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A method lor the determination of lightness from image intensity is presented. For 
certain classes ot images, lightness corresponds to reflectance, while image intensity is 
the product of reflectance and illumination intensity. The method is two-dimensional 
and depends on the different spatial distribution of these two components of image in
tensity. Such a lightness-judging process is required for Land's retinex theory of color 
vision. A number of physical models are developed and computer simulation of the 
process is demonstrated. This work should be of interest to designers of image pro
cessing hardward, cognitive psychologists dealing with the human visual system and 
neurophysiologists concerned with the function of structures in the primate retina. 

LIGHTNESS: DEFINITION 

"The relative degree to which an ohject reflects light." 
The Random House Dictionary 

"The attrihute of" ohject colors by which the object appears to reflect or 
transmit more or less of the incident light." 

Webster's Seventh New Collegiate Dictionary 

1. REVIEW 

1.1. Theories of Color Perception 

There has always been great interest in how we perceive colors and 
numerous explanations have been forwarded [1-6]. A selection of some of 
the early works on this subject can be found in [7]. The human perceptual 
apparatus is remarkably successful in coping with large variations in illumi
nation. The colors we perceive are closely correlated with the surface colors 
of the objects viewed, despite large temporal and spatial differences in color 
and intensity of the incident light. This is surprising since we cannot sense 
reflectance directly. 

The light intensity at a point in the image is the product of the reflectance 
at the corresponding object point and the intensity of illumination at that 
point, aside from a constant factor that depends on the optical arrangement. 
There must then be some difference between these two components of 
image intensity which allows us to discount the effect of one. The two com
ponents differ in their spatial distribution. Incident light intensity will 
usually vary smoothly, with no discontinuities, while reflectance will have 
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sharp discontinuities at edges where objects adjoin. The reflectance is rela
tively constant between such edges. 

1.1.1. Tristiinulus Theory 

Some facts about how we see color are fairly well established. It appears 
that we have three kinds of sensors (operating in bright illumination), with 
peak sensitivities in different parts of the visible spectrum. This is why it 
bikes exactly three colors in additive mixture to match an unknown color. 
While it is difficult to determine the sensitivity curves of the three sensors 
directly, a linear transform of these curves has been known accurately for 
some time [8]. These curves, called the standard observer curves, are suf
ficient to allow one to predict color matches made by subjects with normal 
color vision [9]. 

The simplest theory of color perception then amounts to locally comparing 
the outputs of three such sensors and assigning color on this basis [3,5]. 
This, however, totally fails to explain the observed color constancy. Perceived 
color does not depend directly on the relative amounts of light measured by 
the three sensors [10,11], 

1.1.2. Color Conversion 

A number of attempts have been made to patch up this theory under the 
rubrics of "discounting of the illuminant," "contrast effect adjustment," and 
"adaptation." The more complicated theories are based on models with large 
numbers of parameters which are adjusted according to empirical data 
[12-16]. These theories are at least partially effective in predicting human 
color perception when applied to simple arrangements of stimuli similar to 
those used in determining the parameters. 

The parameters depend strongly on the data and slight experimental varia
tions will produce large fluctuations in them. This phenomenon is a familiar 
one to the numerical analyst and is expected whenever functions of many 
parameters are fitted to data. These theories are lacking in parsimony and 
convincing physiological counterparts. Lettvin has demonstrated the hope
lessness of trying to find fixed transformations from locally compared outputs 
of sensors to perceived color [11]. 

1.2 Land's Retinex Theory 

Another theory of color perception is embodied in Land's retinex model 
[10,17,18]. Land proposes that the three sets of sensors are not connected 
locally, but instead are treated as if they represent points on three separate 
images. Processing is performed on each such image separately to remove 
the component of intensity due to illumination gradient. Such processing is 
not merely an added frill but is indispensible to color perception in the face 
of the variability of illumination. 

1.2.1. Lightness Judging 

In essence a judge of lightness processes each image. Lightness is the per
ceptual quantity closely correlated with surface reflectance. Only after this 
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process can the three images be compared to reliably determine colors 
locally. It remains to mechanize this process. It would appeal to intuition if 
this process could be carried out in a parallel fashion that does not depend 
on previous knowledge of the scene viewed. This is because colors are so 
immediate, and seldom depend on one's interpretation of the scene. Colors 
will be seen even when the picture makes no sense in terms of previous 
experience. Also, color is seen at every point in an image. 

1.2.2. Miniworld of Mondrians 

In developing and explaining his theory Land needed to postpone dealing 
with the full complexity of arbitrary scenes. He selected a particular class of 
objects as inputs, modelled after the paintings of the turn-of-the-century 
Dutch artist Pieter Cornelis Mondrian. These scenes are flat areas divided 
into subregions of uniform matte color. Problems such as those occasioned 
by shadows and specular reflection are avoided in this way. One also avoids 
shading; that is, the variation in reflectance with the orientation of the sur
face with respect to the sensor and the light-source [19]. For Mondrians, 
lightness is considered to be a function of reflectance. 

Mondrians are usually made of polygonal regions with straight sides; for 
the development here, however, the edges may be curved. In the world of 
Mondrians the reflectance has sharp discontinuities wherever regions meet 
and is constant inside each region. The illumination, on the other hand, 
varies smoothly over the image. 

1.3. Why Study the One-Dimensional Case? 

Images are two-dimensional and usually sampled at discrete points. For 
historic reasons and intuitive simplicity the results will first be developed in 
one dimension, that is with functions of one variable. Similarly, continuous 
functions will be used at first since they allow a cleaner separation of the two 
components of image intensity and illustrate more clearly the concepts in
volved. 

Use will be made of analogies between the one-dimensional and two-
dimensional cases as well as the continuous and discrete ones. The final 
process discussed for processing image intensities is two-dimensional and 
discrete. A number of physical implementations for this scheme are 
suggested. The process will be looked at from a number of points of view: 
partial differential equations, linear systems, Fourier transforms and convo
lutions, difference equations, iterative solutions, feed-back schemes and 
physical models. 

1.3.1. Notation 

The following notation will be used. 

s': intensity of incident illumination at a point on the object 
r'\ reflectance at a point on the object 
p': intensity at an image point; product of s' and r' 
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s, r, /;: Logarithms of*', r' and ; / , respectively 

d: result of applying forward or differencing operator to /; 
t: result of applying threshold operator to d 
I: result of applying inverse or summing operator to t 

D: simple derivative operator in one dimension 
T: continuous threshold operator, discards finite part 
I: simple integration operator in one dimension 
L: laplacian operator-sum of second partial derivatives 
G: inverse of the Laplacian, convolution with (1/2-77-) log,,(l/r) 

D*, T*, /*, L* and G*: discrete analogues of D, T, I, L, and G 

The output / will not be called lightness since there is probably not yet a 
generally accepted definition of this term. It is, however, intended to be 
monotonically related to lightness. Note that / is related to the logarithm of 
reflectance, while the perceptual quantity is perhaps more closely related to 
the square root of reflectance. 

1.4 One-Dimensional Method-Continuous Case 

Land invented a simple method for separating the image components in 
one dimension. First one takes logarithms to convert the product into a sum. 
This is followed by differentiation. The derivative will be the sum of the 
derivatives of the two components. The edges will produce sharp pulses of 
area proportional to the intensity steps between regions, while the spatial 

l(x| 

lrIG. 1. Processing steps in the one-dimensional continuous case 
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variation of illumination will produce only finite values everywhere. Now if 
one discards all finite values, one is left with the pulses and hence the 
derivative of lightness. Finally one undoes the differentiation by simple in
tegration. 

1.4.1. One-Dimensional Continuous Method: Details 

We have the following: Let r'(x) be the reflectance of the object at the 
point corresponding to the image point x. Let s'(x) be the intensity at this 
object point. Let p' (x) be their product, that is, the intensity recorded in the 
image at point x, Note that s' (x) and r'(x) are positive. 

p'(x)=s'(x) * r ' ( x ) . 

Now let p(x) be the logarithm of p' (x) and so on. 

p(x) = s(x) + r(x). 

Note that s(x) is continuous and that r(x) has some finite discontinuities. Let 
D represent differentiation with respect to x. 

d(x) =D(p(x)) =D(s(x)) +D(r(x)). 

Now D(s(x)) will be finite everywhere, while D(r(x)) will be zero 
aside from a number of pulses which carry all the information. Each pulse 
will correspond to an edge between regions and have area proportional to 
the intensity step. If now one "thresholds" and discards all finite parts, 
one gets 

t(x) = T(D(p(x)))=D(r(x)). 

To obtain r(x) one only has to invert the differentiation, that is, integrate. 
Let / represent integration widi respect to x, then ( /)" ' = D and 

I(x)=I(T(D(p(x))))=r(x)+c. 

One can give a convolutional interpretation to the above, since differentia
tion corresponds to convolution with a pulse-pair, one negative and one pos
itive, each of unit size. Integration corresponds to convolution with the unit-
step function. 

1.4.2. Normalization 

The result is not unique because of the constant introduced by the integra
tion. The zero (spatial) frequency term has been lost in the differentiation, so 
cannot be reconstructed. This is related to the fact that one does not know 
the overall level of illumination and hence cannot tell whether an object ap
pears dark because it is grey or because the level of illumination is low. 

One can normalize the result if one assumes that there are no light sources 
in the field of view and no fluorescent colors or specular reflections. This is 
certainly the case for the Mondrians. Perhaps the best way of normalizing 
the result is to simply assume that the highest value of lightness corresponds 
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to white, or total reflectance in the lambertian sense. This normalization will 
lead one astray if the image does not contain a region corresponding to a 
white patch in the scene, but this is the best one can do. Other normalization 
techniques might involve adjusting weighted local averages, but this would 
then no longer amount to reconstruction of reflectance. 

1.5. One-Dimensional Method-Discrete Case 

So far we have assumed that the image intensity was a continuous function. 
In retinas found in animals or artificial ones constructed out of discrete com
ponents, images are only sampled at discrete points. So one has to find 
discrete analogues for the operations we have been using. Perhaps the 
simplest are first differences and summation as analogues of differentiation 
and integration respectively. This is not to say that other approximations 
could not be used equally well. 

To use the new operators, one goes through essentially the same process 
as before, except that now all values in the differenced image are finite. This 
has the effect of forcing one to choose a threshold for the thresholding func
tion. Both components of image intensity produce finite values after the dif
ferencing operation. The component due to the edges in the reflectance is 
hopefully quite large compared to that due to illumination gradient. One has 
to find a level that will suppress the illumination gradient inside regions, 
while permitting the effects due to edges to remain, 

1.5.1. One-Dimensional Discrete Method: Details 

Let r'j be the reflectance of the object at the point corresponding to the 
image point i. Let .s', be the incident light intensity at this object point. Let 
p'i be their product, that is, the intensity in the image at point i. 

P'i = s'i * r'{. 

Now let pt be the logarithm of p'h and so on. Let D * and / * be the operators 
corresponding to taking first differences and summation respectively. Note 
that ( I* ) - ' = D*. 

Pi = Si + r„ 
di = Vi , -p, (d = D*(p)), 
ti = dj if Idjl > e, else 0, 

*» = £**• (l = i*(t)). 

1.5.2. Selecting the Threshold 

How shall we select the threshold? It must be smaller than the smallest in
tensity step between regions. It must on the other hand be larger than values 
produced by first differencing the maximum illumination gradients. Real 
images are noisy and the threshold should be large enough to eliminate this 
noise inside regions. 
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Fir;. 2. Processing steps in the one-dimensional discrete case. 

The spacing of the sensor cells must also be taken into account. As this 
spacing becomes smaller, the contribution due to illumination gradients 
decreases, while the component due to the edges remains constant. A limit 
is reached when the component due to illumination gradients falls below 
that due to noise or when the optical properties of the imaging system begin 
to have a deleterious effect. In all imaging systems an edge is spread over a 
finite distance due to diffraction and uncorrected abberations. The spacing of 
sensors should not be much smaller than this distance to avoid reducing the 
component due to edges in the differenced image. 

Let u be the radius of the point-spread-function of the optical system and h 
the spacing of the sensor cells. Let g' be the smallest step in the logarithm of 
reflectance in the scene. Then define the effective minimum step (in p) as 

g = g' * min( l , h/2u). 

Let a be the largest slope due to illumination gradient and a the root-
mean-square noise-amplitude. The noise will exceed a value 3a only 0.3% of 
the time. Choose the threshold e as follows. 

e < g, 
e > a h, 

e > 3V2 o-. 

1.5.3. Accuracy of the Reconstruction 

In the continuous case one can exactly reconstruct the reflectance, aside 
from a constant. We are not so fortunate here, even if we select a threshold 
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according to the above criteria. This is because the values at the edges con
tain small contributions due to illumination gradient and noise. A slight inac
curacy in the reconstruction will result. This error is minimized by making 
the sensor-cell spacing very fine, optimally of a size commensurate with the 
optical resolution of the device. The effect of noise can also be minimized by 
integrating over time. 

Note that the reconstruction is more accurate when there are few edges, 
since it is at the edges that the error effects appear. With many edges the 
illumination gradient begins to "show through." 

1.5.4. Generalizations 

So far we have dealt with constant sensor spacing. Clearly as long as the 
same spacing is used for both the differencing and the summing, the cell 
spacing can be arbitrary and has little effect on the reconstruction since it 
does not enter into the equations. 

Similarly we have chosen first differences as the discrete analogue for dif
ferentiation. We could have chosen some other weighted difference and 
developed a suitable inverse for it. This inverse of course would no longer 
be summation, but can be readily obtained using techniques developed for 
dealing with difference equations [20,21]. 

1.5.5. Physical Models of the One-Dimensional Discrete Process 

One can invent a number of physical models of the above operations. A 
simple resistive network will do for the summation process, for example. 
Land has implemented a small circular "retina" with about 16 sensors [18]. 
This model employs electronic components to perform the operations of 
taking logarithms, differencing, thresholding, and summing. 

Land has tried to extend his one-dimensional method to images, by cover
ing the image with paths produced by a random-walk procedure and apply
ing methods like the above to each of these paths. While this produces 
results, it seems unsatisfactory from the point of view of suggesting possible 
neurophysiological structures; neither does it lend itself to efficient imple
mentation. 

Methods depending on nonlinear processing of the gradient along paths in 
the image fail to smoothly generalize to two dimensions, and do not predict 
the appearance of images in which different paths result in different light
nesses. 

2. LIGHTNESS IN TWO-DIMENSIONAL IMAGES 

2.1. Two-Dimensional Method-Continuous Case 

We need to extend our ideas to two dimensions in order to deal with 
actual images. There are a number of ways of arriving at the process to be 
described here, we shall follow the simplest [22]. One needs to find two-
dimensional analogues to differentiation and integration. The first partial 
derivatives are directional and thus unsuitable since they will, for example, 
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completely eliminate evidence of edges running in a direction parallel to 
their direction of differentiation. Exploring the partial derivatives and their 
linear combinations one finds that the laplacian operator is the lowest order 
combination that is isotropic, or rotationally symmetric. The laplacian opera
tor is, of course, the sum of the second partial derivatives. 

2.1.1. Applying the Laplacian to a Mondrian 

Before investigating the invertibility of this operator, let us see what 
happens when one applies it to the image of a Mondrian. Inside any region 
one will obtain a finite value due to the variation in illumination intensity. 
At each edge one will get a pulse pair, one positive and one negative. The 
size of each pulse will be equal to the intensity step. 

This can best be seen by considering the first derivative of a step, namely 
a single pulse. If this is differentiated again, one obtains a doubled pulse as 
described. Since this pulse will extend along the edge, one may think of it as 
a pulse-wall. So each edge separating regions will produce a doubled pulse-
wall. It is clear that one can once again separate the component due to 
reflectance and illumination simply by discarding all finite parts. 

2.1.2. Inverse of the Laplacian Operator 

To complete the task at hand one then has to find a process for undoing 
the effect of applying the laplacian. Again there are a number of approaches 
to this problem, we will use the shortest [22]. In essence one has to solve for 
p(x,y) in a partial differential equation of the form 

L(p(x,y)) =d(x,y). 

This is Poisson's equation, and it is usually solved inside a bounded region 
using Green's function [21]. 

P(x,y) = II G(f,Tj;*,{/) d(f,Tj) d$ dv. 

The form of Green's function G, depends on the shape of the region bound
ary. If the retina is infinite all points are treated similarly and Green's func
tion depends only on two parameters, (£ — x) and (TJ — ij). This positional in
dependence implies that the above integral simply becomes a convolution. 
It can be shown that Green's function for this case is: 

G ( f , T j ; * , y ) = (1/277) l o g „ ( l / r ) , 

KlC 3. Applying the laplacian operator to the image of a Mondrian figure. 
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Where 

r*=(t-xy+(v-yy. 
So 

P(x,y) = SS U/277) loge(l/r) d(f,i») d£ dv. 

Thus the inverse of the laplacian operator is simply convolution with (l/27r) 
log (J(l/r). To be precise one has 

(~£r + jp) jj (1/2TT) log„(l/r) d(Z,v) d{dV = d(x,y). 

This is a two-dimensional analogue of 

2.1.3. Why One Can Use the Convolutional Inverse 

If the retina is considered infinite one can express the inverse as a simple 
convolution. If the retina is finite, on the other hand one has to use the more 
complicated Green's function formulation. 

Now consider a scene on a uniform background and assume that the image 
of the scene is totally contained within the retina. The result of applying the 
forward transform and thresholding will be zero in the area of the uniform 
background. The convolutional inverse will therefore receive no contribu
tion from outside the retina. As a result one can use the convolutional form 
of the inverse provided the image of the scene is totally contained within the 
retina. 

2.1.4. Normalization 

Once again one finds that the reconstructed reflectance is not unique. That 
is, any nonsingular solution of L(p(x,y)) = 0 can be added to the input 
without affecting the result. On the infinite plane such solutions have the 
form p(x,y) = (ax + by + c). If the scene only occupies a finite region of 
space it can be further shown that the solution will be unique up to a con
stant and that one does not have to take account of possible slopes. To be 
specific, the background around the scene will be constant in the reconstruc
tion. So one has here exactly the same normalization problem as in the one-
dimensional case. Calling the region with highest numerical value white ap
pears to be a reasonable method. 

2.1.5. Two-Dimensional Continuous Method: Details 

Let r'(x,y) be the reflectance of the object at the point corresponding to 
the image point (x,y). Let s'(x,y) be the source intensity at that object point. 
Let p'(x,y) be their product, that is, the intensity at the image point (x,y). 
Note that r'(x,y) and s'(x,y) are positive. 

p'(x,y) =s'(x,y) * r'(x,y). 
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Let p(x,y) be the logarithm of p' (x,y) and so on: 

p{x,y) = s(x,y) + r(x,y). 

Now assume that s(x,y) and its first partial derivatives are continuous, a rea
sonable assumption to make for the distribution of illumination on the ob
ject. Let L be the laplacian operator. 

d(x,y) =L(p(x,y)) = L(s(x,y)) + L(r(x,y)). 

Now L{s(x,y)) will be finite everywhere, while L(r(x,y)) will be zero ex
cept at each edge separating regions, where one will find a double pulse 
wall as described. Now discard all finite parts 

t(x,y) =T(L(p(x,y))) =L(r(x,y)). 

Let G be the operator corresponding to convolution by (1I2TT) log,.(l/r). Note 
that (G)~l=L. 

l(x,y) = G(T(L(p(x,y)))) = r(x,y) + c. 

2.2. Tivo-Dimensional Method-Discrete Case 

Once again we turn from a continuous image to one sampled at discrete 
points. First we will have to decide on a tesselation of the image plane. 

2.2.1. Tesselation of the Image Plane 

For regular tesselations the choice is between triangular, square, and hex
agonal unit cells. In much past work on image processing, square tessela
tions have been used for the obvious reasons. This particular tesselation of 
the image has a number of disadvantages. Each cell has two kinds of 
neighbors, four adjoining the sides, four on the corners. This results in a 
number of asymmetries. It makes it difficult, for example, to find convenient 
difference schemes approximating the laplacian operator with low error 
term. 

Triangular unit cells are even worse in that they have three kinds of 
neighbors, compounded these drawbacks. Note also that near-circular ob
jects pack tightest in a pattern with hexagonal cells. For these reasons we 
will use a hexagonal unit cell. It should be kept in mind however that it is 
easy to develop equivalent results using different tesselations. 

2.2.2. Discrete Analogue of the Laplacian 

Having decided on the tesselation we need now to find a discrete ana
logue of the laplacian operator. Convolution with a central positive value 
and a rotationally symmetric negative surround of equal weight is one possi
bility. Aside from a negative scale factor, this will approach application of 
the Laplacian in the limit as the cell size tends to zero. 

If one were to use complicated surrounds, the trade-offs between accuracy 
and resolution would suggest using a negative surround that decreases rap
idly outward. For the sake of simplicity we will choose convolution with a 



288 BERTHOLD K. P. HORN 

central cell of weight one, surrounded by six cells of weight—V. This function 
is convenient, symmetric, and has a small error term. It is equal to 
—(/r/4)L— (/r764)L- plus sixth- and higher-order derivatives [20]. It should 
again be pointed out that similar results can be developed for different func
tions. 

2.2.3. Inverse of the Discrete Operator 

The forward differencing operator has the form 

Where p y is the logarithm of image intensity, it;,, are vveiglits, wliich in our 
case are i, and the sum is taken over the six immediate neighbors. 

We now have to determine the inverse operation that recovers /;,, from J0. 
One approach is to try and solve the difference equation of the form 

Pa ~ 2 «Vi./-j Pki = d„. 

Or in matrix form: IV p = d. Note that W is sparse, having l's on the diagonal 
and —£'s scattered around. For a finite retina with n sensor cells one has to 
introduce boundary conditions to ensure that one has as many equations as 
there are unknowns One then simply inverts the matrix W and gets: 
p = W-' d. 

This is entirely analogous to the solution in the continuous case for a finite 
retina. W~' corresponds to the Green's function. Much as Green's function 
has a large "support," that is, is nonzero over a large area, so W ' is not 
sparse. This implies that a lot of computation is needed to perform the in
verse operation. 

2.2.4. Computational Effort and Simplification 

Solving the difference equations for a given image by simple Gauss-
Jordan elimination requires of the order of n"'/2 arithmetic operations. An-

F i c 4a. A discrete analogue of the laplaeian operator. 

FIG. 4b. Delta function minus this discrete analogue. 
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other approach is to invert W once and for all for a given retina. For each 
image then one needs only about n2 arithmetic operations. Note that the 
other operations, such as forward differencing, require only about 6n arith
metic operations. 

What in effect is happening is that each point in the output depends on 
each point in the differenced image. Both have n points, so n- operations are 
involved. Not only does one have to do a great deal of computation, but must 
also store up the matrix W~' of size n2. This is quite prohibitive for even a 
small retina. 

This latter problem can be avoided if one remembers the simplification at
tendant to the use of an infinite retina in the continuous case. There we found 
that the integral with Green's function simplified into a convolution. Simi
larly, if one assumes an infinite retina here, one finds that W and its inverse 
become very regular. The rows in W are then all the same and the same is 
true of W~'. Each value in the output depends in the same way on the neigh
boring points in the differenced image. For this simple convolutional opera
tion one need only store up the dependence of one point on its neighbors. 

The only remaining difficulty is that W is now infinite and one can no 
longer invert it numerically; one has to find an analytical expression for the 
inverse. I have not been able to find this inverse exactly. A good first approx
imation is log6(r()/r) —except for r = 0, when one uses 1 + logfi(/'(,). Here r is 
the distance from the origin and r0 is arbitrary. The remainder left over when 
one applies the forward difference scheme to this approximation lies 
between logfi(l + r " ) and log(i(l — r_l i). This error term is of the order of r~". 

In practice one does not have an infinite retina, but as has been explained 
for the continuous case, one can use the convolutional method described 
above for a finite retina, provided that the image of the scene is wholly con
tained within the retina. It is possible to find an accurate inverse of this kind 
valid for a limited retinal size by numerical means. 

2.2.5. Two-Dimensional Discrete Method: Details 

Let r'jj be the reflectance at the object point corresponding to the image 
point (i,j). Let s'u be the intensity of the incident light at this object point. 
Let p'jj be the intensity in the image at point (i,j). 

V'u = s'u * r'ij. 

Let Pij be the logarithm of p' Vl and so on. Let L* be the operator that corre
sponds to convolution with the analogue of the Laplacian. Let G * be its in
verse. 

Pu = ••>•;., + '•,> 
d» = Pu - ZiVk-u-j pkl (d = L*(p)). 

The weights wu are i in this case, and the sum is taken over the six immedi
ate neighbors. 

tu = djj if \djj\ > e, else 0, 
lu = SUA-U-J tkl (/ = G *(*)). 
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Here the sum extends over the whole retina and vu is the convolutional in
verse found numerically as explained above. 

2.2.6. Simplicity of the Inverse 

The forward transform, involving only a simple subtraction of immediate 
neighbors, is clearly a rapid, local operation. The inverse on the other hand 
is global, since each point in the output depends on each point in the dif
ferenced image. Computationally this makes the inverse slow. The inverse is 
simple in one sense, however: The difference equations being solved by the 
inverse have the same form as the equations used for the forward transform 
and are thus local. The problem is that the output here feeds back into the 
system and effects can propagate across the retina. The apparent global na
ture of the inverse is thus of a rather special kind and, as we will see later, 
gives rise to very simple physical implementations involving only local con
nections. 

2.2.7. Iterative Methods of Solution 

There are, of course, other methods for solving large sets of equations. The 
fact that W is sparse and has large diagonal elements, suggests trying some
thing like Gauss-Seidel iteration. Each iteration takes about 6n arithmetic 
operations. For effects to propagate across the retina one requires at least 
((4n2 — l ) /3) ' ; 2 iterations. This is because a hexagonal retina of width m 
has (3m2 + l)/4 cells. The above suggests that one might be able to get away 
with less than ri1 arithmetic operations. In practice it is found that effects 
propagate very slowly and many more iterations are needed to stabilize the 
solution. One does not have to store W, since it is easily generated as one 
goes along. 

Iterative schemes correspond to adding a time-derivative to the Poisson 
equation and so turning it into a heat-equation. As one continues to iterate, 
the steady-state solution is approached. This intuitive model gives some in
sight into how the process will converge. 

2.2.8. Convergence of Iterative and Feedback Schemes 

If iterative schemes of solving the difference equations converge, they will 
converge to the correct solution. It is, however, not immediately obvious that 
they will converge at all. Let S be the delta function, that is, one at the origin, 
zero elsewhere. It can be shown that if the forward convolutional operator is 
w, the convergence of iterative schemes depends on the behaviour of the 
error term, (8 — w)", as n becomes large. Raising a convolutional operator to 
an integer power is intended to signify convolution with itself. 

In our case, w is one at the origin, with six values of —g around it. So 
(S — w) will be zero at the origin with six values of i around it. Now while 
(S — w)" will always have a total area of one, it does spread out and its value 
tends to zero at every point as n tends to infinity. So this iterative scheme 
converges: Similar results can be derived for other negative surrounds. 



DETERMINING LIGHTNESS 291 

2.2.9. Setting the Threshold 

In the discrete case a finite threshold must be selected. As before, let g' be 
the smallest step in the logarithm of reflectance in the scene, h the sensor 
spacing, and u the radius of the point-spread function of the optical system. 
Then we define the effective minimum step (in ;;) as 

g = g' * min( l , hJ2u). 

There are some minor differences in what follows depending on whether 
one considers the sensor outputs to be intensity samples at cell-centers or 
averages over the cell area. The smallest output due to an edge will be about 
g/6. This is produced when the edge is oriented to cover just one cell ot the 
neighborhood of six. Let /3 be the maximum of the intensity gradient; that is, 
the laplacian of intensity in this case. Choose the threshold e as follows 

e < «/6, 
e > /3 h2, 
e >3(7/6)"2o-. 

2.2.10. Some Notes on This Method 

Notice that an illumination gradient that varies as some power of distance 
across the image becomes a linear slope after taking logarithms and thus 
produces no component after the differencing operations. Such simple gra
dients are suppressed even without the thresholding operation. 

In practice the parameters used in choosing the threshold may not be 
known or may be variable. In this case one can look at a histogram of the dif
ferenced image. It will contain values both positive and negative corre
sponding to edges and also a large number of values clustered around zero 
due to illumination gradients, noise, and so on. The threshold can be conve
niently chosen to discard this central blob. 

Noise and illumination gradients have an effect similar to that in the one-
dimensional case. With finite cell spacing, one cannot precisely separate the 
two components of the image intensity and at each edge the information will 
be corrupted slightly by noise and illumination gradient. As the density of 
edges per cell area goes up, the effect of this becomes more apparent. In 
highly textured scenes the illumination gradient is hard to eliminate. 

Once again one has to decide on a normalization scheme. The best method 
probably is to let the highest numerical value in the reconstructed output 
correspond to white. 

2.2.11. Dynamic Range Reduction 

Applying the retinex operation to an image considerably reduces the range 
of values. This is because the output, being related to reflectance, will only 
have a range of one to two orders of magnitude, while the input will also 
have illumination gradients. This will make such processing useful for pic
ture recording and transmission [22]. 
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2.2.12. A Frequency Domain Interpretation 

It may be of interest to look at this method from yet another point of view. 
What one does is to accentuate the high-frequency components, threshold 
and then attenuate the high-frequency components. To see this, consider 
first the forward operation. The Fourier transform of the convolutional opera
tor corresponding to differentiation is iu>. Similarly the two-dimensional 
Fourier transform of the convolutional operator corresponding to the lapla-
cian is — p-. Here p is the radius in a polar-coordinate system of the two-
dimensional frequency space. In either case one is multiplying the fourier 
transform by some function that increases with frequency. Now consider the 
reverse operation. The fourier transform of the convolutional operation cor
responding to integration is 1/iw. Similarly the Fourier transform of (1/277) 
log,,(l/r) is —lip-. So in the inverse step one undoes exactly the emphasis 
given to high frequency components in the forward operation. 

In both the one-dimensional and the two-dimensional case one loses the 
zero frequency component. This is why the result has to be normalized. 

2.3. Physical Models 

There are numerous continuous physical models to illustrate the inverse 
transformation. Anything that satisfies Poisson's equation will do. Such phys
ical models help one visualize what the inverse of a given function might be. 
Examples in two dimensions are: perfect fluid-flow, steady diffusion, steady 
heat-flow, deformation of an elastic membrane, electro-statics and current 
flow in a resistive sheet. In the last model, for example, the input is the dis
tribution of current flowing into the resistive sheet normal to its surface; the 
output is the distribution of electrical potential over the surface. 

In addition to helping one visualize solutions, continuous models also 
suggest discrete models. These can be arrived at simply by cutting up the 
two-dimensional space in a pattern corresponding to the interconnection of 
neighboring cells. That is, the remaining parts form a pattern dual to that of 
the sensor cell pattern. We will discuss only one such discrete model. 

2.3.1. A Discrete Physical Model 

Consider the resistive sheet described, cut up in the dual pattern of the 
hexagonal unit cell pattern. What will be left is an interconnection of re
sistors in a triangular pattern. The inputs to this system will be currents in
jected at the nodes, the potential at the nodes being the output. This then 
provides a very simple analog implementation of the tedious inverse compu
tation. 

It is perhaps at first surprising to see that each cell is not connected to 
every other in a direct fashion. One would expect this from the form of the 
computational inverse. Each cell in the output does of course have a connec
tive via the other cells to each of the inputs. Paths are shared however in a 
way that makes the result both simple and planar. 

Consider for the moment just one node. The potential at the node is the 
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average of the potential of the six nodes connected to it plus the current in
jected times R/6, where R is the resistance of each resistor. The economy of 
connection is due to the fact that the outputs of this system are fed hack into 
it. It also illustrates that this model locally solves exactly the same difference 
equation as that used in the forward transform, only now in reverse. 

This immediately suggests an important property of this model. By simply 
changing the interconnections, one can make an inverse for other forward 
transforms. Simplest of all are other image-plane tesselations, both regular 
and irregular. One simply connects the resistors in the same pattern as are 
the cells in the input. 

More complicated weighted surrounds can be handled by using resistors 
with resistances inversely proportional to the weights. The network of re
sistors will then no longer be planar. 

2.3.2. A Feedback Scheme for the Inverse 

Both the comment about outputs feeding back into the resistive model and 
the earlier notes about iterative schemes suggest yet another interesting 
model lor the inverse using linear summing devices. Operational amplifiers 
can serve this purpose. One simply connects the summing elements so that 
they solve the difference equation implied by the forward transform. Once 
again it is clear that such a scheme can be generalized to arbitrary tessela
tions and weighted negative surrounds simply by changing the interconnec
tions and attenuations on each input. Some questions of stability arise with 
esoteric interconnections. For the simple ones stability is assured. 

A little thought will show that the resistive model described earlier is in 
fact a more economical implementation of just this scheme with the dif
ference that there the inputs are currents, while here they are potentials. 

I'lG. 5. Resistive model ot the inverse computation. The inputs are the currents injected at the 
nodes. The outputs are the potentials at the nodes. 
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FIG. 6. The use of summing elements and feed-back in the implementation of both the 
forward and the inverse transform. 

2.4. Limitations of the Simple Scheme Presented 

The method presented here will not correctly calculate reflectance if used 
unmodified on general scenes. It may, however, calculate lightness fairly 
well. As the method stands now, for example, a sharp shadow edge will not 
be distinguished from a real edge in the scene and the two regions so formed 
will produce different outputs, while their reflectances are the same. It may 
be that this is reasonable nevertheless, since we perceive a difference in 
apparent lightness. 

Smooth gradations of reflectance on a surface due either to shading or vari
ations in surface reflectance will be eliminated by the thresholding opera
tions except as tar as they affect the intensity at the borders of the region. 
This may imply that we need additional channels in our visual system to 
complement the ones carrying the retinexed information since we do utilize 
shading as a depth-cue [19]. 

The simple normalization scheme described will also be sensitive to 
specular reflections, fluorescent paints and light-sources in the field of view. 
Large depth-discontinuities present another problem. One cannot assume 
that the illumination is equal on both sides of the obscuring edge. In this 
case the illuminating component does not vary smoothly over the retina, 
having instead some sharp edges. 

FIG. 7. Illustration of the parallel layers of operations which perforin the two-dimensional re-
tinex operation. Only two of the operations involve local interactions between neighboring 
cells. 
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2.5. Computer Simulation of the Discrete Method 

A computer program was used to simulate the retinex process described 
on a small retina with both artificial images and images seen through an 
image dissector camera. The hexagonal unit-cell is used in this program and 
the retina itself is also hexagonal. The retina contains 1027 cells in a pattern 
36 cells across. This is a compromise dictated by the need to limit the 
number of arithmetic operations in the inverse transform. In this case one 
needs about a million and this takes about a minute of central processor time 
on our PDP-10. 

Both the artificial and the real Mondrians consist of regions bounded by 
curved outlines to emphasize that this method does not require straight-line 
edges or boundary extraction and description. Various distributions of in
cident illumination can be selected for the artificial scenes. In each case the 
processing satisfactorily removes the gradient. 

For the real scenes it is hard to produce really large illumination gradients 
by positioning the light-sources. The reconstruction does eliminate the gra
dient well, but often minor flaws will appear in the output due to noise in 
the input and a number of problems with this kind of input device such as a 
very considerable scatter. It is not easy to predict what effects such imaging 
device defects will have. 

The output is displayed on a DEC 340 display which has a mere eight 
grey-levels. It would be interesting to experiment with larger retinas and 
better image input- and output-devices. 

2.5.1. Form of Inverse used in the Computer Simulation 

The convolutional form of the inverse was used for speed and low storage 
requirement. This necessitated solving the difference equations once, given a 
pulse as input. The symmetry of the hexagonal pattern allows one to identify 
symmetrically placed cells and only 324 unknowns needed to be found for a 
convolutional inverse sufficient for the size of retina described. As men
tioned before, this function is closely approximated by log(i(r()/r) for large r. 
This can be used to establish boundary conditions. 

3. IMPLICATIONS AND CONCLUSIONS 

3.1. Parallel Image Processing Hardware 

The methods described here for forward transforming, thresholding and 
inverse transforming immediately tempt one to think in terms of electronic 
components arranged in parallel layers. Enough has been said about dif
ferent models to make it clear how one might connect such components. 
Large scale integrated circuit technology may be useful, provided the signals 
are either converted from analog to digital form or better still, good linear 
circuits are available. 

Construction of such devices would be premature until further experi
mentation is performed to decide on optimal tesselations, negative sur-
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FIG. 8. The method applied to F IG. 9. The method applied to a real 
an artificial image.' image.1 

FIG. 10. The method applied to FIG. 11. Apparent lightness predicted 
Craik's figure.' lor incomplete figure.1 

rounds, thresholding operations and normalization schemes. These decisions 
are best guided by computer simulation. 

3.2 Cognitive Psychology 

One of the artificial scenes was created to illustrate Craik's illusion [8,23]. 
Here a sharp edge is bordered by second-order gradients. As one might ex
pect, the smooth gradients are lost in the thresholding and reconstruction 
produces two regions each of uniform brightness. The difference in bright
ness between the regions is equal to the original intensity step at the edge. 

The fact that the process presented here falls prey to this illusion is of 
course no proof that humans use the same mechanism. It is interesting, how
ever, that this technique allows one to predict the appearance of pictures 
containing incompletely closed curves with second-order gradients on either 
side. 

3.3. Neurophysiology 

The method described here for obtaining lightness from image intensity 
suggests functions for a number of structures in the primate retina. The hori
zontal cells appear to be involved in the forward transformation, while some 
ot the amacrines may be involved in the inverse transformation. For details, 

1 The suhfigures in the above have the following interpretation. (A) pu, input-logarithm of 
image intensity; (B) du, differenced image; (C) f„, thresholded difference; (D) /,>, output-com
puted lightness; (E) .v,->, illumination distribution—[;JU —/„•]. 
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see the paper by Marr [24] in which he uses this hypothesis to explain an as
tonishing number of facts about the retina. 

3.4. Further Elaborations of the Model 

If the sensors are not equally sensitive, the outputs of the differencing 
stage will be offset. Such offsets can be eliminated by introducing the equiv
alent of ac coupling at this point. This will suppress constant offsets while 
permitting rapid changes to be reproduced with fidelity. Clearly now the 
output will fade away if the image is stabilized. Either large linear motion or 
small-scale jitter will prevent this. It is convenient to combine this coupling 
with the threshold operation. A signal then appears at the output of this stage 
only if a significant change happens in a time commensurate with the time 
constant of the coupling. 

This presents not merely a mechanism for dealing with imperfect sensors. 
One kind of adaptation to overall changes in light levels, for example, can be 
envisioned as taking place at the earliest stage in the system, at the sensors 
themselves. Their outputs can always be proportional to the incident inten
sity, but the constant of proportionality would be adjusted to deal with 
varying light levels. This would lead to offsets at the output of the dif
ferencing stage and can be dealt with by the proposed coupling. An unfortu
nate side-effect of this arrangement is the appearance of after-images. 

If one wishes to achieve dynamic range reduction beyond that possible by 
calculating reflectance one merely has to go "too far" in eliminating the illu
mination gradient. All that is necessary is that the difference and inverse 
operations are not exact inverses. Specifically, one can retain the same in
verse operation but modify the differencing stage by allowing the total 
weight of the negative surround to exceed that of the central positive-pulse. 
The differenced signal now has a small additional negative component 
proportional to the image intensity. When passed through the inverse stage 
this produces additional smooth changes in the output. The output of such a 
system of course is no longer proportional to lightness and suffers from Mach-
bands and simultaneous contrast effects. 

3.5. Conclusion 

A simple, layered, parallel technique for computing lightness from image 
intensity has been presented. The method does not involve an ability to 
describe or understand the scene, relying instead on the spatial differences 
in the distribution of reflectance and illumination. The forward step involves 
accentuating the edges between regions. The output of this step is then 
thresholded to remove illumination gradients and noise. The inverse step 
merely undoes the accentuation of the edges. 

Physical models have been given which can perform this computation ef
ficiently in parallel layers of simple networks. The method has been simu
lated and applied to a number of images. The method grew out of an attempt 
to extend Land's method to two dimensions and fills the need for a lightness-
judging process in his retinex theory of color perception. 
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The possibility of processing an image in such a parallel, simple fashion 
without higher-level understanding of the scene reinforces my belief that 
such low-level processing is of importance in dealing with a number of fea
tures of images. Amongst these are shading, stereo disparity, focus, edge de
tection, scene segmentation and motion parallax. Some of this kind of pro
cessing may actually happen in the primate retina and visual cortex. The 
implication for image analysis may well be that a number of such prepro
cessing operations should be performed automatically for the whole image to 
accentuate or extract certain attributes before one brings to bear the more 
powerful, but tedious and slow sequential goal-directed methods. 
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