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Doubling the Accuracy of Indoor Positioning:
Frequency Diversity

Berthold K.P. Horna

Abstract—Determination of indoor position based on
fine time measurement (FTM) of the round trip time (RTT)
of a signal between an initiator (smartphone) and a respon-
der (Wi-Fi access point) enables a number of applications.
However, the accuracy currently attainable — standard
deviations of 1–2 meter in distance measurement under
favorable circumstances — limits the range of possible
application. An emergency worker for example, may
not be able to unequivocally determine on which floor
someone in need of help is in a multi-story building. The
error in position depends on several factors, including
the bandwidth of the RF signal, delay of the signal due to
the high relative permittivity of construction materials,
and the geometry-dependent “noise gain” of position
determination. Errors in distance measurements have
unusal properties that are exposed here. Improvements
in accuracy depend on understanding all of these error
sources. This paper introduces “frequency diversity,” a
method for doubling the accuracy of indoor position
determination using weighted averages of measurements
with uncorrelated errors obtained in different channels.
The properties of this method are verified experimentally
with a range of responders. Finally, different ways of
using the distance measurements to determine indoor
position are discussed and the Bayesian grid update
method shown to be more useful than others, given the
non-Gaussian nature of the measurement errors.

Index Terms—indoor position, indoor location, fine time
measurement, round trip time, FTM, RTT, IEEE 802.11mc,
IEEE 802.11–2016, time diversity, spatial diversity, band-
width diversity, frequency diversity, Bayesian grid, ob-
servation model, transition model

I. Overview

Determining position accurately indoors, where GPS
is not reliable, has many potential applications and has
been of interest for some time [1], [2], [3], [4], [5], [6],
[7], [8] [9], [10], [11], [12], [13], [14], [15] (we use the
terms “position” and “location” interchangeable). One
of the latest entries in this effort is fine time measure-
ment (FTM) of round trip time (RTT) as specified in the
2016 update of the IEEE 802.11 Wi-Fi standard (also
referred to as IEEE 802.11mc) [16], [9], [10], [12], [13].

We start by briefly discussing methods for indoor
position determination. This is followed by an ex-
ploration of the error sources in indoor position de-
termination, particularly those for FTM RTT. Then,
different attempts at getting more accurate distance
measurements using uncorrelated error contributions

a Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA 02139, USA, e-mail: bkph@csail.mit.edu
∗ The corresponding author is Berthold K.P. Horn.

are discussed and the frequency diversity method in-
troduced. Experimental results confirm that frequency
diversity can double the accuracy of indoor position
given that there are six non-overlapping 80 MHz chan-
nels available in the 5 GHz band. Finally, various
methods for determining position from distance mea-
surements are explored and the Bayesian grid update
method shown to be well suited to the task given the
unusual nature of the error in distance measurement.

II. Introduction

The contributions of the research presented here
are as follows: This paper introduces: (1) “frequency
diversity” — a method for doubling the accuracy of
FTM RTT distance measurements; (2) the “position-
dependent error” texture surface — a new way of
understanding the nature of the errors in FTM RTT
distance measurement; (3) analysis of the unusual
properties of the errors in distance measurement in
terms of properties of super-resolution algorithms; (4)
recognition of the serious impact of signal delay in
common building materials resulting from their high
relative permittivity — arguably more important than
possible multi-path effects;

III. Background

A number of different methods for determining in-
door position have been explored, some of which make
use of properties of existing radio frequency signals
emitted by Wi-Fi access points and Bluetooth beacons
(For a quick review see first few chapters of [17]).

A. Received Signal Strength (RSS)

Perhaps the simplest approach is to measure the
received signal strength (RSS) of a Wi-Fi access point
(AP) at a hand-held device such as a smartphone (STA).

Unfortunately the inverse square law causes the
accuracy to drop off inversely with distance and so
the measurements are at best only useful close to
the AP. Furthermore, signal strength is affected by
many factors other than distance. This includes the
current power level of the AP and standing waves
resulting from interference between signals reflected
from material outside the line of sight (LOS) between
the transmitter and the receiver. It is well known that
the relationship between distance and signal strength
is not monotonic and not invertible (Fig. 1).
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Fig. 1. Scattergram of Signal Strength (RSS) versus distance in typ-
ical three-level wooden building. Horizontal axis: distance between
smartphone and APs (in meters). Vertical axis: Signal Strength
(in dBm). Red curve: expected inverse square law dependence
(−50 − 20 log(R) dBm). Green line: linear fit (−53 − 3.7R dBm).
Because of the large scatter, it should be clear that RSS is not very
useful for estimating distance.

B. Fingerprinting

In light of this, another way of using signal strengths
has been explored. So-called “finger printing” methods
depend on careful mapping signal strengths from sev-
eral sources at points in the volume of interest. This
method does not require knowledge of the positions of
the APs. Signal strengths do not vary much with time
as long as objects (and people) are not moved. (Some
new WiFi mesh networks, s.a. “Linksys Velop” include
intrusion detection capability based on disturbances
of signal strengths.) When they are moved, the finger-
print data may have to be remeasured. Measuring
signal strengths of multiple sources at many points
in a volume is tedious and does not scale well.

C. Channel State Information

A simple model of the transfer function of the
channel from transmitter to receiver is a weighted sum
of impulses, each representing a signal that travelled
along a different path. If there is a clear line of sight
(LOS), the first impulse in that sum is due to the LOS
path. So, if the response function can be determined,
the first impulse can be isolated and used to determine
the time of flight. A network analyzer can be used to
measure the frequency response of a communication
channel, which is the Fourier transform of the impulse
response. It is, however, not practical to deploy net-
work analyzers, in part because they require physical
access to both the transmitter and the receiver.

D. Orthogonal Frequency-Division Multiplexing

In the case of orthogonal frequency-division multi-
plexing (OFDM) signaling — used in all but the earliest
IEEE 802.11 physical layer (PHY) standards [16] — the
channel is divided into many equi-spaced narrow sub-
channels. In operation, the response of each subchan-
nel needs to be known and consequently is estimated
continuously. This channel state information (CSI) is
potentially available (at least since IEEE 802.11n using
e.g. Intel 5300). It is a low-resolution approximation
to what a network analyzer would measure. Unfortu-
nately, at this point no widely used platform provides
access to the CSI.

E. Angle of Arrival

With many antennas, a base station can estimate the
direction of arrival of the signal from user equipment
(smartphone) [7] High angular resolution is required
since the position error is the product of the distance
and the angular resolution. Thus unless distances are
very small, base stations with many antennas (and
perhaps many radio chains) are needed, since angular
resolution varies inversely with the number of anten-
nas. There are also some privacy issues, since here a
critical part of the position determination is done by
the base stations, not the smartphone.

F. FTM RTT IEEE 802.11–2016

Finally, we come to fine time measurement (FTM)
of round trip time (RTT) as specified in IEEE 802.11–
2016 (also referred to as 802.11mc) [16]. One might
expect this to overcome the limitations of other meth-
ods, since time of arrival is based on the first signal
component, and so should be immune to multi-path
problems, such as interference and standing waves.

Access to FTM RTT measurements has been pro-
vided on the Android platform since 2018 (Android
Pie) although initially few smartphones and Wi-Fi APs
supported the protocol (see also Appendix B).

Experimentally one finds that the distance measure-
ments provided by FTM RTT may have standard de-
viations of 1–2 meter under favorable circumstances.
This is fine for some applications but not others. It is
important to understand the underlying causes of the
observed errors in distance.

IV. Nature of the Error

In FTM RTT, the error — difference between mea-
surement and the actual distance — can be thought
of as having several components, which behave very
differently. It is important to understand these contri-
butions to the overall error e, since they need to be
dealt with in different ways.

e =m(c; . . .)+ E(r, c; . . .)+ o(c; . . .) (1)
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Here m(c; . . .) is “measurement noise” (see below)
which depends on the channel c (i.e.frequency)
and other factors, while E(r; c . . .) is the “position-
dependent error” (see below) which depends on posi-
tion r, the channel c and other factors, while o(c; . . .)
is the offset (see below) which depends on the channel
c, type of initiator, type of responder etc.

All of the above also depend on the bandwidth, but,
except where noted below, we’ll assume use of the
highest bandwidth at which FTM RTT is supported by
both the initiator and the responder (currently 80 MHz)
because that normally leads to the highest accuracy.

Further, where there is a dependence on position
as indicated above, there is also a dependence on
orientation, which we will not continue to refer to
explicitly from here on.

A. “Measurement Error”
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Fig. 2. Sample measurements using ten different responders in
fixed positions. (Top plot is for an access point operating in the
2.4 GHz band, the rest are in the 5 GHz band). Horizontal axis:
time in hours. Vertical axis: distances in meters (individual plots
are offset vertically to avoid overlap).

Remarkably small spreads in results are observed
when measurements are repeated without changes in
position (or orientation) of initiator and responder, in
a fixed environment as shown in Fig. 2. In this case, the
standard deviation (e.g. 0.1–0.2 meter under favorable

circumstances) is considerably smaller than the ac-
tual error in distance measurement (which is typically
greater than 1–2 meter). As a consequence, perhaps
surprisingly, results are not significantly improved by
averaging repeated measurements.

While this error component looks a lot like typical
measurement error from additive random noise, it
should be noted that: (i) its distribution is not Gaus-
sian; (ii) there are distant outliers in many cases (see in
particular the magenta, green and cyan traces); and (iii)
the distribution is often not even unimodal (see e.g. the
darkgreen trace, between 4 and 5 hours). Importantly,
small changes in position (or orientation) can cause
large changes in the distribution. As a result repeated
measurement in fixed positions can lead one to grossly
underestimate the error in distance. We’ll say that
repeated measurements obtained in fixed positions
exploit “time diversity,” and note that time diversity
does not provide a path to improved accuracy.
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Fig. 3. Sample measurements using ten responders in a range of
positions (Top plot is for an access point operating in the 2.4 GHz
band, the rest are in the 5 GHz band). Horizontal axis: actual
position in meters. Vertical axis: reported distances in meters.
(Note that the average slope of the plots is not equal to one, because
the scales on the vertical axis and horizontal axes are different).
(Individual plots are offset vertically to avoid overlap).

B. “Position-Dependent Error”

Perhaps somewhat surprisingly, small movements
(milli-meters) of the initiator (or the responder) induce
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large changes (meters) in reported distance measure-
ments. This error component is a function of 3-D
position (and orientation). It is difficult to explore and
visualize the error dependence fully in 3-D, but much
can be learned by simply scanning along lines.

It is clear that the “position-dependent” error in
Fig. 3 is much larger than the “measurement noise” in
Fig. 2. Careful measurements along lines surprisingly
shows fluctuations in the error surface that have “tex-
ture element” size comparable to the wavelength of the
radio frequency signal (which ranges from 58 mm for
5210 MHz to 52 mm at 5775 MHz). This is confirmed
by inspection of the spatial power spectrum, which
has much of its energy at and below the frequency
corresponding to about two cycles per wavelength.

Measurements taken at positions separated by more
than say a wavelength are fairly uncorrelated. This sug-
gests one way of improving accuracy: average several
measurements taken (far enough apart) along points
spaced out along a line (or on a regular grid). This
indeed leads to a result with considerably higher accu-
racy than averaging repeated measurements taken in
a fixed position We’ll say that repeated measurements
obtained on a line (or on a grid) of position exploit
“spatial diversity” and note that spatial diversity can
improve accuracy significantly.

It is, however, not clear how this observation can
be used in practice since it requires either a set of
regularly spaced antennas in an array larger than the
typical smartphone, or perhaps some mechanism for
moving a single antenna into a set of positions in some
regular pattern.

For experiments requiring high accuracy, however,
such as measurements of the relative permittivities of
building materials like concrete, brick and wood, the
extra effort in making measurements in several posi-
tions is well justified, since for these measurements
the raw accuracy of FTM RTT is not adequate.

C. Offset

Over a large range of distances, with a clear line
of site, the reported distance varies linearly with the
actual distance. The slope of the linear fit is 1 (see e.g.
Fig. 4) but there typically is a significant offset, which
depends on the type of initiator, the type of responder,
the channel in use, bandwidth, and the preamble.

Ideally, all initiator/responder combinations would
come calibrated to yield zero offset. Presently different
responders will yield different offsets with different
initiators (sometimes differing by five or more meter).
Even a particular combination of initiator and respon-
der has different offsets when operating in different
channels (which can lead to hard-to-track errors when
the AP decides to switch channels for some reason!).
Presently one must calibrate for the particular combi-
nation of initiator and responders to be used in order
to eliminate these offsets.
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Fig. 4. Linear fit of reported distance to actual distance (outdoors,
clear LOS, no obstructions in the first Fresnel zone). The offset in
the well calibrated setup tested here happens to be small (less than
half a meter), but can be five meters or more in other situations.
Horizontal axis: actual position in meter. Vertical axis: FTM RTT
reported distances in meters.

D. Noise Gain

The accuracy of the final position estimate is not
the same as the accuracy of the raw measurement
of distance between the initiator and the responder.
The error in position may be considerably larger than
the error in distance measurement, depending on the
geometry of the layout of responders and initiator. The
ratio of the error in position to the error in the distance
measurement is the “noise gain” — euphemistically
referred to as “dilution of precision” (DOP) in GPS ter-
minology [18]. This suggests that there is some benefit
to carefully planning the distribution of responders so
as to minimize the error in the worst-case position of
the initiator (see also Appendix C and Appendix D).

E. Dependence on Bandwidth

The expected accuracy is inversely proportional to
the bandwidth of the Wi-Fi signal. Currently the high-
est bandwidth of initiators and responders that sup-
port the IEEE 802.11 FTM RTT protocol is 80 MHz
(there are some access points and some Wi-Fi adapters
that support 160 MHz, but, as of this writing, do not
support FTM RTT).

One may consider “bandwidth diversity” as another
possible measure to improve accuracy, but the results
at 40 MHz and 20 MHz tend to be noticeably worse
than those at 80 MHz. As a result, there is only a
small gain in accuracy using a best fit weighted average
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of the three results (aside from that, the offsets are
different for different bandwidths and need to be
calibrated out).

V. Where does the large position-dependent

error come from?

The main component of the error is the position-
dependent error. Given the size of the “texture ele-
ment” of this type of error, it appears to be related to
some sort of interference pattern resulting from reflec-
tions off objects that are not in the line of sight. This
is quite unexpected since the first arriving component
of the signal should not be affected by reflections.

In contrast to this, signal strength (RSS), being a
steady state measurement, is subject to large fluctua-
tions (“fast fading”) over relatively small distances due
to just such interference. (see upper plot in Fig. 5)
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Fig. 5. Upper plot: signal strength (RSS) in dBm. Lower plot:
reported distance in meter. Horizontal axis: actual position in
meter. Note undulations with wavelength somewhere between
about half the wavelength and the full wavelength of the (2.442
GHz) electromagnetic wave. (There is also an overall trend in RSS,
probably due to destructive interference between the direct signal
and a reflection off the concrete floor about 1.2 m below the line
connecting the intiator to the responder).

Again, at least with a clear line of sight, the first
arrival should not be affected by later arriving signals
reflected from objects in the environment. Thus, it
comes as a surprise that FTM RTT distance measure-
ments seem to be affected by some sort of interference
patterns or stationary waves (see lower plot in Fig. 5).
To understand how this can be, we must know more
about how these measurements are made.

A. Super Resolution

With OFDM modulation, demodulation is done by
inverse Fourier transform of samples of the signal.
For 80 MHz bandwidth, these samples are taken at
80 Msps (actually, both Q (real part) and I (imaginary
part) are sampled at that rate, but that does not

affect the argument here). That means that samples
are taken every 12.5 nsec, which corresponds to 3.75
meter round trip travel of the radio-frequency (RF)
wave. So, if first arrival was based merely on which
sample exhibits the first sign of a rising waveform,
then the (one-way) resolution would be 1.875 m. The
measurement actually provided to the user has much
finer resolution (RTT, for example, may be given in
units of 0.1 nsec, very much smaller than the 12.5 nsec
sampling interval). Super-resolution methods are used
to “interpolate” between known samples of the signal.

Several super-resolution methods are used, such
as MUSIC, ESPRIT, and pencil matrix [19], [20], [21],
[22], [23], [24], [25], [26]. These are based on specific
assumptions about the transfer function of the com-
munication channel. In particular, it is assumed that
the impulse response of the channel is a weighted
sum of shifted impulses, corresponding to different
components of a multi-path signal.

While the aim is to provide the user with finer
resolution, such methods also have limitations. They
are highly non-linear and can exhibit discontinuities
and non-monotonicity. Further, information on what
actual algorithms are used in the Wi-Fi initiator and in
the Wi-Fi access points is not available to the user.

To illustrate the potential problem, consider first
an oversimplification. A simple algorithm has arrival
time estimated based on when a sample of the sig-
nal amplitude exceeds some threshold. However, one
cannot use a fixed threshold for deciding when the
signal arrives, since the signal can vary over several
orders of magnitude (e.g. −100 dBm to −40 dBm —
i.e. a ratio of a million to one in power) The threshold
to determine whether the “toe” of a signal has arrived
must be scaled based on the strength of the signal.
But that “signal strength” can only be ascertained later
when it has reached a peak. While the “toe” is not
affected by multi-path reflections, the amplitude used
for normalization is subject to the interference pattern.
So even though the first arrival is not contaminated
by interference, the threshold against which it is com-
pared is. This sort of effect can give rise to the wildly
fluctuating position-dependent error surface described
above (see lower plot in Fig. 5).

The gain of the radio is adjusted in discrete steps
based on the signal strength (actually, often the re-
ported signal strength value is derived from the cur-
rent AGC setting). An effect similar to the one de-
scribed above (although much larger) have been as-
cribed to changes in AGC settings [4].

VI. Frequency Diversity — six channels

Since the position-dependent error surface has “tex-
ture” the order of the wavelength of the radio fre-
quency signal, it stands to reason that operating at dif-
ferent frequencies would produce different position-
dependent errors. There are six non-overlapping 80
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Fig. 6. Sample plots (colored) of reported distances in six 80
MHz wide channels in the 5 GHz band. The top (black) plot is a
simple average, which has less than half the error of the individual
measurements. Horizontal axis: actual distance in meters. Vertical
axis: reported distance in meters. (Note that the average slope of
the plots is not equal to one, because the scales on the vertical
axis and horizontal axes are different). (Individual plots are offset
vertically to avoid overlap).

MHz channels in the 5 GHz band This provides for
up to six measurements with uncorrelated error con-
tributions, potentially leading to a multiplication of
the error by 1/

√
6 ≈ 0.408. (Note that there may be

some restrictions on some channels in some parts of
the world. The highest channel, for example, is not
available in Japan, Israel, Turkey and South Africa).

Fig. 6 shows plots of distance measurements in six
channels as a function of actual position. The channels
have center frequencies 5210 MHz (magenta), 5290
MHz (red), 5530 MHz (brown), 5610 MHz (green), 5690
MHz (cyan), and 5775 MHz (blue). The correlation ma-
trix (eq. 2) shows that the position-dependent errors
in the different channels are essentially uncorrelated.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.05 −0.19 0.21 −0.03 0.12

−0.05 1 0.13 −0.04 −0.14 −0.09

−0.19 0.13 1 −0.19 −0.09 0.00

0.21 −0.04 −0.19 1 −0.07 −0.11

−0.03 −0.14 −0.09 −0.07 1 −0.04

0.12 −0.09 0.00 −0.11 −0.04 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The st. dev. of position-dependent errors from the
six channels are 0.710 m, 0.578 m, 0.540 m, 1.163
m, 0.944 m, and 0.909 m (average 0.808 m). A simple
average of the six distances has st. dev. 0.309 m, which
is significantly better than the best channel on its own,
and more than twice as accurate as the average.

A weighted sum — rather than a plain average —
can do even better. In this particular case, with weights
0.155, 0.234, 0.301, 0.080, 0.130, and 0.100, the st. dev.
comes to 0.264 m (which is only about a third of the
average st. dev. of the six channels). (The weights are
obtained by simple least squares fitting to produce the
smallest sum of squares of errors.) With six channels,
the added refinement of least-squares weighting — as
opposed to simple averaging — may not always be
worth the extra effort since the relative quality of the
different channels depends on the environment and
will be different in different situations.

By the way, averaging FTM RTT measurements from
six 80 MHz channels does not produce the same re-
sults as if one were to perform a single FTM RTT
measurement in a channel of 480 MHz bandwidth. In
the case of a single ultra-wide channel, the error would
be multiplied by 1/6, not 1/

√
6.
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Fig. 7. Sample plots (colored) of reported distances in three
channels. The top (black) plot is a weighted average, which has
only a bit over half of the average error in the individual plots.
Horizontal axis: actual distance in meters. Vertical axis: reported
distance in meters. (Note: the average slope of the plots is not
equal to one, because the scales on the vertical axis and horizontal
axes are different). (Individual plots are offset vertically to avoid
overlap).

VII. Frequency Diversity — Three channels

It may not always be practical or convenient to
use all six 80 MHz channels for FTM RTT distance
measurements. In some situations a smaller number
may be more easily accessible. Several “tri-band” mesh
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Wi-Fi APs (e.g. Eero Pro, Netgear Orbi and Linksys
Velop) have two radios which make it easy to get
measurements for at least two channels in the 5 GHz
band (e.g. 5210 MHz in U-NII-1 and 5775 MHz in U-
NII-3). Often also, one of the radio chains is shared
between the 2.4 GHz and 5 GHz bands and if the
device happens to respond to FTM RTT requests in
both bands (e.g. Linksys Velop) then this opens up the
possibility of taking three measurement with uncorre-
lated error contributions.

Taking a simple average potentially multiplies the
error by 1/

√
3 ≈ 0.577 . . . (assuming similar error

distributions for the three channels and with uncor-
related noise). Not as good as with six channels, but
still a useful improvement. Actually, this may be a bit
optimistic, since the 2.4 GHz channel is not as good as
the other two, one the other hand suitable weighting of
the three contributions can get one close to the ideal.

In Fig. 7, the bottom three plots are for channels
with center frequency (i) 5210 MHz (red), (ii) 5775 MHz
(green), and (iii) 2442 MHz (blue). The correlation ma-
trix (eq. 3) shows that the position-dependent errors in
the different channels are, once again, uncorrelated.

⎡
⎢⎢⎢⎣

1 −0.00 0.03

−0.00 1 −0.13

0.03 −0.13 1

⎤
⎥⎥⎥⎦ (3)

The top plot (black) in Fig. 7 is for a weighted average
(weights 0.48, 0.35, and 0.17 respectively). The st. dev.
of the position-dependent error in the lower three
plots are 0.382 m, 0.480 m, and 0.721 m, for an average
st. dev. of 0.528 m. The st. dev. of a simple average is
0.302 m (which is better than any of the individual
channel st. dev.). and the st. dev. of the weighted
average is 0.270 m (which is almost twice as accurate
as the average channel).

Typically different chips are used for the two radio
chains. In the case of Eero Pro, for example, the first
5GHz radio (and the 2.4 GHz radio) uses the Qual-
comm IPQ4019 chip, while the second 5Ghz radio uses
the Qualcomm QCA9886 SoC. These have somewhat
different measurement qualities and thus weighting
their contributions differently (as above) helps im-
prove the overall result.

Finally, if three channels are not available, using
two channels can already bring some improvement in
accuracy relative to relying on a single channel.

VIII. High relative permittivity of common

building materials

Inside buildings, signals often have to travel through
walls and floors of concrete, wood, brick, drywall or
glass. These materials have high relative permittivity
which slows down the signal significantly. Careful mea-
surement of thick layers of various materials show
relative permittivities, in the 8–10 range for wood,
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Fig. 8. Scattergram of measured distances versus actual distance in
wooden three-story house. Vertical axis: measured distance (meter).
Horizontal axis: actual distance (meter). Red line (slope 1) is the
ideal relationship; Green line (slope 1.2) is the best linear fit;
Blue line (slope 1.6) is an upper extreme. The high permittivity of
building materials biases the distances measured by FTM RTT.
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Fig. 9. Scattergram of measured distances versus actual distance
in a large open plan office building. Vertical axis: measured distance
(meter). Horizontal axis: actual distance (meter). Red line (slope 1)
is the ideal relationship. Green line (slope 1.2) is the best linear fit.
Blue line (slope 1.4) is an upper extreme. The high permittivity of
building materials biases the distances measured by FTM RTT.
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and 5–7 range for concrete, depending on moisture
content and composition (the signal also is attenuated
significantly, but this does not affect the time-of-arrival
directly) [27], [28], [29], [30]. Time-of-flight times the
speed of light is the equivalent distance travelled in
vacuum — which may be considerably larger than the
actual distance. A 0.5 meter thick concrete wall can,
for example, add 3 or 4 meters to the reported FTM
RTT “distance.” This needs to be taken into account
somehow in the estimation of position from distance
measurements. The effect of thick walls and floors
should also be a concern when planning the place-
ments of responders.

Arguably, the effect of high relative permitivitties
of building materials on distance measurements is
more important than that of multi-path. Particularly
reminding ourselves again that the time of first arrival
should not be affected by reflections.

Fig. 8 shows how building materials affect measure-
ments in a three-story wooden house. Fig. 9 show how
building materials affect measurements in a large open
plan office building. The effect there is less extreme, al-
though over long enough distances just as significant.

IX. Recovering position from distance

measurements

Once we have estimated distances from a number
of AP responders in known positions we can try and
determine where the initiator is.

A. Multi-lateration

If we are dealing with a single level building, we can
treat this problem in 2-D. In this case each measure-
ment confines the possible position of the initiator to
points on a circle with an AP at the center, — or a
circular annulus if we take into account uncertainty in
the measurement. Two measurements lead to the in-
tersection of two circles, which typically is two points
(These two points lie on the “radical line,” which is
perpendicular to the line connecting the centers of
the circles). A third measurement can disambiguate
if needed. Three or more measurements are typically
inconsistent but can be used in a least squares fashion
to reduce the error in position estimation.

This is quite analogous to finding a cellular base
station from multiple LTE Timing Advance (TA) mea-
surements — just with much finer resolution [31].

In the more general full 3-D case, each measurement
confines the position of the initiator to points on the
surface of a sphere with an AP at its center — or
a spherical shell if we take into account uncertainty
in the measurements. Two measurements restrict the
solution to the intersection of two spheres, which
typically is a circle (this circle lies in the “radical
plane,” which is perpendicular to the line connecting
the centers of the spheres). A third measurement re-
duces the possibilities to the intersection of a circle

and a sphere, which typically occurs in two places. A
fourth measurement can disambiguate if needed. Four
or more measurements are typically inconsistent but
can be used in a least squares fashion to reduce the
error in position estimation.

B. Linear multi-lateration?

The equations for the circles — or spheres — are
second order. They do all have the same higher order
terms. Thus it is tempting to subtract them pairwise
to obtain linear equations, since linear equations are
easy to solve. This is a mistake. While the resulting
equations yield the correct solution if the measure-
ments are perfect, the “noise gain” is very high. That
is, small errors in distance measurements translate
into large errors in position. One way to understand
why this happens is that we are throwing away some
of the constraint provided by the measurements. For
convenience of calculation, we consider the solution
to be confined to the planes containing the circles
of intersection, not to the actual circles, which is a
much tighter constraint. (For mathematical details of
the argument see [32]). (By the way, distances to more
APs are needed when using the “linearized” method
than when using the full constraint).

An aside: this is quite analogous to the infamous
“8-point method” in machine vision for solving the
relative orientation problem. While it is very appealing
because of the linear form of the equations, minimiza-
tion of errors in those equations does not minimize
the sum of errors in image positions [33], [34]. As
a result, this method cannot be recommended (other
than perhaps in the hope of finding plausible starting
values for methods that do the right thing).

C. Least Squares minimization and brute force search

For a given hypothesized position for the initiator,
the distance from each AP can be computed and
compared with the measured distance. One can then
find the position that minimizes the sum of squares
of the differences between computed and measured
distances. Gradient-descent may not work reliably to
find the global minimum of this error sum, since the
shape of the error surface can be complex. We can,
however, divide the space into pixels (2-D) or voxels (3-
D) and simply compute the error for each cell. This is
not computationally expensive, since, given the limited
accuracy of FTM RTT measurements, the cells need not
be very small (e.g. perhaps 0.5 m on a side). So even
a typical building with side lengths of tens of meters
would be represented by just a few thousand cells.

D. Kalman filtering

Kalman filtering provides a way to update an esti-
mate of the position and an estimate of the covariance
matrix of uncertainty in the estimated position ever
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time a measurement is made. It is based on assump-
tions of Gaussian noise independent of the measure-
ment, Gaussian transition probabilities and linearity.

Unfortunately the measurement error is not Gaus-
sian nor is it independent of the measurement itself.
Further, when near one of the responders, the area
of likely positions is shaped more like a kidney (i.e.
part of a circular arc) — or even bimodal — rather
than something that can be well approximated by a
linearly stretched out Gaussian distribution (Fig. 13).
As a consequence, Kalman filtering does not provide
the best way to use the available information.

E. Particle filter

If a probability distribution is not easily modeled in
some parameterized way (such as a multi-dimensional
Gaussian), then other means may be used to represent
it. One such method is that of particle filters which
uses weighted samples to represent a distribution.
The distribution is in effect approximated by the sum
of weighted impulses. At each step, the position of
the particles is updated based on a transition model.
The weights of the particles are adjusted based on
the measurements. Particles with low weight are then
discarded, while new particles are sampled to keep the
overall number of particles at a desired value. Particle
filers have been applied to this problem as well [35].

F. Bayesian grid update

Another way of dealing with a probability distribu-
tion that can’t be easily parameterized is to represent
it with values on a regular grid. Sequential Bayesian
updates can be applied to such a grid of probabilities.
This method starts with a prior distribution (perhaps
uniform). A transition model is invoked at each step
which modifies the distribution based on likely move-
ment of the initiator (e.g. a random walk). If a floor
plan is available, impenetrable walls can be taken
into account in the transition model. This is followed
by Bayesian update based on distance measurements,
which uses an observation model which estimates the
probability of seeing a measurement given the actual
geometric distance between a voxel and the responder.

If a single position is required as output, rather
than a distribution, one can use the mode (maximum
likelihood) or the centroid (expected value) of the
distribution.

As with other forms of “filtering,” there can be a
lag in the response when the initiator moves more
rapidly than the transition model expects. Also, a bad
solution may get “trapped” behind walls, when a floor
plan is used to prevent “tunneling” through walls in
the transition model.

G. Observation Model

Fig. 10 shows a section of a sample observation
model. It shows the probability of various measured

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 10. A slice through a particular observation model. Horizon-
tal axis: measured distance (when actual distance is 10 m) Grey
histogram: measurements from typical three-level residence. Green
curve: observation model — probabilty of measuring the specified
distance (piece-wise linear fit to grey histogram).

“distances” on the horizontal axis in meter) given that
the actual distance between initiator and responder
is 10 meter (i.e. the vertical red line). The actual dis-
tance is a lower bound on the measurement. It can be
considerably larger since the signal may pass through
building materials with large relative permittivity. In
the figure, the observation model (green curve) is a
piece-wise linear fit to experimental data from a three-
level residence (grey histogram).

The observation model is used to update the prob-
ability at each grid cell. For each cell on the grid, the
distance from the AP is known and so the appropriate
slice of the observation model can be accessed. The
observed FTM RTT distance is then used to look up the
probability that this observation would occur, given
the known actual distance for this grid point. This
value is then used to multiply the current value in that
cell. Optionally, the resulting grid of values can than
be normalized so it once again adds up to one.

The observation model is based on measurements
in the environment in which the method is to be used.
While it may be different in different situations, the
general nature is that the observations are biased to
be larger than the actual distance and that this bias
increases with distance. It does not matter whether
this is primarily because of signal delay in materials of
high permittivity or reflections from strong reflectors
outside the direct line of sight, since both increase the
reported distance. The results of the Bayesian updates
seem not to be affected strongly by details of the
observation model, perhaps because they are updated
again when the next observation comes along. So there
seeems to be little need for an observation model to
fit a specific situation with great accuracy.
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H. Transition Model

We use a simple transition model of a random walk
of a step size based on comfortable walking speed
of 1.4 m/sec. In a simple implementation this just
“pushes” probabilities into neighboring cells (exept for
cells on the edge of the grid). If more information is
available from inertial measurement (IMU) and mag-
netic compass, then this can be used to refine the
transition model. But the simple model appears to
be adequate for position determination. A floor plan
can be used to limit “forbidden transitions” such as
walking through a wall. This can further improve the
tracking of a position solution as the user progresses
through the environment.

Fig. 11. Sample “heat maps” of Bayesian grids. Left: 2-D case (single
level) with 3 responders (green dots). Text shows current FTM RTT
distance, st. dev. and signal strength. Right: 3-D case (three levels)
with 7 responders. Voxels in each floor were collapsed into a single
layer for display purposes.

Fig. 11 shows probability distributions on grids with
cells 0.5 meter on a side. The green dots mark the
positions of the responders (in this case, the floor
plan was not utilized to limit the transition model).
For an MP4 movie showing the Bayesian grid evolve
as someone moves on one level, see [36]. For an MP4
movie showing the Bayesian grid evolve as someone
moves through a three-story building, see [37].

X. Noise Gain (a.k.a. Dilution of Precision — DOP)

The geometric arrangement of responders deter-
mines the “dilution of precision” (DOP, or “noise gain”),
that one can expect in various parts of the volume of
interest.

On the left in Fig. 12, is shown the annulus within
which the initiator position is constrained when a

Fig. 12. Dilution of Precision. Left: constraint from single distance
measurement; Middle: favorable combination of constraints; Right:
unfavorable combination of constraints. The area of the overlap
grows as 1/ sin(θ), where θ is the angle between the directions to
the APs.

Fig. 13. Dilution of Precision when close to responder. Left:
Intersection is more or less an oblong oval; Middle: Intersection is
approximately kidney shaped; Right: Intersection is bimodal. Such
distributions cannot reasonably be approximated by multi-variate
Gaussians.

single, noisy distance measurement is available. In the
middle is the situation when two measurements are
available from responders that are more or less at
right angles in directions as seen from the initiator.
Plausible solutions in this favorable case are confined
to a small area. On the right is the less fortunate
situation where the directions to the responders are
similar, and not much new information is provided by
the second measurement. Correspondngly, the likely
position of the initiator is not as well confined.

When close to one of the responders, the geometry
becomes more intricate, and, counter-intuitively, the
solution may be less well determined. This is illus-
trated in Fig. 13.

It is generally not a good idea to have the responders
close together, since then the distance measurements
will be correlated and redundant. The effect of errors
typically is not isotropic, but is stronger in some
directions than others (as in the case of GPS, where the
vertical DOP is considerably larger than the horizontal
DOP, as a result of the fact that the “visible” satellites
are not distributed evenly over a sphere of possible
directions) [18]. In some cases curves of constant
error may be quite elongated, meaning that while the
position may be well defined in some directions, it is
not in others. Finding the “best” layout of responders
in a given 3-D volume is an open research problem.

For additional detail see Appendix D.

XI. Conclusions

The accuracy of FTM RTT distance determination
can be doubled using frequency diversity. The error in
FTM RTT distance has peculiar properties (for a start,
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it is non-Gaussian) that derive in part from the super-
resolution algorithms used. Common building mate-
rials can introduce large errors in FTM RTT distance
estimates because of their high relative permittivity.
Bayesian grid estimation is well suited to the task
of recovering position from distance measurements
given the unusual nature of the errors. The “noise
gain” in position determination can be kept low by
carefully planning the geometric arrangement of the
access points.
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Appendix A

Current state of support for FTM RTT

The ability to perform FTM RTT measurements is
announced by an access point in the beacon it emits at
regular intervals (typically every 100 msec). Presently
only Compulab’s “Wi-Fi Indoor Location Device” (WILD)
(with a modified Intel AC-8260 Wi-Fi adapter) and
Google Wifi (with Qualcomm IPQ4019) do this. Im-
portantly, however, quite a number access points do
respond to FTM RTT requests even though they do not
announce this capability. This includes several of the
recent “mesh” APs (e.g. Eero Pro, Netgear Orbi, Linksys
Velop) — as well as some older APs such as ASUS RT-
ACRH13 (see [38]).

APs that support FTM RTT, but do not advertise this,
may, in some cases, not support it properly, be subject
to offsets and measurement errors, frequent outliers,
or crash when asked to respond “too often.”

Many Wi-Fi adapters cannot be used as access points
because of regulatory restrictions. Channels may be
marked “passive scan only” or “no IR” (i.e. cannot “ini-
tiate radiation”). Generic Intel 8260, Intel 8265, Intel
9260 Wi-Fi cards do “support” FTM RTT, but currently
are not allowed to act as access points (due to “no IR”
restriction on channels in the 5GHz band) and so are
not useable as FTM RTT responders (this depends on
driver support and could change in future).

Wi-Fi access points tend to be replaced less often
than say smartphones and laptops: New APs are pur-
chased mostly when some major new feature is touted

(such as e.g. higher data rates and more channels
as in 802.11ac versus 802.11n). Unfortunately FTM
RTT was introduced at a time when no such major
advantage was simultaneoulsy being proferred. As a
result relatively few installed APs support FTM RTT at
this point. This will change as soon as powerful new
features are introduced, as in 802.11ad for example.

Appendix B

Android API and Java Reflection

Access points that support the IEEE 802.11mc FTM
RTT protocol, but do not advertise this capability,
are awkward to use because Android API WiFiMan-
ager.getScanResults() marks them as not supporting
802.11mc in the ScanResult, and so the WifiRttMan-
ager.startRanging() call on the corresponding Rangin-
gRequest fails — without even trying.

One work-around is to use Java reflection [39], to set
the FLAG_80211mc_RESPONDER bit in the flag field
in the ScanResult (the “setter” methods setFlag() and
clearFlag() are “blacklisted” and so can’t be used by
third-party applications).

A more flexible approach is to use the hidden ad-
dResponder method in the Builder inner class of the
RangingRequest class. For this one needs to build
an instance of the ResponderConfig class “by hand.”
A ResponderConfig instance contains the MAC ad-
dress (BSSID), responder type (AP), 80211mc support
flag, channel width, frequency, center frequency, and
preamble type. One advantage of this approach is that
one can build a RangingRequest without needing the
results of a Wi-Fi scan (which takes time, and is heavily
throttled in Android 9) — The information about the
APs may come “out of channel” — from a file say
(which may also contain information about the phys-
ical position of the APs — see Appendix C). Needless
to say, this requires more Java reflection magic.

In this regard, it may be helpful to know that the
specified center frequency field in the ResponderCon-
fig is actually ignored and replaced by a stored value
from the most recent Wi-Fi scan. There are a number
of implications, aside from the obvious one that one
cannot control the center frequency of the AP in this
fashion. One is that an AP can’t be used for ranging if it
hasn’t been “seen” recently in a Wi-Fi scan. Another is
that an AP can’t be used right after it switches channels
— at least not until the next Wi-Fi scan picks up the
new channel information. By the way, it is important to
know which channels an AP currently uses, since the
offset in the FTM RTT reported distance is typically
different in different channels (as discussed above).

As an aside, Windows 10 does not currently support
802.11 FTM RTT (while it does support Wi-Fi scans
using WlanScan()).

https://people.csail.mit.edu/bkph/cellular_repeater_TA
https://people.csail.mit.edu/bkph/ftmrtt_location#Linear_Equations
https://people.csail.mit.edu/bkph/articles/Orientation_2D_Illustration.pdf
https://people.csail.mit.edu/bkph/articles/Harmful.pdf
https://www.scilit.net/article/67a3572f0d66261bd418e2e8d8235f26
https://people.csail.mit.edu/bkph/images/FTM_RTT_2D-2019-01-03-170903.mp4
https://people.csail.mit.edu/bkph/moviesFTM_RTT_Bayesian-2018-12-20-164419.mp4
https://people.csail.mit.edu/bkph/ftmrtt_aps
https://docs.oracle.com/javase/tutorial/reflect/
http://resolver.tudelft.nl/uuid:b91e1ec5-7c81-4fcc-b34c-654b9da2140c
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Appendix C

How to get the position of the responders

In recovering the position of the initiator (smart-
phone), one needs to know the position of the respon-
ders (APs). This information can be provided “out of
channel” in a file that lists all of the APs in a building
— along with their other properties.

It may be more convenient (and the method scales
better) if the APs themselves broadcast this informa-
tion. The IEEE 802.11–2016 standard provides for that.
Location Configuration Information (LCI) can provide
latitude, longitude, altitude and their uncertainties.
Location Civic Report (LCR or CIVIC) can provide a
“civic” address in a standardized key-value format.
Corresponding “getter” methods getLci() and getLcr()
of RangeResult are “blacklisted” in Android and so
not available to third-party applications. However, the
getResponderLocation() method is available to obtain
a ResponderLocation from a RangeResult and this has
the available location information provided by the AP.

Presently, only Compulab’s “Wi-Fi Indoor Location
Device” (WILD) provides for specification of LCI and
CIVIC information (using entries -lci=... and -civic=... in
the hostapd.config file). Sadly, at this point, no other
Wi-Fi access point allows specification of the location
of the access point in this fashion.

Appendix D

Placement of responders

The “diluation of precision” depends on the spatial
arrangement of responders. This is similar to the effect
on DOP in GPS of the positions of the satellites (See e.g.
section 7.4.5 and Fig. 7.21 in [18] and section 4.2.1 and
Fig. 4.7 in [40]).

In the 2-D examples in Fig. 14 the green dots are the
positions of responders (APs), while the red dots are
potential positions for the initiator (smartphone, STA).
The constant error curves show how position may be
poorly localized in some direction yet well constrained
in a direction at right angles. In placing the responders,
the aim is to make the constant error curves small and
round in most of the work space. Symmetrical layouts
for the responders seem to work well, as shown on
the left in Fig. 14, while somewhat suprising results
may be achieved with asymmetrical layouts, as shown
on the right in Fig. 14. Note also that position can be
recovered reasonably well even outside the convex hull
of the responders — up to a point.

For 3-D, cubic volume of interest (or a rectangu-
lar brick shaped volume with not-too-different side
lengths), placing four responders at the vertices of
a tetrahedron embedded in the cube has appealing
properties (these points are at the four “even” vertices
of the cube (left side of Fig. 15). With six responders,
the vertices of an octahedron have good properties
(these six points are at the face centers of the cube

Fig. 14. Quality of position determination near three respon-
ders (2-D case). Left: Symmetric arrangement. Right: Asymmetric
arrangement.

Fig. 15. Left: Placement of 4 responders (3-D case) Right: Placement
of 6 responders (3-D case)

(see right side of Fig. 15). Both of these configurations
avoid placing any subset of four responders in a plane.

Adding a responder somewhere in the middle of
the volume also improves overall position accuracy
determination quality (See e.g. right side of Fig. 11).

Placing responders at regular intervals along a line (a
corridor e.g.), while providing simplicity of installation,
may not be a good idea if position accuracy is of
importance.
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