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Motion Fields Are Hardly Ever Ambiguous *
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Abstract

There has been much concern with ambiguity in the recovery of motion and structure from time-varyin g

images. I show here that the class of surfaces leading to ambiguous motion fields is extremel y
restricted-only certain hyperholoids of one sheet (and some degenerate forms) qualify . Furthermore ,
the viewer must be on the surface for it to lead to a potentially ambiguous motion field . Thus the motion
field over an appreciable image region almost always uniquely defines the instantaneous translationa l
and rotational velocities, as well as the shape of the surface (up to a scale factor) .

1 Introductio n

An important question in motion vision researc h
is whether a given motion field could have arise n
from two different motions with two correspond-
ing surface shapes. I felt originally that th e
answer to this question should he "No" [1, 2], an d
so was startled by results showing that, in th e
planar case, two solutions are possible [3, 4, 5, 6] .
I was further taken aback when the two-way am-
biguity persisted when quadratic patches wer e
considered [7, 8] . Fortunately, I have been able to
restore my faith in the uniqueness of the solution .
I show here that an ambiguous motion field ca n
arise only from a hyperboloid of one sheet (or a
degenerate form) viewed from a point on its sur-
face . This is a subset of measure zero of all possi-
ble smooth surfaces and viewing positions .

Furthermore, a surface has to he in front of th e
camera to be imaged-so the "depth" must b e
positive . Surfaces leading to ambiguous motio n
fields correspond to positive depth values only i n
certain image regions . A motion field can be am-
biguous only if our knowledge of it is confined to
an image region in which both "solutions" hap -
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on leave at the Department of Electrical Engineering, Univer-
sity of Hawaii at Manoa, Honolulu . Hawaii 96822, and wa s
supported by the National Science Foundation under Gran t
No . l ] DMC85-1 1966,

pen to he positive . There can be no ambiguity if '
the image region under consideration include s
areas where one of the two solutions change s
sign .

The ambiguity problem is, however, likely to
continue to plague those who use purely loca l
analysis techniques . In a sufficiently small patch ,
the estimated motion field may not he dis-
tinguishable from one resulting from a hyper-
boloid of one sheet viewed from a point on it s
surface . That is, while the estimated motion field
itself is very unlikely to be ambiguous. it may be
equal to an ambiguous motion field corrupted b y
a small amount of noise . (In any case, the prob-
lem of motion estimation becomes ill-condi-
tioned as the size of the image region shrinks
[ c)] . }

Why start with the motion field? In practice we
deal with image sequences and have to estimat e
the motion field either at discrete points usin g
some form of matching, or derive an optical flow
from the brightness gradients. We have the time
derivative of brightness at each picture cell (on e
variable), not the motion field (two variables) . I t
is nevertheless valuable to study what can b e
achieved using the motion field, since this put s
an upper bound on what one can do with images ,
and separates the problems occasioned by inade-
quate surface texture contrast from the purel y
geometric problems that are common to a variet y
of approaches to the motion vision problem .
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2 Critical Surface Are Hyperboloids of One Shee t

The question usually posed is whether two dif-
ferent motions-and two corresponding sur-
faces-could have yielded a given motion field . I
turn this question around here to ask instea d
what surfaces could lead to the same motio n
field . given two different motions . This new ques -
tion is easier to answer and, indirectly, help s
answer the original one .

i call two surfaces yielding the same motio n
field for two given motions a critical surface pair . I
show that each member of such a pair must be a

hyperboloid of one sheet or one of its degenerat e
forms. (It had been noted previously that onl y
quadric surfaces can give rise to potentially am-
biguous flow fields [10,  11]. I show further tha t
each of these hyperboloids must he viewed fro m
a point on its surface . Vector notation allow s
compact derivations I121-this notation will no w
be briefly reviewed .

2.1 Review of Notation

Without loss of generality . let the focal length b e
unity and suppose that the optical axis lies alon g
the Z-axis. The center of projection is at th e
origin and the image is formed on the plan e
7 = 1 . If r = (x,y.1)' is the image of the poin t
R = (X.Y.Z)T , we have the perspective projectio n
relationship '

r =

	

R
R l

We arc interested in the motion of the imag e
point r induced by motion of the point R . If we
multiply the above equation by (R • i) . differen-
date with respect to time, and solve for the tim e
derivative of r we obtai n

r,= R

	

(R,-(R,'i)r )

Now suppose that the observer is moving with in -
stantaneous translational velocity t = (U.V Ifs ) '
and instantaneous rotational velocity w =

I A unit vector iii the z-direction is denoted ..

(A .B .C .Then the velocity of a point in the fixed
environment relative to the observer will h e

R,= -t - RX w

or, upon substituting for R in terms of r ,

R,= -t(R•i)rXto

We now substitute this expression for R, in the
equation above for r,, and finally arive at'

r, = - l

	

((t•i)rt)+]rwi]r-rXcc
R i

This is the equation for the motion field r, _
(u. v, 0)' as a function of the image positio n
r = (x,y . 1)' and the motion ;t, col . The first part
of the expression is the translational component .
which depends on the depth 7 = R . 2 . while the
last two terms constitute the rotational compo-
nent . which dries not depend on depth .

2.2 Equality of Motion Fields

Suppose we have a motion t,, w, 0 along wit h
depth 7 1 (X, y) that yields the same motion field a s
does a motion 1t,, w,] along with depth 7 2 (r . r) .
The n

7 ((t, i)rt,)+[rw,i]r-rXcc ,

_

	

{(t, 'i_)r - t .) + [r w . ~r - r X co ,

or. more compactly .

7 {(t, • i)r - t i } -

	

((t,' ?..)r

	

t, )

_ ]r Owi]r-rX6cw

where Ow = w, - to, . Note that the two motio n
fields are changed equally by equal changes i n
instantaneous rotational velocity, and so only th e
difjttrtncx of the two rotational velocities i s
relevant .

The above equation represents a powerful con -
straint on critical surface pairs and the corre-
sponding motion . Let us suppose that we ar e

'Square hrackets enclosing three vectors denote the tripl e
product of the three vectors .



Motion Fields Are Hardly Ever Ambiguous

	

26 1

given the two motions Jt,, w,j and w, and are
to find two surface Z_,(x .y) and Z-(x .y) such tha t
the resulting motion fields are equal . The con-
straint equation above can be solved for Z, an d
Z, by taking the dot-product with judiciousl y
chosen vectors, as we see later .

2 .3 General Case

It is convenient to postpone analysis of a large
number of special cases until later . For now we
assume that there are no special relationships be -
tween the three vectors, t,, t;, and bw. Thu s

t,

	

t,

	

[ l

&w t, # ( ]

bw t, � 0

as well a s

Ilt,xt,ll � ()

Ilb(0xt,ll

	

0

IlbwXt,[[ � 0

This implies that the three vectors have nonzero
length and are neither pail-wise parallel nor pair -
wise orthogonal . We further assume . for reason s
that will become apparent later, tha t

(1,Xl)•(t,X6w)~( I

and

{t, X

	

X 6w) � ( 1

These conditions ensure that neither the plan e
containing Sw and t,, nor the plane containing bw
and t, . are orthogonal to the plane containing t ,
and t, .

To find the surface Z 1 , we take the dot-produc t
of the constraint equation with t, X r. Vectors
parallel to t, or r yield zero and we are lef t
with jus t

1 It,t,rJ+(rX8w)-(t,Xr)= 0
7 ,

Symmetrically, taking the dot-product with t, X r
we obtain an equation for the other surfac e

It, t,rl+(rXSw)•(t,X r) = 0

We can solve these equations for Zr and Z . The
resulting formulas give depth as a function o f
image position r = (x .v.l) ' . (A formula of thi s
form for the ambiguous surface was apparentl y
first derived by Mayhank [ 1 (J) . We are not accu s-
tomed to the hybrid parameterization of surface s
and would most likely not recognize the type o f
surface we are dealing with from these formulas .
It is helpful then to express everything in terms o f
scene coordinates R = (X.Y.Z_y instead. If we
substitute Z,r = R into the equation of the firs t
surface . we obtai n

(R X Sw) • (t, X R) + Jt, t, RJ = 0

Similarly, substituting Z_,r = R into the equatio n
of the second surface . we obtai n

(R X Sw) . (t, X R) + It, t, RJ = 0

These two equations can also he written in th e
form

(R•t,)(Sw .R)-(t,•Sw)(R•R )

+(t,xt,)-R= 0

an d

(R' t,)(&w R) - (t, bw)(R - R )

+(t,Xt,)•R= 0

The expressions on the lefthand sides of these
equalities are quadratic in R . That is . written ou t
in terms of the components X . Y, and Z. we ob-
tained a second-order expression . " ITo see this . jus t
note that the dot-products R • t, and R - t, are
linear in X. Y. and Z. while R•R=X2 + Y'+ Z2 .

2.3.1 Sealing of Motion Parameters. Before we g o
on. it may he worthwhile considering how th e
critical surfaces cha nge ifwe scale the given mo -
tion parameters t, . t, . and bw. Replacing t, by kt ,
does not change the second surface and scale s
the first by k (that is, the translational motio n
field component is not changed if we multiply th e
translational velocity and the depth by the same
factor) . Similarly . if we replace t, by kt,, the firs t
surface is unchanged, while the second is scale d
by k .

This implies that we could . if wished, treat the
translational velocity vectors t, and t,_ as unit vec -
tors . Replacing &w by k&w, on the other hand,
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leads to a change in the shape of the surface tha t
is more complex than simple scaling .

2.4 Quadric Surfaces

We conclude that both surfaces must be quadric s
(for a discussion of the properties of quadrics see
references 1131 and 1141) . There are several cate-
gories of quadrics .' In the case of a proper centra l
quadric . it is possible to rotate the coordinate sys-
tem and translate the origin so that the equatio n
fir the surface is transformed into standard form ,
where linear terms and products of differen t
components drop out . ' Tbe result is something of
the form

±(A~,±(B},±(Ci= I

The new origin is called t hlle "cente r " of the quad-
ric surface and tbe new coordinate axes are th e
intersections of the planes of symmetry of th e
quadric surface . The lengths of the semi-majo r
axes are given by the quantities A, 13, and C .

If all three signs are positive, we have an ellip-
soid. If two signs are positive, we are dealing wit h
a hyperholoid of one sheet . If only one sign i s
positive, we have a hyperboloid of two sheets .
Finally, if all signs are negative, we have an im-
aginary ellipsoid (no real locus) .

it may happen tbat some of the second-orde r
terms are missing, in which case we are dealin g
with a degenerate form such as an elliptic cone o r
a noncentral quadric such as a hyperbolic para-
boloid . A degenerate noncentral surface of par-
ticular interest is that formed by two intersectin g
planes, as we note later.

2.5 Hyper/to/olds of One Sheet

If we substitute R = kt, into the equation of th e
first surface

3 For classification of quadrics, see section 3 .5-3 in Korn an d
Korn 1131 .
"Plc coefficient matrix of the quadratic form appearing in th e
equation of a proper central quadric has three nonzer o
eigenvalues .

(R - t 2 )(6w • R) - (t, . bw)(R • R )
+(t .Xt,)-R= 0

we find that the linear term drops out and tha t
the first two terms become equal to one another .
We conclude that a line parallel to t, passin g
through the origin lies entirely in the surface .
This means that the surface cannot be an ellip-
soid or a hyperboloid of two sheet (or one of thei r
degenerate forms) . It must he a hyperboloid o f
one sheet (or one of its degenerate forms).

The line R = kt, is one of the rulings of the firs t
surface . A hyperholoid of one sheet has two sets
of intersecting rulings (see 113, 14J) . We expec t
therefore that a second line passing through th e
origin is embedded in the surface . It can b e
verified that R = kt„ where

to = ((t2 X t,) X 6w) X (t, X t, )

is the equation of this second line .
Note that the hyperboloid passes through th e

origin-there is no constant term in the equatio n
of the surface (this is not an artifact introduce d
by tbe substitution Z i ff = R. as one can show b y
taking the limit as Z -4-0) . We conclude that th e
viewer must be on the surface being viewed .

The perspective projection equation . r =
(1/R - i)R . does not enforce the condition tha t
Z > 0, where Z = R - i. We find that the motio n
field corresponds in some image regions to
points on the surface lying in front of the viewe r
and in other image regions to points on the sur-
face behind the viewer. A real ambiguity can only
arise if attention is restricted to image region s
where both Z, 7 0 and Z, > O. If either on e
changes sign in tbe region there is no ambiguity .
We analyze these image regions in detail later .

A second-order polynomial in X. Y. and 7 has
nine coefficients . The surface defined by' settin g
this polynomial equal to zero is not altered ,
however, if we multiply all coefficients by som e
nonzero quantity. Surfaces defined by such a n
equation thus belong to an eight-paramete r
family of surfaces . Can an arbitrary hyperboloid
of one sheet he a member of a critical surfac e
pair? That is, can we generate an arbitrary
second-order polynomial (lacking a constan t
term) by suitable choice of t,, t,, and 6w? The
answer to tbis question is most likely "no ." since
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multiplying bw by k while dividing t, by k doe s
not change the polynomial and because t, ap-
pears only in the cross-product t, X t, . We show
later that only certain hyperholoids of one shee t
can occur as members of critical surface pairs .

2.6 Rareness of Ambigui y

Let us summarize what we have learned so far :
only a hyperholoid of one sheet passing throug h
the origin can lead to a potentially ambiguous
motion field . We have mentioned, but not prov-
en. additional restrictions . In any case . it is clea r
that ambiguity will be extremely rare . The reade r
wishing only to be reassured on this point ma y
wish to stop right here .

It is interesting. however. to study the geometry
of critical surfaces further. It is hard to do thi s
using the vector form of the equations of thei r
surfaces : so in the next section we use matri x
notation. This makes it easier to discover the cen -
ter of the quadric . as well as its axes. tangent
planes . asymptotes . cross sections . and rulings .
We also still need to discuss various degenerate
cases that may occur .

3 Geometric Properties of Critical Surfaces

Note tha t

(R t,)(bco . R) - (t, • &w)(R • R)

R ' (t,&w T)R - (t, • 6co)R' R

since we can write a • b = arb if we consider th e
column vectors a and b as 3X 1 matrixes . We can .
as a result, rewrite the equation of the first surfac e
in the form

R'M,R + 2L'R = 0

where the matrix M, is given b y

M, = t,bct + bwtT --- 2(t, • bw)I

while L = t, X t i . Similarly. the equation of th e
second surface can be written in the form

R'M,R+2L T R = t 1

where

M, = t,&wr + & wtf - 2(1Sw)I

The matrices M, and *have been constructed i n
such a way that they are symmetric, in order tha t
the products RTM 1 R and R TM,R are quadrati c
forms. Each of the matrixes M, and M, thus has
three real eigenvalues with three correspondin g
orthogonal eigenvectors .

The matrix* determines the shape of the firs t
surface in the critical surface pair-it depends o n
t, and Sco . (The vector L only controls the size and
position of this surface .) Similarly, M, determine s
the shape of the second surface-it depends on t ,
and &o . (The vector L controls its size and posi -
tion also . )

When there is no likelihood of confusion . we
will discuss surfaces of the for m

R'MR+2L TR= 0

without specifying whether the matrix in th e
quadratic form happens to be M i or Al, .

3.1 Center of the Quadri c

The surfaces we are interested in have bee n
defined in implicit form by an equation of the
lbrm f(R) = O. They turn out to be centrally sym -
metric about a point C where the gradient off i s
zero, that is . where

= 0
K= c

In our case, this leads t o

MC+L 0

The significance of the so-called center C is tha t
the linear term disappears from the implici t
equation of the surface ifwe shift the origin to C .
To see this, le t

RC+R'

then

(C+R')'M(C+R')+2L'(C+R')= 0

which, upon expanding and substituting MC +
L = 0, becomes jus t

(R')'MR' = c

where the constant term is given b y

a.f

OR
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c = C MC

The directions of the axes of the quadric surfac e
are the directions of the eigenvectors of the ma-
trix M. while the lengths of the axes depend o n
the eigenvalues of M and the constant c, as w e
see later .

3.2 Eigen1'atue-Eigenvector Decompositio n

We are dealing with matrices of the for m

M = tbw' + bwt '' - 2(t - bw)I

where t = t, forts, and t = t, for M2 . What are th e
eigenvalues and eigenvectors of such a matrix ?

Let t and bw be unit vectors in the directions t
and &w respectively . Also, le t

= II t II 118w II

	

and

	

t =

	

& w

It is clear that cs70and(1< t < 1 . It is easy t o
verily tha t

M(t X &w) _ -2(t - &w)(t X &w )

so t X &w is an eigenvector with eigenvalu e
-2(t • &w) . The other two eigenvectors must lie i n
a plane perpendicular tot X bw, that is, they mus t
he linear combinations oft and 6w. In fact ,
(t + 6W) is an eigenvector with eigenvalu e
(II t ii 116w lI - t • &w), while (t - 6w) is an eigenvec -
tor with eigenvalue (- I t II II Sw II - t • &w) .

We see then that the unit eigenvectors and cor -
responding eigenvalues of M are

e 1- = --- 1---	 (t + &(6)

	

X+ = all - t)
,12 ( 1 + z )

1

	

(f X 66)

	

= -2az

e_
'/2(1 - t )

Note that X_ < 0, k+ 7 0, h, � 0 and h ) = X+ +
This last constraint tells us that M cannot be a n
arbitrary symmetric matrix .

One axis asymmetry of the first surface is per-
pendicular to both t, and &w . Another one point s
in a direction bisecting the angle between t, an d
fiw. while the third lies in a direction that bisect s
the angle between t, and -&w .

3 .3 Constant Term in Transfwined Equation

To determine the length of the axes and to verify
that the surface can only be a hypcrboloid of on e
sheet we need to find the constant c = C TAfC in
the equation

(R' )'MR' = c

Now

C TMC = -CI, = L TM - ' L

since MC + L = Q. Using the eieenvector-
eigenvaluc decomposition of - M we hav e

C TMC = x + (e + C )' + X„(e„ C )

+

	

C) =

an d

L 1v 'L =

	

{e + • L) + i--(e„ L) '

+

At this point we need to he specific about whic h
of the surfaces in the critical pair we are inter-
ested in . Consider the first surface- for whic h

M, = t,6w ` + awe,- - 2(t, . bw)1

Noting that L = I . X t, . we fin d

[t, t, &w l

' /2(1 + z, )

(t,X8w)•(t,Xt, )
e„ L =	 -	

o .V I -

t, 5w ]

V2 ( 1 - z_ )

where a, = 11 0II 118w II and t, = t, - 5w . We see tha t

L'MT'L =

	

(e„ • I.) '

since the first and third terms cancel . So c has th e
same sign as h, . Using ?4, = -2w,z, we finall y
obtain

2a;t2(1 - t_ )

where k2

	

(t, X &w) • (t, X t,) . Similarly .

_ -4(1 + •r)

k '
C•, = Lrw 1 L = -
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c, = L 1 M :7 'L = -

	

-
2c r,(l -

where k, = (t, X &w) • (t, X

3.4 Signs or ate Eigenvalues

If c is non-zero . we can transform the equatio n

(R')' 'MR' = c:

into the form

(R' )' 'M' R' = 1

using M' = (1/e)M. The lengths of' the axes are
given by the square roots of the inverse of the ab -
solute values of' the eigenvalues of M' . The type of
the surface is determined by the signs of the
eigenvalues of O.

The eigenvalues of Al' are equal to the eigen-
values of M divided by e . Le t

7L_

	

= Xu .

	

= F when c > 0
c

	

c

	

c

and

	

k o'

	

A.+ = - when c C 0
c

	

c

	

c•

We see that 7L is always negative, while k+ i s
always positive . Finally, and most importantly, 7,,
is always positive since c has the same sign a s

So M' has two positive eigenvalues and on e
negative one . This confirms our earlier conclu-
sion tbat the surface is a hyperholoid of on e
sheet. Now = X;, since X+ + X,_ - = ? , so we
conclude tha t

l

	

l

	

I
rr :,

	

a

	

rr „

where a = I/? , an = and -are the
squares of the lengths of the half-axes of th e

quadric surface . Hyperholoids of one sheet wit h
a given center and given axes form a three-

parameter family of surfaces . The above con-
straint on the semi-major axes implies that criti-
cal surfaces form a two-parameter subset of thi s
family. Only certain hyperboloids of one shee t
can be critical surfaces .

3.5 The Center Revisited

The center of the first surface is given b y

C, =

The eigenvectors of M;' are the same as the
eigenvectors of M, . while the eigenvalues of MT '
are the algebraic inverses of the eigenvalues of '
M, . So we hav e

_

	

l

	

_ 1
C,

	

- =

	

(c + L)e -,

	

(e„ • L)e „
2,1 5

-

	

(e . . L]e ._

Using the values of (e+ - L) . (e„ . L), and (e_ • L)
found earlier, we obtai n

o4l - )C, = -va,t, +

	

X

where v = [t, t, 6w] . It is possible to verify that th e
linear term i n

R'M,R+2L-R= 0

disappears wben we substitute R = C, + W. I n
this endeavor it may be helpful to note that, by
definition, M,C, = -L and tha t

Mt,X&w112=---z }

For M C, II = 0 we must have

v = It, t, 6w] = 0

and

k, = (t, X t,) (t2 X 6w) = t l

This in turn implies that Mt, X t , M = 0 or
t2 X 6w II = O. These are both special cases, to he

dealt with later, which do not involve a prope r
central quadric . We conclude that the center can -
not be at the origin . (The same conclusion can be
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reached by noting that a nonsingular quadri c
does not pass through its own center) .

3.6 Tangent Planes

A normal to the surface defined by the implici t
equation f(R) = 0 at the point Rn is given by th e
gradient off there :

N =
o f
aR R=Rn

In our case the n

N=MR„+ L

We see that at the origin N = L. Thus the norma l
to the surface where it passes through the projec -
tion center is just t, X t i (Longuet--Higgins [l5 ]
already showed that t, is tangent to the quadri c
surface .)

The tangent plane to the surface at the point R „
is given by the linear equatio n

N . R=N'R, ,

n~r

R MR + L' R = R„MR„ + L T R „

At the origin this simplifies to LTR = 0 or

[t, t, RI = 0

3.6 .1 Critical Image Line. Before we transforme d
to scene coordinates, we derived the equatio n

[t,t,rI +(rXboo)-(t,Xr)= 0

for the first critical surface . We can solve this fo r

Z, to obtai n

(r • t l )(bou - r) - (t, . bco)(r - r )

These expressions show that the depth of a criti -
cal surface is the ratio of a linear polynomial i n
image coordinates and a quadratic polynomia l
in image coordinates .

We also note that Z, = = f) when It, t, r ]
= O . The triple product It, t, rJ is linear in image
coordinates and so defines a straight line . Thi s
line connects the focus of expansion for the
first motio n

1
t , =	

k z
t ,

t

to the focus of expansion of the second motio n

t,

	

- l

	

t ,
-

	

it, . 'z

	

-

This line will here he called the critical image
line .

Note that Z 1 and Z, change sign as one crosse s
this line . The critical image line is the intersec-
tion of the image plane with the tangent plane t o
the critical surface at the origin . A ray from th e
center of the projection on one side of thi s
tangent plane will meet the critical surface i n
front of the viewer, while a ray on the other sid e
will meet the critical surface behind the viewer.

A line intersects a quadric surface in at mos t
two points (unless it is entirely embedded in th e
surface) Jl41 . Points in the image correspond to
rays through the center of projection . In our case .
the center of projection lies on the quadric sur-
face . A ray through the center of projection then
will intersect the quadric in at most one othe r
point (unless it is a ruling of the surface) . In the
case of the hyperholoid of one sheet, the ray wil l
always intersect the surlhce in exactly one othe r
point (unless it is parallel to a ruling of th e
asymptotic cone, to be discussed in the nex t
section) .

This property is reflected in the lact that the ex -
pressions for Z, and Z, are single-valued an d
defined tar all image points (except those wher e
the denominator becomes zero) . The ray may in-
tersect the surface behind the viewer or in front ,
however. That is, - 'depth" given by the formula e
for Z, and Z, may be positive or negative .

3.7 Asymprork . Cone

Suppose R = C + kR ' where R' is the direction o f
a ray from the center C . "The n

(r • t,)(boo - r) - (t, - bco)(r - r )

Similarly, For the second critical surface

Z, = -	 [t t , ..F J

Z

	

It:, t, rJ
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k~(R') TMR' = CTMC

or

(R') TMR' = elk '

If we let k

	

cc we obtai n

(R')'MR' = 0

This is the equation ofa cone. called the asymp -
totic cone . with apex at the center. Rays connect-
ing the origin to points on the hyperholoid tha t
are "infinitely far away" are parallel to lines lyin g
in the asymptotic cone .

The asymptotic cone lies inside the hypei r -
boloid of one sheet . The projection in the image
ofpoints in finitely far away on the surface are th e
points where the denominator of the expressio n
for Z becomes zero . For the first surface this oc-
curs wher e

(r ' t,)(6w ' r) - (t, - Sco)(r - r) = 0

This is a quadratic in image coordinates x and y
and so defines a conic section . This conic sectio n
is the intersection of the image plane witb th e
asymptotic cone, when the apex of the cone i s
shifted to the origin .

3.7.1 Critical Image Curve. The curve where Z_, =
co will he called the critical image curve for the first
surface. As with the critical image line, wher e
Z, O. we find that Z changes sign as we cros s
the critical image curve . The critical image line
and the critical image curve thus divide th e
image into regions of constant sign . Note that th e
critical image curves of the two surfaces in a criti -
cal surface pair do not coincide in general .

The image is divided into four types of regions :
where Z, < 0 and Z: < 0, Z_, < 0 and Z,7 0 ,
Z_, 7 0 and Z, < O . and regions where Z_, ] 0 an d
Z, 7 O. Ambiguity can only arise if the imag e
region where the motion field is known lies en-
tirely in a region where both Z, and Z, are posi-
tive . If one of them changes sign in the region . it
cannot he a valid solution .

3.8 Common Ruling

We noted earlier that the line R = kt, where

to = ((t, x t,) x bw) x (t, x t, )

lies entirely in the first surface . It also lies entirel y
in the second surface . Thus, the two surfaces in a
critical surface pair not only have a common
tangent plane at the origin. but they touch al l
along a line . Now to is perpendicular to t, X t ,
and so lies in the plane formed by t, and t,_ . It ca n
be shown. in fac t

t { , = (t, x t,) - (t, x bw)t ,

- (t, X t,) . (t, X Sw)t ,

or

to = k_t, - k,t ,

where

k,= (t,Xt,)•(t,XS® )

and

k,

	

(t,Xt,)•(t,XSw )

These formulae will prove useful later for the y
show that to becomes parallel to t, when k, = 0
and parallel to t, when k, = O .

Consider the projection of the line R = kt„ i n
the image

t0 =

	

t o
to• z

Here we just note that to lies in the plane contain-
ing t, and t, and so the projection to lines on th e
line connecting the points t, and t, . That is. thi s
point lies on the critical image line .

The critical ima ge curve of the first surface in-
tersects the critical image line at t, and t„ whil e
the critical ima ge curv e of the second surface in-
tersects the critical image line at t, and to . It can
he shown that the two critical image curv es are
tangent where they cross the critical image line a t

to.

3.9 Projections of Rulings

Every point on a doubly ruled surface lies at th e
intersection of a ruling from one set of ruling s
with a ruling from the other set . Further, eacb rul -
ing of one set of rulings of a doubly ruled surfac e
intersects all the rulings of the other set . Now th e
line R = kt, on the first surface projects into the
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single image point t, . Thus. all of the rulings tha t
intersect this line project into lines in the imag e
that pass through t, . Similarly, the line R = kt, ;
on the first surface projects into the single imag e
point f,, . Thus, all of the rulings that intersect thi s
line project into lines in the image that pas s
through to . This completes the description of th e
projection into the image of the rulings of the firs t
surface .

Similarly, one set of rulings of the second sur-
face project into lines passing through the poin t
t, while the other set of rulings project into line s
passing through the point to . We conclude tha t
the projections of one set of rulings of the firs t
surface coincide with the projections o f- one set o f
rulings of the second surface in a critical sur-
face pair .

3.10 Critical Sections

There are two families of parallel planes that cu t
an ellipsoid in circular sections . Similarly. there
are two families of parallel planes that cut a
hyperboloid of one sheet in circular sections 114] .
Any plane normal to t, satisfies a linear equatio n
of the form

R•t,= d

for some constant d . We are to determine the in-
tersection of this plane with the first surfac e

(R•t,)(bw•R)--(t,•bo?)(R•R)+I.•R=O .

The intersections will be the same as those of th e
plane and the new surfac e

d(& o' R) - (t, • boi)(R R) + L • R = t ]

since R . t, = d . The second-order terms in thi s
expression equal R • R = X' + Y' + 7_ 2 , so that
the above is the equation of a sphere 113] . The in-
tersection of a plane and a sphere is a circle . We
conclude that sections of the first surface wit h
planes perpendicular to t, are circles . Simila r
reasoning shows that sections with planes per-
pendicular to Stu are also circular .

We note that sections of the second surface
with planes whose normal is t, are circular, as are
intersections with planes whose normal is &w .
Thus, sections with planes perpendicular to &ro

have the unusual property that they cut both sur-
faces in circular sections . It can he shown that th e
circular section of the first surface is tangent t o
the circular section of the second surface where
they touch .

4 Analysis of Degenerate Cases

We started off by assuming that there exist n o
special relationships between the vectors t, . t= .
and &w. In this case, the critical surfaces were
shown to he hyperholoids of one sheet . We stil l
have to deal with a number of special cases wher e
there is no ambiguity in the motion field as wel l
as other special cases where the critical surface i s
some degenerate farm of a hyperboloid of on e
sheet .

In some of these situations, we will not be abl e
to use the general equation derived for the critica l
surface in scene coordinates since that derivation
assumed that there were no special relationships
between the vectors t i . t, . and &w. Instead, we
return to the basic equality of two motion fields :

	

((t,•i)r-t,)-

	

((t,•)r-t, )

= ]rbwilr - rxbw

4 .1 Pure Translation or Rotation Known

I t• 11&w II = t] we have

	

`t(t,•i)r-t,)-

	

((t,•i}r
Z

	

Z ,

Taking the dot-product with t, x r we obtai n

7 It,

	

r] = 0

If this is to he true for all r in some image region .
we must have t, t,, or t, = kt, . say . Then, (tarn the
first equation above, we see that I, = k7, . Thi s
confirms the well-known result that if the motio n
is known to be purely translational . the motio n
field determines the motion and the surface uni-
quely up to a scale factor .

The same applies when the rotation is known .
because then we can predict the rotational corn-
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ponent of the motion field and subtract it t o
reduce the situation to the one just discussed .

Now suppose that t, II t i . Then, if we take the
dot-product of the basic equation with t, X r
we obtai n

0 _ -(r X bw) • (t, X r )

or,

Or . r)(t, .S(o) - (r - t,)(Sw . r )

This can only hold true if ll bw V = I) (or li t, II = 0) .
Thus, t, is parallel to t, only in the case that th e
two motions have the same rotational com-
ponents (as, liar example, when they are bot h
known to he purely translational) and so we wil l
assume from now on tha t

Ht, x t,Il~ 0

4.2 Pure Rotatio n

If 1,11 = 0,we have

	

7 ((t, i)r -

	

Ir Sw 21r - r X Sw

Taking the clot-product with t, X r we obtai n
agai n

0= (rXSw)•(t,Xr )

or

(r • r)(t, .8w) = (r • t,)(Sw • r )

If this is to be true for all r in some image region,
we must have Mt, = 0 or f1 Sw II = O. We have
already dealt with the latter case . In the case tha t
Mt, 11

	

O. we hav e

Ir6wijr-rX&rc-l}

which again implies that 118w II = 0, that is, w ,
w l

This confirms the well-known result that th e
motion field uniquely determines the motion i n
the case of pure rotation . From now on, we ma y
assume that II 6w I I $ 0 , I I it, III O. and IIt,II ~ O .

4.3 Elliptic Con e

When k, = 0, where

k,=(t2xSw)•(t,xt, )

that is, when the plane containing t, and Sw i s
orthogonal to the plane containing t, and t l • w e
obtain an elliptic cone, This is because the con-
stant term c, = -(k /2ot (l - z;)) in the equa-
tion

(R')'MR' = c l

becomes zero. Of' course, k, is zero whe n

II t, X t i I = I) or Mt, X Sw = 0, but we have al -
ready dealt with these special cases . Another spe -
cial case is the one where & is actually parallel t o
t, X t i . In this case, the elliptic cone degenerate s
into two intersecting planes . as we show in detai l
later . Other special cases can be studied by ex-
panding k, to yield

k, = (t, • t,)(Sw t,) - (t, t,)(Sw • t, )

Since k, = 0, the center may he found at C ,
where

620 - 7,)C, _ -Vt ,

where a =t, &c, as always. This is not surpris -
ing since all rulings pass through the center an d
we know that R = kt, is a ruling .

Note that a critical surface cannot be a circular
cone, because that would require that two of th e
eigenvalues were equal with the third of opposit e
sign and nonzero . This cannot happen whe n
h_ + 7~ + = 7c t ,. We note that a critical surface can -
not he an arbitrary elliptic cone since there is a
constraint on the length of the axes .

The elliptic cone is a central, but improper ,
quadric. It can he thought of as a degenerate
hyperboloid of one sheet obtained by shrinkin g
all of the semi-axes in such a way that thei r
ratios are maintained . The two sets of ruling s
collapse into one . since t„ becomes parallel to t 2
when k, = 0 ,

4,4 Hyperbolic l'aruholoic!

Consider now the equatio n

(R ' t,)(Sw . R) - (t-, Sw)(R . R )

+(t,xt,) .R=0
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for the first critical surface . Suppose that t, Sw
= 0, then the equation becomes just

(R•t,)(Sw•R)+(t,Xt1)•R= 0

since the term in (t , • Sw)(R . R) drops out . We
have Z, = 0 and hence ?, = () with A.+ =

	

and
_ -6, The degenerate surface we are dealin g

with here does not have a center. It is a hyper-
bolic paraboloid with equal axes, Any sectio n
with a plane perpendicular to t, X 6w will yiel d
a hyperbola .

Similarly, if t, . Sw = 0. we find that the second
critical surface degenerates into a hyperboli c
paraboloid . We may note that in these cases th e
formula for7. as a function ofx andy factors s o
that it is a ratio of a Iinear polynomial in x and y
and a product of two linear polynomials .

A hyperbolic paraboloid is doubly ruled . Th e
lines in each of the two sets of rulings are paralle l
to a given plane [141 . We can verify this by inter-
secting the hyperbolic paraboloid first wit h
planes orthogonal to t,, given b y

R . t,= d

The intersection of this plane and the hyperboli c
paraboloid is the intersection of the plane an d
the new surface ,

d(bw R) + (t, X t,)- R = 0

since R . t, = d . But this is the equation ofa plane ,
and two planes intersect in a line . Thus. all inter -
sections with planes orthogonal to t, are rulings .
Similarly . we find that all intersections wit h
planes orthogonal to Sw are rulings .

The Iines of intersection can be thought of a s
circles with infinite radius and correspond in thi s
way with the circular sections we obtained in th e
case of the hyperholoid of one sheet . The hyper-
bolic paraboloid is a proper quadric, but not cen-
tral . While there is not a center, there is one dis-
tinguished point on its surface, the saddle point ,
which we shall find next .

4.4.1 Saddle Point. If t, • Sw = 0, then t 2 , Sw, and
t, X Sw are orthogonal to one another . Two of th e
axes of the quadric surface lie in tbe plane con-
tainingt, and Sw. Shifting the origin to the saddl e
point S will make the linear term proportional to
(t, X Sw) • R . It can he shown (tediously) that th e
saddle-point for the first surface is at

S ,= - U t ,
6 .

by substituting R = S, + R ' . The equation of the
surface then has the for m

(H' • t,)(Sw - R') + k; (t, X Sw) • H = t )
a

In proving this result. it is useful to note tha t
when (, • Sw = 0 ,

X t,) - i t, II ' Sw + k,(t, X Sw )

We note that the saddle point is imaged at th e
focus of expansion t, .

4 .5 Intersecting Planes

Now consider the special case when both t , . Sw
= () and t • Sw = 0 . In fact, let Sw = kt, X t .'l'hen .
the equation for the first surface become s

k(R . t,)jt, t, R1 - It, t, RI = I )

since the term (t, • Sw)(R • H) drops out . We can
rewrite this in the firm

((R

	

+ 1)[t, t [

	

= ()

So either 1t 2 t i R] = 0 or k(R • t,) + I = 0. The firs t
equation defines a plane passing through th e
origin which projects into the image as a line .
The second equation defines a plane with nor-
mal t, with perpendicular distance 1/(k j[ t, M )

from the origin .
Similarly, the equation fir the second critica l

surface yields the intersecting planes jt, t, Rj = 0
and k(R • t i ) + 1 = O . This is the celebrated cas e
of the dual planar solution 13 .4 .51 . if we ignore the
plane It, t, RI = 0 . which projects into a line, we
find that the plane with normal kt, and motio n
;t,, w,1 yields the same motion field as the plane
with normal kt, and motion ;t,, o), + kt, X t,j .

It is interesting to note that the critical imag e
curve here degenerates into two intersectin g
lines, one of which coincides with the critica l
image line . As a result . Z does not change sign ac-
ross the critical image line in this special case .
The expressions for depth as a function of imag e
coordinates x and y simplify to

7,=-

	

and 7_,=- -- 1
k(r (2)

	

k(r t,)
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since the other linear term . It, t, r], cancels . Note
that if one of the critical surfaces consists of a
pair of intersecting planes, so does the other (see
also Maybank [I1]) .

4.6 Circular Cylinder

Consider the case when Ilt, X 8w II = 0, that is ,
when t, II Sw. We have either z = +1 and A.., = 0 ,
74, =

	

= -2a or t = -l and X, } = 2a ,
2a, X_ = O. In this case, we have two equa l

eigenvalues . The surface is a cylinder as we
show next.

If t . = k6 o), the equation of the surface
becomes

k II R X Sw112+ klbw t, RJ = 0

where we can cancel the constant k immediately .
By moving the origin to a point A on the axis o f
the cylinder, we should be able to remove the
linear term . It can he shown tha t

A=-

	

l

	

,(bwXt, )
2118w 1 1

is such a point-actually the one closest to th e
origin . Let R = A + R', The n

II R X Swll 2 - II R' x b0 11 =

-taco t,R'I+HAX8w11 2

and

I1Axswll

	

Ilbwxt,ll =
4118(01 1

whil e

[s(0t, RI =I8wt R'J- IIb(0xtII
211bw11 '

The equation of the surface tbus become s

IIR'X6(011 = IISwHt,l1 2
4 IISw11 2

the equation of' a cylinder with axis in the direc-
tion bw through the point A and with radiu s
flow X t, 111(2 fI bw 11). This follows from the fac t
that the length of the vector

is the same as that of the vector connecting R ' t o
the nearest point on the axis along the direc-
tion Sw .

4 .7 Remaining Special Cases

Nothing particularly interesting happens whe n
t, t2 - 0, so we need not have included the con-
straint t, - t, # 0 in our initial list .

When It, t, 6w] - O. that is, when bw is co-
planar with t, and t,, some simplification occurs .
For example ,

to = I t,Xt,11 2

and

u 2 (1 - z;)C, = k -- t, X &02
26,t ,

in this case . But nothing else of great note occurs .
We are left with a number of multiple degen-

eracies leading to "solutions" involving only line s
or points and so of no real interest .

5 An Example

Suppose that we are given the motions It,, co l ! and
t2, w21, where

t, = 9(0,
0, 1)' .

t, = (0, 4, 5)'

an d

ra, - w, = (0 . -4, 5) T

and are to construct two surfaces that yield th e
same motion field . Now

R, X bw = (5Y+ 4Z, -5X, -4X) T

whil e

t, X R, = (-5Y + 4Z, +5X, -4X) '

so

(R, x 8w) • (t, X R,) - -(3K) 2 - (5Y) 2

+ (4Z) 2

R' X 6o.)

II 8w II Its t, R,[ - 36 X

Also
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so the equation of one of the critical surfaces i s

-(3X)2-(5Y)'+(4Z)2+36X= 0

Thus one of the critical surfaces has cente r
(2, 0, Of and principal axes parallel to those of
the coordinate system . This hyperboloid i s
"open" in the direction of the Z-axis . Tbe length s
of the principal axes are 2, (6/5), and (3/2) .
Note tha t

(1)2
+ ( 23)2= (5) 2

Now

R, X Sw = (5Y + 4Z, -5X, -4X)'

while

t, x R, = 9(-Y,X, 0) r

which, for surface Z,, yields

9x 2 +35y2 - 16
(r-t,)+ [r w,2Jr-rXw ,

4x

and, for surface Z2 :

5x 2 +5y 2 +4y(5r-t2)+ [rw,i]r-rXw ,
4x

+ [r 6w2Ir-rXSw

Thus, ignoring the common term Ir w, 2] r
- rXw,,wehave

9x 2 + 25v' - i 6
4

9x-' + 25y2- 1 6
4x

and

u ,

U ,

So

(R, X Sw) • (t, X R,)
5x 2 +5y'+4y +(-4x }x-(5y+4)u,= 5

	

4

= -9(5Y2 + 4YZ + 5X2 )

whil e

It, t, R,] = 36X

So the equation of the other critical surface i s

(5Y2 +4YZ+5X'-)-4X= 0

or

4V41(5X - 2)2 + 5((f-4-1-(( 41 + 5)Y + 4Z) 2

- 5((V-4-1-(( 41 - 5)Y - 4Z) 2 = 16 4 1

This critical surface has center (2/5, 0, 0 ) r with
principal axes in the directions (1, 0, 0) T ,
(0, /41 + 5, 4) T , and (0, \/Tl - 5, -4)r .

Substituting X = xZ and Y = yZ into the equa -
tion of the first surface we fin d

36x
Z

__
9x 2 +25y'- 1 6

while the equation of the second surface yield s

4x
Z, 5x 2 + 5y' + 4y

Now

r,= +((t)r t) + [rw]r- r >( w

= u ,

Sx ' + 5y2+4y
(5y-4)+(-4x)y+5x

4x

The critical image line is given by [t, t, r] = 0 ,
which here isx = 0 . The critical image curves are
9x2 +25y'- 16=0forZ,andSx 2 +5y 2 +4y= 0
for Z, . These can also he writte n

14/3

	

/' + (4/ 5
	 )

- 1

and

(	
2 /
x	

5
	

)'
+ (3 2/

5
2/5 ) 2

/515

)
=

The first of these curves passes through the focu s
of expansion t, = (0,4/5,1)r, while the secon d
passes through the focus of expansion t, =
(0, 0, 1 ) T. Both intersect the critical image line a t
t a = (0, -4/5, l )T.

6 Gefahrliche Flache n

Before a stereo pair can be used to recover sur -
face topography, one has to determine the rela-
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tionship between coordinate systems fixed in th e
two cameras at the time of exposure . The relative
orientation of the cameras can he found from the
coordinates of the images of five (or more) points
116, 17, ISJ . There is no closed-form solution o f
the relative orientation problem (as yet) . so itera-
tive numerical methods are used in practice .

The problem of recovering rigid body motio n
from the (estimated) motion fields is related t o
that of recovering the transformation from on e
camera position to the other in binocular stereo .
The difference is that in motion vision on e
usually deals with infinitesimal motions and s o
can use a vector to represent rotation . while i n
binocular stereo the translations and rotation s
are finite and an ortbonormal matrix (or uni t
quaternion) is needed to represent rotation . Itera-
tive schemes for solving the relative orientatio n
problem essentially linearize the problem by re-
stricting adjustments of the relative position an d
orientation of the cameras to infinitesimal quan-
tities . Thus the incremental adjustment in rela-
tive orientation is closely related to the proble m
of recovering camera motion . We expect the n
that the problem of relative orientation cannot b e
solved when the given points happen to lie on a
critical surface . (Also . we might expect that the
relative orientation cannot be found accuratel y
when the points lie near such a surface . )

Surfaces that lead to difficulties in recoverin g
the relative orientation have been studied i n
stereo-photogrammetry and are called Gefcihr-
liche Mellen [19, 201 . This term, although
usually translated as critical surfaces 117, 181, ac-
tually means dangerous surfaces . It is because o f
the relationship between the motion vision and
binocular stereo problems that I borrowed th e
term critical surface for the discussion bere .

7 Conclusion s

i have shown that only certain hyperboloids o f
one sheet and their degenerate forms can giv e
rise to ambiguous motion fields . These specia l
hyperboloids have to be viewed from a point o n
their surface . Also, even these surfaces lead t o
motion fields that are ambiguous only when at-
tention is confined to certain image regions. In

general, the motion vision problem is no t
ambiguous .
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