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ABSTRACT

We have developed robust methods fo r
determining the motion of an observer translating

through a static environment . These methods als o
apply to the case of arbitrary observer motio n
when the rotational component is known . (The case
of purely rotational motion is treated elsewher e

(1)) . Our methods do not rely on establishin g
point correspondence, nor do they determin e
optical flow . They employ only first derivative s
of the image brightness function and do not assume

an analytic form for the imaged surface .
Our methods are all based on minimizing th e

difference between the observed time derivative o f
the brightness and that predicted from th e

observed spatial brightness gradient given a n

estimated motion. The methods exploit the fac t
that any imaged surface must lie in front of th e

camera . They are robust in that all points in th e

image contribute to the final determination o f

motion .

I .	 Introduction
In this paper we consider the problem o f

determining the motion of a monocular observer

moving with respect to a rigid, unknown world . We
use a "least squares", as opposed to a discret e
method of solving for the motion parameters ; our
method uses all of the points in a two-image
sequence and does not attempt to establis h

correspondence between the images . Hence the
method is fairly robust with respect t o
quantization error, noise, illumination gradients ,
and other effects .

We can determine the observer motion in two

special cases :
a) when the motion is pure translation or whe n

the rotational component of the motion is known .

b) when the motion is pure rotation ; this case

is discussed in Reference 1 .
At this writing we have not developed a robus t

method which is applicable to arbitrary motion .

Three methods of determining observer motion
are considered in this paper :

a . Minimization of the Integral of Z 2
Given an estimate of motion, the depth at mos t
world points can be calculated . Using an
incorrect value for the motion gives an
estimate of depth which is inaccurate and
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often grossly so . For scenes with a limite d

depth range, an accurate estimate of motion i s

obtained by minimizing the sum of the squares

of the depth estimates over the image .

b . Minimization of the Number of Outlier s

For some points in the image, the estimate d

scene depth is negative . Such "outliers" may

be caused by noise, quantization error, scen e

occlusion, under-sampling, and errors in th e

estimates of brightness derivatives . An

accurate estimate of motion is obtained by

minimizing the number of such points .

c . The Perceptron "Learning" Algorithm In

this iterative method, an image point is found

for which the calculated depth, based on the

current estimate of the motion, is negative .
The motion estimate is then adjusted to make

this depth value non-negative . Under

reasonable conditions, this algorithm

converges to the correct motion in a finit e

number of steps .

We show that the field of view should be large
to accurately recover the components of motion in
the direction towards the image region . We also

demonstrate the importance of points where th e

time derivative of brightness is small, and
discuss difficulties resulting from very large

depth ranges . We emphasize the need for adequat e

filtering of the image data before sampling t o

avoid aliasing, both in the spatial and tempora l

dimensions .

The algorithms have been applied to real image

sequences . The results show that subject to th e

limitations mentioned above, this approach offers

a computationally efficient method of determinin g

translational motion ,

1 .1 Earlier Work
In the continuous, or least squares, approac h

to motion vision, motion parameters are foun d

which are consistent with the observed motion o f

the entire image . Bruss and Horn 121 use this
approach to calculate motion parameters assumin g

that the optical flow is known at each point .

Adiv [3] applies the results of Bruss and Horn t o

a world consisting of independently moving planar

objects ; he shows that given the optical flow ,

segmentation can be performed and the motion o f

the objects can be calculated . Negahdaripour and
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Horn [4] eschew the use of optical flow an d

calculate the observer's motion directly from the

spatial and temporal derivatives of the image

brightness, assuming a planar world . The

advantage of this direct approach, which we also

use here, is that certain computational
difficulties inherent in the calculation o f

optical flow are avoided . Specifically, it is not

necessary to make the usual assumption that the

optical flow field is smooth ; an assumption which

is violated at object boundaries .

Waxman and Ullman [5] also avoid the discret e

approach to motion vision ; their technique make s
use of various first and second derivatives of the

image to compute both the motion parameters an d

the structure of the imaged world . In the
interests of developing methods which can be
implemented, the techniques presented in thi s

paper avoid the use of second and higher-orde r

derivatives .

1 .2	 Summary of the Pape r
Our approach to the motion vision problem can

be summarized as follows : Given the observe r

motion and the spatial brightness function of the
image, one can predict the time derivative o f
brightness at each point in the image . We find

the motion that minimizes the integral of th e

square of the difference between this predicte d

value and the observed time derivative . The
integral is taken over the image region o f

interest, which, in the discussion here, i s

usually taken to be the whole image .

We use auxiliary vectors derived from the

derivatives of brightness and the image position
that occur in the basic brightness chang e

constraint equation. Study of the distribution o f

the directions of these vectors on the unit spher e

suggests specific algorithms and also help s
uncover relationships between accuracy an d

parameters of the imaging situation .

We have developed several algorithms for

recovering the translational velocity in the cas e
of pure translation . These algorithms exploit th e
constraint that objects have to be in front of th e

camera in order to be imaged . This constrain t

leads to a non-linear optimization problem . The
performance of these algorithms depends on a
number of factors including :

• the angle subtended by the image, i .e ., the

field of view

• the direction of motion relative to the
optical axis

• the depth range of the scene

the spatial frequency content of the image

• the noise in the estimated time derivative o f

brightness

• the noise in the estimated spatial derivative s

of brightness

• the number of picture cells considered .

We have not yet been able to select a "best "

algorithm from the set developed, since one may b e

most accurate under one set of circumstances whil e

another is best in a different situation . Also ,

the better algorithms tend to require mor e

computation, and some do not lend themselves to

parallel implementation . Further study and

experimentation with real image data will be

needed to determine the range of applicability of

each algorithm .

1 .3	 Comments on Sampling, Filtering and Aliasing
Work with real image data has demonstrated th e

need to take care in filtering and sampling . The

estimates of spatial and time derivatives are
sensitive to aliasing effects resulting from

inadequate low-pass filtering before sampling .

This is easily overlooked, particularly in th e
time direction . It is usually a mistake, fo r
example, to simply pick every n-th frame out of an

image sequence . At the very least, n consecutiv e
frames should be averaged {i .e ., added) before
sampling in order to reduce the high frequenc y
components . One may object to the "smearing "
introduced by this technique, but a series o f
widely separated snap-shots typically do not obey

the conditions of the sampling theorem, and as a

result the estimates of the derivatives ma y
contain large errors .

This, of course, is nothing new, since th e
same considerations apply when one tries t o

estimate the optical flow using first derivatives

of image brightness (Horn and Schunck [6]) . It i s
important to remember that filtering must be done
before sampling--once the data has been sampled ,

the damage has been done .

2 .	 The Brightness-Change Constraint Equatio n
Following Longuet-Higgins and Prazdny [7] an d

Bruss and Horn [2] we use a viewer-base d
coordinate system. Figure 1 depicts the syste m

under consideration . A world point

	

- (X,Y,Z)T

	

(1 )

is imaged at

	

r - (x,y,l)T

	

(2 )

That is, the image plane has equation Z - 1 . The

origin is at the projection center and the Z-axi s
runs along the optical axis . The X and Y axes are
parallel to the x and y axes of the image plane .
Image coordinates are measured relative to the

principal point, the point (0,0,1) T where the

optical axis pierces the image plane . The point s
r and R are related by the perspective projection

equation

	

r = (x,y,l)T

	

1)T

	

=
R . z

Z - R• z

and where z denotes the unit vector in the Z

direction . -
If the observer moves with instantaneous

translational velocity t - (U,V,W)T and
instantaneous rotational velocity w- (A,B,C) T
relative to a fixed environment, then the tim e
derivative of the vector R can be written a s

	

R t - -t - Rxw

	

(5 )

The motion of the world point R results in motio n

of the corresponding image point ; the value o f

this motion field is given b y

where

(3 )

(4 )
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dr

	

d R

	

R(R .z)-(R .z) R

rt

	

dt

	

dt R .z}

	

(R .z) 2

Then since A x (B x g) - (C•A)B - (A•S)C this ca n

also be expressed as
z x ( RC x r )

rt - -(2 x (r x (r x W - t)) ) (8 )
R . z

In component form this can be expressed a s

-U+x w
xt

	

Z

	

+ Axy-B(x
2
+1) +Cy

	

(9 )

-t

	

yt _

	

-v Zytid
- Bxy+A(y 2+1) -Cx x

0

	

0

a result first obtained by Longuet-Higgins and

Prazdny [7] .

This shows that given the world motion, th e
motion field can be calculated for every image

point . If we assume that the brightness of a

small surface patch is not changed by motion, the n

expansion of the total derivative of brightness E

leads to

	

x xt + ay yt + 3t -0

	

(10)

Now denoting the vector (DE/ax, 3E/ay, 0) by Er
and aE/at by E t permits us to express this result

more compactly in the form

Er•rt + Et - 0

Substituting Eq . (8) into this result and

rearranging gives

((Er x 2) x r) . t
Et - (((Er x z) x r)xr) •w +

R . z

Now to simplify this expression we le t

s - ((Er x z) x r )

and

	

v --sx z

so Eq . (12) reduces to the "Brightness Change

Constraint Equation" of Negahdaripour and Horn [4 ]

s . t
V • w +

	

-E

	

(15 )
-

	

R.z

	

t

The vectors s and v can be expressed in component

form as

[ -
-E

x

	

Ey + y (xEx + YEy )

v

	

-Ey

	

and v

	

-Ex - x (xEx + yEy ) (16)

xEx
+ Y

	

Note that s • r-0 andv

	

r-0

	

ands • v-0 .

These three vectors thus form an orthogona l

triad . The vectors s and v are inherent stati c

properties of the image . Note that the projectio n
of s in the image plane is just the (negative )

gradient of the image . Also, the quantity s

indicates the direction in which translation of a

given magnitude will contribute maximally to th e

temporal brightness change of a given pixel . The

quantity v plays a similar role for rotation .

3 . Solving the Brightness Change Constrain t
Equation
Equation (15) relates observer motion (t,w) ,

the depth of the world R•z - Z(x,y), and certai n
measurable quantities of the image (s,v) . In

general, it is not possible to solve for the firs t
two of these given the last . Some interesting
special cases are addressed in this paper, in Horn
and Weldon [1], and in Negahdaripour and Horn [4] .

In this paper we assume that the rotation wi s

known; then we show that the translation t ca n- be
determined under appropriate conditions . Once t
is known, the brightness change constraint equation
can be used to find the depth at each pixe l

s . t
Z v R .z

	

-
EL +v.W

	

(17 )

In this paper we consider various integral s
and sums over an image region thought t o
correspond to a single rigid object in motion
relative to the viewer . In the simplest case, the

observer is moving relative to a static environ-
ment and the whole image can be used . The size o f
the field of view has a strong effect on the ac -
curacy of the determination of the components o f
motion along the optical axis . When we need to
estimate this accuracy we will for convenienc e

assume a circular image of radius rv . This cor-
responds to a conical field of view with hal f
angle 6v, where rv - tan 6v , since we have assumed
that the focal length equals one . (We assume tha t
0<6v<7r/2) .

We will show that the field of view should be
large . Although orthographic projection usuall y
simplifies machine vision problems, this is on e
case in which we welcome the effects of perspec-

tive "distortion" !
If the rotation vector is known, perhap s

measured by some other instrument, then th e

brightness change constraint equation (15) reduces

to

	

(1/Z) s•t - -Et '

	

(18 )
where

Et ' - Et +

	

(19 )

In the remainder of this paper we assume that w i s
known and do not distinguish between Et and E t ' .

When depth is known, it is straightforward to
recover the motion . We cannot, in general, find a
motion to satisfy the brightness change constrain t
equation at every picture cell because of noise i n
the measurements . Instead we minimize the
integral of the error in brightnes s

	

ff[Et + (1/Z)s•t] 2

	

(20 )

(6 )

r t a	
(R .z) 2

Substituting Eq . (5) into this result gives [4]

(7 )

(11 )

(12 )

(13 )

(14 )

yE - xEx
y
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Differentiating with respect to and setting th e
result equal to 0 leads to the vector equatio n

	

[[If (1/z) 2 s sT ]t - - /f(1/Z) E t

	

(21 )

This is a set of three linear equations in th e

three components of t . The coefficient matrix i s

symmetric and only the right-hand side depends on

the time derivative of brightness . Note that in
Eq . {21) we attach less weight to information fro m

points where Z is large .

The method is robust if the correct values o f
depth are given . If estimates are used, th e

quality of the result will depend on the qualit y
of the estimates . The accuracy of the result als o
depends on the size of the field of view, as w e
show later .

	

3 .1	 Distribution of the Directions of s
To understand the properties of the above

algorithm for recovering t we must examine the
matrix obtained by integrating multiples of s sT .
We can think of the direction of as identifyin g
a point on the unit sphere and ofa multiple of
I! s!! as the mass of a particle placed there .
The integral considered is related to the inertia
matrix of the set of particles on the unit sphere .

We know that s•r - 0 and that the possibl e

directions of r lie within the field of view . Fo r
a particular value of r, the equation s•r - 0
defines a plane that cuts the unit sphere in a
great circle (see Fig . 2) . The vectors mus t
point in a direction corresponding to a point o n
this great circle . Since r lies inside a cone o f
directions with half-angle6v, these great circles
have axes that lie in this cone also . The

collection of great circles lies in a band around
the unit sphere of width equal to the total width
of the visual field .

We can obtain the same result algebraically as
follows : Let e, 2, and i be unit vectors in th e
orthogonal directions r,v, and s . Then

	

{z r] 2 + (z•v) 2 + (i . i) 2 - 1

	

(24 )

	

(11) 2 + (9 .
0 2 + (z .$)2 - 1

	

(25 )

(i .i)2
+

(i .i)2 - ( . 0 2
+ (z . v) 2

	

{26 )

	

4- . 0 2 > cos2 9v and (i . i) 2 ] 0

	

(27 )

(i .i)2 + (i .i)2 ] cos 2Bv

	

(28 )

Thus the directions of s lie within an angle v o f
the "equator" of the unit sphere . We call thi s

band the permissible band .
Figure 3 shows front and back views of th e

permissible band of the real 64 by 64 pixel imag e
shown in Figure 5 with gv - 27° . Figure 4 show s

the same band with 8v - 15° . In each case the
signal to noise ratio is 40 db and 8-b+t gray-leve l
quantization is used .

	

3 .2

	

	 EnsembleAverage of the Integral of 	 s s1
The integral of s sT varies from image to

image . However, we can obtain a bette r
understanding of this integral by averaging ove r
an ensemble of images with all possible direction s

for the brightness gradient at each image point .
We assume that different directions for th e
brightness gradient are equally likely . The

result so obtained can be viewed in another way :

it is the integral obtained in the limit from a
textured image as the scale of the texture is mad e

smaller and smaller . In this case we can arrange
for every direction of the brightness gradient to
be found in any small patch of the image . By
suitable choice of the texture we can arrange tha t
no direction of the brightness gradient i s

favored--all directions occur with equa l
frequency . If we take into account the
distribution of directions of s and the weight s
Is~~, we find (in Reference 1) that

1

	

0

	

q

/IS sT

	

k

	

0

	

1

	

U

	

(29 )

s

D

	

q

	

r 2 / 2
v

where the constant ks depends on the size of the
field of view and the distribution of magnitude s
of the brightness gradient . In practice we ca n
find ks by noting tha t

Trace

	

s sT -

	

Trace(s s T) -

	

s's

	

(30 )
-so

	

-
2k s (l + r ?)„/4) - ffs•s

	

(31 )

Note that the condition number, the ratio of th e

largest to smallest eigenvalue, is jus t
min{r 2, 2/r,) which reaches a minimum of 1 whe n
rv -

	

In the case of pure translation then ,

the component of translation along the optica l
axis is found with less accuracy than the othe r
two components when the field of view has a
half-angle narrower than 9~ tan' I/ -

54 .74 . . .degrees .

3 .3	 ASimplifiedMethod of Calculating t When
Depth is Known

	

-

While the method of determining t given in Eq .
[21] is simple enough, we may gain additiona l
insight from a simplified version based on the
average integral for s. sT developed in the
previous section . Inverting the matrix of Eq .
(29) and substituting into the solution for t
given in Eq . (22) yield s

U = (l/k s ) fIE xEtz

V

	

(1/k g ) IfeyEtz

	

(32 )

W

	

(1/ks)(2/r) Il(xE x +yEy )Et Z

wher e

2k$ (1+r 2 /y) = l/(Ex + Ey + (xE x + yEy12)Z2

	

(33 )

The first three integrands are just the thre e

components of -ZE t s while the integrand in the

expression for k s is 11Z s1! 2 . In like manner we
can derive simplified formulae of this kind fo r

the solutions of Eqs . (26) and (28) . Experiments

with synthetic image data suggest that th e

estimate of t given by the above approximation is
considerably less accurate than that obtained by
actually computing the integral of s sT . It is

nevertheless of interest to note the dependence o f

U on the integral of a multiple of the produc t

ExEt and the dependence of V on the integral of a

multiple of the product EyE t . Further, one may

while

so

but

sa
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note that the integral of a multiple of (xEx +
yEy) underestimates W and so has to be magnifie d
by the factor 2/r3, along with any small errors i t
may contain .

4 .0 Solving the Brightness Change Constrain t
Equation withRotationKnown

In this section we deal with the problem o f
determining the direction of translation given th e
rotation vector w .

	

4 .1	 The Importance of a Wide Field of Vie w
In the general case, the need for a wide fiel d

of view is very clear . In a small image region
near the center of the image, for example ,
rotation about the y-axis looks the same a s
translation along the x-axis, while rotation abou t
the x-axis looks the same as translation along th e
(negative) y-axis . As is well known i n
photogrammetry, a large field of view is needed t o
separate these components of motion [11,12] .

If we take note of this ambiguity, and the
uncertainty with which the components of rotation
and translation along the optical axis can b e
determined, we see that locally, out of si x
parameters, only two combinations can b e
estimated . These two quantities are just the

components of the motion field . The argument can
also be made for points at some distance from the
principal point of the image .

There is a difference between the case whe n

the motion is predominantly along the optical axi s
and the case where it is predominantly parallel to
the image plane . The transition between the two
situations occurs when the direction of the vecto r

t moves outside the cone of directions of th e
field of view, that is, when the focus o f
expansion (or compression) moves outside th e

image . When the focus of expansion (FOE) i s
inside the image, then the great circle defined b y
s•t - 0 lies entirely inside the permissible band
on the unit sphere . The measured values of s then
provide constraint all the way around the great
circle . Conversely, when the focus of expansion
is outside the image, then the great circle cut s
the permissible band at an angle greater than 9 v.
In this case the known values of s provide

constraint only along two sections of the grea t
circle . These sections get shorter and shorter as

the vector t becomes more and more parallel to th e
image plane . It should be clear that in this cas e
the direction of the vector t can be determined
with less accuracy than when the focus of

expansion is near the principal point (especiall y
if

0v
is small . )

	

4 .2	 The s-Bar Projection

The integrals on the right hand side of the
equations for t developed in Section 3 .1 contain
positive multiples of the vector

a - -sign(Et ) s

	

(34 )

(Here we only care about the directions of the

vectors so we ignore scale factors) . Now in the

case of translation with known rotation ,

E t - -(1/2)s•t

and since Z > 0 ,

s•t - (1/2) sign(s•t) (s•t) - (1/2) Is•tI> 0

	

(35 )

We are only interested at this point in the sign
of s•t, so we can use any convenient positiv e
multiple of '•t such a s

-(1/E t )s, -sign(E t )s, or -Eta

in the discussion that follows .
Equation (35) states that i can only lie in

the hemisphere that has t as its navel . We cal l
this the compatiblehemisphere in the case of
translation with known rotation . Since

	

is a
multiple of s, it must also lie in the permissibl e
band . Thus ‘' can only lie in the intersection of
the permissible band and the compatible
hemisphere . We will exploit this geometric
insight shortly .

Figures 6 and 7 show examples of spheres .
Figure 6 shows the permissible band on the ' spher e
for the image of figure 5 with the FOE near -the
image center . Figure 7 shows the -sphere for th e
same image with the FOE considerably outside the
image (0=45 0 ) .

Our task can be viewed as that of finding the
hemisphere that contains all of the direction s
specified by the vectors 7s-derived from the
image . Note that the solution may not be uniqu e
and, even worse, there may not be any solution .
Later we will modify the problem definition
somewhat to deal with these possibilities .

4 .3	 Motion Determination as a Linear Programming
Problem

We wish to find a vector t that makes rt > 0
at all image points . We can think of this as a
gigantic linear programming problem . There are
three unknowns and one inequality for every
picture cell . Actually, since we do not care
about the magnitude of t, there are only two
degrees of freedom .

Since we do not have a criterion function t o
be extremized, we will have an infinite number o f
solutions--if there are any solutions at all . Al l
of these solutions will lie in a convex polygon on
the unit sphere . The sides of this polygon are
portions of great circles corresponding t o
constraints which we will call critical
constraints . With data from a large number o f
cells we expect this solution polygon to be
small . We may choose its center as the "best"

solution .
Typically the solution polygon will hav e

relatively few sides . Thus data from a small

number of critical picture cells fully constrain s

the solution . First of all, note that each side
of this polygon corresponds to an equality of the

form 1-•t - 0 for some picture cell . From the

brightness change constraint equation [15], we

know that E t - 0 when T . t - 0 . Thus the critica l
constraints are provided -by picture cells where Et
is small (andhis not) . This is an importan t
observation which can be used to reduce the size

of the linear programming problem ; we simpl y

disregard the inequalities arising from pictur e
cells where lEtl is large .

6



Unfortunately there is a class of points fo r
which g•t is arbitrary even though E t is smal l
(and`l11is not) ; these are image points for which Z
is large . Such points provide "false" constraint s
on t . For a practical system some means must b e
found for identifying these points . One way o f
doing this for images with large depth range i s
based on the following observation . In a rea l
image, regions for which Z is large {i .e ., th e
background) tend to encompass a significant area
with all points in the area having E t g O . On the
contrary, points with s • t - 0 andkllarge ar e
usually isolated and surrounded by regions fo r
which Et • O . The above difficulty appears in al l
of the methods of determining motion discussed i n
this paper ; it is harder to determine t when th e
depth range is large .

We observe in passing that the points that ar e
most useful in constraining the translationa l
motion vector are the very same points where it i s
difficult to calculate depth accurately !

The linear programming method of determining t
discussed above uses relatively little of the

	

'
image data . In fact, only points at the edge o f
the compatible hemisphere influence the solutio n
at all . While this is a sensible procedure if th e
data is perfect, it will be quite sensitive t o
noise . In fact for real, that is, noisy images ,
there will normally be no hemisphere which
contains all of the points on the s sphere, and s o
the linear programming method will ' necessaril y
fail . It seems clear that any practical method o f
finding t must use a large number of image point s
so that it will not be compromised by a fe w
inaccurate points . We consider three such methods
in the following sections .

4 .4	 The Perceptron "Learning" Algorithm
One way of finding the solution of a large

number of homogeneous inequalities is by means o f
the iterative perceptron "learning" algorith m
(Minsky and Papert ]8] ; Duda and Hart [9]) . Given
a set of vectors gi, this procedure i s
guaranteed to find a vector t that satisfie s
si t ] 0 if such a vector exists . It even does
this in a finite number of steps, provided ther e
exists some c such that ri . t >t for all si in the
given set (which almost always happens when the
set is finite) .

The idea is to start with some non-zero vecto r
t

o
t and to test whether the inequalities are
satisfied . A reasonable choice for t° is one of
the vectors s-i or the average of all - the s i
vectors . I f -the inequality is not satisfied for a
particular vector in the set, then the smalles t
adjustment is made to make the dot-product zero .
(Note that this may disturb inequalities that hav e
passed the test already) . Suppose that th e
present estimate for the direction of th e
translation vector is the direction of tn . We now
test the dot-product `i-tn . If it is negative, we
adjust our estimate of the vector t according t o
the rule

-i -1

Note that si•tn+l - 0 and that the magnitude of s i
does not matter . Also, the test above can be

replaced with a test that checks whether -si• tn
has the same sign as E t .

If the inequalities are inconsistent, that is ,
if the si are not confined to a hemisphere, a s
will happen in practice due to noise, th e
algorithm may not converge . Furthermore, even i f
the algorithm converges there is no guarantee tha t

the guess at any stage is particularly good .
Several simple refinements discussed below ca n
help in this case .
i) Random Sampling . The perceptron algorithm
should not use data from picture cells scanned i n
some regular way, since the information from
neighboring picture cells is likely to be highl y
correlated . Much more rapid progress is achieve d
by random sampling of the image region o f
interest . In this case there is rapid improvemen t
in the estimate of t while the first hundred or s o
picture cells are considered . Then the value i s
refined while the next few hundred are passe d
through . After a few thousand trials, the
estimate is updated rarely and wanders aroun d
erratically .
ii) Partial Correction . It is likely that place s
where Ex and Ey are small do not provid e
information as trustworthy as do places wher e
EX+Ey is large . We may thus hesitate to apply th e
full "correction" called for in the perceptro n
algorithm when gi-si is small . One can simply add
to the denominator in Eq . (37) a constant term n 2
of size commensurate with the expected noise in
si . si . The modified correction term is the n

s . .tn
At = _	 - 1 -

s
s . .s .+n2 -1
-1 - 1

iii) Discarding Outliers . In applying the
perceptron algorithm to real images, one must b e
aware that there may be vectors si that ar e
inconsistent with the preceding analysis . For
example, an occluding boundary can result i n
arbitrary values for the estimated brightnes s
derivatives, as can a non-functioning element in a
solid-state camera. Thus it makes sense t o
perform a "reasonableness test" on the correctio n
vector At . For example, if the current value o f
IIAtIlexceeds, say, twice the average of th e
previous few values, it should be discarded .
(This technique may result in an incorrect fina l
estimate if the discard rule is too stringent ,
however . )
iv) Terminating the Process . There does not seem
to be an obvious, elegant way to end the
perceptron algorithm . The following two simpl e
procedures seem to work equally well : terminat e
after a fixed number of steps, or after a numbe r
of successive update vectors have magnitude II Atl )
less than some small value .
v) Choosing the Final Value . One has to decide
what value to use as the final estimate of t .
Rather than merely using the last position in th e
random stagger near the "correct" value, one may
choose to use an exponentially weighted average of
past values obtained using the iterative rule

Cn+l _ (1-a)in + atn

	

(39 )

to+l

	

to + At
nwhere

At -
s .t

S .

(36 )

(37)

(38 )
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for some small positive a . One should not expec t
miracles from this added wrinkle, however .

The vector t o in the perceptron "learning "
algorithm is obviously a linear combination o f

vectors drawn from the set (si} . Vectors in thi s
set have directions that correspond to points i n
the permissible band . Now suppose that this band
is very narrow . Then, to build a vector with a
significant z-component one has to add many o f

these vectors . In order to keep the x- and
y-components small, these vectors must almost come
in pairs from opposite ends of the narrow band .
Not surprisingly, the algorithm performs rather
poorly in this situation ; it is much happier with
vectors sprinkled uniformly in direction over a

full hemisphere .
If the FOE lies outside the field of view ,

then the compatible hemisphere intersects th e
permissible band at a significant angle . In such
a case if a fraction of the s vectors lie outside
the compatible hemisphere, then the estimate o f
the motion calculated by the perceptron metho d
will be in error. The magnitude and direction o f
this error can be estimated from the sequence o f
corrections made by the algorithm and hence can b e
compensated for by a modification of the updat e
procedure .

The perceptron algorithm as it stands is
clearly sequential in nature . There i s
considerable interest these days in paralle l
methods, since these may eventually lead t o
"real-time" implementations . The following simple
modification makes it possible for corrections to
be computed simultaneously at many picture cells .
Suppose each picture cell has a processor which
calculates a local estimate of the vector t .
Consider the process at the i-th picture cell ; its
initial estimate is just t?-si . Let its estimat e
at some later stage be tri'. The processor the n
computes an average of the values of it s
neighbors, T 7 say, and checks whethe r

> O . If so, it accepts this average as its
new local estimate t1 l

	

If the dot-product i s
negative, on the other hand, it adjusts T`7 to
obtain a new estimate in the traditional manner o f
a perceptron . (The processors corresponding to
picture cells on the boundary of the image regio n
have to do something slightly different from th e
rest, since they do not have a full set of
neighbors) . After many iterations, constraints
propagate across the region and everyone pretty
much agrees on a value for t . (However, there can
be some differences across the region that depend
on the way the average is computed) .

As in so many "parallel" algorithms, we fin d
that after the first few iterations, few update s
occur and most processors have little to do . Thus

the speedup to be expected is nowhere near
proportional to the number of processors .

It should also be noted that in a "real-time "
application, we do not expect the velocit y
estimates to change rapidly . Thus the previous
value of the velocity is likely to be an excellen t
first estimate for the current value of t . This
means that very few iterations will be needed t o
get an acceptable new value . A considerabl e
amount of computation can be saved this way, just
as it can in the computation of the optical flo w
(Horn and Schunck [6]) .

4 .5	 Minimizing the Number of Outlier s
The brightness change constraint equation ca n

be rewritten as

a s . t - -sign Et s-t

	

s•t

(40 )
-Et

	

I Et I

	

lE t l

Then since Z is positive, so is ;- . t . this mean s
that for each point in the image, the vector r
lies in the hemisphere with t at its navel .

Now for real images these will typically be a
small number of points for any estimate of the
motion t for which s-t < 0 . The causes of suc h
outliers are several : -

• occlusions in the scene invalidate the
assumption that the brightness of a smal l
surface patch does not change due to motio n

• scene illumination gradients have the same
effect

• quantization error end electronic noise ca n
cause the sign of Et to change for Et smal l

• estimating derivatives by first (or low order )
differences causes errors which can move a
point out of the compatible hemisphere

- sampling the image (in space or time) at a
rate lower than the Nyquist frequency ca n
invalidate the brightness change constrain t
equation .

As we have seen, we cannot determine the
actual translation vector t ; only its direction
can be found . Hence in the following paragraph w e
assume that ll tll - 1 and regard t as a point on
the unit sphere .

For a given image sequence the number of
outliers is a function of the estimate d
translation vector t .' With perfect data and a
uniform distribution of points on the s sphere ,
the number of outliers is zero for t ' - - t and
increases monotonically with the magnitude of the
error vector

- t - t '

	

(41 )

for HO small . For real, noisy images the
relationship between the number of outliers and e
is too complex to characterize simply . For
example, although the number of outliers will b e
small for e - 0, there is no guarantee that i t
will be minimized at this point .

Given a reasonable initial estimate of t ,
experiments with synthetic images have shown tha t
the value of t' which minimizes the number of
outliers can be found efficiently by hil l
climbing. First the surface of the s-sphere i s
tessellated in a convenient manner and the numbe r
of image points in each bin is determined . Then
the number of outliers associated with a given t '
can be found simply by integrating over those bin s
outside the great circle defined by s•t ' - O . Then
hill-climbing can be used to find the point on th e
sphere where the number of outliers is minimized .

4 .6	 Minimizing the Integral of Z 2
In this section we assume that the depth rang e

Zmax/Zmin is limited . This will generally be the
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case in robotic applications . The method
discussed in this section can also be applied to
images in which the background has very large Z
if, as discussed in Section 4 .3, these regions ar e
excised from the image before the motion vector i s
calculated . We have seen that we can compute
depth when the motion t is known using Eq . (41 )

Z - ` -(1/Et)s t

	

(42 )

Now if we use the wrong value t' in this formula ,
we get the wrong depth value :

Z' - Z(s•t)/(s•t) .

	

(43 )

We expect only positive values for Z, but the
formula may give us negative values, since s•t '
may be negative where s•t is positive and vice

versa . More interestingly, we may obtain ver y
large magnitudes for Z (both positive and
negative), since s_•t' may be almost zero while s• t
is not . That is, the estimated magnitude of Z may
be very large near points where E t =O . We may
conclude that we can determine the correct value
for t by minimizing the integral of 2 2 over the
image, that is by minimizing the quadratic form

II(l/Et ) 2 (s•t) 2 - tT[ff(1/E2 )s sT )t

	

(44 )

subject to the constraint IItI~ - 1 . The solution
is the eigenvector of the real symmetric 3x3 matri x

M - II(1/E 2 )s sT

	

(45 )

associated with the smallest eigenvalue of M . We
can prove this by minimizing the su m

S - tTMt + X(1 - tTt)

	

(46 )

where Xis a Lagrangian multiplier . Then

2S Mt+Mt - tat = 0
at

which yields
Mt - t

Thus X is an eigenvalue of M and t is th e
corresponding eigenvector . Substituting Eq . 148 ]
into Eq . [46} gives the result S - X . Thus tTMt
is minimized by taking the smallest of the thre e
eigenvalues of M for X . To minimize problems due
to noise, we might add a small positive constan t
to E 2 commensurate with the expected noise in O .
That is, we take as our solution the eigenvector o f
	 1	

J E2
t ny s T (49 )

t
associated with the smallest eigenvalue .

If e is an eigenvector so is -e . But we want
Z to be positive . Rather than test this conditio n
at a single point, we compute an average lik e

- -ff(1/Et )s or TO - -ff Et/( Et+n2 ) s

and check whether ro . t > 0

If it is not, we simply change the sign of the
solution .

As before, we may choose to weight the
integral of Eq . (44) according to some measure o f
how trustworthy the data from each picture cell is .

The method presented in this section produce s
an estimate to the translation vector t in close d
form and with high accuracy . Of course, a cubi c
must be solved to obtain the eigenvalues--but
there is an analytic method for doing that . The
corresponding eigenvectors can then be found b y
taking cross-products of two rows of a 3x3 matrix .

The preceding method of calculating t ha s
another justification . From Eq . [38] we know
that s•t = 0 whenever Et = O (again ignoring back -
ground points) . Thus we are basically looking fo r
a vector t that makes s•t - 0 whenever E t = O . The
points where the time derivatives are smal l
provide most constraint, as already discussed . We
could try to minimize something like .

ICI(s•t) 2

	

(52 )

where C is the set of image points where E t 1-0 .
Rather than use a strict cut-off, we may conside r
a weighting scheme in an integral lik e

ffw(s-t) 2

	

(53 )

over the whole image where the weighting function
is chosen to emphasize points where E t =0 . A
reasonable choice, w-l/(E2+n2), leads to the
integral given in Eq .(44) .

	

The eigenvecto r
corresponding to the smallest eigenvalue is a
normal of the plane that best fits the weighte d
set of points .

In general, an eigenvector of a matrix M may
be obtained by solving a homogeneous set of
equations whose coefficient matrix is (M-XI), fo r
a given eigenvalue X . The solution will clearl y
be orthogonal to each row of the matrix (M-XI) .
Such a solution may be found then by takin g
cross-products of two rows of this matrix . There
are three ways to form such cross-products . Due
to inaccuracies in the calculation, the thre e
cross-products may not be exactly parallel . I t
helps then to add them, after making sure tha t
they all have the same sense . This provides on e
with a more accurate answer .

In some cases it may not be necessary to
explicitly factor a cubic to determine the
smallest eigenvalue . With good data, the smalles t
eigenvalue is a lot smaller than the other two .
In this case there is little difference between M
and (M- XI) . We can get good approximations of the
eigenvector associated with the smalles t
eigenvalue by taking cross-products of the rows o f
M rather than (M-XI) . This obviates the need t o
solve the cubic to determine the eigenvalues . We
have found that this simplified method works well .

Figure 8 shows a scatter plot of positions o n
the unit sphere for t recovered from noisy
synthetic data . Each estimate is based o n
brightness gradients at 200 picture cells with 1 %
noise . Note the elongation of the cluster of
points in a direction parallel to the optical axis .

5 .	 Conclusions
We have developed methods for recoverin g

motion directly from brightness derivatives in a n
image subject to purely translation motion or t o
arbitrary motion with known rotation . We hav e
tested these methods on synthetic image data and ,
to a limited extent, on real image sequences . The

(47 )

(48 )

(50 )

(51)
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methods exhibit different trade-offs between

accuracy, noise-sensitivity and computational
expense . Detailed evaluation of the relativ e
merits of these methods under a variety of scenes
and viewing conditions is underway .
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Figure 2 A cross-section through the s_-spher e
defined by the image point r .

a) s2 > 0

	

b) s2 < 0

Figure 3 Two views of the s-sphere with By - 33"

for image of Figure 5 .

Figure 1 The viewer-centered coordinate system .

I0



a) s2 >0

	

b) s2 < 0	 a) s 2 >0

	

6) s2< 0

Figure 4 Two views of the s-sphere with theta thetav = 19°	 Figure 7 s-sphere for s-sphere of Figure 3 wit h
for image of Figure 5 . t = (2,- J2,4) l cm . FOE well outside image (45 0 ) .

Figure 5 Planar band-limited scene ; thetav = 33 0 ;
typical depth : 1 .3 m. (Untitled, spray paint o n
plywood, by the authors, 1986 )

a) s 2 > 0

	

b) s2 c 0

Figure 6.s-sphere for a-sphere of Figure 3 wit h
t = (0,0,2)Tcm . FOE near image center .

Figure 8 Plot of several noisy estimates of th e
translation vector t on the s-sphere (200 pixels /
estimate, 1% noise) calculated by the min Zmethod .
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