Errata for Robot Vision

This is a list of known nontrivial bugs in Robot Vision (1986) by B.K.P. Horn, MIT Press, Cambridge, MA ISBN 0-262-08159-8 and McGraw-Hill, New York, NY ISBN 0-07-030349-5. If you know of any others, please advise the author by sending electronic mail to:
bkph@ai.mit.edu
or by sending hard-copy mail to:
B.K.P. Horn,

MIT AI Laboratory,
545 Technology Square,
Cambridge MA 02139 USA
Your help will be greatly appreciated. Thank you.

- Section 2.3, page 25. The expression for the diameter of the blur circle should be

$$
\frac{d}{\bar{z}^{\prime}}\left|\bar{z}^{\prime}-z^{\prime}\right|
$$

- Section 3.2, bottom of page 48 and top of page 49 , interchange " x-axis" and " y-axis" in the text.
- Section 3.2, page 49, figure 3-2: The circled " X " is not at the centroid-it should be further to the left and higher.
- Section 3.3, page 55 , the formulae for the second moments in the middle of the page are missing the term $b(x, y)$ in the integrands:

$$
\iint_{I} x^{2} b(x, y) d x d y=\int x^{2} v(x) d x \& \iint_{I} y^{2} b(x, y) d x d y=\int y^{2} h(y) d y
$$

- Section 6.1, page 104, near end of paragraph, after the sentence: "The transformation from the ideal image to that in the out-of-focus system is said to be a linear shift-invariant operation" add "(If we ignore the slight change in scale and overall brightness resulting from the change in the distance from the lens to the image plane)."
- Section 6.8, page 122: The equation below the middle of page should be:

$$
L_{\sigma}(x, y)=\left(\frac{x^{2}+y^{2}-2 \sigma^{2}}{2 \pi \sigma^{6}}\right) e^{-\frac{1}{2} \frac{x^{2}+y^{2}}{\sigma^{2}}}
$$

The second sentence after this should read: "It has a central depression of magnitude $1 /\left(\pi \sigma^{4}\right)$ and radius $\sqrt{2} \sigma$ surrounded by a circular wall of maximum height $e^{-2} /\left(\pi \sigma^{4}\right)$ and radius 2σ."

- Section 6.9 , page 125 after the last equation on the page it should say: "... and then drops smoothly to zero at $r B=3.83171 \ldots$.
- Section 6.13, top of page 134: The integrand containing $\phi_{i d}(\xi, \eta)$ has a spurious extra right parenthesis.
- Section 6.13, top of page 134: The integral for $\phi_{d d}(0,0)$ is missing a $d x d y$.
- Section 6.13, middle of page 136: The expression of the MTF of the optimal filter should read:

$$
H^{\prime}=\frac{\Phi_{i d}}{\Phi_{i i}}=\frac{H^{*} \Phi_{b b}}{H^{*} H \Phi_{b b}+\Phi_{n n}}
$$

- Section 7.1, just above middle of page 146: The first integral should contain $\tilde{F}(u, v)$, not $F(u, v)$ and $d u d v$ instead of $d x d y$:

$$
\tilde{f}(x, y)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{F}(u, v) e^{+i(u x+v y)} d x d y
$$

- \quad Section 7.1, just above middle of page 146: The second integral for $\tilde{f}(x, y)$ should contain $d u d v$ instead of $d x d y$.
- Section 7.2, near bottom of page 147: The integral for $\tilde{f}(x, y)$ should contain $d u d v$ instead of $d x d y$.
- Section 7.2, page 148. At the end of the section it should say something like: "... so that the Fourier transform of $f(x, y)$ times $g(x, y)$ equals

$$
\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} F\left(u-\frac{2 \pi k}{w}, v-\frac{2 \pi l}{h}\right)
$$

a periodic superposition of copies of $F(u, v)$. It should be clear that $F(u, v)$, the Fourier transform of $f(x, y)$, can be recovered from this sum if $F(u, v)$ is zero for $|u|>\pi / w$ and for $|v|>\pi / h$, while $F(u, v)$ cannot be recovered uniquely when this condition is not satisfied."

- \quad Section 7.4, page 151 , the sum for $F_{m n}$ should read:

$$
F_{m n}=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f_{k l} e^{-2 \pi i\left(\frac{k m}{M}+\frac{l n}{N}\right)}
$$

and the sum for $f_{k l}$ should read:

$$
f_{k l}=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F_{m n} e^{+2 \pi i\left(\frac{k m}{M}+\frac{l n}{N}\right)} .
$$

- Section 7.4, page 153, in two places: as above, the complex exponent needs a factor of 2 .
- \quad Section 7.8 , page 155 , problem 7-2: the formula given is for $g_{i, j}$, not $f_{i, j}$.
- Section 8.3, top of page 165, formula is lacking a scale factor:

$$
\left(\frac{\partial E}{\partial x}\right)^{2}+\left(\frac{\partial E}{\partial y}\right)^{2} \approx \frac{1}{2 \epsilon^{2}}\left(\left(E_{i+1, j+1}-E_{i, j}\right)^{2}-\left(E_{i, j+1}-E_{i+1, j}\right)^{2}\right)
$$

- Section 9.10, page 201, figure 9-8: The number 44, near the lower left hand corner of the figure, and below the number 36, should be 144 .
- Section 10.7, page 214: For consistency with what follows, the equation for $E\left(\theta_{i}, \phi_{i}\right)$ should perhaps read:

$$
E\left(\theta_{i}, \phi_{i}\right)=E \frac{\delta\left(\theta_{i}-\theta_{s}\right) \delta\left(\phi_{i}-\phi_{s}\right)}{\sin \theta_{i}}
$$

although it is correct as it stands, since $E\left(\theta_{i}, \phi_{i}\right)$ is zero except where $\theta_{i}=\theta_{s}$.

- Section 10.9, near top of page 219: Change formula to read:

$$
L=\frac{1}{\pi} E \cos \theta_{i} \quad \text { for } \cos \theta_{i} \geq 0
$$

- Section 10.16, page 234, problem 10-3: This problem can be solved more easily if a spherical coordinate system is chosen that has the poles where the plane containing the local tangent plane intersects the horizon, rather than one with the poles at the nadir.
- Section 10.16, page 241, problem 10-17: Change second sentence in part (a) to read: "Demonstrate that the corners of this triangle lie in the directions $\hat{\mathbf{s}}_{3} \times \hat{\mathbf{s}}_{1}, \hat{\mathbf{s}}_{2} \times \hat{\mathbf{s}}_{3}$, and $\hat{\mathbf{s}}_{1} \times \hat{\mathbf{s}}_{2} . "$
- Section 11.1, below middle of page 246: The equations for $x(\xi)$ and $y(\xi)$ should contain θ_{0} instead of θ :

$$
x(\xi)=x_{0}+\xi \cos \theta_{0} \quad \text { and } \quad y(\xi)=y_{0}+\xi \sin \theta_{0}
$$

- Section 11.4, middle of page 256: the alternate solution is

$$
z=z_{0}-\frac{1}{2}\left(a x^{2}+2 b x y+c y^{2}\right)
$$

- Section 11-10, page 271, problem 11-7: In part (e), change the equation to

$$
z(r)=z_{0} \pm \frac{1}{2}\left(\sqrt{r^{4}-k^{2}}-k \cos ^{-1} \frac{k}{r^{2}}\right)
$$

and add the phrase "when $r_{0}=\sqrt{k}$."

- Section 11-10, page 271, problem 11-9: In the second paragraph, change third sentence to read: "A hyperboloid of one sheet is an example of a ruled surface."
- Section 11-10, page 275, problem 11-12: In part (b) there is a sign errorinsert a minus sign before the $\lambda \mathrm{s}$ in the right hand sides of the equations. change the two equations to read:

$$
\begin{aligned}
& (E(x, y)-R(p, q)) R_{p}=\lambda\left(q_{x y}-p_{y y}\right), \\
& (E(x, y)-R(p, q)) R_{q}=\lambda\left(p_{x y}-q_{x x}\right) .
\end{aligned}
$$

- Section 12.6 , page 288 , middle of the page: There is a λ missing in the correction terms. Change the iterative update equations to read:

$$
\begin{aligned}
& u_{k l}^{n+1}=\bar{u}_{k l}^{n}-\frac{\lambda}{1+\lambda\left(E_{x}^{2}+E_{y}^{2}\right)}\left(E_{x} \bar{u}_{k l}^{n}+E_{y} \bar{v}_{k l}^{n}+E_{t}\right) E_{x}, \\
& v_{k l}^{n+1}=\bar{v}_{k l}^{n}-\frac{\lambda}{1+\lambda\left(E_{x}^{2}+E_{y}^{2}\right)}\left(E_{x} \bar{u}_{k l}^{n}+E_{y} \bar{v}_{k l}^{n}+E_{t}\right) E_{y} .
\end{aligned}
$$

- Section 13.9, page 317, near bottom of page: Change equation to read:

$$
F_{d}-\frac{\partial}{\partial x^{\prime}} F_{d_{x^{\prime}}}-\frac{\partial}{\partial y^{\prime}} F_{d_{y^{\prime}}}+\frac{\partial^{2}}{\partial^{2} x^{\prime}} F_{d_{x^{\prime} x^{\prime}}}+\frac{\partial^{2}}{\partial^{2} y^{\prime}} F_{d_{y^{\prime} y^{\prime}}}=0 .
$$

- Section 16.6, page 374, end of second paragraph of section, change sentence to read: "In fact, the number of impulses per unit area on the Gaussian sphere approaches ρ times the inverse of the absolute value of the Gaussian curvature."
- Section 16.13, page 397, problem 16-7: Change solution to part (b) to read:

$$
R(\psi)=\frac{(a b)^{2}}{\left((a \cos \psi)^{2}+(b \sin \psi)^{2}\right)^{3 / 2}}
$$

- Section 16.13, page 399, problem 16-9: Change equation in part (a) to read

$$
\rho_{X \oplus Y}(\psi)=\rho_{X}(\psi)+\rho_{Y}(\psi) .
$$

- Section 18.10, page 437, near bottom of page, the equation after the phrase: "The norm of a quaternion is given by" should read:

$$
\|\stackrel{\mathrm{q}}{\|}\|=\sqrt{\stackrel{\mathrm{q}}{\mathrm{q}} \cdot \stackrel{\circ}{\mathrm{q}}}=\sqrt{q^{2}+\mathbf{q} \cdot \mathbf{q}} .
$$

- Section 18.10, page 437, at the bottom of the page, change equation to read:

$$
\dot{\mathrm{q}}=\cos \frac{\theta}{2}+\boldsymbol{\omega} \sin \frac{\theta}{2} .
$$

- Section 18.10, page 438, second sentence in second paragraph form the top, change to: "Two antipodal points on this sphere correspond to a particular rotation."
- Section 18.21, page 450, problem 18-5, change middle equation to read:

$$
(\mathrm{p} \mathrm{q} \mathrm{q}) \cdot(\stackrel{\circ}{\mathrm{p}} \mathrm{q})=(\mathrm{p} \cdot \stackrel{\circ}{\mathrm{p}})(\mathrm{q} \cdot \stackrel{\circ}{\mathrm{q}})=(\mathrm{q} \mathrm{q} \mathrm{p}) \cdot(\mathrm{q} \mathrm{q} \stackrel{\circ}{\mathrm{p}}) .
$$

- Section A.1, page 454, after the law of cosines for the angles, add: "... and the so-called analogue formula is

$$
\sin a \cos B=\cos b \sin c-\sin b \cos c \cos A .^{\prime \prime}
$$

