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The use of rotationally symmetric operators in vision is reviewed and conditions for
rotational symmetry are derived for linear and quadratic forms in the first and second partial
directional derivatives of a function f(x, y). Surface interpolation is considered to be the
process of computing the most conservative solution consistent with boundary conditions. The
“most conservative” solution is modeled using the calculus of variations to find the minimum
function that satisfies a given performance index. To guarantee the existence of a minimum
function, Grimson (W. E. L. Grimson, From Images to Surfaces: A Computational Study of the
Human Early Visual System, MIT Press: Cambridge, Mass., 1981.) has recently suggested that
the performance index should be a seminorm. It is shown that all quadratic forms in the second
partial derivatives of the surface satisfy this criterion. The seminorms that are, in addition,
rotationally symmetric form a vector space whose basis is the square Laplacian and the
quadratic variation. Whereas both seminorms give rise to the same Euler condition in the
interior, the quadratic variation offers the tighter constraint at the boundary and is to be
preferred for surface interpolation.

1. INTRODUCTION

Two separate themes from the computer vision literature'come together in this
paper: the use of rotationally symmetric operators, and the idea that several modules
of visual perception require that the “most conservative” solution that meets a given
set of boundary conditions be computed. The two themes are combined in an
investigation of which operator to use in the interpolation of smooth surfaces from
one-dimensional boundary constraints. Such constraints arise naturally in a variety
of visual problems.

In the next section we review the role of rotationally symmetric operators in
computer vision, and we derive conditions which linear and quadratic forms in the
first and second directional derivatives must satisfy to be rotationally symmetric. We
then discuss the idea that vision is a conservative process, citing examples from both
figure perception and scene analysis. The “most conservative” solution is modeled
using the calculus of variations to find the minimum function that satisfies a given
performance index. A major problem associated with the use of the calculus of
variations is guaranteeing the existence of a minimum function (see, for example [9,
p. 173]). A theorem of Grimson [12, Theorem 2] proves that a sufficient condition
for the existence of a minimum is that the performance index should be a seminorm
on the space of functions. The condition is not necessary. For example, Horn [16]
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has determined the curve that minimizes the integral square curvature subject to
tangency conditions at the end points; the performance index is not a seminorm.

Grimson {12] notes that many intuitively plausible performance indices based on
mean and Gaussian curvature are not seminorms, but that the square Laplacian
o+ 2fi.f,, + f,}, and the quadratic variation f2, + 2f2 + f2 are. We show here
that any quadratic form in f,,, f, ,, and f,  is a seminorm.

To further constrain the choice of performance index in the infinite set of
quadratic forms, we require, in addition, that the quadratic form should be rota-
tionally symmetric. We prove that there are essentially two choices: the square
Laplacian and the quadratic variation. All the remaining possibilities are linear
combinations, that is, they form a vector space with these two as a basis.

To choose between the square Laplacian and the quadratic variation, we consider
their respective Euler conditions and natural boundary conditions [9]. The Euler
conditions are identical, but the natural boundary conditions, which are derived
from the statics of a deformed thin plate, favor the quadratic variation since they
offer a tighter constraint in this case.

2. ROTATIONALLY SYMMETRIC OPERATORS IN VISION

A major concern of computer vision is the isolation of constraints that combine
with the information provided in the image to yield an interpretation. Early work on
polyhedra {8, 18, 23, 40, 35, 36, 20] focused on the discovery of constraints deriving
from the image forming process, constraints that relate image fragments, like
junctions and' lines, to their scene counterparts, vertices and edges. As computer
vision turned its attention away from plane-faced objects to the natural world, other
constraints were required. Often the constraints expressed some facet of the intuitive
notion of “smoothness” and did so in a way that supported useful computations [34,
7, 19, 43, 17]. Recently, smoothness and image forming have been combined using
differential geometry [12, 42, 5].

One constraint that is usually implicit, but is occasionally made explicit, expresses
the idea that perceptual processes are often approximately isotropic. It seems that
humans usually do not show strong directional preferences when detecting edges,
motion, or reflectance boundaries. We seem to be equally adept at perceiving the
layout and orientation of a visible surface regardless of its orientation relative to the
view vector. Ullman [37] argues for an explicit isotropy constraint in his work on

~ subjective contours (see also Knuth [21]).

Processes that are isotropic are naturally computed by rotationally symmetric
operators, since the values they return are unaffected by the coordinate system
chosen for the image. Conversely, rotationally symmetric operators compute iso-
tropic information. As we shall see, many operators that have been proposed for
vision are not rotationally symmetric but directionally selective. Some authors have,
however, proposed-rotationally symmetric operators, particularly for early visual
processing.

Precise definitions of rotational symmetry for functions, operators {(or functionals),
and, by specialization, matrices are given in the following section. In the rest of this
section we assume that the definitions are already understood.

Some kinds of blurring in an image forming system can be approximated by
convolution with a Gaussian: The rotationally symmetric Gaussian can be defined
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by

2
G(r)=%7r02exp( 4 )

20°

Pratt [29] presents several techniques, such as convolution with the generalized
inverse of the blur function, for restoring the image (see, for example, his Figs.
14.2.1, 14.3.2).

The Laplacian A = f,, + f,, is well known to be rotationally symmetric? and its
use has been proposed several times in computer vision and image processing. If an
image is blurred in a way that can be approximately modeled by passing the image
through a system with a Gaussian point spread function, then it can be sharpened by
subtracting a multiple of its Laplacian [32, p. 184; 30, p. 107). Pratt [29, Fig. 17.4.5]
illustrates the use of the Laplacian for enhancing the edges in an image.

Weska e al. [41] note that convolving a step edge with a Laplacian operator gives
rise to a pulse pair: a negative pulse at the transition from the lower plateau to the
edge, and a positive pulse at the transition from the edge to the upper plateau (see
also [15, 26]). They suggested that the image intensities at the locations of the
positive and negative pulses could be used to set thresholds to use in segmenting the
image into regions.

Several authors have noted the relative insensitivity of human perception to small
intensity gradients [13, 25-27]. They have noted that the effect can be explained by
assuming that the vision system uses operators approximating second derivatives.
This so-called lateral inhibition effect seems to be performed by center—surround
operators in the retina (see, for example [31]). The Laplacian is a rotationally
symmetric second differential operator, and an attractive candidate to perform
lateral inhibition.

The use of the Laplacian for edge detection was proposed by Horn [15] in a study
of the determination of lightness. Following Land and McCann [22), Horn restricted
attention to images of planes colored with patches of uniform reflectance or color.
Within a patch, grey level variations are due to small variations in illumination, and
they are smooth compared to the abrupt changes between patches. The conventional
approach to detecting significant changes in intensity had been to note that the
gradient of the image is small within a region, but is infinite across a reflectance
boundary between regions. For a particular image tesselation and quantization of
grey levels, the gradient is always finite. It is usually much larger, however, at a
reflectance boundary than it is within a region. Horn rejected using the gradient
since “the first partial derivatives are directional and thus unsuitable since they will
for example completely eliminate evidence of edges running in a direction parallel to
their direction of differentiation.” The Laplacian is the lowest order linear combina-
tion of derivatives that is rotationally symmetric. A reflectance boundary can be
detected by the paired positive and negative peaks on either side of the boundary,
and localized by noting the position where the Laplacian crosses zero between the
peaks.’

2A proof of this is given in Section 3 below.
3See Binford [5] for more on the distinction between detection and localization of an intensity change.
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Marr and Hildreth [26] have proposed that edges are detected in the human visual
system by an operator that approximates AG, where A is the Laplacian and G is a
rotationally symmetric Gaussian. We shall show in the next section that the
application of a rotationally symmetric operator, such as the Laplacian, to a
rotationally symmetric function, such as the Gaussian, is itself rotationally symmet-
ric. If follows that the Marr—Hildreth operator is rotationally symmetric. Marr and
Hildreth note that intensity changes occur at a number of scales and are often
superimposed. They suggest that an image should be smoothed by a number of
bandpass filters to isolate the changes at a particular range of scales. The Gaussian is
chosen as the filter to optimize localization of changes in both the spatial and
frequency domains.

We noted above that the Gaussian and the Laplacian have figured prominently in
early visual processing. The Gaussian has mostly been used to approximate the point
spread function corresponding to the blurring of a point source. Marr and Hildreth
deliberately introduce Gaussian blurring. They further note that AG can be ap-
proximated by a difference of Gaussians G,—G,. Nishihara and Larson [28] note
that the difference of Gaussians is to be preferred on grounds of efficiency. Macleod
[24] proposes an edge detection operator that is the difference of two Gaussians.
However, no analysis of its performance is given, and no indication is given that the
operator approximates a low-pass filtered second derivative.

Regarding the use of the Laplacian, Marr and Hildreth do not seem to make
isotropy an explicit constraint on edge detection. Instead, Hildreth [14, p. 13] notes
that “a number of practical considerations, which will be illuminated in the
discussion of the implementation, suggested that the. .. operators not be directional.”
Suppose instead that directional operators are used. The simplest algorithm for edge
detection has two stages. First, the image is convolved with the directional operators
in “sufficiently many” directions. Second, the outputs are combined to determine
the orientation and extent of intensity changes. Regarding the first stage, both Marr
and Hildreth [26, p. 193] and Hildreth [14, p. 40] claim that the cost of convolving
the image with a “sufficient” number of operators is excessive. They show that a
single rotationally symmetric operator (the Laplacian) gives precisely the same
results if a condition called “linear variation” holds. Regarding the second stage,
Hildreth [14, p. 36] observes that edges in a direction close to that of the mask are
elongated in the direction of the mask. She also notes that operators at several
orientations give significant responses to any given edge, and that combining the
responses is nontrivial.

There are two essentially different issues here that need to be clearly separated.
Intensity changes first have to be detected and then localized as a set of “feature
points” marking the position of the change in the image, and the characteristics of
the corresponding edge. The detection of feature points is inherently isotropic, as
Horn [15] noted. The feature points have then to be combined to produce descrip-
tions of edge segments. Edge segments are clearly directional; indeed, a central
problem concerns the determination of the direction of an edge in an image. The
computation of rich descriptions of edge segments is, as Hildreth notes, not at all
easy. Marr’s [25] original “primal sketch” work was almost entirely concerned with
it. Binford [5] discusses the application of directional operators to compute the
directionality of an edge.
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The Gaussian and Laplacian are not the only rotationally symmetric operators
that have been proposed in computer vision. Prewitt [30, p. 10] observes that
“derivatives of all orders can be used to form isotropic nonlinear differential
operators, provided that derivatives of odd order appear only in even functions. The
simplest of these. .. is the squared gradient,” namely v - v, where V¥ is the column
vector

Earlier in the same article, Prewitt [30, p. 85] suggests that “the Hankel transfor-
mation enters naturally in the analysis of systems with isotropic point spread
functions and greatly facilitates restoration.” This suggestion does not appear to
have been investigated in computer vision.

We noted earlier that an important aspect of modeling perception is the isolation
of constraints which capture some facet of smoothness. Horn and Schunck [17]
consider the determination of optical flow fields and note that “if every point of the
brightness pattern can move independently, there is little hope of recovering the
velocities.” One way to express the additional constraint of smoothness is to
minimize the integral of the performance index

S(u,v) = (u§ + uf) + (vf + vyz)

where u and v are the x and y components of the optical flow, and subscripts denote
partial differentiation. We show in the next section that this operator is rotationally
symmetric. In many simple situations the smoothness constraint is significantly
wrong only at occluding boundaries.

We conclude this review of the use of rotationally symmetric operators in vision
with Grimson’s [12] work on surface interpolation. As it will be the focus of Section
5, our remarks will be brief. The Marr—Poggio theory of human stereo vision yields
the disparity (scaled depth) at matched edge points that are computed by the
Marr-Hildreth approach described above. The disparity map is as sparse as the set
of matched edge points, whereas human perception is of smooth surfaces passing
through the given disparity points. Grimson [12] interpolates a smooth surface from
the given set of edge points by a local parallel algorithm that applies a rotationally
symmetric operator to minimize the quadratic variation introduced above.

3. CONDITIONS FOR ROTATIONAL SYMMETRY

A function f: ®2? — R, is rotationally symmetric if its polar form is only depen-
dent on radial distance r = (x2 + y?)/2 and not on direction ¢ = tan~'y/x.
Clearly, a function is rotationally symmetric if and only if it can be represented as a
function of (x% + y2)!/2. An alternative definition can be given that is often more
convenient for functions, and that can be generalized to operators. A function is
rotationally symmetric if and only if it yields the same value under an arbitrary
rotation of coordinates.
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An anticlockwise rotation from one set of image coordinates (x, y) to another
(X, Y) is effected by a rotation matrix

[3]-[ e a2
-x3] o

For convenience, we shall denote cos ¢ by ¢ and sin ¢ by s. To simplify notation,
we shall not make explicit the dependence of the rotation matrix R on the angle ¢. A
function f is rotationally symmetric if and only if the untransformed version f(x, y)
is equal to the transformed version f( X, Y). We shall occasionally find it useful to
borrow the mathematical shorthand that equates a function f( X, Y') with a function
of a single vector argument f(R[x, y]7).

Example 1. The function f,(x, y) = (x? + y?) is rotationally symmetric:

H(X,Y)= ((xc +ys)? + (yec — xs)z)
= (x*+y?)
=f](x’ y)'

Example 2. The function f,(x, y) = xy is not rotationally symmetric:

H(X,Y) = (xc + ys)(yc — xs)
2_ 2
2

Y

= xycos2¢ + sin 2¢

and 50 f,(X,Y) = f,(x, y) only when ¢ =0 or ¢ = 7.
We can extend the definition of rotational symmetry to operators

0:(R2-> R) > (R R).

An operator 0 is rotationally symmetric if O( f) is a rotationally symmetric function,
for all functions f: ®2 —» R.
Example 3. The function produced by the operator 0,, defined by

0,(f)(x, y) = ef=»

is rotationally symmetric if and only if f is. In general then, the operator 0, is not
rotationally symmetric. However, the Gaussian is a rotationally symmetric operator
as it combines Examples 1 and 3.

Most of the operators of interest in computer vision are combinations of the first
and second directional derivatives d/dx, d/dy, 8*/dx?, 3*/dxdy, 3*/dydx, and
0%/8y%. We need to determine the effect of a coordinate rotation on these direc-
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tional derivatives. By the chain rule

9 _3X 3 v
dx dx dX dx dY
_. 9 _ .9
“9x " Sar-
Similarly,

b _ 9, .9
3y “ax ' ‘ar

It follows that

ad F]
x | | ax
2 |=% 5
dy Yy

where T denotes matrix transpose. Since R is a rotation matrix, its transpose equals
its inverse, so

9 F)

ax x

s |= R B | (1)
Y dy

Operators in general, and differential operators in particular, depend upon the

choice of coordinate frame. To make the dependence of the differential operator on
the choice of coordinate frame explicit, we introduce the notation

)

(x,y)"
With this notation, (1) becomes

Vix,n = RV )
where v, ,, is the column vector

()

PROPOSITION 1. Linear combinations of d/dx and 0/3y are not rotationally
symmetric.

Proof. Any linear form in the first directional derivatives has the form

[}‘ p’]v(x,y)‘
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The condition for rotational symmetry is

A wlVxn=IA I‘]V(x,y)-
By (2)

A wlvxr= [A u]Rv, ,
and so the linear differential operator is rotationally symmetric if and only if

(A wl=[r p]R

so that [A p]is an eigenvector of R. The eigenvalues of R are ¢ + is and ¢ — is. So

there are no real eigenvectors unless ¢ is a multiple of #. Since the condition is not
satisfied for all ¢, no linear combination is rotationally symmetric. O

The same style of analysis can be applied to other combinations of first derivatives
such as the operator

@2(f) =%‘;%-

It is easy to show that O, y y, is not equal to O, ,,, for example when ¢ = 7 /2.
In Section 2, we referred to an operator proposed by Prewitt [30], namely

2 2
(_3_) + (_3_
ox dy
that is, the vector dot product

T
V(Jf, y)v(x, »:

More generally, we often consider quadratic differential expressions such as

A
T
V(x,y)[,, £]V(x,y>-

Such an expression is called a quadratic form if the matrix is symmetric, that is,
p=v. By (D),

Vix, vy = RV, )
so that
VMV = Vi nMVix v
if and only if

R'™MR=M
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where R is an arbitrary rotation matrix, and
Ap
M= .

[V 3

Since the transpose R of a rotation matrix R is the inverse of R, a quadratic form
is rotationally symmetric if and only if the corresponding matrix M commutes with
all rotation matrices. We will refer to matrices M having this property as being
rotationally symmetric.

LeMMA 1. A 2 X 2 matrix is rotationally symmetric if and only if it has the form

M=[jﬂ ;].

Proof. We require RM = MR for all rotation matrices R, that is,

P (1 Vel

Expanding, and equating terms, this holds if and only if

p+r=0
A=¢.
Alternatively, only the operations of scaling by a constant k and multiplication by

a rotation matrix R’ commute with all rotation matrices in two dimensions. So
M = kR’ for some scale factor £ and some rotation matrix R’. O

PROPOSITION 2. Up to scaling, the only rotationally symmetric quadratic form in
a/ax and a/ay is V(x,y) : V(x,y)‘

Proof. A quadratic form in d/dx and d/3dy has the form

Ap
\( y)[‘u £ | Ve (3)

To be rotationally symmetric, as well as symmetric (so that it is a quadratic form),
Lemma 1 implies that

ll ﬂ
o e

It follows that the matrix in (3) is AL,. O

The operator f? + fy2 is commonly used as a measure of the contrast across an
intensity change. Notice that other popular measures of the contrast, such as
(fe + £,)% (fc = £,)% or lIfll + 1i£,|l, are not rotationally symmetric, and therefore
respond differently to edges in different directions {32, p. 279].
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We now consider linear and quadratic forms in 42/3x?, 3%/9xdy, d*/3ydx, and
8?/dy?. It is convenient to not assume 9%/dxdy = 3*/dydx for the developments
that follow.

The first task is to find a matrix R* so that

B

dx? X2

32 al

9x6y | _ p| 9X0Y

32 - az (4)
dydx AYxX

9? a9’
| or | Lot

The (i, j) element of the matrix R * will be denoted by r, ;- Applying the chain rule
as before, but this time to relate the second derivatives in (X, Y) to those in (x, y),
we find that the 4 X 4 matrix R* can be written

T T
RS = [r“R ry R . 5)

T T
r,R r, R

DerFINITION 1. [4, p. 41]. Let 4 =[a;;] and B=1[b;;] be m X m and n X n
matrices respectively. The mn X mn matrix 4 ® B, called the Kronecker product of A
and B, is defined by multiplying each element a(i, j) of A by the matrix B, to form
the block matrix

a,B a,B ... a,B
ay,B apB ... a,,B
(6)
amB a,,B ... a,,B
With this notation
R*=R"® RT
so that
‘ 2 —s5¢c —-sc s*
. sc ¢ —s5s? —sc
R* = . . %)
sc - c —5C
s s sC c?

4Recall the definition of the matrix R from (0).
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Note that the elements of A ® B are naturally indexed by 4-tuples
{4 ® B} = a,by.

We state a number of simple properties of the ® operation. They are essentially
straightforward consequences of the properties of ordinary multiplication, and are
stated without proof.

PROPOSITION 3.

() (A® B) =A4T® BT
(i) (A®B)"'=4"'"® B!
(i) (A®B)®C=A4®(B®C).

For the remainder of the paper, we restrict attention to the application of ® to R
and its transpose.

PROPOSITION 4. The rotationally symmetric linear combinations of 3°/0x?,
8%/3xdy, d*/3ydx, and 3*/dy* are linear combinations of the Laplacian A =
3%/0x? + 32/dy?, and the smoothness measure 3*/9xdy — 3*/dydx.

Proof. Let the linear combination be

a
dx?
32

dxdy
82

dydx
32
ay?

A p v £

Following the proof of Proposition 1, the condition for rotational symmetry is
[N p v EJRTORT=[A p » ¢

for all rotation matrices R and the corresponding rotation angle ¢. Expanding
RT ® RT by (7), we find

¢t —-s¢ —-sc s?
2 2
A owow g]]% ¢, 75 T = p v g
SC -5 (o —8C
2 2

s sC SC c
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so that
-5 —s¢ -—-sc s?
— 2 -2 —
A p v g]l % § § ¢l1=[0 0 o 0]
sc  —s* -5 —sc
s? sC sc  —s?
It follows that
—-25* —2s¢ —2s¢ 252
A—¢ p+v 0 0] 25¢  —2s =257 —2sc|—[0 0 0 o0].
[A-¢ p ] 3 0 0 o [ ]
0 0 0 0

The determinant of the upper left 2 X 2 submatrix is
(45* + 4s5%c?) = 452,

Since this is not zero for all angles ¢, A — £ and p + » are both zero. A basis for
the infinite set of linear combinations satisfying these conditions is provided by
setting A and p equal to one, which proves the Proposition. O

Before turning to quadratic forms, analogous to Proposition 2, we define a
projection operator on R” ® R that makes explicit the assumption f,, = f,,.

DEFINITION 2. Let D = [d,;] be a 4 X 4 matrix. The projection of D is the 3 X 3
matrix D*

dy (dyy +dy3) dig
(dyy +dyy) (dp+dy+dy+dy) (da+dy) |
dy (d + dy3) Ay

That is, the second and third columns as well as the second and third rows are
combined by addition.

PROPOSITION 3.
[a b b c]Dla b b ]
is equivalent to
[a b c]D*[a b c]”

where D* is the projection of D.

The proof is completed by equating terms, and is omitted. We now give the main
result of this section.

PROPOSITION 6. The rotationally symmetric quadratic forms in 3%/dx?, 8*/9x3y,
92/3ydx, and 3*/dy* form a vector space. If 3*°/3xdy = 3*/3ydx, the matrices
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associated with the rotationally symmetric quadratic forms project to 3 X 3 matrices of
the form

a+fB 0 B
0 2a 0 |
B 0 a+§8

It follows that the rotationally symmetric quadratic forms that satisfy 3°/9xdy =
d2/3ydx form a vector space that has the quadratic variation (9%/dx%)? +
2(3%/3xdy)? + (3*/3y*)?* and the square Laplacian (3%/9x* + 3%*/3y*)? as a
basis.

Proof. Since the matrix in a quadratic form is defined to be symmetric, a
quadratic form in 3%/dx2, 3%/dxdy, 3*/dydx, and 3?/dy? can be written

_ » .
ax?
32
[A B] Ixdy
BT C 9?
dydx
32
dy?

a? ? 9? 9?
EC_Z dxdy dydx  gy?

where A and C are symmetric 2 X 2 matrices, and B is 2 X 2. As usual, the
quadratic form is rotationally symmetric if and only if

RT® RT

RT®RT[A B]=[A B]

BT C BT C]
where R is an arbitrary rotation matrix. It follows that

[CRT sRTHA B]=[A B-[CRT sRT]
—sRT C¢RTILBT C BT Cll —sRT (RT

and hence that

[ ¢R™A + sR™BT  cR"B + sR'C ] _ [ cART — sBRT  sART + cBR” ]
—sR™4 + cRTBT —5sR"B + ¢R'C ¢BTRT — sCRT sBTRT + ¢CRT

Equating submatrices, we find that for all rotation angles ¢

c¢(R™A — ART) + s(R™BT + BRT) =0 (8)
¢(RTC — CR") - s(B™RT + R™B) =0 (9)
s(CRT — R™4) + ¢(R"™BT - B'™RT) =0 (10)

s(RTC — ART) + ¢(R"™B — BRT) = 0. (11)
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Consider (10) or (11) when ¢ = #/2. Equating terms, we find that

an = ¢

a = ¢

Q= €y

Ay = —Cy3- (12)

Similarly, (8) or (9), when ¢ = 7 /2, yields
by +by=0. (13)

Expanding (8) for general ¢ yields

by+ap=0 (14)
by —ay; =0 (15)
bz] + blz + a22 - a” = 0. (16)

Combining (12) through (16) we find that, to be rotationally symmetric, the matrix

o]
BT C
has the form
a+B v -y B
Y a—20§ é Y
-y ) a—38 -y
B Y -y at$
A matrix of this form projects to
a+f8 O B
0 2a 0
B 0 a+§8

where a = b, — a;, and B = by,. It is easy to show that linear combinations of
matrices of this form are of the same form, so that the rotationally symmetric
quadratic forms constitute a vector space. Clearly, the square Laplacian and the
quadratic variation, corresponding to the cases a = 1, 8 =0, and a =0, 8 =1,
respectively, form a basis.

We show that the measure of smoothness of optical flow proposed by Horn and
Schunck [17] is rotationally symmetric. Recall from Section 2 that the measure is
defined by the operator

S(u,v) = (ui + ui) + (vf + vf)

We extend the Kronecker product operator ® to vectors, and then show how to
define S(u, v) in terms of vector Kronecker products.
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DeriNiTION 3. (a) Let a={a, --- 4,,] and b={b, --- b,] be vectors. The
Kronecker product of a and b is the mn dimensional vector [a,b, --- a,b,a,b, - --
a,b,l;

(b) By extension, if O = [0,... 0,] is a vector of operators and f = [f,... f,] is a
vector of functions, the Kronecker product of © and f is the mn dimensional vector
of functions

[0:(fD)-. 0:(£,)--. 6. (£)]-

The components u and v of optical flow are functions of x, y, and ¢. Recall that
Vix,yy = [8/3x 3/dy]". According to Definition 3

r_[a o 00
Ven®[u o] _[3x dy dx Ay

so that

S(u,v) = (V(x,y)®[u U]T) ) (V(x,y) ® [u U]T)‘

If the coordinate frame is rotated through ¢ by the matrix R, the optical flow
components become R[u v]7. The Horn—Schunck measure is rotationally symmet-
ric if and only if

(R®R)"(R®R)=1,

where I, is the 4 X 4 identity matrix. The rotational symmetry is a simple conse-
quence of Proposition 3.
A rotationally symmetric operator has the general form

Ox, (V. VOV, VOVSV,...)

and its application to a rotationally symmetric function f(x, y) has the form

Oy (F(x, ¥)).

To see that this is rotationally symmetric, we rotate the coordinate frame to (X, Y)
by a matrix R as before. Since O and f are rotationally symmetric, all the occurrences
of R (including its Kronecker square, cube, and so on) introduced by the frame
change can be deleted. It follows that the application of a rotationally symmetric
operator to a rotationally symmetric function is itself rotationally symmetric. In
particular, the A(G) filters of the Marr~Hildreth theory of edge detection are
rotationally symmetric.

4. VISION AS A CONSERVATIVE PROCESS

The second theme of this paper is that a number of vision modules construct the
most conservative interpretation that is consistent with the given data, and that is
subject to an appropriate set of suitably formulated constraints. A major concern of
computer vision has always been' the isolation of constraints that enable the
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interpretation of an image. Constraints embody observations about the way the
world is—at least, most of the time. Although such observations can be as specific as
cataloging familiar figures and shapes, it has proved more fruitful to first uncover
constraints that correspond to general observations that are widely applicable.
Constraints are used together with the data computed from the image to construct
an interpretation. The representations of the information from the image and the
constraints determine, and are determined by, the interpretation process. For
example, early blocks world programs represented constraints as catalogs of label-
ings, an approach that led naturally to search processes for interpretation [8, 20].

As computer vision has turned its attention to images of the natural world,
constraints have concerned the smoothness of surfaces and movement. The relation-
ship to boundary value problems of physics and mathematics suggests itself. The
information computed from the image sets the boundary conditions, and the
constraints determine which (and whether a) solution to the boundary value problem
is found. Horn [15] solved an instance of Poisson’s problem using Green’s functions
to determine the lightness of an image.

Following a different approach, Ullman [38] studied the perception of apparent
motion generated by two successive frames consisting of isolated dots of equal
intensity moving independently of each other. Without constraint, all possible
pairings, or “correspondences,” of dots in the first frame with dots in the second are
equally likely. Ullman defined the “most likely” correspondence to be the one that
minimized the sum

Z X;id;;

I<i<n
l<j<m

where n is the number of dots in the first frame, m is the number of dots in the
second frame, and x,; is one if the ith dot of the first frame P, is paired with the jth
dot of the second frame Q , else zero. The weight g, is the “cost” of pairing P, with
Q;, and might, for example, be related to the image distance between the paired
points. The problem of finding the minimal correspondence is considered in terms of
integer programming. If correspondences are assumed to be covering mappings, the
following linear constraints apply to the x; ;:
Vi, 1<is<n ) x,21

ij =
I<jsm

and
vj, lstminjzl.
I<i<n
Ullman restricted the set of Q, that can be paired with P, to those whose positions
were close to P,. Following Arrow, Hurwicz, and Uzawa [2], he set up the iterative

scheme

t+1
i

utl= % x{; -1
l<iz<n

+1 t
vt = Yy x;; — L.
I<j<m

x ui + vj’. - q{j
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The approach can be extended to mappings that are not one—one, as well as to
continuous motion. A major problem with the approach is guaranteeing the conver-
gence of the algorithm. This is determined largely by the properties of the costs g,
but this was not investigated, aside from a comment on the empirical determination
of the g;; (see also [39]).

One limitation of Ullman’s approach is that it is restricted to minimizing a known
linear objective function that is subject to linear constraints. The method can be
extended to constrained nonlinear programming in which the goal is to minimize a
known function f(x) subject to a set of equality and inequality constraints of the
form g;(x) < 0. In general, however, criteria based on other than intuition need to be
found for selecting the function f to be minimized. To do this, one can apply the
calculus of variations (see, for example, [9, Chap. IV]). The familiar differential
calculus shows how to find a real valued parameter that minimizes some function.
The calculus of variations extends the differential calculus by showing how one can
determine a function f*, which is subject to a given set of boundary conditions, and
minimizes the integral

F(1)= [ | F(x, 9, f, fos By Fexs fops ) d dy (17)
G

over a given region of integration G.> The function F is called a “performance
index” and generalizes the notion of cost function associated with linear and
nonlinear programming. In the next section we consider the choice of a performance
index for interpolating smooth surfaces from one-dimensional boundary conditions.

Associated with a variation problem of the form (17) is the Euler equation, which
provides a necessary, though by no means sufficient, condition which a function f
must satisfy if it is to minimize the variational integral %(f). For the particular
variational problem given in (17), the Euler equation is

d d 32 a2 92

Tyt o Y ey e T 5 a0, =0 (8

F}_ —_—
In the case where there is only a single dependent variable x, the partial derivatives
are total and the Euler equation becomes

d d?

B=%b 7t 7ah.

0. (19)

There are two important considerations associated with the use of the calculus of
variations. First, unlike the differential calculus, the existence of an extremum f* of
the integral given in (17) cannot be taken for granted. Courant and Hilbert [9, p.
173] note that “a characteristic difficulty of the calculus of variations is that
problems which can be meaningfully formulated may not have solutions.” Condi-
tions for the existence of a minimum have recently been proposed by Grimson [12]
and will be discussed in the next section.

Second, associated with any variational problem is a set of natural boundary
conditions which imposes a necessary condition on any feasible solution to the Euler

5For simplicity of presentation, we restrict attention to functions f of one or two variables x, y.
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equation at the boundary. Courant and Hilbert [9, p. 211] note that “in general, we
can, by adding boundary terms or boundary integrals, essentially modify the natural
boundary conditions without altering the Euler equations.” Determining the “most
conservative” solution means finding a performance index that guarantees the
existence of an extremum function f* and provides the tightest set of natural
boundary conditions that are consistent with the given data.

The calculus of variations has recently been applied by a number of authors to
interpolate plane and space curves and surfaces. We review the applications in that
order. First, Horn [16] has recently determined the curve which passes through two
specified points with specified orientation while minimizing

f k2 ds (20)

where « is the curvature and s is the arc length. This is the true shape of a spline used
in “lofting” [10, p. 228]. In a thin beam, curvature is proportional to the bending
moment. The total elastic energy stored in a thin beam is therefore proportional to
the integral of the square of the curvature. Since the shape taken on by a thin beam
is the one which minimizes the internal strain energy, the curve that solves (20) is
called the “curve of least energy.” The variational problem is to minimize

2

— Jxx g
/ (1+ 52y
This has the form of (17). Horn [16, p. 19] shows that the Euler equation is

—CK = y/cos ¢

where y is the angle between the tangent to the curve and the axis of symmetry. The
solution to this differential equation is an incomplete elliptic integral of the first
kind. Brady, Grimson, and Langridge [6] consider a “small angle” approximation to
the curve of least energy, in which first derivatives can be ignored. The performance
index that they use is f2,, for reasons that will become evident in the next section.
They find that in that case the solution is a cubic. Horn [16, p. 2] notes that the fact
that a curve has near minimum energy does not mean that it lies close to the curve of
minimum energy. Note that the existence of the curve of least energy is guaranteed
as Horn has derived an analytical formula for it. Approximations to it, such as the
one by Brady et al., are similarly guaranteed to exist.

Barrow and Tenenbaum [3] investigate the problem of interpreting a line as the
image of a space curve that is an occluding boundary. They observe that the problem
has two parts: (i) determining the tangent vector t at each point on the space curve,
and (ii) determining the surface normal at each point, given that it is constrained to
be orthogonal to the tangent.

They suggest minimizing a performance index F that is a function of the curvature
x and the torsion r (possibly together with their derivatives) and expresses a suitable
notion of “smoothness.” They first consider uniformity of curvature as a measure of
smoothness, that is, F = dx/ds = k,, where s measures distance along the space
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curve. They reject this measure on the grounds that x, can be made arbitrarily small
by “stretching out the space curve so that it approaches a twisting straight line.” To
overcome this difficulty, they propose that the space curve should also be “as planar
as possible or, more precisely, that the integral of its torsion should be minimized.”

Barrow and Tenenbaum finally suggest finding the space curve that projects to the
given image line and minimizes the performance index [d(xb)/ds]?, where b is the
binormal. They report that an algorithm based on their analysis produced
the “correct 3-D interpretations for simple and closed curves, such as an ellipse,
which was interpreted as a circle.” However, they note that the rate of convergence
was slow and dependent on the initial data. No consideration is given to the Euler
equations, to the existence of an extremum given a line drawing {x(s), y(s)), or to
the natural boundary conditions associated with the performance index [d(«xb)/ds]>.
Empirical evidence that the method works on a number of simple test cases is
encouraging; but there is no analysis of the scope of the method.

In the same paper, Barrow and Tenenbaum [3] consider the interpolation of a
smooth surface from depth and local surface orientation values at all points along
the surface boundary. Their approach is to “seek a technique that yields exact
reconstructions for the special symmetric cases of spherical and cylindrical surfaces,
as well as intuitively reasonable reconstructions for other smooth surfaces” [3]. They
observe that if n is the surface normal of a cylinder, then the x and y components of
the normal n, and n, are linear functions of x and y, so long as the axis of the
cylinder lies in the x—y plane. This observation forms the basis of an algorithm to
estimate the surface normal by least squares fitting of the parameters of the partial
derivatives of the normal. As before, no analysis is given of the Euler equation, the
natural boundary conditions, or the convergence of their algorithm for different
types of surface.

5. A PERFORMANCE INDEX FOR SURFACE INTERPOLATION

In the review of the application of the calculus of variations to visual perception in
the previous section we drew attention to three important considerations. First, the
Euler equations provide a necessary condition on possible extremal functions.
Second, the existence of an extremum cannot be taken for granted, even when the
minimization problem seems plausible on some grounds. Third, the natural boundary
conditions impose a necessary condition on any feasible solution to the Euler
equation at the boundary. The most thorough analysis of the second of these
problems in computer vision, framed in the context of surface interpolation, is due
to Grimson [12], who proves the following theorem.

THEOREM (Grimson, see Rudin [33]). Suppose there exists a complete seminorm F
on a space of functions %, and that F satisfies the parallelogram law. Then, every
nonempty closed convex set & C % contains a unique element f* of minimal norm
F(f*), up to possibly an element of the null space of F.

A seminorm F is a function ¥ — ®* from a vector space V to the positive real
numbers that satisfies

F(v +w) < F(v) + F(w)
F(av) = |a|F(v).
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Informally, a seminorm is a generalization of the Euclidean metric, and provides a
measure of a vector. The second condition generalizes the triangle inequality, for
example. The null space of the seminorm F consists of all those vectors v, that map
to zero. Since

F(v + vy) = F(v)

any element of the null space can be added to a vector of minimal norm to yield
another vector of minimal norm. Hence the qualifying phrase “unique...up to
possibly an element of the null space of F.” The parallelogram law states that

[F(o +w)]* + [F(v = w)]* = 2[F(0)]* + 2[ F(w)]®

for all vectors v,w. Finally, the seminorm is complete if all Cauchy sequences
converge. As is well known, the elements of vector spaces can be functions. This
enables Grimson to prove the following corollary, that guarantees the existence of an
extremum function in calculus of variations “most conservative” interpolation
problems.

COROLLARY (Grimson [12])). Let the set of known points be {(x;, y;, z;))1 < i < n).
Let F be a vector space of possible functions on R? and let & be the subset of F that
interpolates the known data. That is, for all functions f € &, f(x,, y,) = z,. Let F be a
complete seminorm on & that satisfies the parallelogram law. Then there exists a unique
(up to the null space of F) function f* that interpolates the data and has minimal norm.
In particular, if F is a performance index then there is a function f* that minimizes the
integral

F(f) =/F.

In short, if the conditions of the corollary are fulfilled, the existence of a “most
conservative” surface that meets the boundary conditions is guaranteed. As we shall
see, the condition of being a seminorm is the most restrictive required of the
performance index. The conditions are sufficient to guarantee the existence of a
minimum, but they are not necessary. For example, k% is not a seminorm,®
nevertheless Horn’s [16] analysis shows that there is a unique minimum. It is far
from clear whether Barrow and Tenenbaum’s [3] analyses of curve and surface
interpolation have a guaranteed minimum in all cases.

Grimson notes that several intuitively plausible performance indices are not
seminorms. For example, the two most popular measures of curvature are not.
Suppose that x, and k, are the principal curvatures of a surface [10, p. 111}; then the
Gaussian curvature &, is the product «,x, and the mean curvature «,, is the sum
¥, + &,. For a surface f(x, y)

2
fxxfyy T Jxy

xg(f) = (1 +fx2 +fy2)2.

$Which is why Brady et al. 6], used the small angle approximation fi.
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Since the curvatures can be negative, while a seminorm is required to be positive,
it is necessary to investigate

1/2
{fxg dx dy} :

Grimson [12] observes that «2(af ) = |a|k2(f) because of the denominator. If £, and
f, are small, the denominator is approximately equal to one, and the numerator is a
seminorm. Note that it is

fxxfyy - xi/' (21)

Grimson shows that the mean curvature «,, is also not a seminorm for exactly the
same reason. The analogous small angle approximation is

(fox + £,y) = (AF)°

the square Laplacian, which is a seminorm. We find it convenient to denote the
square Laplacian by F,. Grimson [12] chooses the quadratic variation

2 2 2
xx+2xy+ »y

on the grounds that its null space, consisting of all linear functions, is smaller than
the null space of the square Laplacian. If we denote the quadratic variation by F,,
we see that the approximation to the Gaussian curvature given in (21) is (F, — F,)/2.

How shall we choose a performance index for surface interpolation, given that it
has to satisfy the conditions of the corollary? We have exhibited three candidates;
are there more? Notice first that each of the seminorms given above are quadratic
forms in f,,, f,,, and f,,. It is casy to show that any quadratic form satisfies the
seminorm and parallelogram conditions, so there is an infinite set of plausible
seminorms to use to find the “most conservative” interpolated surface. We need an
extra condition, and the one we choose is rotational symmetry, since we suppose that
surface interpolation is an isotropic process. Proposition 6 of Section 3 shows that
the rotationally symmetric quadratic forms in f, , f,,, and f,, form a vector space
that has the square Laplacian and the quadratic variation as a basis. The choice of
which performance index to use is thus effectively reduced to the square Laplacian,
the quadratic variation, and linear combinations of them. How shall we choose
between those two? In the light of our earlier discussion, two criteria suggest
themselves: the Euler equations and the natural boundary conditions.

PROPOSITION 7. All rotationally symmetric quadratic forms lead to an identical
Euler equation

a(f)=o.

Proof. We exploit the fact that the square Laplacian and the quadratic variation
are a basis of the rotationally symmetric quadratic forms.
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(a) Square Laplacian. The performance index is

E = (fxx + fyy)z'

By (18) the Euler equation is

82
{ (fxx +fyy)} (2(fxx + f;’y)} =
that is,

(aF)* =0

as required.
(b) Quadratic variation. The Euler equation is

2fxxxx + 4fxyxy + 2f;)yyy

that is,

(Af)=0

provided that f is continuous of fourth order.
(¢) Linear combinations of F,and F,. Linear combinations clearly give rise to the
identical Euler equation.

The gist of Proposition 7 is that there is no difference between F, and F, in the
interior away from the boundary conditions. We can see that result of Proposition 7
in an interesting alternative way. Recall that

F—F, = Z(fxxfyy - x2y)

is the seminorm approximation to the Gaussian curvature (Eq. 21). The latter
expression is an instance of a divergence expression, and Courant and Hilbert [9, p.
196] note, “If the difference between the integrands of two variational problems is a
divergence expression, then the Euler equations and therefore the families of
extremals are identical for the two variational problems.”

Since F, and F, have identical Euler equations, we analyze their natural boundary
conditions to choose between them. We could approach this problem directly, but a
more revealing route is available. Courant and Hilbert [9, p. 250] consider the statics
of a thin plate. In particular, théy determine the shape it assumes for a given force

p(s) along its boundary I' and bending moments m(s) normal to its boundary.

Courant and Hilbert note that the energy stored in the plate is the integral of a
quadratic form in the pnnc1pa1 curvatures k, and k, of the surface, a result which
can be derived from noting that the elastic energy stored in a thin strip (correspond-
ing to any normal section) is proportional to the square curvature. It follows that the
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stored energy is locally
&, = a(x? + x2) + 2Bk,
= a(k, + ;)" + 2(B — @)Kk,
ak, + 2(B — a)x,

(F - F)
2

~aF+2(B - a)
= BF, + (a — B)F,
= o(uF + (1~ p)F,)

where p = B8/a. It follows that the energy stored in the thin plate is a convex linear
combination of the square Laplacian and the quadratic variation, which formally
establishes its connection to the visual perceptual problem studied here. Observe that
setting the weight p = 1 gives the square Laplacian, while setting it equal to zero
gives the quadratic variation. Note also that this expression for the stored energy
makes use of the small angle approximation to the curvature used in (21).

A second source of stored energy derives from the boundary conditions that are
represented as a function p(s) along the boundary I' of the plate and a bending
moment m(s) applied normal to the plate. Courant and Hilbert [9, p. 251] show that
the natural boundary conditions associated with the plate are

—Af+ (1= p)(foex? + 260, x, 9, + £, 92) = p(5)
%AH (1- u)ais(fxxxsxn + Lo (%3 + X,3.) + £, 0,0,) = m(s)
that is,
=Af+ (1= p)([x,2H[x,5]") = p(s)

%AH (1- u)a%([xny,.]H[xsys]T) =m(s)

[f xx f xy ]
f Xy f yy .

Gladwell and Wait [11] quote a version of this result due to Agmon {1], such that
the biharmonic operator, which we showed was the natural boundary condition for
the surface interpolation problem, has Dirichlet forms that are linear combinations
of the square Laplacian and the quadratic variation. As an example of the con-

straint, consider a straight line contour aligned with the x axis. Then [x,y,] = [1 0]
and [x,y,] = [0 1]. The natural boundary conditions reduce to

where H is the Hessian matrix

fyy + p‘fxx = —p(S)
f;;yy + (2 - ”’)fyxx = m(s)
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The constraint is tightest when p is not equal to one. A similar result can be
obtained for a straight line contour inclined at an angle a to the x axis. The first of
the natural boundary conditions is

fex(sina + pcosa) + £, (cos’a + psin’a) + (1 — p)sin2af,,.

If p = 1, there is no constraint from the cross derivative. If u is not equal to 1, at
most one of the terms can be zero. We conclude that, for interpolation problems in
which the small angle approximations used throughout our analysis hold, it is
preferable to choose u not equal to one, that is, to not use the square Laplacian as a
performance index. The quadratic variation is an obvious choice, but so are linear
combinations of the square Laplacian and the quadratic variation for which p is not
equal to one. Grimson [12]} chooses the quadratic variation since its null space is
smaller than that of the square Laplacian. This is a precise way of saying that it
imposes a tighter constraint. For example, the function f(x, y) = xy is the null space
of the square Laplacian but not in the null space of the quadratic variation. Since
the quadratic variation has the smallest null space among the linear combinations of
the square Laplacian and quadratic variation, this is an additional reason for
choosing it. We would further expect that any differences between the quadratic
variation and the square Laplacian would show up near the given boundary data but
not in the interior, far removed from the boundary. This is what Grimson finds in a
set of examples that compare surfaces interpolated using the quadratic variation and
the square Laplacian.
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