of the hyperboloid of one sheet, the ray will
always intersect the surface in exactly one other
point (unless it is parallel to a ruling of the
asymptotic cone, to be discussed in the next
section).

This property is reflected in the fact that the ex-
pressions for Z, and Z, are single-valued and
defined for all image points (except those where
the denominator becomes zero). The ray may in-
tersect the surface behind the viewer or in front,
however. That is, “depth” given by the formulae
for Z, and Z, may be positive or negative.

3.7 Asymptotic Cone

Suppose R = C + kR’ where R’ is the direction of
a ray from the center C. Then



K*(R"Y"MR' = CTMC
or
(RYMR’ = ¢/k?
If we let kK — o0 we obtain
(R)Y’MR' =0

This is the equation of a cone, called the asymp-
totic cone, with apex at the center. Rays connect-
ing the origin to points on the hyperboloid that
are “infinitely far away” are parallel to lines lying
in the asymptotic cone.

The asymptotic cone lies inside the hyper-
boloid of one sheet. The projection in the image
of points infinitely far away on the surface are the
points where the denominator of the expression
for Z becomes zero. For the first surface this oc-
curs where

(r-t)0w-r)y — (t;- dw)(r-r) =0

This is a quadratic in image coordinates x and y
and so defines a conic section. This conic section
is the intersection of the image plane with the
asymptotic cone, when the apex of the cone is
shifted to the origin.

3.7.1 Critical Image Curve. The curve where Z, =
oo will be called the critical image curve for the first
surface. As with the critical image line, where
Z, =0, we find that Z changes sign as we cross
the critical image curve. The critical image line
and the critical image curve thus divide the
image into regions of constant sign. Note that the
critical image curves of the two surfaces in a criti-
cal surface pair do nor coincide in general.

The image is divided into four types of regions:
where Z, <0 and Z,<0, Z,<0 and Z,> 0,
Z, > 0and Z, <0, and regions where Z, > 0 and
Z,> 0. Ambiguity can only arise if the image
region where the motion field is known lies en-
tirely in a region where both Z, and Z, are posi-
tive. If one of them changes sign in the region, it
cannot be a valid solution.

3.8 Common Ruling

We noted earlier that the line R = kt,, where
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to = ((t; X t;) X 80) X (t, X t,)

lies entirely in the first surface. It also lies entirely
in the second surface. Thus, the two surfaces in a
critical surface pair not only have a common
tangent plane at the origin, but they touch all
along a line. Now ¢, is perpendicular to t, X ¢,
and so lies in the plane formed by t, and t,. It can
be shown, in fact

to = (t; X t) - (t; X dw)t,
= (t, X t)) - (t; X dw)t,

or

t, = kot — kit,
where

ky= (t; X t;) - (t, X 8w)
and

ki=(t; X t) (t; X dw)

These formulae will prove useful later for they
show that t, becomes parallel to t, when k, =0
and parallel to ¢, when k; = 0.

Consider the projection of the line R = kt; in
the image

t—0= 1.
to'z

Here we just note that t, lies in the plane contain-
ing t, and t, and so the projection t, lines on the
line connecting the points t, and t,. That is, this
point lies on the critical image line.

The critical image curve of the first surface in-
tersects the critical image line at t, and t, while
the critical image curve of the second surface in-
tersects the critical image line at t; and t,. It can
be shown that the two critical image curves are
tangent where they cross the critical image line at
to.

3.9 Projections of Rulings

Every point on a doubly ruled surface lies at the
intersection of a ruling from one set of rulings
with a ruling from the other set. Further, each rul-
ing of one set of rulings of a doubly ruled surface
intersects all the rulings of the other set. Now the
line R = kt, on the first surface projects into the
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single image point t,. Thus, all of the rulings that
intersect this line project into lines in the image
that pass through €,. Similarly, the line R = kt,
on the first surface projects into the single image
point t,. Thus, all of the rulings that intersect this
line project into lines in the image that pass
through t,. This completes the description of the
projection into the image of the rulings of the first
surface.

Similarly, one set of rulings of the second sur-
face project into lines passing through the point
t, while the other set of rulings project into lines
passing through the point t,. We conclude that
the projections of one set of rulings of the first
surface coincide with the projections of one set of
rulings of the second surface in a critical sur-
face pair.

3.10 Critical Sections

There are two families of parallel planes that cut
an ellipsoid in circular sections. Similarly, there
are two families of parallel planes that cut a
hyperboloid of one sheet in circular sections [14].
Any plane normal to t, satisfies a linear equation
of the form

R't2=d

for some constant d. We are to determine the in-
tersection of this plane with the first surface

(R-,)(5w-R) — (t,-d0)(R-R) + L-R = 0.

The intersections will be the same as those of the
plane and the new surface

d(5@-R) — (t,-80)(R-R)+ L-R =0

since R-t, = d. The second-order terms in this
expression equal R-R =X+ Y? + Z% so that
the above is the equation of a sphere {13]. The in-
tersection of a plane and a sphere is a circle. We
conclude that sections of the first surface with
planes perpendicular to t, are circles. Similar
reasoning shows that sections with planes per-
pendicular to dw are also circular.

We note that sections of the second surface
with planes whose normal is t; are circular, as are
intersections with planes whose normal is 8.
Thus, sections with planes perpendicular to &®

have the unusual property that they cut both sur-
faces in circular sections. It can be shown that the
circular section of the first surface is tangent to
the circular section of the second surface where
they touch.

4 Analysis of Degenerate Cases

We started off by assuming that there exist no
special relationships between the vectors t, t,,
and dw. In this case, the critical surfaces were
shown to be hyperboloids of one sheet. We still
have to deal with a number of special cases where
there is no ambiguity in the motion field as well
as other special cases where the critical surface is
some degenerate form of a hyperboloid of one
sheet.

In some of these situations, we will not be able
to use the general equation derived for the critical
surface in scene coordinates since that derivation
assumed that there were no special relationships
between the vectors t;, t,, and dw. Instead, we
return to the basic equality of two motion fields:

El; (¢, -2)r = t,) = ZL2 ((&,-2)r — t,)

={rdwz]lr — r X dw

4.1 Pure Translation or Rotation Known
If || dw || = 0 we have
1 R 1 .
Z((tl Br—t) = 2_2((t2 ‘B —ty)
Taking the dot-product with t, X r we obtain
1
Z [t¢,r] =0

If this is to be true for all r in some image region,
we must have t, || t;, ort, = kt;, say. Then, from the
first equation above, we see that Z, = kZ,. This
confirms the well-known result that if the motion
is known to be purely translational, the motion
field determines the motion and the surface uni-
quely up to a scale factor.

The same applies when the rotation is known,
because then we can predict the rotational com-



ponent of the motion field and subtract it to
reduce the situation to the one just discussed.
Now suppose that t,|t,. Then, if we take the
dot-product of the basic equation with ¢, Xr
we obtain
0=—-(rXdéw) -(t; Xr)
or,
(r-r)(t;-dw) = (r-t,)(dw-r)

This can only hold true if || 8w | = 0 (or ||t ]| = 0).
Thus, t, is parallel to t, only in the case that the
two motions have the same rotational com-
ponents (as, for example, when they are both
known to be purely translational) and so we will
assume from now on that

16, X t,]]# 0

4.2 Pure Rotation
If|t, )} = 0, we have

é—((tl Pr—t) = [rde 2jr — r X 80

1

Taking the dot-product with t; X r we obtain
again

0=(rXoéw) (t, Xr)
or

(r-r)(t; - dw) = (r-t,)(dw - r)

If this is to be true for all r in some image region,
we must have ||t;||=0 or |dw| = 0. We have
already dealt with the latter case. In the case that
It || = 0, we have

[rdwZlr—rX 8w =20
which again implies that [|dw || = 0, that is, @, =
.

This confirms the well-known result that the
motion field uniquely determines the motion in

the case of pure rotation. From now on, we may
assume that[|8w || # 0, ||t || # 0, and || t, | # 0.

4.3 Elliptic Cone

When k, = 0, where
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kz = (tz X 6(!)) * (tz X tl)

that is, when the plane containing t, and 8w is
orthogonal to the plane containing t, and ¢, we
obtain an elliptic cone. This is because the con-
stant term ¢; = —(k3/203t,(1 — t3)) in the equa-
tion

(R)'MR’ = ¢,

becomes zero. Of course, k, is zero when
[, X t;l=0 or ||t, X dw|| = 0, but we have al-
ready dealt with these special cases. Another spe-
cial case is the one where dw is actually parallel to
t, X t,. In this case, the elliptic cone degenerates
into two intersecting planes, as we show in detail
later. Other special cases can be studied by ex-
panding k, to yield

k= (t, )00 t;) — (- t)(8w - t,)

Since k, =0, the center may be found at C,
where

o1 — 1))C, = —vt,

where v = [t, t, Sw], as always. This is not surpris-
ing since all rulings pass through the center and
we know that R = kt, is a ruling.

Note that a critical surface cannot be a circular
cone, because that would require that two of the
eigenvalues were equal with the third of opposite
sign and nonzero. This cannot happen when
A_ + A, = X,. We note that a critical surface can-
not be an arbitrary elliptic cone since there is a
constraint on the length of the axes.

The elliptic cone is a central, but improper,
quadric. It can be thought of as a degenerate
hyperboloid of one sheet obtained by shrinking
all of the semi-axes in such a way that their
ratios are maintained. The two sets of rulings
collapse into one, since t, becomes parallel to t,
when k, = 0.

4.4 Hyperbolic Paraboloid

Consider now the equation
(R-t)(6w-R) — (t,-8w)(R-R)
+(t2th)'R=0
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for the first critical surface. Suppose that t, - 8w
= 0, then the equation becomes just

(R t,)50-R) + (t, X t;)- R =0

since the term in (t,- 8w)(R - R) drops out. We
have t, = 0 and hence A; = 0 with A, = o, and
A_ = —o,. The degenerate surface we are dealing
with here does not have a center. It is a hyper-
bolic paraboloid with equal axes. Any section
with a plane perpendicular to t, X dw will yield
a hyperbola.

Similarly, if t, - 8w = 0, we find that the second
critical surface degenerates into a hyperbolic
paraboloid. We may note that in these cases the
formula for Z as a function of x and y factors so
that it is a ratio of a linear polynomial in x and y
and a product of two linear polynomials.

A hyperbolic paraboloid is doubly ruled. The
lines in each of the two sets of rulings are paraliel
to a given plane {14]. We can verify this by inter-
secting the hyperbolic paraboloid first with
planes orthogonal to t,, given by

R't2=d

The intersectidf of this plane and the hyperbolic
paraboloid is the intersection of the plane and
the new surface,

d(do -R) + (, X t,) - R=0

since R - t, = d. But this is the equation of a plane,
and two planes intersect in a line. Thus, all inter-
sections with planes orthogonal to t, are rulings.
Similarly, we find that all intersections with
planes orthogonal to 8w are rulings.

The lines of intersection can be thought of as
circles with infinite radius and correspond in this
way with the circular sections we obtained in the
case of the hyperboloid of one sheet. The hyper-
bolic paraboloid is a proper quadric, but not cen-
tral. While there is not a center, there is one dis-
tinguished point on its surface, the saddle point,
which we shall find next.

4.4.1 Saddle Point. If t,- 8w = 0, then t,, dw, and
t, X dw are orthogonal to one another. Two of the
axes of the quadric surface lie in the plane con-
taining t, and 8w. Shifting the origin to the saddle
point S will make the linear term proportional to
(t, X dw) - R. Tt can be shown (tediously) that the
saddle-point for the first surface is at

v

S =-S5t

1 0'% 2

by substituting R = S, + R’. The equation of the
surface then has the form

(R' - t,)(5w - R') + %(t2 X 80)-R = 0
2

In proving this result, it is useful to note that
when ¢, 60 = 0,

o3t X t) = v| ]| 28w + ky(t, X Sw)

We note that the saddle point is imaged at the
focus of expansion t,.

4.5 Intersecting Planes

Now consider the special case when both t, - 8w
= 0andt;-dw = 0.In fact, letdw = kt, X t,. Then,
the equation for the first surface becomes

k(R-t;)[t;t, R] — [t ¢, R] =0

since the term (t, - dw)(R - R) drops out. We can
rewrite this in the form

(R-t;) + 1)t t, Rl =0

Soeither [t,t, R] = 0ork(R-t,) + 1 = 0. The first
equation defines a plane passing through the
origin which projects into the image as a line.
The second equation defines a plane with nor-
mal t, with perpendicular distance 1/(k|t,|)
from the origin.

Similarly, the equation for the second critical
surface yields the intersecting planes [t t; R] = 0
and k(R-t)) + 1 = 0. This is the celebrated case
of the dual planar solution [3,4,5]. If we ignore the
plane {t, t; R] = 0, which projects into a line, we
find that the plane with normal kt, and motion
{t,, ®,} yields the same motion field as the plane
with normal kt, and motion {t,, ®; + kt, X t}.

It is interesting to note that the critical image
curve here degenerates into two intersecting
lines, one of which coincides with the critical
image line. As a result, Z does not change sign ac-
ross the critical image line in this special case.
The expressions for depth as a function of image
coordinates x and y simplify to




since the other linear term, [t, t, r], cancels. Note
that if one of the critical surfaces consists of a
pair of intersecting planes, so does the other (see
also Maybank [11]).

4.6 Circular Cylinder

Consider the case when [it, X dw | = 0, that is,
when t,||8w. We have eithert= +1and A, =0,

=-20, A.=—20 or t=-1 and A, =20,
Ao = 20, A_ = 0. In this case, we have two equal
eigenvalues. The surface is a cylinder as we
show next.

If t,=k8w, the equation of the surface
becomes

EIIRX8w||*+ k[wt,R] =0

where we can cancel the constant k immediately.
By moving the origin to a point A on the axis of
the cylinder, we should be able to remove the
linear term. It can be shown that

_ 1
218w ||

is such a point—actually the one closest to the
origin. Let R = A + R’. Then

IR X 80]% = | R’ X 80|
—[Bot, R +]|A X 0|

and

o X t,|?
AX 2=|| 1
I Sw || YK

while

l|8@ X ¢,]|°
2{|3w |l

The equation of the surface thus becomes

[6w ¢, R] = [dwt, R'] —

Sw X t,||?
’ X 2 = ” 1
IR x 8o|* = 125 E o

the equation of a cylinder with axis in the direc-
tion 3w through the point A and with radius
8w X ¢, | /(2[I8w}). This follows from the fact
that the length of the vector

R’ X 8w
| 8 ||
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is the same as that of the vector connecting R’ to
the nearest point on the axis along the direc-
tion dw.

4.7 Remaining Special Cases

Nothing particularly interesting happens when
t; - t, = 0, so we need not have included the con-
straint t, - t, # 0 in our initial list.

When [t, t, dw] = 0, that is, when 3w is co-
planar with t, and t,, some simplification occurs.
For example,

to=lt; X t,||* 80

and

k., -
(1 —t)C, = —2-t, X 8@
2( 2) 1 20_21:2 2
in this case. But nothing else of great note occurs.
We are left with a number of multiple degen-
eracies leading to “solutions” involving only lines
or points and so of no real interest.

5 An Example

Suppose that we are given the motions {t;, o} and
{t,, »,}, where

t, = 90,0, )T
t, = (0,4, 5)"
and

©—® = (Oa _4’ S)T

and are to construct two surfaces that yield the
same motion field. Now

R, X 8w = (5Y + 4Z, —5X, —4X)T
while

t, X R, = (=5Y +4Z, +5X, —4X)"
SO

(R, X 80) - (t, X R)) = —=(3X)* — (5Y)’

+ (4Z)?

Also

[t.t; R)] = 36X
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so the equation of one of the critical surfaces is
-(3X) =5V’ + (4Z2)*+ 36X =0

Thus one of the critical surfaces has center
(2, 0, 0)" and principal axes parallel to those of
the coordinate system. This hyperboloid is
“open” in the direction of the Z-axis. The lengths
of the principal axes are 2, (6/5), and (3/2).
Note that

2 2 2
)+ (-
Now
R, X 8w = (5Y + 4Z, —-5X, —4X)T
while
t, X R, = 9(-Y, X, 0)"
So
(R, X 8») - (t, X Ry)
= —9(5Y* + 4YZ + 5X?)
while
[t; t; Ry = 36X
So the equation of the other critical surface is
(5Y*+4YZ +5X) —4X =0
or .
4y/A1(5X — 2)” + 5((/41 + 5)Y + 4Z)
~ 5((v/41 = 5)Y — 4Z)* = 16\/41

This critical surface has center (2/5, 0, 0)' with
* principal axes in the directions (1, 0, 0),
(0, /41 + 5, 4), and (0, /41 — 5, —4)".

Substituting X = xZ and Y = yZ into the equa-
tion of the first surface we find

7 = 36x
' ox2 4+ 257~ 16

while the equation of the second surface yields

-
5x*+ 5y + 4y

Z,
Now

r,=%((t-i)r—t)+[rmi]r—rXu)

which, for surface Z,, yields

9x? + 35y* — 16
4x

and, for surface Z,:

5x> + 5% + 4y
4x

(r—t)+[rozlr—rXow

Sr—t)+ [ro,ijr—rX o,

+ [rdw z]r — r X dw

Thus, ignoring the common term [r w, Zjr
—r X m,, we have

_ 9’425y - 16

U, 2
_ 9x*+ 25— 16
v, = 4 Yy
X
and
2 2
up= S LI 4 anpe - (5y 4 9)
2 2
by = XXV A (o 4y (—axy +

dx

The critical image line is given by [t, t, r] =0,
which here is x = 0. The critical image curves are
9’ + 25— 16 =0forZ,and Sx*+ 5’ + 4y =0
for Z,. These can also be written

(5 +(ds) =

and

x ¥V, (vt 2/5>2 _

(2/5) +< 25 ) 7!

The first of these curves passes through the focus
of expansion t, = (0,4/5, 1), while the second
passes through the focus of expansion t, =
(0,0, 1)". Both intersect the critical image line at
t, = (0, —4/5, 1)

6 Gefihrliche Flichen

Before a stereo pair can be used to recover sur-
face topography, one has to determine the rela-

w7

)



tionship between coordinate systems fixed in the
two cameras at the time of exposure. The relative
orientation of the cameras can be found from the
coordinates of the irages of five (or more) points
[16, 17, 18]. There is no closed-form solution of
the relative orientation problem (as yet), so itera-
tive numerical methods are used in practice.
The problem of recovering rigid body motion
from the (estimated) motion fields is related to
that of recovering the transformation from one
camera position to the other in binocular stereo.
The difference is that in motion vision one
usually deals with infinitesimal motions and so
can use a vector to represent rotation, while in
binocular stereo the translations and rotations
are finite and an orthonormal matrix (or unit
quaternion) is needed to represent rotation. Itera-
tive schemes for solving the relative orientation
problem essentially linearize the problem by re-
stricting adjustments of the relative position and
orientation of the cameras to infinitesimal quan-
tities. Thus the incremental adjustment in rela-
tive orientation is closely related to the problem
of recovering camera motion. We expect then
that the problem of relative orientation cannot be
solved when the given points happen to lic on a
critical surface. (Also, we might expect that the
relative orientation cannot be found accurately
when the points lie near such a surface.)
Surfaces that lead to difficulties in recovering
the relative orientation have been studied in
stereo-photogrammetry and are called Gefihr-
liche Flichen [19, 20]. This term, although
usually translated as critical surfaces |17, 18], ac-
tually means dangerous surfaces. It is because of
the relationship between the motion vision and
binocular stereo problems that I borrowed the
term critical surface for the discussion here.

7 Conclusions

I have shown that only certain hyperboloids of
one sheet and their degenerate forms can give
rise to ambiguous motion fields. These special
hyperboloids have to be viewed from a point on
their surface. Also, even these surfaces lead to
motion fields that are ambiguous only when at-
tention is confined to certain image regions. In
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general, the motion vision problem is not
ambiguous.
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