suppressing traffic flow instabilities

Traffic flow instabilities waste energy:

- At high densities traffic flow becomes unstable
- Traffic acts as if it was a dilatant (shear thickening) fluid

Traffic flow instabilities waste energy:

- At high densities traffic flow becomes unstable
- Traffic acts as if it was a dilatant (shear thickening) fluid
- Stop-and-go instabilities reduce average speed
- Total time for a trip is increased by unsteady flow
- Kinetic energy wasted every time brakes are used

Traffic flow instabilities waste energy:

- At high densities traffic flow becomes unstable
- Traffic acts as if it was a dilatant (shear thickening) fluid
- Stop-and-go instabilities reduce average speed
- Total time for a trip is increased by unsteady flow
- Kinetic energy wasted every time brakes are used
- Building more roads has high energy cost as well
- "Metering" reduces potential throughput

Source of Instabilities

- At high flow densities, traffic flow becomes unstable
- Travelling waves of velocity and density fluctuations
- Perturbations are amplified
- Effects propagate upstream

Source of Instabilities

- At high flow densities, traffic flow becomes unstable
- Travelling waves of velocity and density fluctuations
- Perturbations are amplified
- Effects propagate upstream
- Instabilities reduce average speed and throughput
- Instabilities limit the carrying capacity of a roadway
- Increase wear and tear on vehicles and on nerves
- Stop-and-go traffic greatly reduces fuel efficiency

Alternative Schemes

- Building more roads reduces density for a while;
- "Metering" reduces instabilities by limiting density;
- Reduction in reaction time allows higher density;
- Platooning allows small inter-vehicle distances;

• . . .

not

Car-Following Model

ullet Control of car C depends on d_l and v_l-v_c

Car-Following Feedback Control

Acceleration depends on d_l and $v_l - v_c$ (and possibly $v_{\rm des}$, v_c , and $v_{\rm max}$)

Car-Following Model

- ullet Control of car C depends on d_l and v_l-v_c
- ullet Control of car F depends on d_f and v_c-v_f

Car-Following System Model

Overall transfer function $(H(s))^n$

Need more than "adaptive cruise control"

- Many explanations for how flow instabilities arise
- For example: Simple car-following model

Need more than "adaptive cruise control"

- Many explanations for how flow instabilities arise
- For example: Simple car-following model
- But, few ideas on what to do about it
- "Adaptive cruise control" does not solve the problem

Need more than "adaptive cruise control"

- Many explanations for how flow instabilities arise
- For example: Simple car-following model
- But, few ideas on what to do about it
- "Adaptive cruise control" does not solve the problem
- Solution is to use bilateral information flow
- Cheap machine vision systems support bilateral control

Bilateral Control

Control of car C depends on d_l and $v_l - v_c$ and on d_f and $v_c - v_f$

Feedback Control Comparison

- (a) acceleration depends on d_l , $v_l v_c$,
- (b) acceleration depends on d_l , $v_l v_c$, as well as d_f and $v_c v_f$

System Model Comparison

Model of Bilateral Control

Force in springs — proportional to difference from rest length

Force in damper — proportional to difference in velocities

(1) CAR FOLLOWING:
Closeup of track:
 With "car following" control, disturbances move upstream (to the left) only, and increase in amplitude as they go. The disturbance near the initial cause dies down, but the wave travelling upstream does not. (In car following, acceleration of each vehicle depends on distance and relative velocity of the leading vehicle.)
(2) BILATERAL CONTROL:
Closeup of track:
 With "bilateral" control, disturbances travel in both directions and decrease in amplitude. The system soon returns to smooth flow.
 (In bilateral control, acceleration of each vehicle depends on distance and relative velocity of leading and following vehicle.)

For additional details:

- search for <u>Suppressing Traffic Flow Instabilities</u>
- or search for bkph traffic

Fig. 12. Unstable traffic flow using car following model.

Fig. 13. Stable traffic flow using bilateral control.

Sensors

- Need sensors for distance and (relative) velocity
- Alternatives: radar, lidar, sonar, and machine vision
- Imaging chips are low cost as is on-board processing

Sensors

- Need sensors for distance and (relative) velocity
- Alternatives: radar, lidar, sonar, and machine vision
- Imaging chips are low cost as is on-board processing
- Distance: binocular stereo, trinocular stereo, ...
- Velocity: motion vision methods ...
- Distance/Velocity: time to contact (TTC)

Time To Contact

suppressing traffic flow instabilities

Competing Explanations

Many different models predict traffic flow instabilities:

- Cellular automata;
- Differential equations;
- Feedback control models;
- Fluid flow models;
- Particle tracking models;
- Car-following simulation models;

• • •

What is needed is a method for suppressing instabilities

Smooth Flow Analysis

In the absence of instabilities:

- Safe separation speed \times reaction time: d = vT
- Density inverse of length plus separation: $\rho = 1/(l+d)$
- Throughput speed \times density: $c = v\rho = v/(l + vT)$
- Approaches inverse of reaction time: $c \rightarrow 1/T$
- E.g. T = 1 sec c approaches 3600 vehicles per hour
- In practice, throughput is considerably lower
 because flow is not smooth

Illustrative Bilateral Control System

Block Diagram of Bilateral Control System

Time To Contact (time lapse sequence)

Time To Contact (real world sequence)

Problems to solve

- What is the business model?
- What sensors and algorithms? TTC + trinocular stereo?
- Full automation, "modulation" or merely advisory?
- Extend to mix of automated and legacy vehicles
- Extend to multiple lanes, exits and entrances etc.

Problems to solve

- What is the business model?
- What sensors and algorithms? TTC + trinocular stereo?
- Full automation, "modulation" or merely advisory?
- Extend to mix of automated and legacy vehicles
- Extend to multiple lanes, exits and entrances etc.
- Explore use of inter-vehicle communication for sensing
- "Optimize" the control scheme