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A number of image analysis tasks can benefit from 
registration of the image with a model of the surface 
being imaged. Automatic navigation using visible light 
or radar images requires exact alignment of such 
images with digital terrain models. In addition, 
automatic classification of terrain, using satellite 
imagery, requires such alignment to deal correctly with 
the effects of varying sun angle and surface slope. Even 
inspection techniques for certain industrial parts may 
be improved by this means. 

We achieve the required alignment by matching the 
real image with a synthetic image obtained from a 
surface model and known positions of the light sources. 
The synthetic image intensity is calculated using the 
reflectance map, a convenient way of describing surface 
reflection as a function of surface gradient. We 
illustrate the technique using LANDSAT images and 
digital terrain models. 
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I. Motivation 

Interesting and useful new image analysis methods 
may be developed if registered image intensity and sur- 
face slope information is available. Automatic change 
detection, for example, seems unattainable without an 
ability to deal with variations of appearance with changes 
in the sun's position. In turn, these variations can be 
understood only in terms of surface topography and 
reflectance models. Similarly, human cartographers con- 
sult both aerial photographs and topographic maps of a 
region to trace the paths of streams and rivers. Automatic 
analysis of either of these information sources alone is 
unlikely to lead to robust methods for performing this 
task. 

An important application of aligned image and sur- 
face information lies in the area of automatic terrain 
classification. To date, no account has been taken of 
varying surface gradient, sun position, or the physics of 
light reflection in the ground cover. Classification ought 
to be based on measurable properties of the surface, not 
raw image intensities, which are only indirectly related 
to these properties. Classification techniques have been 
limited in their application to fiat regions and have had 
to be retrained for images with different sun angles. 
Aligning images with surface models will permit removal 
of the image intensity component due to varying ori- 
entation of the surface elements. 

Another application may be found in the inspection 
of industrial parts with complicated surfaces. Aligning 
images of these parts with models of their surfaces should 
permit one to determine defects in the surfaces which 
give rise to differences between real and synthesized 
images. It may also be possible to determine the position 
and orientation of a part by such techniques. This would 
then lead to methods which may guide a computer- 
controlled manipulator to retrieve one of the topmost 
parts in a bin full of parts. In this case, further work will 
be required to ascertain the effects of mutual illumination 
due to the proximity of parts to one another. 

Accurate alignment of images with surface models is 
therefore an important prerequisite for many image un- 
derstanding tasks. We describe here an automatic 
method of potentially high accuracy that does not de- 
pend on feature extraction or other sophisticated image 
analysis methods. Instead, all that is required is careful 
matching of the real with a synthetic image. Because this 
is an area-based process, it has the potential for subpixel 
accuracy--accuracy not easily attained with techniques 
dependent on alignment of linear features such as edges 
or curves. The method is here illustrated by registering 
LANDSAT images with digital terrain models. 

2. Possible Approaches 

One way to align a real image with a surface model 
might be through the use of a reference image obtained 
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Fig. I. Early morning (9:55 G.M.T.) synthetic image. Fig. 2. Early afternoon (13:48 GM.T,) syntheuc J~,,,~,_ 

under controlled conditions. New images could then be 
matched against the reference image to achieve align- 
ment. Unfortunately, the appearance of a surface de- 
pends quite dramatically on the position of the light 
source (see Figures 1 and 2, for example), so that this 
method works only for a limited daily interval for a 
limited number of days each year [1]. This problem 
disappears when one uses synthetic images, since the 
position of the source can be taken into account. 

A more sophisticated process would not match im- 
ages directly, but first perform a feature extraction proc- 
ess on the real image and then match these features with 
those found in the reference image. One finds, however, 
that different features will be seen when lighting changes: 
for example, ridges and valleys parallel to the illumina- 
tion direction tend to disappear (see Figures 1 and 2). In 
addition, the apparent position of a feature as well as its 
shape may depend somewhat on illumination. More 
serious may be the present feature extraction scheme's 
computational cost and lack of robustness. 

One might next consider calculating the shape of the 
surface from intensities in the image [8, 9]. This, however, 
is computationaUy expensive and not likely to be very 
accurate in view of the variation in the nature of surface 
cover. A more appropriate method, estimating the local 
gradient using similar methods [12] and then matching 
these with gradients stored in the terrain model, still 
involves a great deal of computation. 

The method chosen here depends instead on match- 
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ing the real image with a synthetic image produced from 
the terrain model. The similarity of the two images 
depends in part upon how closely the assumed reflec- 
tance matches the real one. For mountainous terrain and 
for images taken with low sun elevations, rather simple 
assumptions about the reflectance properties of the sur- 
face gave very good results. Since all LANDSAT images 
are taken at about 9:30 local solar time, the sun elevations 
in this case are fairly small and image registration for all 
but fiat terrain is straightforward. 

This implies that LANDSAT images are actually not 
optimal for automatic terrain classification, since the 
intensity fluctuations due to varying surface gradients 
often swamp the intensity fluctuations due to variations 
in surface cover, An important application of our tech- 
nique in fact is the removal of the intensity fluctuations 
due to variations in surface gradient from satellite images 
in order to facilitate the automatic classification of ter 
rain. To do this, we must model the way the surfac 
reflects light. 

3. The Reflectance Map 

Work on image understanding has led to a nea 
model the image-formation process. One aspect of 
concerns the geometry of projection, that is, the relal 
ship between the position of a point and the coordiJ 
of its image. Less well understood is the proble 
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determining image intensities, which requires modeling 
of  the way surfaces reflect light. For a particular kind of 
surface and a particular placement of light sources, 
surface reflectance can be plotted as a function of surface 
gradient (magnitude and direction of slope). The result 
is called a reflectance map and is usually presented as a 
contour map of constant reflectance in gradient space 
[12]. 

The reflectance map may be determined empirically 
by measuring the reflectance of a small, flat surface 
sample as it is oriented in many different directions while 
surrounded by the desired distribution of light sources. 
Alternatively, a test object such as a sphere or paraboloid, 
which contains surface elements oriented in all possible 
directions may be used [8, 9, 12]. Mathematical models 
of  surfaces have also been developed in order to derive 
analytical expressions for surface reflectance or at least 
numerical values obtained by Monte Carlo simulation 
[6]. In related graphics work, simple phenomenological 
models have been used [4, 17, 2]. 

Since the reflectance map gives reflectance as a func- 
tion of local surface gradient only, it does not take into 
account effects dependent on the position of the surface 
element. Two such effects which are not considered are 
mutual illumination of surface elements and cast 
shadows. Illumination of portions of a surface by neigh- 
boring surface elements when the object concerned has 
concavities is difficult to model and leads to global 
computations. Fortunately, this effect is usually small 
unless the surface reflectance is exceptionally high [12]. 
The reflectance map correctly accounts for self- 
shadowed surfaces, but not shadows cast by one surface 
element on another. Such cast shadows can however be 
calculated using well-known hidden-surface algorithms 
to predict which surface elements are not visible from 
the source [26, 27, 20]. 

One use of the reflectance map is in the determination 
of surface shape from intensities [8, 9] in a single image; 
here, however, it will be employed only in order to 
generate synthetic images from digital terrain models. 

4. Digital Terrain Models 

Work on computer-based methods for cartography, 
prediction of side-looking radar imagery for flight-sim- 
ulators, automatic hill-shading, and machines that ana- 
lyze stereo aerial photography has led to the development 
of digital terrain models. These models are usually in the 
form of an array of terrain elevations, z~j, on a square or 
rectangular grid. 

Data used for this paper's illustrations were entered 
into a computer after manual interpolation from a con- 
tour map and have been used previously in work on 
automatic hill-shading [3, 11]. It consists of an array of 
175 x 240 elevations on a 100-meter grid corresponding 
to a 17.5 km by 24 km region of Switzerland lying 

between 7°1 , east to 7°15 , east and 46o8.5 , north to 
46°21.5 ' north. 

5. The Gradient 

A gradient has two components, namely the surface 
slope along two mutually perpendicular directions. If the 
surface height, z, is expressed as a function of two 
coordinates x and y, we define the two components, p 
and q of the gradient as the partial derivatives of z with 
respect to x andy,  respectively. In particular, a Cartesian 
coordinate system is erected with the x-axis pointing 
east, the y-axis north and the z-axis up. Then, p is the 
slope of the surface in the west-to-east direction, while q 
is the slope in the south-to-north direction: 

p = az /ax  q = az/ay. 

One can estimate the gradient from the digital terrain 
model using first differences: 

p = [ z . ÷ w  - zij]/A 

q = [ z . y + ,  - z~j]/A 

where A is the grid-spacing. More sophisticated schemes 
are possible [11] for estimating the surface gradient, but 
are unnecessary. We assume that the imaging system is 
on the z-axis at a large distance from the surface, with its 
optical axis pointing straight down. 

6. Position of the Light Sources 

In order to be able to calculate the reflectance map, 
it is necessary to know the location of the light source. In 
our case the primary source is the sun, and its location 
can be determined easily by using tables intended for 
celestial navigation [25, 24, 7] or by straightforward 
computations [14, 19, 29, 10]. In either case, given the 
date and time, the azimuth (0) and the elevation (~) of 
the sun can be found. Here, azimuth is measured clock- 
wise from north, while elevation is simply the angle 
between the sun and the horizon (see Figure 3). Now 
one can erect a unit vector at the origin of the coordinate 
system pointing at the light source, 

fis = [sin(0) cos(~), cos(0) cos(~), sin(~)]. 

Since a surface element with gradient (p, q) has a normal 
vector n = (-p,  -q ,  1), we can identify a particular 
surface element that happens to be perpendicular to the 
direction towards the light source. Such a surface element 
will have a surface normal ns = (-p~, -qo, 1), where p8 
= sin(0) cot(~) and q~ = cos(0) cot(~), We can use the 
gradient (p,, q~) as an alternate means of specifying the 
position of the source (see Figure 3). 

In work on automatic hill-shading, for example, one 
uses ps = -0.707 and q~ = 0.707 to agree with standard 
cartographic conventions which require that the light 
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Fig. 3. Definition of  azimuth and elevation of  the sun. 
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source be in the northwest at 45 o elevation [O = (7/4)~r, 
¢h = ~r/4) [1 l]. 

Not all light reflected from the surface comes directly 
from the sun; some of it is scattered in the atmosphere. 
One could add a small component to the reflectance map 
to account for this and rather simple models of how 
much light a surface element captures from the general 
sky illumination would do. This was not done for the 
examples here since the effect is very small in the near 
infrared, as demonstrated by the very dark appearance 
of shadowed surface elements in bands 6 and 7 of 
LANDSAT images. 

7. Reflectance as a Function of the Gradient 

Reflectance of a surface can be expressed as a func- 
tion of the incident angle (i), the emittance angle (e), and 
the phase angle (3) (see Figure 4). We use a simple, 
idealized reflectance model for the surface material, 

(I)l(i, e, g) = p cos(0. 

This reflectance function models a surface which, as a 
perfect diffuser, appears equally bright from all viewing 
directions. Here, p is an "albedo" factor and the cosine 
of the incident angle simply accounts for the foreshort- 
ening of the surface element as seen from the source) It 
is not necessary for the reflectance to be a function of 
the incident angle only, in fact more sophisticated models 
of surface reflectance are possible [12], but are unneces- 
sary for this application. 

It is more convenient to express the reflectance as a 
function of the gradient (p, q). This is straightforward, 
since the phase angle g is constant [12]. The incident 
angle is the angle between the local normal (-p,  -q ,  1) 
and the direction to the light source (-ps, -qs, 1). The 
cosine of this angle can then be found by taking the dot- 
product of the corresponding unit vectors, 

(1 + p,p + q~q) 
cos(0 = x/1 + x/1 +p2  + q2" 

i "Albedo," for purposes of  this paper, will simply be the ratio of  
reflectance of  the surface to that of  a perfectly diffuse surface, also 
called a Lambertian reflector. 
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Fig. 4. The geometry of  light reflection from a surface element is 
governed by the incident angle, i, the emittance angle, e, and the phase 
angle, g. 
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Finally, 

p(1 + p~p + q~q) 
el(p,  q) = ~/1 + p~ + q~ ~/1 + p2 + q2" 

Another reflectance function, similar to that of ma- 
terials in the maria of the moon and rocky planets 
[9, 6], is a tittle easier to calculate. 

p(1 + p~p + qsq) 
¢2(p, q) = P cos(0/cos(e) = 

41 + ps + 

This reflectance function models a surface which reflects 
equal amounts of tight in all directions. For small slopes 
and low sun elevations, it is very much like the first one, 
since then (1 + p2 + q2) will be near unity. Both functions 
were tried and both produce good alignment--in fact, it 
is difficult to distinguish synthetic images produced using 
these two reflectance functions. 

8. Synthetic Images 

Given the projection equations that relate points on 
the objects to images of said points, and given a terrain 
model allowing calculation of surface gradient, it is 
possible to predict how an image would appear under 
given illuminating conditions, provided the reflectance 
map is available. We assume simple orthographic pro- 
jection here as appropriate for a distant spacecraft look- 
ing vertically down with a narrow angle of view. Per- 
spective projection would require several changes in the 
algorithm. There would no longer be a simple relation- 
ship between points in the synthetic image and points in 
the surface model, for example, and some of the tech- 
niques used in computer graphics would be useful [4, 17, 
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Fig. 5a. Reflectance map  used in the synthesis of  Figure 1. The curves 
shown are contours of  constant ~l(p,q) for p = 1. 
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Fig. 6a. Alternate reflectance map, which could have been used in 
place o f  the one shown in Figure 5a. The curves shown are contours of  
constant ¢~2(p,q) for p = 1. 
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Fig. 5b. Reflectance map  used in the synthesis of  Figure 2. 
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2]. In the case of LANDSAT images, however, the 
departure from orthographic projection is very small and 
only in one direction due to the special nature of the 
scanning device. (This distortion along scan lines is easy 
to deal with if a surface model is available.) 

The process of producing the synthetic image is 
simple. An estimate of the gradient is made for each 
point in the digital terrain model by considering neigh- 
boring elevations. The gradient's components, p and q, 
are then used to look up or calculate the expected 
reflectance. An appropriate intensity is placed in the 
image at the point determined by the projection equa- 
tion. All computations are simple and local, and the 
work grows linearly with the number of picture cells in 
the synthetic image. 

Sample synthetic images are shown in Figures 1 and 
2. The two images are of the same region with differences 
in assumed location of the light source. In Figure 1 the 
sun is at an elevation of 34 ° and azimuth of 153 ° , 
corresponding to its true position at 9:55 G.M.T., 1972/ 
Oct./9, while for Figure 2 it was at an elevation of 28 ° 
and an azimuth of 223 o, corresponding to its position at 
13:48 G.M.T. later on the same day. The corresponding 
reflectance maps are shown in Figure 5. 
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Fig. 6b. Alternate reflectance map  that could have been used in syn- 
thesis of  Figure 2. 
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Reflectance maps for the simpler reflectance function 
~2(p, q) under the same circumstances are shown in 
Figure 6. Note that near the origin there is very little 
difference between ~l(p, q) and ~2(p, q). Since most 
surface elements in this terrain model have slopes less 
than 1/x/~, synthetic images produced using these two 
reflectance maps are similar. 

Since the elevation data are typically rather coarsely 
quantized as a result of the fixed contour interval on the 
original topographic map, p and q usually take on only 
a few discrete values. In this case, it is convenient to 
establish a lookup table for the reflectance map by 
simply precalculating the reflectance for these values. 
Models with arbitrarily complex reflectance functions 
can then be easily accommodated as can reflectance 
functions determined experimentally and known only 
for a discrete set of surface orientations. 

Since the real image was somewhat smoothed in the 
process of being reproduced and digitized, we found it 
advantageous to perform a similar smoothing operation 
of the synthetic images so that the resolution of the two 
approximately matched. Alignment of real and synthetic 
images was, however, not dependent on this refinement. 
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9. Relationship to Work in Computer Graphics 

Considerable progress has been made by researchers 
in computer graphics in their effort to produce synthetic 
images of structures defined by mathematical or numer- 
ical models [4, 17, 2]. One difference between their 
methods and those needed to generate the synthetic 
images used here arises from the relative simplicity of 
the satellite imaging situation. Here there are no hidden 
surfaces and thus no need for hidden-surface elimination 
[26, 27, 20]. Because of the near-orthographic projection, 
the computation is simple and does not require interpo- 
lation or successive refinement of surface patches. The 
resolution of the synthetic images can be easily matched 
to the resolution of the available surface model thus 
avoiding problems due to undersampling or aliasing. 

The introduction of the reflectance map [12] permits 
important conceptual and computational advances. The 
computation of the local image intensity can proceed by 
table lookup no matter how complicated the reflectance 
function is. The reflectance map also provides a clear 
and easily interpreted visualization of the reflectance 
properties of a surface. 

Finally, the ultimate purpose of image generation in 
the two situations is different. In one case, the images 
are intended to appear pleasing to a human observer. 
Here however they are to be matched against real images. 
This requires careful attention to the illumination model 
and the reflectance properties of real surfaces. 

Fig. 7. Enlargement of the transparency containing the real image 
used in the alignment experiments. The region covered by the digital 
terrain model is shown outlined. 

the raw sensor data, which is available on magnetic tape 
[1]. 

10. The Real Image II. Transformation Parameters 

The image used for this paper's illustrations is a 
portion of a LANDSAT [1] image acquired about 9:55 
G.M.T. 1972/October/9 (ERTS- 1 1078-09555). Channel 
6 (near infrared, 0.7/1 to 0.8#) was used, although all four 
channels appear suitable, with channel 4 (green, 0.5# to 
0.6#) being most sensitive to moisture in the air column 
above the surface, and channel 7 (infrared, 0.8/~ to 1.1#) 
best able to penetrate thin layers of clouds and even 
snow. An enlargement of a transparency made from the 
original satellite image is shown in Figure 7. This should 
be compared with the synthetic image, generated from 
the digital terrain model, shown in Figure 1. 

Note that the "footprint" of a LANDSAT picture 
cell (that is, the imaging systems instantaneous field of 
view) is about 79 x 79 meters [1], quite compatible with 
the resolution of the terrain model, 100 x 100 meters. 
The digitized image used was actually of somewhat lower 
resolution, however, due to limitations of the optics and 
electron-optics of our scanning system. Fortunately, 
alignment of images with terrain models is possible even 
with low quality image data. Further application of the 
aligned image and surface model information in such 
tasks as terrain classification however will require use of 
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Before we can match the synthetic and the real image, 
we must determine the nature of the transformation 
between them. If the real image is truly an orthographic 
projection obtained by looking straight down, it is pos- 
sible to describe this transformation as a combination of 
a translation, a rotation, and a scale change. If we use x 
and y to designate points in the synthetic image and x' 
and y' for points in the real image, we may write: 

I i l II xi x ' - x ;  cosO sinO x - x o  + 
y , _ y ~  = s  - s i n 0  cos0 y - y 0  Ay 

where Ax and Ay are the shifts in x' andy', respectively, 
8 is the angle of rotation, and s is the scale factor. 
Rotation and scaling take place relative to the centers 
(x0, y0) and (xr, yr) of the two images in order to better 
decouple the effects of rotation and scaling from trans- 
lations. That is, the average shift in x' and y' induced by 
a change in rotation angle or scale is zero. 

In our case, the available terrain model restricts the 
size of the synthetic image. The area over which match- 
ing of the two will be performed is thus always fixed by 
the border of the synthetic image. The geometry of the 
coordinate transformation is illustrated in Figure 8. 
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Fig. 8. Coordinate transformation from synthetic image to real image. 
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12. Choice of Similarity Measure 

In order to determine the best set of transformation 
parameters (Ax, Ay, s, 0) one must be able to measure 
how closely the images match for a particular choice of 
parameter values. Let Sii be the intensity of the synthetic 
image at the/ th picture cell across in the jth row from 
the bottom of the image, and define Rii similarly for the 
real image. Because of the nature of the coordinate 
transformation, we cannot expect that the point in the 
real image corresponding to the point (i, j )  in the syn- 
thetic image will fall precisely on one of the picture cells. 
Consequently, So will have to be compared with R(x ' ,  
y'), which is interpolated from the array of real image 
intensities. Here (x', y') is obtained from (i, j )  by the 
transformation described in the previous section. 

One measure of difference between the two images 
may be obtained by summing the absolute values of 
differences over the whole array. Alternately, one might 
sum the squares of the differences: 

n m 

Z 2 (s,~ - R(x', y,)}2. 
i=1 j= l  

This measure will be minimal for exact alignment of the 
images. Expanding the square, one decomposes this re- 
sult into three terms, the first being the sum of S 2., the 
last the sum of R2(x ', y'). The first is constant, since we 
always use the full synthetic image; the last varies slowly 
as different regions of the real image are covered. The 
sum of SuR(x' ,  y')  is interesting since this term varies 
most rapidly with changes in the transformation. In fact, 
a very useful measure of the similarity of the two images 
is the correlation: 

/t 

~ Si jR(x ' ,y ' ) .  
i=l j ~ l  

This measure will be maximal when the images are 
properly alignod. It has the advantage of being relatively 
insensitive to constant multiplying factors. These may 
arise in the real image due to changes in the adjustment 
of the optical or electronic systems. 

Note that image intensity is the product of a constant 
factor which depends on the details of the imaging 
system (such as the lens opening and the focal length), 
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Fig. 9. Simple interpolation scheme applied to the real image array. 

R(x'.y') 
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the intensity of the illumination striking the surface, and 
the reflectance of the surface. We assume all but the last 
factor is constant and thus speak interchangeably of 
changes in surface reflectance and changes in image 
intensities. 

13. Interpolation Scheme 

The real image intensity at the point (x', y') has to be 
estimated from the array of known image intensities. If 
we let k = [x'J, and l = [y'] be the integer parts of x' and 
y', then R(x ' ,  y')  can be estimated from Rkt, Rtk+l)l,  
Rk(z+l), and R(k+l)<t÷l) by linear interpolation (see Figure 
9). 

Rt(x')  = ( k  + 1 - x')Rkl + (x' -- k)R(k+l)l 

R(I+I)(X')  = ( k  + 1 - x')Rk(t+t) + (x'  -- k)R(k+~)<l+~) 

R ( x ' ,  y ' )  = ( l  + 1 - y ' )R~(x ' )  + ( y '  - l ) ~ , + , ( x ' ) .  

The answer is independent of the order of interpolation 
and, in fact, corresponds to the result obtained by fitting 
a polynomial of the form (a + bx' + cy' + dx'y') to the 
values at the four indicated points. Alignment was found 
not to be impaired, however, when nearest neighbor 
interpolation was used instead. This may be a result of 
the smoothing of the real image as previously described. 

14. Choice of Normalization Method 

High output may result as the transformation is 
changed simply because the region of the real image 
used happens to have a high average gray level. Spurious 
background slopes and false maxima may then result if 
the raw correlation is used. For this and other reasons, 
it is convenient to normalize. One approach essentially 
amounts to dividing each of the two images by its 
standard deviation; alternately, one can divide the raw 
correlation by 

s,~ x R~( ' y ' )  X )  

One additional advantage of this approach is that a 
perfect match of the two images now corresponds to a 
normalized correlation of one. An alternate method uses 
a normalization factor that is slightly easier to compute 
and which has certain advantages if the standard devia- 
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Correlat ion vs. LIX 
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Fig. 10a. Variation of  similarity measure with translation in x direc- 
tion. 

Fig. 10b. Variation of  similarity measure with translation in y direc- 
tion. 
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Fig. 10c. Variation of  similarity measure with rotation. 
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Fig. lOd. Variation of  similarity measure with scale changes. 

Correlation vs. S 
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~X =16.0 ~Y = 2.0 
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tions of the two images are similar. Instead of using the 
geometric mean, Hans Moravec proposes the arithmetic 
mean [131: 

i ~ l  j = l  i ~ l  j = l  

The first term need not be recomputed, since the full 
synthetic image is always used. Since we found the 
alignment procedure insensitive to the choice of normal- 
ization method, we used the second in our illustrations. 

15. Locating the Best Match 

Now that we have shown how to calculate a good 
similarity measure, we must describe an efficient method 
for finding the best possible transformation parameters. 
Exhaustive search is clearly out of the question. Fortu- 
nately, the similarity measure allows the use of standard 
hill-climbing techniques. This is because it tends to vary 
smoothly with changes in parameters and often is mon- 
otonic (at least for small ranges of the parameters). 

When images are not seriously misaligned, profiles 
of the similarity measure usually are unimodal with a 
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well-defined peak when plotted against one of the four 
parameters of the transformation (see Figure 10). It is 
possible to optimize each parameter in turn, using simple 
search techniques in one dimension. The process can 
then be iterated. A few passes of this process typically 
produce convergence. (More sophisticated schemes could 
reduce the amount of computation, but were not ex- 
plored.) 

When the images are initially n o t  reasonably aligned, 
more care has to be taken to avoid being trapped by 
local maxima. Solving this problem using a more exten- 
sive search leads to prohibitively lengthy computations. 
A way of reducing the cost of comparing images had to 
be found. 

16. Using Reduced Images 

One way to reduce the computation is to use only 
subimages or "windows" extracted from the original 
images. This is useful for fine matching, but is not 
satisfactory here because of the lack of global context. 

Alternately, one might use sampled images obtained 
by picking one image intensity to represent a small block 
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of image intensities. This is satisfactory as long as the 
original images are smoothed and do not have any high 
resolution features. If  this is not the case, aliasing due to 
undersampling will produce images of poor quality un- 
suitable for comparisons. 

One solution to this dilemma is to low-pass filter the 
image,; before sampling. A simple approximation to this 
process uses averages of small blocks of image intensities. 
The easiest method involves making one image intensity 
in the reduced image equal to the average of a 2 x 2 
block of intensities in the original image. This technique 
can be applied repeatedly to produce ever smaller images 
and has been used in a number of other applications [13, 
21]. 

The results of the application of this reduction proc- 
ess to real and synthetic images can be seen in Figure 11. 
First, the most highly reduced image is used to get coarse 
alignment. In this case, extensive search in the parameter 
space is permissible, since the number of picture cells in 
the images to be matched is very small. This coarse 
alignment is then refined using the next larger reduced 
images (with four times as many picture cells). Finally, 
the full resolution images are used directly to fine tune 
the alignment. False local maxima are, fortunately, much 
rarer with the highly reduced pictures, thus further 
speeding the search process. It is as if the high resolution 
features are the ones leading to false local maxima. 

Quick convergence was obtained when translation 
was optimized before rotation and scale change. In each 
case the best values found so far for each parameter were 
used while searching for an optimum value in another 
parameter. 

17. Results of Registration Experiments 

We matched the real and synthetic images using the 
similarity measure and search technique just described. 
We tried several combinations of implementation details, 
and in all cases achieved alignment which corresponded 
to a high value of the normalized correlation, and which 
was very close to that determined manually. For the 
images shown here, the normalized correlation coeffi- 
cient reaches 0.92 for optimum alignment, and the match 
is such that no features are more than two picture cells 
from the expected place, with almost all closer than one. 
(The major errors in position appear to be due to per- 
spective distortion, with which the process is not now 
designed to cope.) The accuracy with which translation, 
rotation, and scaling were determined can be estimated 
from the above statement. 

Overall, the process appears quite robust, even with 
degraded data. Details of interpolation, normalization, 
search technique, and even the reflectance map did not 
matter a great deal. 

Having stated that alignment can be accurately 
achieved, we may now ask how similar the real and 
synthetic images are. There are a number of uninfor- 
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Fig. 11. Successive reduction by factors of two applied to both the 
synthetic (left) and the real (right) image. 

mative numerical ways of answering this question. 
Graphic illustrations, such as images of the differences 
between the real and synthetic image, are more easily 
understood. For example, we plot real image intensity 
versus synthetic image intensity in Figure 12. Although 
one might expect a straight line of slope one, the scatter- 
gram shows clusters of points, some near the expected 
line, some not. 

The clusters of points indicated by the arrow labeled 
A (Figure 12) corresponds chiefly to image points show- 
ing cloud or snow cover, with intensity sufficient to 
saturate the image digitizer. Here the real image intensity 
exceeds the synthetic image intensity. Arrow B indicates 
the cluster of points which corresponds to shadowed 
points. Those near the vertical axis and to its left come 
from self-shadowed surface elements, while those to the 
fight are regions lying inside shadows cast by other 
portions of the surface. These cast shadows are not now 
simulated in the synthetic image. Here the synthetic 
image is brighter than the real image. Finally, the cluster 
of points indicated by arrow C arises from the valley 
floor, which covers a fairly large area and has essentially 
zero gradient. As a result, the synthetic image has con- 
stant intensity here, while the real image shows both 
darker features (such as the river) and brighter ones 
(such as those due to the cities and vegetation cover). 
Most of the ground cover in the valley appears to have 
higher albedo than the bare rock which is exposed in the 
higher regions, as suggested by the position of this cluster 
above the line of slope one. 

If we were to remove these three clusters of points, 
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Fig. 12a. Scattergram of real image intensities versus synthetic image 
intensities based on t~(p,q). 
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Fig. 12b. Scattergram of real image intensities versus synthetic image 
intensities based on ~2(p,q). 
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the remainder would form one elongated cluster with 
major axis at about 45 ° . This shows that, while there 
may not be an accurate point-by-point equality of inten- 
sities, there is a high correlation between intensities in 
the real and synthetic images. 

Note, by the way, that no quantization of intensity is 
apparent in these scattergrams. This is a result of the 
smoothing applied to the synthetic image and the inter- 
polation used on the real image. Without smoothing, the 
synthetic image has fairly coarse quantization levels 
because of  the coarse quantization of elevations as indi- 
cated earlier. Without interpolation, the real image, too, 
has fairly coarse quantization due to the image digitiza- 
tion procedure. 

Finally, note that we achieve our goal of  obtaining 
accurate alignment. Detailed matching  of  synthetic and 
real image intensity is a new problem which can be 
approached now that the problem of  image registration 

has been solved. 

18. The Influence of  Sun Elevation 

Aerial or satellite photographs obtained when the 
sun is low in the sky show the surface topography most 
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clearly• In this case, the scene radiance is the major 
factor in determining surface reflectance. Ridges and 
valleys stand out in stark relief, and one gets an imme- 
diate impression of  the shape of  portions of  the surface. 
Conversely, variations in surface cover tend to be most 
important when the sun is high in the sky. Photographs 
obtained under such conditions are difficult to align with 
a topographic map- -a t  least for a beginner. 

What is the sun elevation for which these two effects 
are about equally important? Finding this value will 
allow us to separate the imaging situations into two 
classes: those which are more suited for determining 
topography and those which are more conducive to 
terrain classification success. We will use a simple model 
of surface reflectance. Suppose that the surface has ma- 
terials varying in albedo between pl and p2. Next, sup- 
pose that the surface slopes are all less than or equal to 
tan(e). The incident angles will vary between e - (90 ° 
- if) and e + (90 ° - 0), where ff is the elevation of  the 
sun. If  we use the same simple reflectance function 
employed before, we find that for the two influences on 
reflectance to be just equal: 

pl cos(e + 90 ° - 40 = Oz cos(e - 90 ° + 0).  

Expanding the cosine and rearranging this equation 
leads to: 

tan(if) = [ 01 + P-------~2 [ tan(e) • 0 1  - /02 

When, for example, the surface materials have reflec- 
tances covering a range of two to one and the sun 
elevation is 35 °, then regions with surface slopes above 
approximately 0.23 (e - 13 °) will have image intensities 
affected more by surface gradient than by surface cover. 
Conversely, flatter surfaces will result in images more 
affected by variations in surface cover than by the area's 
topography. 

One conclusion is that alignment of images with 
terrain models is feasible without detailed knowledge of 
the surface materials if the sun elevation is small and the 
surface slopes are high. 

19. Summary and Conclusions 

We have seen that real images can be aligned with 
surface models using synthetic images as an intermedi- 
ary. This process works well despite many factors which 
contribute to differences between the real and synthetic 
images. The computations, while lengthy, are straight- 
forward, and reduced images have been used to speed 
up the search for the best set of  transformation parame- 
ters. 

Several applications of  aligned images and surface 
information have been presented. More can be found; 
for problems in a different domain, see [15], for example. 
Aside from change detection, passive navigation, photo- 
interpretation, and inspection of  industrial parts, perhaps 

Communications November 1978 
of Volume 21 
the ACM Number 11 



the most important application lies in the area of terrain 
classification. 

So far, no account has been taken of the effect of 
varying surface gradient, sun position, and reflective 
properties of ground cover. Recently, some interest has 
arisen :in an understanding of how surface layers reflect 
light [18, 28, 16] and how this understanding might aid 
the interpretation of satellite imagery [23, 22, 5]. 

It is imperative that interpretation of image infor- 
mation be guided by an understanding of the imaging 
process. This, in turn, can be achieved if one understands 
how light is reflected from various surfaces and how this 
might be affected by such factors as light source position, 
moisture content, and the point in the growth cycle of 
vegetation. 
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