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Abstract
Before corresponding points in images taken with two cameras can be used to recover distances to objects in a
scene, one has to determine the position and orientation of one camera relative to the other. This is the classic
photogrammetric problem of relative orientation, central to the interpretation of binocular stereo information. Iterative
methods for determining relative orientation were developed long ago; without them we would not have most of
the topographic maps we do today. Relative orientation is also of importance in the recovery of motion and shape
from an image sequence when successive frames are widely separated in time. Workers in motion vision are redis-
covering some of the methods of photogrammetry.

Described here is a simple iterative scheme for recovering relative orientation that, unlike existing methods,
does not require a good initial guess for the baseline and the rotation. The data required is a pair of bundles of
corresponding rays from the two projection centers to points in the scene. It is well known that at least five pairs
of rays are needed. Less appears to be known about the existence of multiple solutions and their interpretation.
These issues are discussed here. The unambiguous determination of all of the parameters of relative orientation
is not possible when the observed points lie on a critical surface. These surfaces and their degenerate forms are
analyzed as well.

1 Introduction

The coordinates of corresponding points in two images
can be used to determine the positions of points in the
environment, provided that the position and orientation
of one of the cameras with respect to the other is known.
Given the internal geometry of the cameras, including
the principal distance and the location of the principal
point, rays can be constructed by connecting the points
in the images to their corresponding projection centers.
These rays, when extended, intersect at the point in the
scene that gave rise to the image points. This is how
binocular stereo data is used to determine the positions
of points in the environment after the correspondence
problem has been solved.

It is also the method used in motion vision when fea-
ture points are tracked and the image displacements that
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occur in the time between two successive frames are
relatively large (see for example [53] and [52]). The
connection between these two problems has not attracted
much attention before, nor has the relationship of motion
vision to some aspects of photogrammetry (but see [27]).
It turns out, for example, that the well-known motion
field equations [30, 4] are just the parallax equations
of photogrammetry [14, 32] that occur in the incremen-
tal adjustment of relative orientation. Most papers on
relative orientation give only the equation fory-parallax,
corresponding to the equation for the y-component of
the motion field (see for example the first equation in
Gill [13], equation (1) in Jochmann [25], and equation
(6) in Oswal [36]). Some papers actually give equations
for both x- and y-parallax (see for example equation
(9) in Bender [1]).

In both binocular stereo and large-displacement
motion vision analysis, it is necessary to first determine
the relative orientation of one camera with respect to
the other. The relative orientation can be found if a suf-
ficiently large set of pairs of corresponding rays have
been identified [12, 19, 32, 43, 44, 45, 49, 55].

Let us use the terms left and right to identify the two
cameras (in the case of the application to motion vision
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Fig. 1. Points in the environment are viewed from two camera posi-
tions. The relative orientation is the direction of the baseline b, and
the rotation relating the left and right coordinate systems. The direc-
tions of rays to at least five scene points must be known in both camera
coordinate systems.

these will be the camera positions and orientations cor-
responding to the earlier and the later frames respec-
tively.1 The ray from the center of projection of the left
camera to the center of projection of the right camera
is called the baseline (see figure 1). A coordinate system
can be erected at each projection center, with one axis
along the optical axis, that is, perpendicular to the image
plane. The other two axes are in each case parallel to
two convenient orthogonal directions in the image plane
(such as the edges of the image, or lines connecting
pairs of fiducial marks).2 The rotation of the left camera
coordinate system with respect to the right is called the
orientation.

Note that we cannot determine the length of the base-
line without knowledge about the length of a line in
the scene, since the ray directions are unchanged if we
scale all of the distances in the scene and the baseline
by the same positive scale-factor. This means that we
should treat the baseline as a unit vector, and that there
are really only five unknowns—three for the rotation
and two for the direction of the baseline.3

2 Existing Solution Method

Various empirical procedures have been devised for
determining the relative orientation in an analog fashion.

'In what follows we use the coordinate system of the right (or later)
camera as the reference. One can simply interchange left and right
if it happens to be more convenient to use the coordinate system of
the left (or earlier) camera. The solution obtained in this fashion will
be the exact inverse of the solution obtained the other way.
^Actually, any coordinate system rigidly attached to the image-forming
system may be used.
'If we treat the baseline as a unit vector, its actual length becomes
the unit of length for all other quantities.

Most commonly used are stereoplotters, optical devices
that permit viewing of image pairs and superimposed
synthetic features called floating marks. Differences in
ray direction parallel to the baseline are called horizon-
tal disparities (orx-parallaxes), while differences in ray
direction orthogonal to the baseline are called vertical
disparities (or y-paraUaxes)4 Horizontal disparities en-
code distances to points on the surface and are the quan-
tities sought after in measurement of the underlying
topography. There should be no vertical disparities when
the device is adjusted to the correct relative orientation,
since rays from the left and right projection center must
lie in a plane that contains the baseline (an epipolar
plane) if they are to intersect.

The methods used in practice to determine the correct
relative orientation depend on successive adjustments
to eliminate the vertical disparity at each of five or six
image points that are arranged in one or another spe-
cially designed pattern [32, 39, 45, 50, 55]. In each
of these adjustments, a single parameter of the relative
orientation is varied in order to remove the vertical dis-
parity at one of the points. Which adjustment is made
to eliminate the vertical disparity at a specific point
depends on the particular method chosen. In each case,
however, one of the adjustments, rather than being guided
visually, is made by an amount that is calculated, using
the measured values of earlier adjustments. The calcula-
tion is based on the assumptions that the surface being
viewed can be approximated by a plane, that the base-
line is roughly parallel to this plane, and that the optical
axes of the two cameras are roughly perpendicular to
this plane.5

The whole process is iterative in nature, since the
reduction of vertical disparity at one point by means
of an adjustment of a single parameter of the relative
orientation disturbs the vertical disparity at the other
points. Convergence is usually rapid if a good initial
guess is available. It can be slow, however, when the
assumptions on which the calculation is based are vio-
lated, such as in "accidented" or hilly terrain [54].
These methods typically use Euler angles to represent
three-dimensional rotations [26] (traditionally denoted
by the Greek letters K, <t>, and &)). Euler angles have a

*This naming convention stems from the observation that, in the usual
viewing arrangement, horizontal disparities correspond to left-right
displacements in the image, whereas vertical disparities correspond
to up-down displacements.
'While these very restrictive assumptions are reasonable in the case
of typical aerial photography, they are generally not reasonable in
the case of terrestrial or industrial photogrammetry, or in robotics.
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number of shortcomings for describing rotations that
become particularly noticeable when these angles
become large.6

There also exist related digital procedures that con-
verge rapidly when a good initial guess of the relative
orientation is available, as is usually the case when one
is interpreting aerial photography [45]. Not all of these
methods use Euler angles. Thompson [49], for example,
uses twice the Gibb's vector [26] to represent rotations.
These procedures may fail to converge to the correct
solution when the initial guess is far off the mark. In
the application to motion vision, approximate transia-
tional and rotational components of the motion are often
not known initially, so a procedure that depends on
good initial guesses is not particularly useful. Also, in
terrestrial, close-range [35] and industrial photogram-
metry [8] good initial guesses are typically harder to
come by than they are in aerial photography.

Normally, the directions of the rays are obtained from
points generated by projection onto a planar imaging
surface. In this case the directions are confined to the
field of view as determined by the active area of the
image plane and its distance to the center of projection.
The field of view is always less than a hemisphere, since
only points in front of the camera can be imaged.7 The
method described here applies, however, no matter how
the directions to points in the scene are determined.
There is no restriction on the possible ray directions.
We do assume, however, that we can tell which of two
opposite semi-infinite line segments the point lies on.
If a point lies on the correct line segment, we will say
that it lies in front of the camera, otherwise it will be
considered to be behind the camera (even when these
terms do not strictly apply).

The problem of relative orientation is generally con-
sidered solved, and so has received little attention in
the photogrammetric literature in recent times [54]. In
the annual index of Photogrammetric Engineering, for
example, there is only one reference to the subject in
the last ten years [10] and six in the decade before that.
This is very little in comparison to the large number
of papers on this subject in the fifties, as well as the
sixties, including those by Gill [13], Sailor [39],
Jochmann [25], Ghosh [U], Forrest [7], and Oswal [36].

'The angles tend to be small in traditional applications to photographs
taken from the air, but often are quite large in the case of terrestrial
photogrammetry.
The field of view is, however, larger than a hemisphere in some
fish-eye lenses, where there is significant radial distortion.

In this paper we discuss the relationship of relative
orientation to the problem of motion vision in the situa-
tion where the motion between the exposure of succes-
sive frames is relatively large. Also, a new iterative
algorithm is described, as well as a way of dealing with
the situation when there is no initial guess available for
the rotation or the direction of the baseline. The advan-
tages of the unit quaternion notation for representing
rotations are illustrated as well. Finally, we discuss crit-
ical surfaces, surface shapes that lead to difficulties in
establishing a unique relative orientation.

(One of the reviewers pointed out that L. Hinsken
[16, 17] recently obtained a method for computing the
relative orientation based on a parameterization of the
rotation matrix that is similar to the unit quaternion rep-
resentation used here. In his work, the unknown param-
eters are the rotations of the left and right cameras with
respect to a coordinate system fixed to the baseline,
while here the unknowns are the direction of the base-
line and the rotation of a coordinate system fixed to one
of the cameras in a coordinate system fixed to the other
camera. Hinsken also addresses the simultaneous orien-
tation of more than two bundles of rays, but says little
about multiple solutions, critical surfaces, and methods
for searching the space of unknown parameters.)

3 Coplanarity Condition

If the ray from the left camera and the corresponding
ray from the right camera are to intersect, they must
lie in a plane that also contains the baseline. Thus, if
b is the vector representing the baseline, r,. is the ray
from the right projection center to the point in the scene
and r; is the ray from the left projection center to the
point in the scene, then the triple product

[b r; r,] (1)

equals zero, where r/ = rot(r;) is the left ray rotated
into the right camera's coordinate system.8 This is the
coplanarity condition (see figure 2).

We obtain one such constraint from each pair of rays.
There will be an infinite number of solutions for the
baseline and the rotation when there are fewer than five
pairs of rays, since there are five unknowns and each
pair of rays yields only one constraint. Conversely, if

•The baseline vector b is here also assumed to be measured in the
coordinate system of the right camera.
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Fig. 2. Two rays approach closest where they are intersected by a
line perpendicular to both. If there is no measurement error, and
the relative orientation has been recovered correctly, then the two
rays actually intersect. In this case the two rays and the baseline in
a common plane.

there are more than five pairs of rays, the constraints
are likely to be inconsistent as the result of small errors
in the measurements. In this case, no exact solution of
the set of constraint equations will exist, and it makes
sense instead to minimize the sum of squares of errors
in the constraint equations. In practice, one should use
more than five pairs of rays in order to reduce the influ-
ence of measurement errors [25]. We shall see later
that the added information also allows one to eliminate
spurious apparent solutions.

In the above we have singled out one of the two
image-forming systems to provide the reference coor-
dinate system. It should be emphasized that we obtain
the exact inverse of the solution if we chose to use a
coordinate system aligned with the other image-forming
system instead.

4 What Is the Appropriate Error Term?

In this section we discuss the weights w by which the
squares of the triple products [b r/r,.] should be multi-
plied in the total sum of errors. The reader may wish
to skip this section upon first reading, but keep in mind
that there is some rational basis for choosing these
weights. Also note that one can typically compute a
good approximation to the exact least-squares solution
without introducing the weighting factors.

The triple product t = [b r/r,.] is zero when the left
and right ray are coplanar with the baseline. The triple
product itself is, however, not the ideal measure of

departure from best fit. It is worthwhile exploring the
geometry of the two rays more carefully to see this.
Consider the points on the rays where they approach
each other the closest (see figure 2). The line connect-
ing these points will be perpendicular to both rays, and
hence parallel to (r/ x r,.). As a consequence, we can
write

ar;' + 7(r/ x r,.) = b + i8r, (2)

where a and j8 are proportional to the distances along
the left and the right ray to the points where they ap-
proach most closely, while 7 is proportional to the
shortest distance between the rays. We can find 7 by
taking the dot-product of the equality above with r/ x
r,. We obtain

7 l|r; x tV||2 = [b r; r,] (3)
Similarly, taking dot-products with r,. X (r/ X r,.) and
r;' x (r/ X r,.), we obtain

a ||r; x r,|p = (b X r,) • (r; X r,)

13 ||r; x r,||2 = (b x r;) • (r; x r,) (4)

Clearly, a ||r;'|| and ^ ||r,.|| are the distances along the
rays to the points of closest approach.9

Later we will be more concerned with the signs of
a and f S . Normally, the points where the two rays ap-
proach the closest will be in front of both cameras, that
is, both a and 13 will be positive. If the estimated base-
line or rotation is in error, however, then it is possible
for one or both of the calculated parameters a and f 3
to come out negative. We will use this observation later
to distinguish among different apparent solutions. We
will call a solution where all distances are positive a
positive solution. In photogrammetry one is typically
only interested in positive solutions.

The perpendicular distance between the left and the
right ray is

[b r; r,]d = 7 ||r, x r, (5)
l|r; x r,||

This distance itself, however, is also not the ideal meas-
ure of departure from best fit, since the measurement
errors are in the image, not in the scene (see also the
discussion in [9]. A least-squares procedure should be
based on the error in determining the direction of the
rays, not on the distance of closest approach. We need

'The dot-products of the cross-products can, of course, be expanded
out in terms of differences of products of dot-products.
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to relate variations in ray direction to variations in the
perpendicular distance between the rays, and hence the
triple product.

Suppose that there is a change 60; in the vertical dis-
parity of the left ray direction and b6r in the vertical
disparity of the right ray direction. That is, r/ and r,.
are changed by adding

r; X r,
l|r;||̂

|M60,

6r,; -

6r,

llr; X r,||

r/ x r,
llr/ x r,||

(6)

respectively. Then, from figure 3, we see that the
change in the perpendicular distance d is just 60; times
the distance form the left center of projection to the
point of closest approach on the left ray, minus 60,.
times the distance from the right center of projection
to the point of closest approach on the right ray, or

Fig. 3. Variations in the triple product t = [b r; r,.] can be related-
to variations in the perpendicular distance d between the two rays.

Variations in this distance, in turn, can be related to variations in
the measurement of the directions of the left and right rays. These
relationships can be used to arrive at weighting factors that allow
minimization of errors in image positions while working with the
sums of squares of triple products.

6d =a\\r;\\66i - IS\\r,\\66, (7)

From equation (5) we see that the corresponding change
in the triple product is

6r=||r;x r,\\6d

Thus if the variance in the determination of the vertical
disparity of the left ray is a], and the variance in the
determination of the vertical disparity of the right ray
is (T? , then the variance in the triple product will be10

r2 = k x rj|2 ̂

or

o? = ||r; x r,|p (a2 ||r;||2 a] + f S 2 ||r,||2 a?) (9)

This implies that we should apply a weight

(10)w = a^/af

to the square of each triple product in the sum to be
minimized, where cr2 is arbitrary (see Mikhail and
Ackerman [31], p. 65). Written out in full we have

'"The error in determining the direction of a ray depends on image
position, since a fixed interval in the image corresponds to a larger
angular interval in the middle of the image than it does at the periph-
ery. The reason is that the middle of the image is closer to the center
of projection than is the periphery. In any case, one can determine
what the variance of the error in vertical disparity is, given the image
position and the estimated error in determining positions in the image.

(8)

w = ||r; X ivlpag

- [((b x r,) • (r; x r,))2 z/r?

+ ((b x ^ • ( r / x r,))2 ||r,|pa?] (11)

(Note again that errors in the horizontal disparity do
not influence the computed relative orientation; instead
they influence errors in the distances recovered using
the relative orientation).

Introduction of the weighting factors makes the sum
to be minimized quite complicated, since changes in
baseline and rotation affect both numerators and denom-
inators of the terms in the total error sum. Near the
correct solution, the triple products will be small and
so changes in the estimated rotation and baseline will
tend to induce changes in the triple products that are
relatively large compared to the magnitudes of the triple
products themselves. The changes in the weights, on
the other hand, will generally be small compared to
the weights themselves. This suggests that one should
be able to treat the weights as constant during a partic-
ular iterative step.

Also note that one can compute a good approximation
to the solution without introducing the weighting factors
at all. This approximation can then be used to start an
iterative procedure that does take the weights into ac-
count, but treats them as constant during each iterative
step. This works well because changes in the weights
become relatively small as the solution is approached.
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5 Least Squares Solution for the Baseline

If the rotation is known, it is easy to find the best-fit
baseline, as we show next. This is useful, despite the
fact that we do not usually know the rotation. The reason
is that the ability to find the best baseline, given a rota-
tion, reduces the dimensionality of the search space
from five to three. This makes it much easier to system-
atically explore the space of possible starting values for
the iterative algorithm.

Let {r/,} and {r^,}, for ; = 1, . . . . n, be corre-
sponding bundles of left and right rays. We wish to
minimize

n n

E =S w,[b r;,, r,,,]2 =^ w^ • (r;',. x '•r,,))2 (12)

subject to the condition b • b = 1, where r/; is the
rotated left ray r;; as before. If we let c, = r/, X r^,,
we can rewrite the sum in the simpler form

r" i
£ =S w,(b • c,)2 = b7' ^ w;c,c,7' b (13)

;=1

where we have used the equivalence b • c,• = b^;,
which depends on the interpretation of column vectors
as 3x1 matrixes. The term c^cf is a dyadic product,
a 3x3 matrix obtained by multiplying a 3x1 matrix
by a 1x3 matrix.

The error sum is a quadratic form involving the real
symmetric matrix."

C=S w;c,c,7'
i=i

The minimum of such a quadratic form is the smallest
eigenvalue of the matrix C, attained when b is the cor-
responding unit eigenvector (see, for example, the dis-
cussion of Rayleigh's quotient in Korn and Korn [26].
This can be verified by introducing a Lagrangian
multiplier X and minimizing

E' = b^b + X(l - b^b) (15)

subject to the condition b^ = 1. Differentiating with
respect to b and setting the result equal to zero yields

"The terms in the sum of dyadic products forming the matrix C con-
tain the weights discussed in the previous section. This only makes
sense, however, if a guess is already available for the baseline—unit
weights may be used otherwise.

(14)

Cb = Xb (16)

The error corresponding to a particular solution of this
equation is found by premultiplying by b7:

E = b^b = Xb'b = X (17)

The three eigenvalues of the real symmetric matrix C
are non-negative, and can be found in closed form by
solving a cubic equation, while each of the correspond-
ing eigenvectors has components that are the solution
of three homogeneous equations in three unknowns [26].
If the data are relatively free of measurement error, then
the smallest eigenvalue will be much smaller than the
other two, and a reasonable approximation to the sought-
after result can be obtained by solving for the eigen-
vector using the assumption that the smallest eigenvalue
is actually zero. This way one need not even solve the
cubic equation (see also Horn and Weldon [24]).

If b is a unit eigenvector, so is -b. Changing the
sense of the baseline does not change the magnitude
of the error term [b r/r,.]. It does, however, change
the signs of a, 13, and 7. One can decide which sense
of the baseline direction is appropriate by determining
the signs of a, and j8, for ;' = 1, . . . , n. Ideally, they
should all be positive, but when the baseline and the
rotation are incorrect they may not be.

The solution for the optimal baseline is not unique
unless there are at least two pairs of corresponding rays.
The reason is that the eigenvector we are looking for
is not uniquely determined if more than one of the
eigenvalues is zero, and the matrix has rank less than
two if it is the sum of fewer than two dyadic products
of independent vectors. This is not a significant restric-
tion, however, since we need at least five pairs of rays
to solve for the rotation anyway.

6 Iterative Improvement of Relative Orientation

If one ignores the orthonormality of the rotation matrix,
a set of nine homogeneous linear equations can be ob-
tained by a transformation of the coplanarity conditions
that was first described by Thompson [49]. These equa-
tions can be solved when eight pairs of corresponding
ray directions are known [38, 27]. This is not a least-
squares method that can make use of redundant meas-
urements, nor can it be applied when fewer than eight
points are given. Also, the method is strongly affected
by measurement errors and fails for certain configura-
tions of points [28].
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No true closed-form solution of the least-squares prob-
lem has been found for the general case, where both
baseline and rotation are unknown. However, it is pos-
sible to determine how the overall error is affected by
small changes in the baseline and small changes in the
rotation. This allows one to make iterative adjustments
to the baseline and the rotation that reduce the sum of
squares of errors.

We can represent a small change in the baseline by
an infinitesimal quantity 6b. If this change is to leave
the length of the baseline unaltered, then

||b + 6b||2 = ||b|p (18)

or

||b||2 + 2b • 6b + ||6b||2 = ||b||2 (19)

If we ignore quantities of second-order, we obtain

6b • b = 0

that is, 6b must be perpendicular to b.
A small change in the rotation can be represented

by an infinitesimal rotation vector 6w. The direction of
this vector is parallel to the axis of rotation, while its
magnitude is the angle of rotation. This incremental
rotation takes the rotated left ray, r/, into

r;"= r;'+ (6&? x r,') (20)

This follows from Rodrigues' formula for the rotation
of a vector r

cos 6 r + sin 6 (.w X r) + (1 - cos 0)(o) • r)o) (21)

if we let 0 = ||6u||, u = 6u/||6w||, and note that 6u
is an infinitesimal quantity. Finally then, we see that
t = [b r/ r,.] becomes

t + 6t = [(b + 6b) (r;' + 6w x r/) ly] (22)

or,

[b r;r,] + [6b r;r,] + [b (60, X r;) r,] (23)

if we ignore the term [6b (6w X r/) r,.], because it
contains the product of two infinitesimal quantities. We
can expand two of the triple products in the expression
above and obtain

[b r; r,] + (r; x r,) • 6b + (r, x b) • (60) x r;) (24)

or

t + c • 6b + d • 6o» (25)

for short, where

t = [b r; r,], c = r/ x r,, d = r; x (r, x b) (26)

Now, we are trying to minimize

n

£ =S w.̂  + c; • 6b + d. • 6W)2 (27)
i=i

subject to the condition b • 6b = 0. We can introduce
a Lagrange multiplier in order to deal with the con-
straint. Instead of minimizing E itself, we then have
to minimize

E' = E + 2X(b • 6b) (28)

(where the factor of two is introduced to simplify the
algebra later). Differentiating E' with respect to 6b, and
setting the result equal to zero yields

n
^ w;(r, + c, • 6b + d; • 6(tf)c, + Xb = 0 (29)
i=l

By taking the dot-product of this expression with b, and
using the fact that b • b = 1 one can see that

X = -^ w,(t, + c, • 6b + d, • 6w)t, (30)
i=l

which means that -X is equal to the total error when
one is at a stationary point, where 6b and 6w are equal
to zero.

If we differentiate E' with respect to 6w and set this
result also equal to zero, we obtain

^ w,(t, + c, • 6b + d, • 6t»)d, = 0 (12)

Finally, if we differentiate £" with respect to X we get
back the constraint

b • 6b = 0 (32)

The two vector equations and the one scalar equation
(equations (29), (31), and (32)) constitute seven linear
scalar equations in the six unknown components of6b
and 6(d and the unknown Lagrangian multiplier X. We
can rewrite them in the more compact form:

C 6b + F 60 + Xb = -c

F7 6b + D 6&? = -d

b7' 6b = 0

or

(33)
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(34)

where

(35)

while

C F b 6b' r -~\
C

F7' D 0 oo

b7' O7" 0 X-^ \- • ^/

c=s
w;c,c7'

F =1; w.c.d7

1=1

n

Z)=Sw,d,<

c =S w,t,c, and d =^ w,r,d, (36)

rare configurations of points in the scene (see the discus-
sion of critical surfaces later). The coefficient matrix
may also become ill conditioned when the iterative
process approaches a stationary point that is not a
minimum, as is often found between two nearby local
minima. At such points the total error will typically
still be quite large, yet vary rather slowly over a signifi-
cant region of parameter space. In this situation the cor-
rection terms 6b and 6w that are computed may become
very large. Since the whole method is based on the
assumption that these adjustments are small, it is impor-
tant to limit their magnitude.14

To guard against bad data points (and local minima
of the error function) it is important to compute the
total error before accepting a solution. It should be com-
pared against what is expected, given the variance of
the error in the vertical disparity of the ray directions.
The estimate <% of the variance factor a2 can be obtained
from the weighted error sum

;=i i=i

The above gives us a way of finding small changes in
the baseline and rotation that reduce the overall error
sum.12 The equations shown (equation (34)) are the
symmetric normal equations (see also Mikhail and
Ackerman [31], p. 229) and yield incremental adjust-
ments for the rotation and the baseline.13 This method
can be applied iteratively to locate a minimum. Numer-
ical experiments confirm that it converges rapidly when
a good initial guess is available.

E =S ^[t*'';',!• rr,,] (37)
i'=i

using the updated values of the rotation and the baseline,
or from the approximation

n

£ =S Wi(t, + c, • ob + d, • otf)2 (38)
i= l

using the computed increments 8b and 6u, and the old
values of the rotation and the baseline. We have

52 = E/(n - 5) (39)
7 Singularities and Sensitivity to Errors

The computation of the incremental adjustments cannot
be carried out with precision when the coefficient
matrix becomes ill conditioned. This occurs when there
are fewer than five pairs of rays, as well as for certain

"It is also possible to reduce the problem to the solution of six linear
equations in six unknowns by first eliminating the Lagrangian multi-
plier \ using b • b = 1 [22], but this leads to an asymmetrical coeffi-
cient matrix that requires more work to set up. One of the reviewers
pointed out that the symmetric normal equations can be solved
directly, as shown above.
"Note that the customary savings of about half the computation when
solving a system of equations with symmetric coefficient matrix cannot
be fully achieved here since the last element on the main diagonal
is zero. It may also be of interest to note that the top left 6x6 sub-
matrix has at most rank n, since it is the sum o f n dyadic products—it
thus happens to be singular when n = 5.

where n is the number of pairs of rays (see also Mikhail
and Ackerman [31], p. 115). A ^-test with five degrees
of freedom can be applied to CT2/^2 to test whether the
estimated variance factor deviates significantly from the
assumed value.

The inverse of the normal matrix introduced above
has great significance, since from it can be derived the
covariance matrix for the unknown orientation param-
eters (the elements of fib and 6u) using the covariance
matrix of the quantities (c and d) appearing on the right-
hand side of the normal equations (see also [31], p.
230). It is important to point out, however, that the var-
iances of the six parameters do not tell the whole story,

"The exact size of the limit is not very important, a limit between
1/10 and 1 on the combined magnitudes of 6b and 5w appears to work
quite well.
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since the covariances (off-diagonal elements) can be-
come very large, particularly in ill-conditioned cases.
In such cases, the total error may vary appreciably when
any one of the parameters is changed individually, yet
a carefully chosen combination of changes in the param-
eters may leave the total error almost unchanged. In
these situations, movement along special directions in
parameter space may yield changes in total error that
are a million-fold smaller than changes induced by
movement in other directions. This means that for the
same change in the total error, movement in parameter
space in these special directions can be a thousand-fold
larger than in other directions.

Ideally, a sensitivity analysis should be performed
to check the stability of the solution [6].

8 Adjusting the Baseline and the Rotation

The iterative adjustment of the baseline is straight-
forward:

b»+i = b" + 5b" (40)

where b" is the baseline estimate at the beginning of
the nth iteration, while 5b" is the adjustment computed
during the rath iteration, as discussed in the previous
section. If 5b" is not infinitesimal, the result will not
be a unit vector. We can, and should, normalize the
result by dividing by its magnitude.

&7 Adjustment of Rotation Using Unit Quaternions

Adjusting the rotation is a little harder. Rotations are
conveniently represented by unit quaternions [19, 20,
40,46, 47]. The groundwork for the application of the
unit quaternion notation in photogrammetry was laid
by Thompson [48], Schut [42], and Pope [37]. A posi-
tive rotation about the axis w through an angle 6 is rep-
resented by the unit quaternion

q = cos (91T) + sin (0/2)w (41)
where u is assumed to be a unit vector. Composition
of rotations corresponds to multiplication of the corre-
sponding unit quaternions. The rotated version of a vec-
tor r is computed using

r'n = qrq* (42)

where q* is the conjugate of the quaternion q, that is,
the quaternion obtained by changing the sign of the vec-
tor part. Here, r is a purely imaginary quaternion with

(46)

vector part r, while r ' is a purely imaginary quaternion
with vector part r.' The above can also be written in
the form

r'= (ql - q • q)r + 2(q • r)q + 2^o(q X r) (43)

where qo and q are the scalar and vector parts of the
unit quaternion q (see also [19]).

The infinitesimal rotation 6u corresponds to the
quarternion

603 = 1 + - 6w (44)

We can adjust the rotation q by premultiplying with 8u>,
that is,

^"+1 = 6^" (45)

If Su" is not infinitesimal, 6w" will not be a unit qua-
ternion, and so the result of the adjustment will not be
a unit quaternion either. This undesirable state of af-
fairs can be avoided by using either of the two unit
quaternions

^ =Ji -^\w + \ ̂
or

1+^|W (47)

Alternatively, one can simply normalize the product by
dividing by its magnitude.

8.2 Adjustment of Rotation Using Orthonormal Matrixes

The adjustment of rotation is a lime trickier if orthonor-
mal matrixes are used to represent rotations. We can
write the relationship

r'= r + (5y x r) (48)

in the form

r'= r + Wr (49)

where the skew-symmetric matrix W is defined by

0 —5tri;

0
^

5ti?v
6<î

—5(<\
W = (50)

in terms of the components of rotation vector 6u =
(Sw^, Swy, Sw^. Consequently we may write r' = Qr,
where Q = I + W, or
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(51)
-8w^

1Q= 8u^
—6ti?v

5tl?y

——Oti?,.

5(<?y

One could then attempt to adjust the rotation by multi-
plication of the matrixes Q and R as follows:

/?"+! = g"j?" (52)

The problem is that Q is not orthonormal unless 6w
is infinitesimal. In practice this means that the rotation
matrix will depart more and more from orthonormality
as more and more iterative adjustments are made. It
is possible to renormalize this matrix by finding the
nearest orthonormal matrix, but this is complicated,
since it involves the determination of the square-root
of a symmetric matrix [23] .15

To avoid this problem, we should really start with
an orthonormal matrix to represent the incremental
rotation. We can use either of the two unit quaternions
in equations (46) or (47) to construct the corresponding
orthonormal matrix

Cql + <& - c f y - <&. 2(^y - q^)
Q = | 2(<^, + <Mz) ql - ql + q^y - <&

2(^A - Wy) 2(^y + q^)

2(?A + qoqy) ~"
2(^ - qoqx)

ql - ql - <?y + ql
where qy is the scalar part of the quaternion bm, while
q^, qy, q^ are the components of the vector part.16 Then
the adjustment of rotation is accomplished using

j?"+i = (yp" (54)

Note, however, that the resulting matrixes will still tend
to depart slightly from orthonormality due to numerical
inaccuracies. This may be a problem if many iterations
are required.

9 Ambiguities

9.1 Inherent Ambiguities and Dual Solution

The iterative adjustment described above may arrive
at a number of apparently different solutions. Some of
"This is another place where the unit quaternion representation has
a distinct advantage: it is trivial to find the nearest unit quaternion
to a quaternion that does not have unit magnitude.
"This expression for the orthonormal normal matrix in terms of the
components of the corresponding unit quaternion can be obtained
directly by expanding r = qrq* or by means ofRodrigues' formula
[19, 20].

these are just different representations of the same solu-
tion, while others are related to the correct solution by
a simple transformation. First of all, note that -q rep-
resents the same rotation as q, since

(-q) r (-q*) = qrq* (55)

That is, antipodal points on the unit sphere in four
dimensions represent the same rotation. If desired, one
can prevent any confusion by ensuring that the first non-
zero component of the resulting unit quaternion is posi-
tive, or that the largest component is positive.

Next, note that the triple product, [b r;'r,.], changes
sign, but not magnitude, when we replace b with -b.
Thus the two possible senses of the baseline yield the
same sum of squares of errors. However, changing the
sign of b does change the signs of both a and 18. All
scene points imaged are in front of the camera, so the
distances should all be positive. In the presence of
noise, it is possible that some of the distances turn out
to be negative, but with reasonable data almost all of
them should be positive. This normally allows one to
pick the correct sense for the baseline.

Not so obvious is another possibility. Suppose we
turn all of the left measurements through TT radians
about the baseline, in addition to the rotation already
determined. That is, replace q by q = bq, where b is
a purely imaginary quaternion with vector part b. The
triple product can be written in the form

rot (r,) • (r, x b)
(qriq*)-(r,b)

[b r; r,] (56)

where r; and r,. are purely imaginary quaternion with
vector part r; and r,. respectively. If we replace q by
q' = bq, we obtain for the triple product

t'= (bqriq*b*) • (r,b) = (bqnq*) ' (r,bb) (57)

or

t'= (bqriq*) • (-b • b)r, = -(bqriq*) • r, (58)

or

t'= -(qnq*) • (b*r,) = -(qnq*) • (r,b) = -t
(59)

where we have repeatedly used special properties of
purely imaginary quaternions, as well as the fact that
b • b = 1. We conclude that the sign of the triple product
is changed by the added rotation, but its magnitude is
not. Thus the total error is undisturbed when the left
rays are rotated through v radians about the baseline.
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The solution obtained this way will be called the dual
of the other solution.

We can obtain the same result using vector notation:
We replace r/ with

r; '=2(b-iY)b - r; (60)

using Rodrigues' formula for the rotation of a vector r

cos 0 r + sin Q (w X r) + (1 - cos 0)(w • r)o)
(61)

with 6 = v and <i? = b. Then the triple product
[b r;' r,.] turns into

2(b • r;)[b b r,] - [b r; r,] = -[b r; r,] (62)

This, once again, reverses the sign of the error term,
but not its magnitude. Thus the sum of squares of errors
is unaltered. The signs of a and 13 are affected, however,
although this time not in as simple a way as when the
sense of the baseline was reversed.

If [b r/ r,.] = 0, we find that exactly one of a and
j8 changes sign. This can be shown as follows: The
triple product will be zero when the left and right rays
are coplanar with the baseline. In this case we have
7=0, and so

err/ = b + j8r, (63)

Taking the cross-product with b we obtain

a(r; x b) = /3(r, x b) (64)

If we now replace r/by r/'= 2(b • r/)b - r/, we have
for the new distances a' and 0'along the rays:

-a'(r;x b) =/3'(r, X b) (65)

We conclude that the product a '(3' has sign opposite
to that of the product o c f f . So if a and 13 are both posi-
tive, one of a or f 3 must be negative.

In the presence of measurement error the triple prod-
uct will not be exactly equal to zero. If the rays are nearly
coplanar with the baseline, however, we find that one
of a and (3 almost always changes sign. With very poor
data, it is possible that both change sign.17 In any case,
we can reject a solution in which roughly half the dis-
tances are negative. Moreover, we can find the correct
solution directly by introducing an additional rotation
of IT radians about the baseline, that is, by computing
the dual of the solution.

"Even with totally random ray directions, however, this only happens
27.3% of the time, as determined by Monte Carlo simulation.

9.2 Remaining Ambiguity

If we take care of the three apparent two-way ambigui-
ties discussed in the previous section, we find that in
practice a unique solution is found, provided that a suf-
ficiently large number of ray pairs are available. That
is, the method converges to the unique global minimum
from every possible starting point in parameter space.18

Several local minima in the sum of squares of errors
appear when only a few more than the minimum of five
ray pairs are available (as is common in practice). This
means that one has to repeat the iteration with different
starting values for the rotation in order to locate the
global minimum. A starting value for the baseline can
be found in each case using the closed-form method
described in section 5. To search the parameter space
effectively, one needs a way of efficiently sampling the
space of rotations. The space of rotations is isomorphic
to the unit sphere in four dimensions, with antipodal
points identified. The rotation groups of the regular
polyhedra provide convenient means of uniformly sam-
pling the space of rotations. The group of rotations of
the tetrahedron has 12 elements, that of the hexahedron
and the octahedron has 24, and that of the icosahedron
and the dodecahedron has 60 (representations of these
groups are given in appendix A for convenience). One
can use these as starting values for the rotation. Alter-
natively, one can just generate a number of randomly
placed points on the unit sphere in four dimensions as
starting values for the rotation.19

9.3 Number of Solutions Given Five Pairs of Rays

When there are exactly five pairs of rays, the situation
is different again. In this case, we have five nonlinear
equations (equation (1)) in five unknowns and so in gen-
eral expect to find a finite number of exact solutions.
That is, it is possible to find baselines and rotations
that satisfy the coplanarity conditions exactly and re-
duce the sum of squares of errors to zero.

We can in fact easily express the coplanarity constraint
as a polynomial in the components of b and q. Noting

"It has been shown that at most three essentially different relative
orientations are compatible with a given sufficiently large number
of ray pairs [29]—in practice one typically finds just one.
"We see here another advantage of the unit quaternion representation.
It is not clear how one would sample the space of rotations using
orthonormal matrixes directly.
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that r/' = rot (r;) and that the triple product can be
written in the form

t = [b r; r,] = (qr,q*) • (r,b) (66)

we can expand equation (1), using equation (53), into

[(ql + € - ^ y - q^)k + 2(<My - <Mz)^

+ 2(9A + q^y)l,
X (ryb, - r,by)

+ (2(<^, + q^)l, + (q2, - q j + q} - q^ly

+ 2(^ - qaqx)k

x ('•A - 'A)
+ [2(^A - Wy^x + 2(^y + q^)ly

+ (.ql - ̂  - ̂  + <?X
X (r^y - r̂ ,) = 0 (67)

where b = (b^, by, b^, r; = (/;,, ly, l^, r, = (r,, Ty,
r ^ f , while q = (<?o> <7.i. <?y, qz)1- This equadon is linear
in the components ofb and quadratic in the components
o f q . When there are five ray pairs, there are five such
equations. Together with the quadratic equations b •
b = 1 and q • q = 1, they constitute seven polynomial
equations in the seven components of b and q. An upper
bound on the number of solutions is given by the prod-
uct of the orders of the equations, which is 27 = 128
in this case.20 Note however that the equations are not
changed if we change the sign of either b or q. Taking
this into account, we see that there can be at most 32
distinct solutions. Not all of these need be real, of
course.

In practice it is found that the number of solutions
is typically a multiple of four (if we ignore reversals
of q and b). With randomly chosen ray directions, about
half of the cases lead to eight solutions, slightly more
than a quarter have four solutions, while slightly less
than a quarter have twelve. Less frequent are cases with
sixteen solutions and a very small number of randomly
generated test cases lead to twenty solutions, which ap-
pears to be the maximum number possible. Ray bundles
for which there are no solutions at all are equally rare,
but do exist. When one of the solutions corresponds
to a critical surface, then the number of solutions is

"The three components of the baseline vector b can be eliminated
fairly easily, because the equations are linear and homogeneous in
these components. This leaves a smaller number of higher-order equa-
tions in the four components of q.

not a multiple of four—such cases correspond to places
in ray parameter space that lie on the border between
regions in which the number of solutions are different
multiples of four. In this situation, small changes in the
ray directions increase or decrease the number of solu-
tions by two.

It has been brought to my attention, after receiving
the comments of the reviewers, that it has recently been
shown [5] that there can be at most twenty solutions
of the relative orientation problem when n = 5, and
that there exist pairs of ray bundles that actually lead
to twenty solutions [34]21 Typically there is one positive
solution (or none), although several positive solutions
may exist for a given set of ray bundles.

The ambiguities discussed above are, of course, of
little concern if a reasonable initial guess is available.
Note that methods that apply to the special case when
there are five pairs of rays do not generalize to the least-
squares problem when a larger number of ray pairs are
available. In practice one should use more than five ray
pairs, both to improve accuracy and to have a way of
judging how large the errors might be.

10 Summary of the Algorithm

Consider first the case where we have an initial guess
for the rotation. We start by finding the best-fit baseline
direction using the closed-form method described in
section 5. We may wish to determine the correct sense
of the baseline by choosing the one that makes most
of the signs of the distances positive. Then we proceed
as follows:
• For each pair of corresponding rays, we compute r/,,

the left ray direction r;, rotated into the right camera
coordinate system, using the present guess for the
rotation (equations (42), (43) or using equation (53)).

• We then compute the cross-product c, = r/, x r^,,
the double cross-product d, = r/; X (r,.,, X b) and
the triple-product t, = [b r^, r^;].

• If desired, we then compute the appropriate weighting
factor w, as discussed in section 4 (equation (11)).

• We accumulate the (weighted) dyadic products
w,c,cf, w,c,df and w,d;df, as well as the (weighted)
vectors w,f,c; and w,f,<l,. The totals of these quantities
over all ray pairs give us the matrixes C, F, D and
the vectors c and d (equations (35) and (36)).

"Since dual solutions (obtained by rotating the left ray bundle through
T about the baseline) are apparently not counted by these authors,
they actually claim that the maximum number of solutions is ten.
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• We can now solve for the increment in the baseline
5b and the increment in the rotation Sw using the
method derived in section 6 (equation (34)).

• We adjust the baseline and the rotation using the
methods discussed in section 8 (equations (40), (45)
or (53), (54)), and recompute the sum of the squares
of the error terms (equation (12)).
The new orientation parameters are then used in the

next iteration of the above sequence of steps. As is the
case with many iterative procedures, it is important to
know when to stop. One could stop after either a fixed
number of iterations or when the error becomes less
than some predetermined threshold. Another approach
would be to check on the size of the increments in the
baseline and the rotation. These become smaller and
smaller as the solution is approached, although their
absolute size does not appear to provide a reliable stop-
ping criterion.

The total error typically becomes small after a few
iterations and no longer decreases at each step, because
of limited accuracy in the arithmetic operations. So one
could stop the iteration the first time the error increases.
The total error may, however, also increase when the
surfaces of constant error in parameter space are very
elongated in certain directions, as happens when the
problem is ill conditioned. In this case a step in the
direction of the local gradient can cause one to skip
right across the local "valley floor." It is thus wise to
first check whether smaller steps in the given direction
reduce the total error. The iteration is only stopped
when small steps also increase the error.

When the decision has been made to stop the itera-
tion, a check of the signs of the distances along the rays
is in order. If most of them are negative, the baseline
direction should be reversed. If neither sense of the
baseline direction yields mostly positive distances, one
needs to consider the dual solution (rotation of the left
ray bundle through IT radians about the baseline b).

It makes sense also to check whether the solution is
reasonable or whether it has perhaps been spoiled by
some gross error in the data, such as incorrect corre-
spondence between rays. When more than five pairs
of rays are available, recomputation of the result using
subsets obtained by omitting one ray at a time yield
useful test results. These computations do not take much
work, since a good guess for the solution is available
in each case.

It is, of course, also useful to compute the total error
E and to estimate the variance factor, as suggested in

section 7. Finally, it may be desirable to estimate the
standard deviations of the error in the six unknown
parameters using the inverse of the matrix of coeffi-
cients of the symmetric normal equations, as indicated
in section 7.

11 Search of Parameter Space and Statistics

If an initial guess is not available, one proceeds as
follows:
• For each rotation in the chosen group of rotations,

perform the above iteration to obtain a candidate base-
line and rotation.

• Choose the solution that has all positive signs of the
distances along rays and yields the smallest total error.
When there are many pairs of rays, the iterative algo-

rithm will converge to the global minimum-error solu-
tion from any initial guess for the rotation. There is
no need to sample the space of rotations in this case.

Also, instead of sampling the space of rotations in
a systematic way using a finite group of rotations, one
can generate points randomly distributed on the surface
of the unit sphere in four-dimensional space. This pro-
vides a simpler means of generating initial guesses, al-
though more initial guesses have to be tried than when
a systematic procedure is used, since the space of rota-
tions will not be sampled evenly.

The method as presented minimizes the sum of the
squares of the weighted triple products [b r/rj. We
assumed that the weighting factors vary slowly during
the iterative process, so that we can use the current esti-
mates of the baseline and rotation in computing the
weighting factors. That is, when taking derivatives, the
weighting factors are treated as constants. This is a good
approximation when the parameters vary slowly, as they
will when one is close to a minimum.

The method described above can be interpreted as
a straightforward weighted least-squares optimization,
which does not allow estimation of uncertainty in the
parameters. One can also apply more sophisticated anal-
yses to this problem, such as best linear unbiased esti-
mation, which does not require any assumptions to be
made about the distribution of the errors, only that their
standard deviations be known. The standard deviations
of the resultant parameters can then be used to evaluate
their uncertainty, although no testing of confidence in-
tervals is possible. Finally, one may apply maximum
likelihood estimation of the orientation parameters,
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where the observation errors are assumed to be dis-
tributed in a Gaussian fashion with known standard
deviations. This allows one to derive confidence regions
for the estimate orientation parameters, which can be
treated as quantities that contain an error that is dis-
tributed in Gaussian fashion also.

12 Critical Surfaces

In certain rare cases, relative orientation cannot be ac-
curately recovered, even when there are five or more
pairs of rays. Normally, each error term varies linearly
with distance in parameter space from the location of
an extremum, and so the sum of squares of errors varies
quadratically. There are situations, however, where the
error terms do not vary linearly with distance, but quad-
ratically or higher order, in certain special directions
in parameter space. In this case, the sum of squares
of errors does not vary quadratically with distance from
the extremum, but as a function of the fourth or even
higher power of this distance. This makes it very dificult
to accurately locate the extremum. In this case, the total
error is not significantly affected by a change in the
rotation, as long as this change is accompanied by an
appropriate corresponding change in the baseline. It
turns out that this problem arises only when the observed
scene points lie on certain surfaces called Gefdhrliche
Flachen or critical surfaces [2, 18, 43, 56]. We show
next that only points on certain hyperboloids of one
sheet and their degenerate forms can lead to this kind
of problem.

We could try to find a direction of movement in
parameter space (5b, f)<is) that leaves the total error unaf-
fected (to second order) when given a particular surface.
Instead, we will take the critical direction of motion
in the parameter space as given, and try to find a surface
for which the total error does not change (to second
order).

Let R be a point on the surface, measured in the right
camera coordinate system. Then

i3r,. = R and ar/ = b + R (68)

for some positive a and (3. In the absence of measure-
ment errors,

[b r; r,] = ̂  [b (b + R) R] = 0 (69)

We noted earlier that when we change the base line and
the rotation slightly, the triple product [b r/r,.] becomes

[(b + 5b) (r/ + 6u x r/) r,] (70)

or, if we ignore higher-order terms.

[b r/ r,] + (r/ x r,.) • 5b + (r,. x b) • (6o? x r/)
(71)

The problem we are focusing on here arises when this
error term is unchanged (to second order) for small
movement in some direction in the parameter space.
That is when

(r;' x r,) • 6h + (r, x b) • (5t» x r,') = 0 (72)

for some 6b and §w. Introducing the coordinates of the
imaged points we obtain

— {[(b + R) x R) • 6b + (R x b)

• (So? x (b + R)]} = 0 (73)

or

(R X b) • (6u x R) + (R X b) • (§<<? X b)

+ [b R 6b] = 0 (74)

If we expand the first of the dot-products of the cross-
products, we can write this equation in the form

(R • b)(5w • R) - (b • 6w)(R • R) + L • R = 0
(75)

where

L = Si x b, while ( = b x 6w + 6b (76)

The expression on the left-hand side contains a part that
is quadratic in R and a part that is linear. The expression
is clearly quadratic in X, Y, and Z, the components of
the vector R = (X, Y, Z)7. Thus a surface leading to
the kind of problem described above must be a quadric
surface [26].

Note that there is not constant term in the equation
of the surface, so R = 0 satisfies equation (75). This
means that the surface passes through the right projec-
tion center. It is easy to verify that R = -b satisfies
the equation also, which means that the surface passes
through the left projection center as well. In fact, the
whole baseline (and its extensions), R = feb, lies in
the surface. This means that we must be dealing with
a ruled quadric surface. It can consequently not be an
ellipsoid or hyperboloid of two sheets, or one of their
degenerate forms. The surface must be a hyperboloid
of one sheet, or one of its degenerate forms. Additional
information about the properties of these surfaces is
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given in appendix B, while the degenerate forms are
explored in appendix C (see also [33]).

It should be apparent that this kind of ambiguity is
quite rare. This is nevertheless an issue of practical im-
portance, since the accuracy of the solution is reduced
if the points lie near some critical surface. A textbook
case of this occurs in aerial photography of a roughly
U-shaped valley taken along a flight line parallel to the
axis of the valley from a height above the valley floor
approximately equal to the width of the valley. In this
case, the surface can be approximated by a portion of
a circular cylinder with the baseline lying on the cylin-
der. This means that it is close to one of the degenerate
forms of the hyperboloid of one sheet (see appendix C).

Note that hyperboloids of one sheet and their degen-
erate forms are exactly the surfaces that lead to ambi-
guity in the case of motion vision. The coordinate
systems and symbols have been chosen here to make
the correspondence between the two problems more ap-
parent. The relationship between the two situations is
nevertheless not quite as transparent as I had thought
at first [21].

In the case of the ambiguity of the motion field, we
are dealing with a two-way ambiguity arising from infin-
itesimal displacements in camera position and orienta-
tion. In the case of relative orientation, on the other
hand, we are dealing with an elongated region in param-
eter space within which the error varies more slowly than
quadratically, arising from images taken with cameras
that have finite differences in position and orientation.
Also note that the symbol 60 stands for a small change
in a finite rotation here, while it refers to a difference
in instantaneous rotational velocities in the motion
vision case.

In practice, the relative orientation problem becomes
ill conditioned near a solution that corresponds to ray
intersections that lie close to a critical surface. In this
case the surfaces of constant error in parameter space
become very elongated and the location of the true min-
imum is not well defined. In addition, iterative algo-
rithms based on local linearization tend to require many
steps for convergence in this situation. It is important to
point out that a given pair of bundles of corresponding
rays may lead to poor behavior near one particular solu-
tion, yet be perfectly well behaved near other solutions.
In general these sorts of problems are more likely to
be found when the fields of view of one or both cameras
are small. It is possible, however, to have ill-conditioned

problems with wide fields of view. Conversely, a small
field of view does not automatically lead to poor
behavior.

Difficulties are also encountered when two local min-
ima are near one another, since the surfaces of constant
error in this case tend to be elongated along the direc-
tion in parameter space connecting the two minima and
there is a saddle point somewhere between the two min-
ima. At the saddle point the normal matrix is likely
to be singular.

13 Conclusions

Methods for recovering the relative orientation of two
cameras are of importance in both binocular stereo and
motion vision. A new iterative method for finding the
relative orientation has been described here. It can be
used even when there is no initial guess available for
the rotation or the baseline. The new method does not
use Euler angles to represent the orientation and it does
not require that the measured points be arranged in a
particular pattern, as some previous methods do.

When there are many pairs of corresponding rays,
the iterative method finds the global minimum from
any starting point in parameter space. Local minima
in the sum of squares of errors occur, however, when
there are relatively few pairs of corresponding rays
available. Methods for efficiently locating the global
minimum in this case were discussed. When only five
pairs of corresponding rays are given, several exact
solutions of the coplanarity equations can be found.
Typically only one of these is a positive solution, that
is, one that yields positive distances to all the points
in the scene. This allows one to pick the correct solution
even when there is no initial guess available.

The solution cannot be determined with accuracy
when the scene points lie on a critical surface.
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Appendix A: Rotation Groups of Regular Polyhedra

Each of the rotation groups of the regular polyhedra
can be generated from two judiciously chosen elements.
For convenience, however, an explicit representation
of all of the elements of each of the groups is given
here. The number of different component values occur-
ring in the unit quaternions representing the rotations
can be kept low by careful choice of the alignment of
the polyhedron with the coordinate axes. The attitudes
of the polyhedra here were selected to minimize the
number of different numerical values that occur in the
components of the unit quaternions. A different repre-
sentation of the group is obtained if the vector parts
of each of the unit quaternions is rotated in the same
way. This just corresponds to the rotation group of the
polyhedron in a different attitude with respect to the
underlying coordinate system. This observation leads
to a convenient way of generating finer systematic sam-
pling patterns of the space of rotations than the ones
provided directly by the rotation group of a regular
polyhedron in a particular alignment with the coordi-
nate axes (see also [3]).

The components of the unit quaternions here may
take on the values 0 and 1, as well as the following:

V5 - 1 , 1 1 , , V5 + 1and d =b
V2'2'

(77)

Here are the unit quaternions for the twelve elements
of the rotation group of the tetrahedron:
(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(b, b, b, b) (b, b, b, -b) (b, b, -b, b) (b, b, -b, -b)
(b, -b, b, b) (b, -b, b, -b) (b, -b, -b, b) (b, -b, -b, -b)

(78)

Here are the unit quaternions for the twenty-four ele-
ments of the rotation group of the octahedron and the
hexahedron (cube):
(l, o, o, 0) (0, i, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(0, 0, c, c) (0, 0, c, -c) (O, c, O, c) (O, c, O, -c)
(0, c, c, 0) (0, c, -c, 0) (c, 0, 0, c) (c, 0, 0, -c)
(c, 0, c, 0) (c, 0, -c, 0) (c, c, 0, 0) (c, -c, 0, 0)
(b, b, b, b) (b, b, b, -b) (b, b, -b, b) (b, b, -b, -b)
(b, -b, b, V) (b, -b, b, -b) (b, -b, -b, b) (b, -b, -b, -b)

(79)

Here are the unit quaternions for the sixty elements
of the rotation group of the icosahedron and the
dodecahedron:
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(80)

Remember that changing the signs of all the compo-
nents of a unit quaternion does not change the rotation
that it represents.

Appendix B: Some Properties of Critical Surfaces

In this appendix we develop some more of the proper-
ties of the critical surfaces. The equation of a critical
surface can be written in the form

(R x b) • (§o? x R) + L • R = 0 (81)

or

(R • b)(5y • R) - (b • 5<ri)(R • R) + L • R = 0
(82)

where

L == { x b, while I = b x 5w + 6b (83)

It is helpful to first establish some simple relationships
between the quantities appearing in formula (83). We
start with the observations that t • b = 0, that ( • 6u
= 9b • 6td, and I x 5b = -(8b • 8u)b.

We can also expand L to yield,

L = 6a> - (b • 5fa>)b + 6b X b (84)

It follows that L • b =0; that L • 6b = 6w • §b, and

L x b = -(b x So + Sb) = -i,
(85)

L X 6w = (5b • 6u)b - (b • 6w)(

We have already established that R = kb is an equation
for one of the rulings passing through the origin. A

hyperboloid of one sheet has two intersecting families
of rulings, so there should be a second ruling passing
through the origin. Consider the vector S defined by

S = (L X 5u) X L (86)

which can be written in the form

S = (L • L)6o) - (L • 5o))L (87)

or

S = (8w • 6b)S + (b • 6w)(S • f)b (88)

so that S • b = (b • 6o))(f • 0 and S • 6w = (6w - <5b)2

+ (b • 6(»)2^ • I).
If we substitute R = kS into the formula

(R X b) • (6w X R) + L • R (89)

we obtain zero, since L • S = 0 and

S x b = (6w • 6b)L (90)

is orthogonal to

S x 6w = -(L • 6u))L x 60) (91)

We conclude that R = kS is an equation for the other
ruling that passes through the right projection center.

There are two families of parallel planes that cut an
ellipsoid in circular cross-sections [15]. Similarly, there
are two families of parallel planes that cut a hyperboloid
of one sheet in circular cross-sections. One of these
families consists of planes perpendicular to the baseline,
that is, with common normal b. We can see this by sub-
stituting R • b = k in the equation of the critical surface.
We obtain

k(6w • R) - (b • 6y)(R • R) + L • R = 0 (92)

or
(b • 6w)(R • R) - (k6w + L) • R = 0 (93)

This is the equation of a sphere, since the only second-
order term in R is a multiple of

R • R = X2 + V2 + Z2 (94)

We can conclude that the intersection of the critical sur-
face and the plane is also the intersection of this sphere
and the plane, and so must be a circle. The same applies
to the intersection of the critical surface and the family
of planes with common normal 6w, since we get

(b • 6w)(R • R) - (kb + L) • R = 0 (95)
when we substitute R • 6o? = k into the equation of the
critical surface.
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The equation of the critical surface is given in the
implicit form/(R) = 0. The equation of a tangent plane
to such a surface can be obtained by differentiating with
respect to R:

N = (R x So) X b + (R X b) x 6w + L (96)

or

N = (R -b)6u + (R • 5<>))b - 2(b • 6w)R + L
(97)

The tangent plane at the origin has normal L. This tan-
gent plane contains the baseline (since L • b = 0), as
well as the other ruling passing through the origin (since
L • S = 0). Note that the normal to the tangent plane
is not constant along either of these rulings, as they
would be if we were dealing with a developable surface.

In the above we have not considered a large number
of degenerate situations that can occur. The reader is
referred to appendix C for a detailed analysis of these.

Appendix C: Degenerate Critical Surfaces

There are a number of special alignments of the infini-
tesimal change in the rotation, 6w, with the baseline, b,
and the infinitesimal change in the baseline 5b that lead
to degenerate forms of the hyperboloid of one sheet.

One of the rulings passing through the origin is given
by R = kb, while the other is given by R = kS. If
these two rulings become parallel, we are dealing with
a degenerate form that has only one set of rulings, that
is a conical surface. Now

S = (601 • 6b)S + (b • 8ui)(S • f)b (98)

is parallel to b only when (6w • 8b) = 0, since t is per-
pendicular to b. In this case

Sb • 6w = 0 and 5b • b = 0 (99)

so 6b = k(b x 6w) for some constant k. Consequently
i = (k + l)(b X 6us). The vertex of the conical surface
must lie on the baseline since the baseline is a ruling,
and every ruling passes through the vertex. It can be
shown that the vertex actually lies at R = -(k + l)b.

We also know that cross-sections in planes perpendic-
ular to the baseline are circles. This tells us that we are
dealing with elliptical cones. Right circular cones can-
not be critical surfaces. It can be shown that the main
axis of the elliptical cone lies in the direction b + 6w.

A special case of the special case above occurs when

||b x 5fa)||= 0 (100)

that is 6u ||b. Here 6u = kb for some constant k and
so S = §b and L = 6b X b. The equation of the sur-
face becomes

k(R •b)2 - k(h • b)(R • R) + L • R = 0 (101)

or

k\\R X b||2 + (6b X b) • R = 0 (102)

This is the equation of a circular cylinder with axis
parallel to the baseline. In essence, the vertex of the
cone has receded to infinity along the baseline.

Another special case arises when the radius of the
circular cross-sections with planes perpendicular to the
baseline becomes infinite. In this case we obtain straight
lines, and hence rulings, in these planes. The hyperbolic
paraboloid is the degenerate form that has the property
that each of its two sets of rulings can be obtained by
cutting the surface with a set of parallel planes [15].
This happens when 6w is perpendicular to b, that is,
b • 6w = 0. The equation of the surface in this case
simplifies to

(R • b)(6o> • R) + L • R = 0. (103)

The intersection of this surface with any plane perpen-
dicular to the baseline is a straight line. We can show
this by substituting

R • b = k (104)

into the equation of the surface. We obtain

(k 60) + L) • R = 0 (105)

that is, the equation of another plane. Now the intersec-
tion of two planes is a straight line. So we may conclude
that the intersection of the surface and the original plane
is a straight line. We can show in the same way that
the intersection of the surface with any plane perpen-
dicular to 5<i? is a straight line by substituting

R • 6w = k (106)

into the equation of the surface. It can be shown that
the saddle point of the hyperbolic paraboloid surface
lies on the baseline.

A special case of particular interest arises when 6w
is perpendicular to both b and 8b, that is,

b • 5t» = 0 and 6b • 6w = 0 (107)

and so 6w = k(Sb x b), for some constant k. Then
I = (k + 1) 6b and L = (k + l)(5b X b). The equa-
tion of the surface becomes
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k(R • b)[(5b x b) • R]
(108)

+ (k + l)[(6b X b) • R] = 0

or just

[(fe(R • b) + (k + l)][(6b X b) • R] = 0 (109)
so either

(6b x b) • R = 0 or k(R • b) + (k + 1) = 0
(110)

The first of these is the equation of a plane containing
the baseline b and the vector 6b. The second is the
equation of a plane perpendicular to the baseline. So
the solution degenerates in this case into a surface con-
sisting of two intersecting planes. One of these planes
appears only as a line in each of the two images, since
it passes through both projection centers, and so does
not really contribute to the image. It is fortunate that
planes can only be degenerate surfaces if they are per-
pendicular to the baseline, since surfaces that are almost
planar occur frequently in aerial photography.22

To summarize then, we have the following degenerate
cases:
• elliptical cones when 6w 1 8b,
• circular cylinders when 6u ||b
• hyperbolic paraboloids when 6w -L b, and
• intersecting planes when 5w -L fib and f><is -L b.

For further details, and a proof that not all hyperbo-
loids of one sheet passing through the origin lead to
critical surfaces, see [21].

"The baseline was nearly perpendicular to the surface in the sequence
of photographs obtained by the Ranger spacecraft as it crashed into
the lunar surface. This made photogrammetric analysis difficult.




