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We develop a systematic approach to the discovery of parallel iterative schemes for solving
the shape-from-shading problem on a grid. A standard procedure for finding such schemes is
outlined, and subsequently used to derive several new ones. The shape-from-shading problem is
known to be mathematically equivalent to a nonlinear first-order partial differential equation in
surface elevation. To avoid the problems inherent in methods used to solve such equations, we
follow previous work in reformulating the problem as one of finding a surface orientation field
that minimizes the integral of the brightness error. The calculus of variations is then employed
to derive the appropriate Euler equations on which iterative schemes can be based. The
problem of minimizing the integral of the brightness error term is ill posed, since it has an
infinite number of solutions in terms of surface orientation fields. A previous method used a
regularization technique to overcome this difficulty. An extra term was added to the integral to
obtain an approximation to a solution that was as smooth as possible. We point out here that
surface orientation has to obey an integrability constraint if it is to correspond to an underlying
smooth surface. Regularization methods do not guarantee that the surface orientation re-
covered satisfies this constraint. Consequently, we attempt to develop a method that enforces
integrability, but fail to find a convergent iterative scheme based on the resulting Euler
equations. We show, however, that such a scheme can be derived if, instead of strictly enforcing
the constraint, a penalty term derived from the constraint is adopted. This new scheme, while it
can be expressed simply and elegantly using the surface gradient, unfortunately cannot deal
with constraints imposed by occluding boundaries. These constraints are crucial if ambiguities
in the solution of the shape-from-shading problem are to be avoided. Different schemes result if
one uses different parameters to describe surface orientation. We derive two new schemes,
using unit surface normals, that facilitate the incorporation of the occluding boundary
information. These schemes, while more complex, have several advantages over previous ones.
' 1986 Academic Press, Inc.

1. INTRODUCTION

We begin by reviewing the shape-from-shading problem, its formulation as a
minimization problem, and the use of the calculus of variations in deriving the
partial differential equations governing the solution of the minimization problem.

I.I. Preview

The first study of the shape-from-shading problem was undertaken by Horn [7, 8].
There, the partial differential equation in surface elevation fundamental to the
problem was converted to an equivalent set of five ordinary differential equations
called the characteristic strip equations. Algorithms based directly on numerical
solution of the discrete approximations of these equations are inherently sequential
in nature and have difficulty with unavoidable noise in the image data.
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Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by
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Later, a method lending itself to parallel solution on a grid was developed by Strat
[15] using minimization in the discrete domain. Strat used the gradient to express
surface orientation and so was unable to deal with occluding boundaries, which are
known to provide crucial constraint needed to avoid ambiguity in the solution, as
shown by Bruss [5]. For this reason, another approach, based on the stereographic
projection of the Gaussian sphere, was explored by Ikeuchi and Horn [12]. The
calculus of variations was used there for the first time in the analysis of the
shape-from-shading problem. Their method depended on the use of a regularization
term in the functional to be minimized.

In this paper, we carefully examine the role of the variational calculus in the
derivation of iterative schemes for shape from shading. Previous methods are
discussed in detail, and rationalized in terms of the new point of view, where
appropriate. The application of regularization techniques to well-posed problems is
called into question.

We note in particular that the surface gradient should satisfy an integrability
constraint. Guided by this observation, we attempt to impose integrability in a strict
sense. We are, however, unable to derive a convergent iterative scheme based on the
appropriate Euler equation. We learn that such a scheme may be found if we instead
incorporate a penalty term based on the integrability constraint. This we demon-
strate first using the gradient to specify surface orientation, as has been customary.
The resulting iterative scheme is shown to be related to that developed by Strat.

As already stated, use of the surface gradient precludes incorporation of the
occluding boundary information. We overcome this difficulty by taking the novel
approach of adopting surface-normal vectors directly. This leads to iterative schemes
that are more complex, but manageable. We finally develop two such schemes that:

• ensure the result is (at least approximately) integrable,

• avoid the smoothing introduced by a regularizing term, and

• permit use of the known normals on the occluding boundary.

None of the previous methods combined all of these features.

1.2. The Shape-from-Shading Problem
Monochrome images of smoothly curved surfaces with homogeneous reflecting

properties commonly exhibit a variation in image irradiance, or shading. This is due
to the interaction of four principal factors: the illumination, the shape of the surface,
the reflecting characteristics of the material, and the image projection. The shape-
from-shading problem may be regarded as that of extracting the shape information
encoded in the irradiance data. It therefore entails inversion of the image-forming
process.

Because a number of factors are confounded in irradiance values, the shape
depicted in an image cannot be determined unless additional information is pro-
vided. Of considerable utility in this regard has been the reflectance map [9], which
specifies the radiance of a surface patch as a function of its orientation. The
reflectance map can be computed from the bidirectional reflectance-distribution
function and the light-source arrangement [10]. Usually it is more practical to
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determine the reflectance map experimentally, by means of a calibration object of
known shape, for example. In any case, the reflectance map encodes, inextricably,
information about the reflecting properties of the surface and the distribution and
intensity of the light sources.

In adopting the reflectance map, we implicitly make the assumption that, for the
given scene conditions, the radiance emanating from a small surface patch is
dependent only on the orientation of the patch, and not its position in space. This
requires that the light sources and the viewer be distant. We also assume that the
image is formed by orthographic image projection, and that the surface has homoge-
neous reflecting properties.1

Formally, given an image, E, and a reflectance map, R, the shape-from-shading
problem may be regarded as that of recovering a smooth surface, z, satisfying the
image irradiance equation

E(x, y ) = R{z^(x, y ) , Z y ( x , y))

over some domain Q of the image. Any given conditions on z on the boundary 3B
of the region Sl should also be satisfied. Here z^ and z denote the first partial
derivatives of z with respect to x and y respectively. Since these derivatives will be
used frequently to specify surface orientation, it is convenient to introduce the
short-hand notation

9z 9z
P=— and q = —.Ox 9y

The gradient of the surface z at the point (x, y ) is just ( p ( x , y),q(x, y)). The
gradient points in the direction of steepest ascent and has magnitude equal to the
slope in that direction. It is further useful to note that a normal of the once-differen-
tiable surface, z, at (x, y , z(x, y^cm be written

n== (-p(x,y),-q(x,y),l)T.

This follows from the fact that (1,0, p(x, y))7' and (0,1, q(x, y))7' are tangent
vectors and that the normal must be parallel to their cross-product. For many
purposes one can use either the surface gradient or the normal to specify surface
orientation. Each has its own advantages, as we shall see.

It is customary to choose the direction of projection to be parallel to the z axis.
On the occluding boundary, the direction of projection is tangent to the surface. That
is, the normal is orthogonal to a unit vector z, parallel to the z axis. Thus we note
that at least one of p and q become unbounded on the occluding boundary.

'These restrictive assumptions were not exploited in the original work on shape from shading. The
problem formulation, however, is much easier to comprehend if the reflectance map is introduced, and
that can be done only if these additional constraints are imposed.
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1.3. Employing the Variational Calculus

Suppose we seek, over some domain, a smooth surface satisfying various con-
straints. It is useful to obtain from the given constraints a non-negative expression
that measures the departure of a particular surface from a satisfactory solution. We
may then search for a surface that minimizes the expression. As the value of the
expression depends on the choice of surface, or function, it is termed a functional.

The search for a function that minimizes an integral expression is the major
concern of the calculus of variations [6]. Here, we find the valuable result that the
extrema of functionals must satisfy an associated Euler equation. This equation can
usually be determined in a straightforward way from the functional. We can, as a
result, transform our surface-recovery problem from one of minimizing a functional,
to one of solving one or more partial differential equations. Some of the relevant
mathematical details are presented in the Appendix of this paper.

In seeking a surface that best matches the aforementioned constraints, we require
a global minimum of the corresponding functional. However, Euler equations only
specify conditions on extremal values. We shall make the strong assumption in this
paper that a solution to the Euler equation constitutes a global minimum of the
functional, satisfying the constraints optimally. We shall as a result be deluded if we
encounter a surface that gives rise to either a local minimum, a local maximum, or
an inflexion point in the functional, for it too will satisfy the Euler equation.2 The
assumption here is difficult to avoid, given that we shall be dealing with functionals
involving a reflectance map whose analytic form may not be known in advance.

Let us suppose that we obtain from an Euler equation a surface that generates a
global minimum of the appropriate functional. It may be that the constraints on
which the functional was originally based are satisfied exactly by this function.
However, this need not be so. Problems can readily be formulated for which there
are no perfect solutions. But here we find a very important property of this
approach: the surface that best matches the constraints will generate a global
minimum of the functional. This is important to vision problems as they typically
involve images that are noisy. Exact solutions may not exist in this situation. For
example, in the presence of noise, there may not be a smooth surface that satisfies
the image irradiance equation E(x, y ) = R(p,q) exactly. There will, however, be a
surface that minimizes the integral of the square of the difference between E(x, y )
andR(p,q).3

It is important to observe that there are typically an infinite number of surfaces
satisfying the Euler equation. Without further constraint, we do not have a well-posed
problem. In some cases the original problem includes boundary conditions that, taken
together with the resulting partial differential equations, lead to a unique solution. In
the case where the unknown function is unconstrained on the boundary, the calculus
of variations itself provides so-called natural boundary conditions (see Appendix).

Care must be taken when formulating the functional to ensure that it provides
sufficient constraint, for otherwise there may be an infinite number of solutions even

2 Because of the use of expressions that are unbounded above, we shall not encounter solutions
generating global maxima.

3 The integral of the square of the difference may have a lower bound that is not attained by any
surface. In that case, a surface may be found for which the integral is arbitrarily close to that lower
bound.
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with boundary conditions. Such a difficulty may be remedied by the addition of a
suitable regularization term [13]. This is discussed in more detail in the Appendix.

1.4. A Procedure for Deriving Iterative Schemes
We now consider a way of deriving iterative schemes for recovering surface shape.

In the event that we seek a surface, z, best satisfying various requirements over S2,
we do the following:

(1) Select a functional, F, non-negative over S2, such that

! ( z ) = f f F ( x , y , z , . . . ) d x d y

constitutes a measure of the departure of z from an ideal solution.
(2) Absorb into F any constraint that z should satisfy over S2, using Lagrangian

multipliers if appropriate.
(3) If the problem is not well posed as it stands, add a suitable regularization

term.
(4) Find the Euler equation that must be satisfied by the surface z minimizing

the functional I .
(5) Determine what boundary conditions are needed to ensure a unique solu-

tion. If there are no constraints on the function around the boundary 3B, determine
the appropriate natural boundary conditions.

(6) Develop a discrete approximation of the associated Euler equation, using
finite-difference methods.

(7) Design an iterative scheme that converges to the solution of the discrete
approximation of the Euler equation.

The approach, of course, follows the same pattern if the surface is parameterized in a
different way.4 Also, similar results can be obtained by applying the finite-element
method directly to the functional I.

As we shall see later, the most difficult step here is typically the discovery of an
iterative scheme that enables one to recover a solution of the discrete approximation
of the Euler equation. Such a scheme should be efficient, convergent, and preferably
lend itself to parallel implementation.

Note that it is better to work with a functional that evaluates to zero for perfect
solutions. In this way, one is relieved of the onus of showing that there are no
unwanted surfaces that cause the functional to have a smaller value than that
generated by a satisfactory solution. An additional advantage of functionals evaluat-
ing to zero is that one may use them to check how close an iterative scheme is to a
solution. This is difficult with other functionals, as the minimum value is usually
unknown.

"The surface may, for example, be parametrized using the gradient ( p , q) instead of the surface
elevation z.
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2. PREVIOUS WORK

Only one shape-from-shading scheme [12], prior to this work, has been devised by
explicit recourse to the calculus of variations. Two other schemes, however, [15, 14]
can be rationalized by application of the calculus of variations. We now examine
these three schemes in historical sequence.

2.7. Strat's Method

Strat [15] arrived at his method by application of the standard calculus to the
discrete domain. We present his analysis here as we wish to show later how it can be
related to a new scheme we develop using the calculus of variations. Rationalizing
Strat's scheme directly in terms of the variational calculus is complicated by the fact
that it is based on an integral (rather than a differential) integrability term.

First, let the brightness error at a point (x, y ) be

E ( x , y ) - R ( p ( x , y ) , q ( x , y ) ) .

This is the difference between the observed irradiance E(x, y ) and that predicted
from the estimated gradient ( p ( x , y), q(x, y)). In the discrete case, we might
consider minimizing the total brightness error5

n m

E E(^-^<?,,))2
,-iy-i

by suitable choice of the gradient at each picture cell in the image.6 In this vein,
then, by setting the derivative of the expression with respect to p^i and q^i equal to
zero, we obtain, for 1 ̂  k < n and 1 <, I < m, the two sets of equations

( E k i - R(pkl,c|kl))R•p(Pkl.<lkl) =0>

(Eki - R(Pkh 9ki}')Ry(Pki' 9ki) = 0,

where R and R are the partial derivatives of R with respect to p and q,
respectively. These conditions can be trivially satisfied if we choose p , . and q,, so
that

R(p,,,q,,)-E,,.

Since this equation represents but one constraint on the two unknowns /»; and q,.,
we expect that, in general, an infinite number of gradient values will satisfy it, for a
particular ;' and j . Many solutions can then be constructed by combining arbitrary
choices from these sets of possibilities at each picture cell.

The problem is clearly not well posed as stated. We can, however, make use of the
fact that the gradients at neighboring points are related. Consider an infinitesimal

5 For simplicity, we assume a rectangular image region here. There is no loss of generality, however,
since the sums can be taken over whatever region is desired.

'By minimizing an expression containing the sum of the square of the brightness error, we are giving up
strict enforcement of the image irradiance equation. This seems reasonable, given that neither E nor R
are known with precision.
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segment, 8C, of a curve on the surface. The change in z along the segment is given
by

8z = p8x + q8y,

where 8x and 8y are the changes in x and y along the segment. The total change in
z along a curve then is just the integral of ( p d x + qdy). In the case of a closed
curve, C, this integral should be zero. Thus, if ( p ( x , y), q(x, y)) is the gradient of a
surface z(x, y ) then

p ( x , y ) d x + q ( x , y ) d y ) = 0,
ĉ

for all closed curves, C, in the region B.7
Let e denote the spacing between picture cells. Consider an elementary square

path, with the picture cell ((', j ) in the lower left hand comer. If we let ; correspond
to x and j correspond to y , then the integral counter-clockwise around this path can
be estimated by

e
C,j = ~ j [ P l , j + P i + l , j + 1 i + l , j + 9,+l,j+l - Pi+l.j+l - Pi,j-H - ^,,y+l - t l i , j \ -

This expression can be obtained by approximating the slope along each of the four
sides by the average of the slopes at the beginning and end of each side. The result is
exactly equal to zero when z is quadratic, as can be seen using Taylor series
expansion.8 The difference between this expression and the exact loop integral is
(perhaps surprisingly) of order e4.

On a discrete grid, we wish to minimize two errors: the brightness error, summed
over all grid points, and the error in the loop integrals, summed over all elementary
square paths constructed by connecting the centers of neighboring picture cells.9

The total contribution of the first error term clearly depends on the number of
nodes in the grid, that is, it depends inversely on e2 for a fixed image size. We show
later that the second term, on the other hand, varies directly as e2. To make the
relative contribution of the two terms independent of the grid spacing, we multiply
the first term by e2 and divide the second term by e2. The quantity to be minimized
then becomes10

n m ^ n — 1 m — 1

^£ T.{E„-R(p„,q„))2+-,£ E^ -
(-1 y-l £ ;=•! j-\

Here X is a factor that weights the relative contributions of the brightness error and
the errors in the elementary loop integrals. It can be made small when the irradiance
measurements are accurate, and the reflectance map is known with precision.11

7'Fot a discussion of this issue, within the context of the shape-from-shading problem, see Brooks [4].
8 To be exact, it equals zero when z can be written as a polynomial containing only terms of the form

x'y-i, for i < 2 and j <, 2, for i = j , for i = 0 with j arbitrary, and for j = 0 with ;' arbitrary.
'Strat actually counted each loop integral four rimes.
"For simplicity, we assume a rectangular image region here. There is no loss of generality, however,

since the sums can be taken over whatever region is desired.
"Note, however, that iterative schemes derived directly from the above will become unstable if \ is

made small enough.
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For the composite error term to be a minimum, the derivatives of the error sum
with respect to p^ and q^ must be zero. Now, p^ and q^ occur in the expressions
for e^ /, e^_i /, e^._i /_i and e^ ,_i. So performing the indicated differentiations
and equating the results to zero, one obtains, for 1 < k < n and 1 < / < m,

^(Eki - R{Pkl. ̂ kl))Rp(Pkl' Ikl) - Y^ek,l+ ek-\,^ - Sk-l.l-l - ek,l-l] = 0,

e2(Ekl - R{Pkh 9t/))^(^ Ikl) - ̂ l^-l,/ + ek-\,^-\ - e^,/-l - e^i} = 0,

where R and R are the partial derivatives of R(p, q) with respect to p and q, as
before.12 We can change dummy variables again and gather terms in a particular
way to obtain

e2 ,̂, - R(p,,, q,,))R,,(p,,, q,,) + \[u,, - q,,] = 0,

e2^,, - R(p,,, q,,))R,(p,,, (?,,) + A [A,, - ̂ ,] = 0,

where

P i j = i(^i+l,y+l - Pi-1, y+1 -'-^i-l.y-l -A+l,7-l)>

^ = K^+i,y+i - ^-i,y+i + ^-i,y-i ~ ^+i,y-i)'

are discrete estimates of the second partial cross derivatives p^y and q^y (times e2),
while

Vij = i[(^,+i,y+i - 2^,+i,, +^;+i,,_i) + l{pi,^i - ZP,,, +P,,j-i)

+{P,-l,j+l -2^-l,y+^-l,y-i)],

h,j = iK^+i.y+i - 2^+i + ^,-i,y+i) + 2(9,+i^ - 2q,^ + q,^j)

+(^,+i^._i - 2^._i + ^,_i,y_i)],

are discrete estimates of the second partial derivatives pyy and q^ respectively
(times e2). (Note again that the subscript ;' in the discrete version corresponds to x
in the continuous case, while the subscript j corresponds to y.) Strat wrote his result
in terms of various intermediate expressions, so the equivalence to discrete estimates
of partial derivatives was not apparent.

At this point we can isolate the terms in j?, from one equation, and the term in
q,. from the other, if we let

v,j = P , j - Pij and h,j = q^ - q, j ,

12 Some of the terms are omitted when a point on the boundary is being considered.
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where p , . and q,. are given by

i[(^+l,y+l - ^ P i + l , j + P i + l , j - l ) + 2(^,,,+l +P,,j-l)

+ (P i - l , j + l - 1pi-l,j+ P.-^j-i)},

^[(<?m,y+i - 2?;,y+i + ?,-i,,+i) + 2(^i^. + ^;_iJ

+(9,+1,^-1 - ̂ i,j-l + 9,-l,y-l)],

respectively. In this way, we obtain

£2

P i j = ̂  - ̂  + -^-(£,y - -R(^, q,j))Rp(p,j, q,j),i j ^ t j \ \ U v-r'y i i j ^ i^p\nj'

e2 ,e .
(lij = ?;y - P i j + Y^.y - R(P,j' ^))^?(^> ^y)-l i j - 4ij - P i j + -^{EU - R ( P i j ' ^/))^(^> Hip

An iterative scheme can now be developed in which the terms p , . and q,. on the
left-hand side of the equations are considered to be new values that are to be
computed by inserting the current values into the right-hand sides. Then we obtain

e2

P^ =Pk,-^+ ̂ (EU - ̂  ̂ )K(^' ̂ )'

g2
/,<:+! = Tjk _ s.k , _ i p _ n( k f,k\\v ( „<: ,,k\
l i j l i j P i j • \\~'J K \ P ' J ' liJ I ! K 1 \ P'J'' I'J I •

This scheme appears to work reasonably well, having good stability and convergence
properties.

It is clear that one has to do something special about the boundary, since the
above result applies only for 1 < k < n and 1 < / < m. On the boundary, different
expressions apply, which can be obtained by carefully determining which of the
terms are missing from the result_of the initial differentiation. Put another way, the
expressions for p,..., q,,, u,,, and h,. require the old values of p , . and q,. at picture
cells bordering on the region in which one is applying the iterative scheme. That is,
before the scheme can be applied, p and q must be known on a border that is one
picture cell wide.

Note that one cannot incorporate occluding boundary information in this scheme
because, on the occluding boundary, at least one of p and q becomes unbounded.
Strat, in fact, was forced in his examples to specify the gradient along some closed
curve other than the occluding boundary. This kind of information is not usually
available in applications of machine vision.

2.2. The Method of Ikeuchi and Horn
Ikeuchi and Horn [12] were the first to apply the calculus of variations to the

shape-from-shading problem. They effectively solved a functional minimization
problem in recovering object surface orientation. It is known that the occluding
boundary provides important constraints on the solution of the shape-from-shading
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problem [5]. The difficulty with using the gradient to specify surface orientation is
that, as already mentioned, at least one of p and q is unbounded on the occluding
boundary.

This problem can be overcome by specifying surface orientation in another way.
Consider the mapping from pq space to f g space specified by the equations

1p Iq
f = ———, and s = ———i .

1 + ^ 1 + ^ + 9 2 l + ^ l + p ^ + q 2

It is easy to verify that /2 + g2 < 4 for all visible parts of a surface. The orientation
of a point on the occluding boundary corresponds to a point on a circle of radius
two in f g space. Thus occluding boundaries present no difficulties now. The
correspondence between pq space and the Gaussian sphere of possible orientations
can be rationalized in terms of the gnomonic projection from the center of the
sphere onto a tangent plane. Likewise, the correspondence between f g space and the
Gaussian sphere can be thought of in terms of the stereographic projection from a
point on the sphere onto a plane tangent to the sphere at the opposite point [12].

We now seek appropriate / and g values at each point in the image. This we may
regard as a search for two functions, / and g, defined over S2, that correspond to a
smooth surface satisfying the image irradiance equation

E ( x , y ) = R ( f ( x , y ) , g ( x , y ) ) .

(Note that the reflectance map here has been parameterized on / and g.)
We now develop an appropriate functional. Noting that / and g should ideally

correspond to a surface that would produce the image if illuminated the same way as
the actual surface, we adopt the integral of the brightness error

f f ( E ( x , y ) - R ( f ( x , y ) , g ( x , y)))2 d x d y .

We could, at this point, try to add a term that depends on the loop integrals, as Strat
did. A problem with the use of stereographic coordinates is that the expression for
the loop integrals becomes complicated. We have

4/ , 4g
P = -.———72———-2 and 1 =4 - / 2 _ ^ 2 ——— . 4 - / 2 - g 2 '

so that p - q^ = 0 yields

/,(4 +/2 - g2) - g,(4 -/2 + g2) + 2(g, -/,)/g

(4- /2 -g2 )2
=0.

This expression, even when multiplied by (4 - /2 - g2)2, is quite complex and leads
to even more complicated Euler equations.

Yet without additional constraint the problem is not well posed. As we saw
earlier, the minimization of the total brightness error alone does not constitute a
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well-posed problem. In the above case we can choose, at each point (x, y), any /
and g for which jR(/, g) = E(x, y). In general, there is a one-dimensional family of
possibilities—contours of constant R in f g space.

We would expect, however, that neighboring points have similar orientations, so
that a typical "solution" of this form would not be reasonable. Ikeuchi and Horn
decided to add the measure of "lack of smoothness" given by

f f ^ + f y ' + g ^ + g ^ ^ d y .

A solution that produces a small value will be one that keeps the fluctuations in /
and g small. Adding this term to the brightness error, we obtain the functional

f f ( E ( x , y ) - R ( f ( x , y ) , g(x, y)))2 + \ { f 2 + /; + ̂  + g2,) dxdy

that is to be minimized by choosing / and g. Here, again, X is a scalar that assigns a
relative weighting to the terms.

The additional expression can be thought of as a regularization term.13 Such a
term can be added to a functional in order to obtain a solution in the case that a
minimization problem does not have a unique solution.

The Euler equations for this minimization problem can be simplified to read

(E- R)Rf+\v2f=0,

{E-R)R,+\^2g=0,

where R, and R are the partial derivatives of R ( f , g) with respect to / and g and

92 92

v '^^

is the Laplacian operator.
These Euler equations do not have a unique solution without additional con-

straint. The constraints available to us here are the values of / and g on the
occluding boundary. Finding the solution of the Euler equations with this particular
set of boundary conditions usually constitutes a well-posed problem—although this
depends on the exact nature of the reflectance map, R, and the image, E.

At this point we introduce a discrete approximation of the Laplacian. The
Laplacian of a function at a given point is approximately equal to a constant times
the difference between a local average of the function and its value at the point. The
factor of proportionality depends on the way in which the local average is computed.

"Ikeuchi and Horn, however, did not think of the extra term as a regularization term.
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So, for example, if we use the simple finite-difference approximation

1
{V2/},. - -?[(/,,,/+i +/,+i,y +/,,y-i +/,-iJ - 4/,J,

then

{V/L-^a-/„•),

where the local average, /• , is given by

f i j == 4[/i,/+l + f i+ l . j ~^ f i , j - l ^~ /i-l,7J •

The same can be done for g, of course.14 Using these finite-difference approxima-
tions in the Euler equations derived above, we obtain

g2

f u - f u + 4-^ - ̂ ' s.^^fu' ^).
g2

8,, = 8,j + 4^ - ̂ fu' ̂ )K(^' 8,^

where we have isolated the terms in /, and g, . An iterative scheme can now be
developed in which these particular terms are considered to be new values to be
computed by inserting the current values into the remainder of the expression. In
this fashion, we finally arrive at the scheme

c2

^+1 =^ + 4^ - R^' ̂ )) '̂ ̂ )'

e2

p*+1 = ̂  + _ I E - R( { k v^R ( f k { ' k }Sij Sij ' ., [ •c;/ K \ J i j » 8 i j ) ] K g \ J i j > Sij / •

Here, as before, e denotes the spacing between picture cells, while / and g are the
local averages of / and g.

This scheme appears to work reasonably well, having good stability and conver-
gence properties. We shall see later, however, that the solutions for surface orienta-
tion may not correspond to an underlying smooth surface and that solutions may be
distorted by the presence of the regularizing term. The degree of distortion depends
on the parameter A.

2.3. Smith's Approach
Smith's method [14] was derived by application of the standard calculus to the

discrete domain. We now rationalize his method using the variational calculus.

14 Slightly better results can be obtained using the nine-point approximation of the Laplacian rather
than the five-point approximation shown here.
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Surface orientation can be parameterized in Im space, where

P 1I = — , and m = — , .
V l + ^ + ^ f 2 y l+ jp 2 -^ 2

This corresponds to an orthographic projection of the Gaussian sphere onto a plane
tangent to the sphere at one of the poles. We next adopt a regularizing term and
minimize the functional

f f ( E ( x , y) - R(l(x, y}, m(x, y)))2 + A((v2/)2 + (v2^)2) dxdy.

From the associated Euler equations, we obtain

(£- R)R|-\V4l=0,

(E-R)R^-\v4m=0,

where V4 is the biharmonic operator.15

We need, once again, to impose boundary conditions to avoid ambiguity in the
solution. For the biharmonic equation we need to specify / and m on the boundary,
as well as the normal derivatives of / and m. The normal derivative is the derivative
in the direction of the outward normal to the boundary curve 3S2. Note that while
the values of / and m on the occluding boundary are known, it may not be obvious
what the normal derivatives of / and m ought to be. Since they are not specified they
must obey the appropriate natural boundary condition.

We can now use the simple finite-difference approximation

20
{^}uss-^[lu-l.^'

where

/,7=^[8(/,+l,,+/,-l,y+/,,^l+/,,y-l)

"-( ' i+l.y+l '*' 'i-l,j-l ^~ '1-1,7+1 '*' ' )+l ,y- l /

- ( / , + 2 , y + / , - 2 , , + / , , y + 2 + / ; , y - 2 ) l .

The same can be done for m, of course.16 Isolating the terms in l , j and m^, we

15 The biharmonic operator can be defined in terms of the Laplacian operator by V^/) = V^V^/)).
"Slightly better results can be obtained using the twenty-five-point approximation of the biharmonic

operator instead of the thirteen-point approximation shown here.
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obtain

£4

l i j = i i j + 20l̂  - R(lij' w'^)^/•y•' m'^
e4

mij = wly + 10\^ ~ R(l^' '"'y^'"^' ̂ y)'

which leads to the iterative scheme

l^=l^+^(Eu-R(^m^R^'mk^

<' = ̂  + ̂ (EU - P^ <-))^(^ 0-
The biharmonic equation and its variants are known to require careful treatment.

In the iterative scheme as written above, for example, the new values are based
directly on old values. This is called the Jacobi method, and is appropriate for
parallel implementation. But this method is unstable for computational molecules
that are discrete approximations of the biharmonic operator. A stable iteration can
be achieved if one uses instead the Gauss-Seidel method, in which the computation
of a new value at one picture cell uses the new values of those picture cells already
visited in a raster scan of the image. This method, however, does not lend itself to
parallel implementation. An alternative stabilizing technique depends on the use of
smoothing between steps of a Jacobi iteration.

The more complex boundary conditions mentioned above are reflected in the fact
that the computational molecule used as the discrete approximation of the bi-
harmonic operator requires values for / and m in a band two picture cells wide
bordering on the region in which the iterative scheme is applied. It is not enough to
know the values of / and m on the occluding boundary.17

Smith reported difficulties with the above scheme and incorrectly concluded that
smoothness constraints fail to propagate boundary conditions by more than a few
pixels in the image. In fact, by a suitable application of the aforementioned
stabilization techniques, the scheme can be made to work. Note that fewer problems
are encountered if (/^ + /2 + m\ + m2) is used in the above functional as the
regularization term. This is, in part, because the Euler equations then contain the
Laplacian operator, for which simple iterative schemes exist that are well behaved;
but mainly because the treatment of the boundary is simpler.

2.4. Depth from Gradient
A use of the variational calculus in a subsidiary problem arises in the problem of

recovering depth from the surface gradient. A discussion of this problem may appear
to be out of place here, but is included since it illustrates the basic method exploited
in this paper in a particularly simple situation. Let us suppose that we have
determined surface orientation over the region B. The relative depth of surface

"For further details, see for example the discussion of molecular inhibition by Terzopoulos [16].
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points may be determined from the gradient ( p , q) by means of the equality

8z = p8x + q8y,

that relates infinitesimal changes in x, y and z. Integrating along a curve C from
(xy, yo) to (x, y), we obtain

z ( x , y ) = z(xo,yo) + f ( p d x + qdy).

This simple method of integration performs badly when the data are noisy. A depth
value obtained at some point will, in these circumstances, depend on the integration
path that was taken to get there.

It is better to find a best-fit surface z to the given components of the gradient, p
and q. This we can accomplish by minimizing the functional

{ f ( 2 . - p ) 2 + ( z y - q ) 2 d x d y ,

whose Euler equation reduces to

V^=^+^.

Once again, note that this equation does not uniquely specify a solution without
further constraint. In fact, we can add any harmonic function18 to a solution to
obtain a different solution also satisfying the given Euler equation. In the case here
there are no a priori boundary conditions given to us. That is, the function sought is
not restrained on the boundary. The calculus of variations provides us in this
situation with natural boundary conditions that must be satisfied by the solution.
For this particular problem, the natural boundary conditions turn out to be (see
Appendix)

( z ^ , Z y ) - n = { p , q ) •

where

/ dy dx\
" T A ' A ;

is a normal vector to the boundary curve 9Q and s is arc-length along the boundary.
So the component of (z^, z ) normal to the chosen boundary curve must match the
normal component of ( p , q).19

With these boundary conditions, the solution is still not quite unique, since an
arbitrary constant can be added to z without changing the functional. This reflects
the fact that one cannot recover absolute depth from the gradient (and thus from

^A harmonic function satisfies Laplace's equation, v 2^ = 0.
"Note that here z^ and ly are the derivatives of the purported solution z ( x , y), while p and q are the

given surface orientation data—only with perfect data would these be the same.
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shading information). To get a particular answer, one can fix one of the depth
values, or fix their average.

Using the discrete approximation to the Laplacian employed earlier, we obtain the
iterative scheme

^+ l=^-4(^+^)>

where

^U = K^'+i.y + zi-\,j + ̂ .j+i + z i , j - +z.•,/•-l).

is a local average of z, while

h,] = K^'+l.y - P.-l.j) and »ij = K9,,y+l - 9,,y-l)>

are estimates of the partial derivatives p^ and q , respectively (times e). This is as
derived by Horn and reported by Ikeuchi [11]. (Note again that the subscript;' in the
discrete version corresponds to x in the continuous case, while the subscript j
corresponds to y.)

In addition to finding the discrete approximation of the Euler equation, we also
must find the discrete approximation of the boundary condition. This can be done
easily, provided that the boundary curve is polygonal, with horizontal and vertical
segments only. This restriction does not provide a problem in our simple situation.
Now z^ = p on vertical segments of the boundary, while z = q on the horizontal
segments. These conditions may be translated into

^(z;+i,, - z;_i,,) - p.j and ^(^y+i - ̂ y-i) = ̂ '

respectively. These relationships can be used to modify the computation of the
average, i, , for points on the edge of the region in which depth is to be
reconstructed. Alternatively, these equations can be used to provide phantom depth
values on a border of one picture cell width around that region. In this case the
computation of the average can proceed in the same fashion for all points.

3. SMOOTHNESS AND INTEGRABILITY

Methods that attempt to recover shape information encoded in an image usually
confine their attention to smooth, or piece-wise smooth, solutions. Smoothness,
however, is a loose term that may be interpreted in many ways. To be specific, we
here define a graph, z(x, y), to be smooth over a region B in the .icy-plane if
py = q^, that is, if

8h 9^
T^~=T^~ ^'y ea-9x9y 9y9x

This is a property of C2 surfaces.20 Because they must be twice-difierentiable under
20 For a discussion of this issue, within the context of the shape- from-shading problem, see [18].
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this definition, surfaces that have edges (like polyhedra) are excluded, and it may be
argued that this accords with our intuitions on smoothness.21

Let us now look more closely at the "lack-of -smoothness" term used in the
Ikeuchi-Horn method. Suppose that we present a shape-from-shading problem to
the program by providing it with an image, a reflectance map, and the occluding
boundary. The image just happens to be that of a Lambertian sphere illuminated by
an overhead point source at the viewer. This is a well-posed problem with two
solutions, a concave bowl and a convex ball. It turns out that the algorithm will
converge to a somewhat flattened sphere, given a planar initial estimate. Interest-
ingly, it converges to almost the same solution when given the correct shape initially.
That is, the algorithm moves away from the right answer. It is interesting to consider
why this should be so.

Recall the functional that is used to derive the Ikeuchi-Horn method. We are
required to minimize

f f ( E ( x , y ) - R { f ( x , y ) , g(x, y))}2 + \ ( f ^ +/; + ̂  + g^) d x d y .

It is clear that minimizing the integral of (£ - R ( f , g))2 is desirable; we wish to
make the brightness error as small as possible. However, it is not obvious just what is
achieved by minimizing the remainder of the overall integral. Certainly, it is not
smoothness as defined above. In fact, if / and g are solutions to the Euler equations
for this problem, it will in general be the case that there exists no physical surface
corresponding exactly to the surface orientation specified by / and g [3].

The expression (/^ + /2 + g^ + g2) is instead best regarded as a regularizing
term that is primarily intended as a means of finding a particularly smooth shape
that is close to a solution of the original problem [13]. Different surfaces will give rise
to different values for

) d x d y .\ J x ' J y 1 Sx '

AI-- I-^-A —.•n n

W"
Those that fluctuate in depth the least will likely give rise to small values. When a
shape-from-shading problem is highly ambiguous, in that there is an infinite number
of possible solutions, a regularizing term is precisely what is needed to get close to
one of them. If, however, the problem is unambiguous, regularization will usually
result in loss of accuracy, as the correct solution is unlikely to minimize the integral
of the regularizing term.

The distortion due to regularization depends on the parameter \. A large value of
X, appropriate when the image data is very noisy, leads to large errors, since the

"Actually, one may claim that our intuition of smoothness accords better with a less restrictive
definition. Consider, for example, adjoining a planar surface and a portion of a cylinder along a generator
of the cylinder. This can be done in such a way that there is no discontinuity in surface orientation, and
the surface may be considered to be "smooth" [12]. The second derivatives, however, are discontinuous at
the join. This suggests that we ought to identify our intuition of smoothness not with C2, but PC2, the set
of surfaces that have piece-wise continuous second derivatives. In fact, some may even argue that surfaces
in C1, that is, those with continuous first derivatives, are "smooth." We ignore this subtle point in what
follows, and restrict attention to surfaces in C2.
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emphasis will be on producing as smooth a surface as possible, while permitting
considerable error in brightness. Conversely, a small value for \ causes brightness
errors to be weighted more. In this case, a more undulating surface is acceptable
since the contribution of the regularizing term to the overall functional is relatively
small.22

4. IMPOSING INTEGRABILITY AS A CONSTRAINT

In any case, it is desirable to have a shape-from-shading method that neither
moves away from correct solutions, nor converges to surfaces that are not solutions.
To derive such a method, we need to impose the smoothness condition defined
earlier, instead of using regularization. We first consider forcing the solution to
satisfy the condition exactly.

Let us suppose that a shape-from-shading method recovers smooth functions
p(x,y) and q(x, y ) defined over the image, thereby specifying the gradient. In
general, there will be no smooth surface that corresponds to this gradient. This is
because the functions p and q must be related in a special way if they are to
correspond to a smooth surface [3]. Noting once again that

9z 9z
P(x, y) =-g^{x, y) and q(x, y) = -^-(x, y),

it follows that, for our earlier definition of smoothness to be satisfied, we must have

9P ( \ 9q i \^,y)=^,y),

or 2 = z . This is known as the constraint of integrability. If the gradient does not
possess this property, there exists no C2 surface that could give rise to it. Thus we
shall now attempt to ensure that solutions are integrable.

4.1. Direct Recovery of Relative Depth
With the exception of the method of characteristic strips [8], all shape-from-shad-

ing programs have recovered surface orientation in a separate step, prior to recover-
ing relative depth. We saw earlier an iterative scheme that determines depth values
from the surface gradient. Of interest here is the direct recovery of depth informa-
tion, achieved without the explicit manipulation of surface orientation.

Following the guidelines listed earlier, our initial task is to formulate an ap-
propriate functional. The brightness error is readily expressed as

f f ( E ( x , y) - R(z,(x, y), Zy(x, y)))2dxdy.
66

Now we are to ensure the satisfaction of the constraint z^y = Z y ^ . We might
therefore consider adding the functional

, ^ y - Z y ^ Y d x d y .//<
22 The iterative scheme becomes unstable, however, when the value of \ is reduced too much.
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It is easy to verify that such a term makes no contribution to the subsequent Euler
equation. This is because the integrand is a divergence expression [6].23 In our terms,
by definition, we seek a smooth surface satisfying the partial differential equation.
The integrability constraint is redundant. Put yet another way, we cannot avoid
imposing the integrability constraint if we look for a scheme that gives us z(x, y )
directly. This was not the case when we used p and q as parameters. The functions
p and q had to be related in a special way to satisfy integrability.

After simplification and reordering of terms, the Euler equation for the
brightness-error functional alone is

(^ + lR,R,z^ + R\z^ - (E^R, + E,R,)

= (E - R){R^z^ + IR^z^ + R^Zyy),

where we have used the condition z = z ^ y . Note that p and q replace z^ and Zy as
subscripts of R to improve readability. A solution to this equation will give the
functional an extremal value. By converting the Euler equation to discrete form,
employing discrete approximations of the derivatives of z, and isolating terms in z,y,
we obtain the complex scheme

zyl{R2,+R2,-(E-R)(R„+RJ)

= H(R} - ( E - R)R,,) + z^R.R, - ( E - R)R^}

e2

+u^(R2, - (E - R)R^ - y(£,^ + £^J,

where

ziJ = 4(zi+l,/•+l + z l - l , j - l ~ ^i-l,j+l ~ z i + l , j - l ) '

is a discrete estimate of the cross derivative of z (times e2), and

^.j = ̂ i+i.j + z i - l , j ) and "ij = K^+i + ̂ .y-i)'

are horizontal and vertical averages of z, respectively. This scheme, unfortunately, is
not convergent. Other schemes tried also failed. We found little in the literature
about how one might discover successful iterative schemes for complicated non-lin-
ear equations such as the one above. Certainly, as far as the variational approach is
concerned, the above Euler equation must be regarded as fundamental to the
problem: the original functional is not easily formulated in a more basic way.

4.2. An Alternative Approach
Not surprisingly, if we parameterize the surface on p and q, and impose the

integrability condition p = q^, we obtain an Euler equation identical to the one
obtained above. The functional to be minimized is in this case

f f ( E ( x , y ) - R(p(x, y), q(x, y)))2 + ii(x, y ) ( p y - q,) dxdy,

"A divergence expression in the functional does, however, affect the natural boundary conditions.
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where jii is a Lagrangian multiplier used to enforce the constraint p = q^. The
associated Euler equations lead to

(E-R)R,+^=0 and (£ - R)R,- ̂ ,= 0.

In order to eliminate /i, we take the (total) derivative of the first equation with
respect to x and the (total) derivative of the second with respect to y. Adding the
results we obtain

(R2^ + R,R,(py + q^) + R^q,) - [E^R, + E,R,)

= (E - R)(R^ + R^(py + ̂ ) + R^y).

Taken together with the constraint p = q^, this is the same result as that obtained
in the previous section.

5. AN INTEGRABILITY PENALTY TERM

It appears to be difficult to extract convergent iterative schemes from Euler
equations obtained through the imposition of integrability. Consequently, we now
assess the usefulness of the penalty term, ( p y - q^)1, appearing in the functional

f f ( E ( x , y ) - R(p, q))2 + \{p, - q^ dxdy.

This has the desirable property that if smooth functions p(x, y ) and q(x, y ) are
found that cause this integral to evaluate to zero, we will, by definition, have solved
our problem, for the surface will generate the image, and will be smooth everywhere.24

The Euler equations for this problem yield

(E-R)R,+\(p,,-q^)^0,

(E-R)R,+\(q^-p^)=0.

Upon isolation of the center term in the discrete approximation of the highest-order,
even partial derivatives, we arrive at the iterative scheme

e2

n*+l — „* la* -1- __( J7 — J}( nk nk\\J/ ( n* /l*^
Pij - Pij - i l i j + ^X^'y ^[PiJ' l i j f l ^ A P i j ' ^ l i j ) '

g2
_ * + ! _ - * l; , fc_|_ ___I V n( nk /l*^» ( n* nl<•\
l i j - l i j - 2P,j + 2X v 'y - v p i j ' qij )ii'[ p l j ' qij >'

where

P.j = ̂ P,,j+i + P,,j-i) and ^ = K^+i,y + ̂ -i,y)

24 Note, however, that we now admit the possibility that py and q^ may be only approximately equal
over the region Q.
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are the vertical average of p and the horizontal average of q, respectively, while p ,
and q,j are estimates of the cross derivatives (times e2) obtained using the approxi-
mations

PiJ = ̂ (.Pi+l.j+1 + P i - l , j - l ~ Pi-l,j+l ~ Pi+l,j-l),

l i j = i(^+l,y+l + ̂ i-l.j-l ~ ^-1,7+1 - ̂ +l,y-l).

respectively.
This iterative scheme appears to work well. Only very small departures from the

correct initial solutions have been observed, these being due to the fact that the
finite-difference expressions are approximations to derivatives. The scheme does not
converge to a flattened surface as is the case with the Ikeuchi-Hom method. Rather,
we obtain asymptotic convergence to the correct solution. Note once again, however,
that this method requires that the gradient ( p , q) be supplied on some closed curve
other than the occluding boundary.

This iterative scheme produced very accurate results in tests conducted on
synthetic images, although, like most shape-from-shading methods, it typically takes
many iterations to converge. The observed slow convergence could be alleviated by
the recently popularized multi-grid technique of processing images and gradient
fields at various resolutions [17].

It appears that the use of a penalty term based on a constraint leads to iterative
schemes that adjust the present estimates in the direction that reduces the penalty
term. This is in distinction to the behaviour of the schemes that result from attempts
to strictly enforce the constraint itself. The use of the penalty term gives a scheme
some directionality or "push" towards the desired solution. This may be why we
were unsuccessful in discovering convergent iterative schemes based on the Euler
equation derived in the previous section.

5.1. Relationship to Strut's Scheme
It is interesting to observe how similar the iterative method we derived here is to

that obtained by Strat. We can see in retrospect why this should be so, by applying
Gauss's integral formula to Strat's elementary loop integrals. We have

r r I da dp\
{p(x, y) dx + q(x, y) dy) - / / — - — dxdy,

R •' -IR\ dx dy f

for a simply connected region R, where the boundary 9R is traversed in a
counterclockwise direction.

Now, if c is constant in the region R, then

f f c d x d y \ = f f dxdy f f c2 dxdy = A(R)f f c2 dxdy,

where A(R) is the area of the region R. For a smooth surface, py and q^ are
continuous, so that, for a small enough region R, we can consider them to be nearly
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constant. That is,

[(f> ( p ( x , y } d x + q ( x , y ) d y ) } = ( f f ( p - q,) dxdy\
\"aR ! \" •'R ' I

» A ( R ) f f ^ p , - q ^ d x d y .

So

e f ^ e 2 ) ) ( p ^ - q ^ d x d y ,f y 1x1
•'SR

where 8R is a square region with sides of length e. Consequently, we can consider
the sum of the error terms squared,

( g \ 2 " - 1 m - 1

T- £ E [ P i . j + P i+ l , j + 9,+l,j + 9;+l,y+l - Pi+\,j+\
' 1-1 y-i

~Pi.J+l ~ l i . j+ l ~ lij}2'

or, written more suggestively,

( g \ 2 n—1 m—\

T- L L [ (P i . j + l - P i , ] } + ( P i + l , j + - i - P , + l , j ) - (^+l,y- l i . j )L i 1-1 y=i

~(9 ,+ l , y+ l - ^,y+l)] >

to be a discrete approximation of

e 2 f { ( p , - q ^ d x d y .

Our final result in the previous section looks a little different from that of Strat, in
part because we end up with cruder estimates for the second partial derivatives pyy
and q^.

5.2. Constraints and Penalty Terms
We have two equalities: the image irradiance equation, E = R, and the integrabil-

ity condition, p - q^. If we enforce both strictly, we obtain Horn's original
characteristic strip equations. We have seen that a convergent iterative scheme can
be obtained if we instead build a functional based on the penalty terms, (E - R)2

and ( p — q^)2. We also described our lack of success in deriving schemes for
minimizing the integral of (E — R)2 while enforcing the constraint p = q^. We
have not yet explored the fourth alternative of minimizing the integral of ( p y - q^)2
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while enforcing the constraint E = R. That is, minimizing

{ { { P y ^ ' y ) - ̂ (x, y))2 + f t ( x , y ) ( E ( x , y ) - R(p(x, y ) , q(x, y))) dxdy.

The resulting Euler equations are

(pyy-q^y}+^E-R)R,=0,

(^-Py.)+^E-R)R,=0,

which, upon elimination of {i lead to

(Pyy - <l^y)Rp = (<lxx - Pyx)11,-

This equation is to be solved subject to the constraint E = R, of course. We were
unable to convince ourselves of the utility of pursuit of this particular approach,
since we know that brightness measurements will be corrupted by noise in practice.

6. INCORPORATING OCCLUDING BOUNDARY INFORMATION

One problem not easily coped with is that of dealing with the occluding boundary.
Recall that the Ikeuchi-Hom method placed considerable emphasis on the ability to
be able to handle the occluding boundary. So, although we have taken a step
forward in the above by incorporating integrability, we have also taken a step
backwards in that we are no longer able to use the occluding boundary. Note,
however, that the integrability constraint can be expressed using parameterizations
that permit incorporation of the occluding boundary information.

Suppose that instead of seeking surface orientation parameterized on p(x, y ) and
q(x, y), we attempt to recover directly a field of unit normal vectors n(;>c, y). We
need to express the integrability constraint in terms of the unit normal and its
derivatives. Let x, y, and z denote unit vectors in the x, y , and z directions,
respectively. We have that

n • x n • y
P=--^ and <?=-„-?

so it follows that
(n-x)(n,-z)-(n-z)(n,-x)

py=———————(n-^———————

^ n • ((n^ • z)x - (n, • x)z) _ n • (n, X (x X z))

(n • z)2 (n • z)2

using the identity (c • a)b — (a • b)c = a X (b X c). Noting that x x z = — y we
obtain25

py= -[nn,y]/(n.z)2.

25 Here [a be] denotes the vector triple product a • (b X c).
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Similarly,

<?,= +[nn,x]/(n.z)2.

We conclude that the constraint (py - q^) = 0 can be written in the form

([nn,x]+[nn^y])=0.
(n.z)

As it stands, this form of the constraint will lead to numerical problems in the
implementation of an iterative scheme, since (n • z) becomes very small near the
occluding boundary. It makes sense then to use instead a constraint obtained by
multiplying the one above by (n • z)2, giving

I ' = [nn^x] + [iin^y].

One could, of course, tackle this problem using other parametrizations for surface
orientation, such as / and g. We saw earlier that the integrability constraint
expressed in terms of / and g is quite complex, and the derivation of the
corresponding Euler equations somewhat tedious. We felt that the compactness of
vector notation provided sufficient incentive to tackle the problem the way we did.
There is an advantage to using / and g, however: one can avoid the redundancy
inherent in the use of a vector to represent surface orientation, a quantity that has
only two degrees of freedom. It is this redundancy that leads us to consideration of
the pseudo-inverse of a matrix later on.

6.1. Using a Penalty Term Based on I '
We are to minimize a functional of the form

f f { E ( x , y) - R{n{x, y)))2 + \I'2 + /x(x, y)(n2 - 1) dxdy.

Here we use the Lagrangian multiplier, ju, to enforce the constraint n2 = 1. The
corresponding Euler equation can be simplified to read

-(£ - R)R, + 2\I'I^ + /xn + X(/;(n X x) + /;(n X y)) = 0,

where

/„ = n, X x + Hy X y

is the derivative of /' with respect to n, while

J;=[nn,,x]+[n,n^y]+[nn^y],

7; = [nn^y] + [n^n^x] + [nn^x],

are the derivatives of /' with respect to x and y, respectively. We can find the
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Lagrangian multiplier ju. by taking the dot product of the Euler equation with n, to
give

li=(E-R)R,-n-2\I'2,

where we use the fact that /„ • n = I ' . We can now eliminate /x by substituting back
into the Euler equation. The result is

-(£ - R}R^ + 2\I'y + A(/;(n X x) + J;(n X y)) = 0,

where

R ^ = R , - ( R , - n ) n ^ n x ( R , X n )

is the component of R^ perpendicular to n and

'}' = In - I'"-

Note that j' • n = 0, since /„ • n = I ' . In fact, each term in the above equation is
orthogonal to n. This vector equation thus provides only two constraints on n. The
necessary third constraint is given by n2 = 1.

Now let

J^ = (n^ X Hy + n X n^) • y and Jy = (rty X n^ + n X n^) • x.

Then

J; = [nn^x] + J, and J; = [nn^ y] + Jy,

and the Euler equation can be rewritten in the form

-(£ - R)R^ + 2X1']' + \l = \[(n X x)(n X x)^^ + (n x y)(n X y^nj,

where

l = J , ( n X x ) + J > X y ) .

So we can write

\(M,n^ + MyHyy) = \1 + 1\ I ' •}' - (^ - R) R ̂  ,

where

M,= ( n X x ) ( n X x ) 7 ' and My = (n X y)(n X y)7'

are the so-called dyadic products of the vectors (n X x) and (n X y) with themselves.26

26 These dyadic products are matrices of rank one.
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We now have a non-linear second-order partial differential equation for the normal
n(x, y).

We can use the following finite-difference approximations for the derivatives that
appear:

"^-^ (",+!,,-n,-i,y) and Qy " ̂ (";,y+i - n,,y-i).

1
"xy != -^{n,+i,j+i + "i-i.y-i - "i-i,/+i - "1+1,y-i).

as well as

"^ as gi(";+i,y - 2n,y + n;_ij and n^ » ^(n;^.+i - 2n,,. + n,^_i),

or

^"^(hiy-nj and n^ » ^(v,^. - n,^),

where

h„•=Kn,+l,,+n;-l,y) and v,,. = i(n;̂ i + n;^._i)

are horizontal and vertical averages of n, respectively.
We now develop an iterative scheme based on the isolation of the center term in

the discrete approximations of the highest-order, even partial derivatives. For
convenience, let m, , say, be the new value of the normal to be calculated in the
iterative step. Then

2 _ 2
"^ " g2(h,y - m'/) and "^ s e?^ ~ "'-y)-

If we let M = M^ + M , then the new value is obtained using the equation

e2 e2

Mm = (M,h + M^v) - yl - e2/7]' + -^{E - R)R^ ,

and the constraint m2 = 1. Here we omit subscripts in order to simplify the notation.
Let r denote the right-hand side of the equation above. All terms in r can be easily
computed using the old estimate of the normal, n, in the expressions for M^, My, h,
v, 1, j', /', R, and R^ . The remaining problem is the solution of the equation for
the new estimate of the normal, m.

6.2. Solving the Equations Mm = r and m • m = 1
The equation Mm = r is underdetermined, since M here only has rank two. The

matrix is singular and so does not have an inverse in the usual sense. There are an
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infinite number of solutions that can be written in terms of the pseudo-inverse, M.^.
They are

m = M^ + (I - lVTM)x,

for arbitrary x [I], where I is the 3 x 3 identity matrix. Of these solutions, we seek
the one with unit norm, m2 = 1.

The pseudo-inverse of a matrix M can be denned as the limit

M+- lim (IVTM + fi2!)"1]^7'.
8->0

Alternatively, it can be defined using the conditions of Penrose [I], which state that
the matrix M4' is the pseudo-inverse of the matrix M if, and only if,

• MM4' and M^M are symmetric, and
• IV^MM^ M, as well as,
• M1VTM = M+.

The pseudo-inverse may also be found using spectral decomposition. The eigenvec-
tors of the pseudo-inverse are the same as those of the original matrix, while the
corresponding non-zero eigenvalues are the inverses of the non-zero eigenvalues of
the original matrix.

Now, in our case,

M = (n X x)(n X x f + ( n X y)(n x y)7',

so one can show that

M+=I-anT+ ———^(n X z)(n X if.
(n-z)

It is also possible to verify that

IV^M = I - m f ,

from which it follows that

I - IV^M = mf,

and so

m = M+r + vn,

for some v chosen to make m2 = 1. In our case r 1 n, so we can further simplify
matters by noting that

^r = r +———^rnz](n X z).
(n • z)
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Let this be called p. Since p -L n, we have that m2 = p2 + v2. This completes the
calculation of the new estimate of the normal, m. The only potential problem occurs
when IM'^i-1 > 1, as may happen when the current estimate of the solution is far
from the correct one. In this case it is advisable to limit the adjustment of the local
normal away from its previous value, n.27

6.3. Using a Penalty Term Based on I
Implementations of the above iterative scheme work well except for minor

problems near the occluding boundary. What happens is that the components of n;,
and Hy become unbounded on the occluding boundary, so that the individual terms
in

7'=[nn,x]+[nn,y]

tend to become very large.28 It may be better to use the slightly more complicated
expression

I = ( n - i ) l ' = ( n - i ) { [ n n ^ ] + [ n n y y } } .

This can be viewed as the difference of two quantities that remain bounded,
provided that the curvature of the surface is bounded.

We now are to minimize a functional of the form

f f ( E ( x , y ) - R(n(x, y)))2 + \I2 + ̂ (x, y)(n2 - 1) dxdy.

The corresponding Euler equation can be simplified to read

-(£• - R)R^ + \l(l'z + 2(n • £)/„) + /in + 2\Ik

+A<n • ̂ {l^n X x) + /;(n X y)) = 0,

where

k = (n, • z)(n X x) + (n^ • z)(n X y),

and /„, 1^ and I'y are as defined before.
We can find the Lagrangian multiplier ju by taking the dot product of the Euler

equation with n. Thus we have

y.= ( E - R } R ^ - n - 3\I2.

"Also, note that there are theoretically two solutions for v, one positive and one negative. The positive
value leads to a new estimate close to the previous one, while the negative value gives rise to one almost
opposite to the old one. It is clear that one should use the positive root.

28 The problem is different, of course, from the one we encountered earlier when using the gradient to
parameterize surface orientation. The components of the gradient, p and q become infinite on the
boundary, while n remains finite.
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Now we eliminate (i by substituting back into the Euler equation. The result is

-(£ - R)R^ + Uj + 2\/k + \(n • ̂ (^(n X x) + J;(n X y)) = 0,

where

j = J'z + 2(n • £)/„ - 3/n,

and Ry is the component of .R,, perpendicular to n as before. Now /„ • n = I ' , so
j • n = 0. In fact, each term in the above equation is orthogonal to n. This vector
equation thus provides only two constraints on n. The necessary third constraint is
again given by n2 = 1.

Now let /, and Jy be defined as before. Then the Euler equation can be rewritten
in the form

-(£ - R)R^ + X I } + 2\Ik + \(n • z)2!

= A(n • ̂ [(n x x)(n X x)\^ + (n x y)(n X y)^],

where 1 = J^(n X x) + Jy(n X y). So we obtain

X(n • z)\M,n^ + M^nJ = \(n • z)2! + 2X/k + \I\ - (E - R)R^ ,

where M^ and M are defined as before. We now have a non-linear second-order
partial differential equation for the normal n(x, y).

Note that both sides of this equation are orthogonal to n, since 1 • n = 0,
k • n = 0, j • n = 0, and R^ • n = 0. So the equation provides two constraints only,
with the third coming from n2 = 1.

If we use the same discrete approximations as before, and isolate the central value
in the finite-difference approximations of the highest order even partial derivatives,
we obtain

M. = (M,-h + M,v) - ̂ 1 - ̂ 'k - ̂ 7'j

e2

+—————T^- ̂ W-„» / o\2 \ / n2A(n • z)

We once again obtain an underdetermined equation, of the form Mm = r, together
with a constraint m2 = 1. We can solve for the new estimate of the surface normal
using the pseudo-inverse of the matrix M, as before.

It is curious that several of the terms involve division by (n • z), a term that
becomes large near the occluding boundary. We multiplied the penalty term by this
expression in the first place in order to avoid problems near the occluding boundary.
Apparently, however, the terms so affected are all small near the occluding boundary
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anyway. In fact, we determined experimentally that several of the terms on the
right-hand side are very small compared to the others, particularly as one ap-
proaches the correct solution. We found that one can leave them out without
noticeably affecting convergence, or the surface arrived at ultimately.

Preliminary testing of the scheme on synthetic images yielded promising results.
We used analytic models of ellipsoids and composite objects with cylindrical and
spherical surface patches. Lambertian reflectance and point-source illumination was
assumed. In some tests, a few percent of random noise was added to the gray-levels
in the synthetic images and the result quantized, as customary. We compared the
surface orientation computed by the iterative algorithm with that predicted from the
analytic models. The difference between them typically became small after a number
of iterations large enough to allow effects to propagate across the image region
corresponding to the object. Comprehensive assessment of the performance of the
two schemes has, however, been left for future work.

7. SUMMARY

The shape-from-shading problem was regarded here as one of finding a surface
that minimizes an integral expression involving the brightness error. The expression
we used has the form of a functional measuring the departure of a hypothesized
surface from a solution surface. Iterative schemes for solving the shape-from-shading
problem were based on the appropriate Euler equation.

We reviewed the use of a regularization term in an existing iterative scheme.
Regularization techniques allow one to obtain results when faced with ill-posed
problems. We argued, however, that the addition of a regularization term is not
appropriate when one is dealing with a well-posed problem. The additional term
tends to flatten and distort the solution.

We next discussed the fact that surface orientation must satisfy an integrability
constraint if it is to correspond to an underlying smooth surface. The method using
the regularization term does not guarantee this. We attempted to use the integrabil-
ity constraint instead of a regularization term, but failed to find convergent iterative
schemes for solving the resulting Euler equations.

A convergent iterative scheme was obtained, however, when, instead of enforcing
integrability, we introduced a penalty term derived from the integrability constraint.
It seems that the penalty term provides the iterative process with a "sense of
direction" that helps it head towards the solution. This approach allows one to
recover surface gradients that are approximately integrable. The scheme so derived
was shown to be similar to that obtained in the discrete domain by Strat. A
drawback of his scheme is its inability to incorporate occluding boundary informa-
tion.

We overcame this difficulty by employing a different parametrization for surface
orientation. The integrability penalty term can be expressed in terms of the unit
surface normal and its derivatives. Subsequent application of the variational calculus
proved to be somewhat involved, but two usable iterative schemes were finally
obtained. Initial tests indicate that they perform well. Our new schemes are the first
to make use of the integrability constraint while allowing incorporation of the
occluding boundary normals. Future work will assess the relative performance of the
new schemes in detail.
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APPENDIX

A. Minimizing Functionals

Let F(x, y, z, z^, z ) measure the distance of a surface, z, from a satisfactory
solution at a point (x, y). For now, assume that F is dependent not only on z, but
also on the first partial derivatives z^ and z . Given that we seek a surface defined
over some region Q, in the plane, and that F is everywhere non-negative, we may
regard

^(z) = j j^' y ' z ' z ^ ' zy) ̂ ^y
as an overall measure of error whose value is to be minimized. This is not a
conventional minimization problem since we search over a space of functions and
not a region of coordinate space. The value of /i depends on the choice of the
function z, and for this reason Ji is termed a functional. Minimizing /i is a problem
in the calculus of variations.

A fundamental result of the calculus of variations is that the extrema of function-
als must satisfy an associated Euler equation over the domain of interest. For the
above form of the functional, the equation is

9 9
^-T^-Ty^0-

This is a necessary condition for the existence of an extremum, z [6, p. 185]. It is not
a sufficient condition. Note that local minima, global minima, local maxima, global
maxima, and inflexion points are all examples of extrema.

It will prove useful to note two other Euler equations corresponding to other
forms for F. In the event that F is dependent also on the second partial derivatives
as in

h{^} = { f^' y' z' ̂ x. zy' zxx. zxy. zyy) ̂ ^'\^"> f i "•> "xi "y "xxi "xy " y y l

the Euler equation expands to

9 9 82 92 92

F — —F — —F + ——F + ———F + ——F = 0z 9x zx a y ^ S x ^ a x S y ^ a y 2 ^

Sometimes we seek a surface that is parameterized not in terms of relative depth,
but in terms of surface normals. Two parameters are needed in this case. If the
functions p and q are used to describe surface orientation and if the associated
functional incorporates their first partial derivatives in x and y , the expression to be
minimized then takes the form

lAp'tl} = I l f ' ( x , y , p , q , p ^ , p y , q ^ , q y ) d x d y ,
• 'Q
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which has two corresponding Euler equations given by

9 9
F - —F - —F = 0
" 9x "' 3y p' '

9 9
F - —F - —F = 0
" Qx qx 9y ^

In general, these constitute a pair of coupled partial differential equations in p and
q. A pair of functions satisfying these equations will generate an extremum of ly. As
before, the extremum may be a minimum, maximum or inflexion point.

Note that if the functional involves higher derivatives of p and q, the Euler
equations generalize in a straightforward way. Courant and Hilbert [6] provide an
excellent chapter on the variational calculus.

B. Boundary Conditions

In general, a problem involving partial differential equations is ill posed in the
absence of suitable boundary conditions because the solution is not unique without
additional constraint. The type of boundary condition that ensures a given problem
is well posed depends on the particular type of partial differential equation. There
may be more than one way of adding boundary conditions to a partial differential
equation in order to force a unique solution.

In our case, boundary conditions may be given as part of the basic minimization
problem. That is, the solution sought must minimize the functional subject to
additional constraints, such as prescribed values on the boundary of the region of
integration. In the case that the function is not constrained on the boundary,
however, the calculus of variations provides so called natural boundary conditions
that the solution must satisfy. For example, for the functional I^ given above, a
suitable boundary condition is the value of z along the boundary 9Q of the region S2.
The natural boundary condition in this case is just

(^,Fj.n=0,

where the normal to the boundary, n, is given by
/ dy dx\

n=[~~ds'7sj'
and A is the arc length measured along the boundary 9Q. So the component of the
vector (F^, F, ) normal to the boundary should be everywhere zero.

In the case of the functional ly given above, the values of p and q along the
boundary will usually be suitable. The natural boundary conditions in this case
happen to be

(^'F^)•n=o and {F^F^•n=o•

C. Regularizing Terms
At times, the problem of minimizing a functional is not well posed as there is an

infinite number of solutions, even with constraints on the boundary. One can then
find a surface that is close to a solution, while minimizing some measure of
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departure from smoothness, by regularization (see [13]). The regularization method
of interest to us here involves the addition of a regularizing term to the functional. If
we deal with the problem of recovering a surface z(x, y ) from shading, we may wish
to include a regularizing term such as the square Laplacian appearing in

f U ^ d x d y ,
J •'Q

or the quadratic variation in

f f ^ + l z ^ + z ^ d x d y .

Each of these has the desirable property of rotational invariance [2]. The lower order
rotationally symmetric regularizing term

f f ( z ^ + z ^ ) d x d y ,
^ x y l

leads to excessive flattening of solutions. The latter form may well be appropriate
when applied to surface orientation parameters, such as p and q, or / and g, but
this is not the case with a depth parameter, such as z.

D. Enforcing Constraints
Sometimes we seek a minimum of a functional subject to some independent

constraint. Suppose, for example, that we are required to minimize the previously
denned Ji(z), subject to the constraint that

g ( x , y , z , z ^ , Z y ) = 0.

In this case we may use the Lagrangian multiplier method in which we minimize not
TI but the augmented functional

h(z) = /.f^' y' z' z^' z y ) + /l(-(' y)8(x, y, z, z^, Zy) dxdy.

We now seek solutions to the associated Euler equation. Note that the Lagrangian
multiplier y. is a function of x and y and must be treated as such when deriving the
Euler equation.

If we differentiate the functional with respect to ii(x, y), for a particular x and y,
and set the result equal to zero, we get back the original constraint equation. This
equation is required to help solve for [i, something we typically have to do in order
to eliminate it from the Euler equation. At times, this may take some skill. More
importantly, however, the equations that result often do not suggest convergent
iterative schemes. In any case, a solution of the resulting Euler equation will have the
property that g(x, y , z, z^, Z y ) = 0, with 1^ having an extremal value on the
manifold g(x, y, z, z^, Z y ) = 0.
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E. Penalty Terms Based on Constraints
In view of the difficulties experienced when attempting to impose constraints

exactly, we often consider an alternative method. In this approach, a penalty term
derived from the constraint is employed. Thus we might rely on the Euler equation
corresponding to the functional

•^(-O = f f ^ ' V' z' z^ z y ) + \ [ g ( x , y , z , z ^ , Z y ) } 2 d x d y .

Here, X is a scalar that aligns the arbitrary scales of F and g. Alternatively, it may
be regarded as a weighting of the relative importance of the components of the
functional. It is, of course, not necessary to square g if it is already guaranteed to be
non-negative over S2 for all functions z.

Solutions to the Euler equation for 1^ now specify surfaces that generate an
extremal value of 75. However, these surfaces will not, in general, satisfy the
constraint g(x, y, z, z^, z ) = 0 exactly. Rather, it will be the case that the value of
g is small, along with the values of the other expressions being minimized. This is
usually an acceptable compromise. More often than not, this approach proves more
tractable than the Lagrangian method as there is no multiplier to be eliminated.
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