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Traffic flow instabilities waste energy:
e At high densities traffic flow becomes unstable

e Traffic acts as if it was a dilatant (shear thickening) fluid

e Stop-and-go instabilities reduce average speed
e Total time for a trip is increased by unsteady flow

e Kinetic energy wasted every time brakes are used

e Building more roads has high energy cost as well

e ‘Metering” reduces potential throughput
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Source of Instabilities

e At high flow densities, traffic flow becomes unstable

e Travelling waves of velocity and density fluctuations

e Perturbations are amplified
e Effects propagate upstream

e Instabilities reduce average speed and through

DUt

e Instabilities limit the carrying capacity of a roac

way

e Increase wear and tear on vehicles — and on nerves

e Stop-and-go traffic greatly reduces fuel efficiency



Alternative Schemes
e Building more roads reduces density — for a while;
e ‘Metering” reduces instabilities by limiting density;
e Reduction in reaction time allows higher density;
e Platooning allows small inter-vehicle distances;

e Not
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Car-Following Feedback Control
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e Control of car C depends on d; and v; — v,
e Control of car F depends on ds and v, — vy



Car-Following System Model
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Need more than “adaptive cruise control”
e Many explanations for how flow instabilities arise

e For example: Simple car-following model

e But, few ideas on what to do about it

e 'Adaptive cruise control” does not solve the problem

e Solution is to use bilateral information flow

e Cheap machine vision systems support bilateral control



Bilateral Control
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Control of car C depends on d; and v; — v,
and on dy and v, — vy



Feedback Control Comparison
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(a) acceleration depends on d;, v; — v,

(b) acceleration depends on d;, v; — v,
— as well as dy and v, — vy



System Model Comparison
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Model of Bilateral Control
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(1) CAR FOLLOWING:

Closeup of track:

« With “car following” control, disturbances move upstream (to the left) only, and increase in amplitude as they go.
» The disturbance near the initial cause dies down, but the wave travelling upsiream does not.

» (In car following, acceleration of each vehicle depends on distance and relative velocity of the leading vehicle.)

(2) BILATERAL CONTROL:

Closeup of track:

» With "bilateral” control, disturbances travel in both directions and decrease in amplitude.
+ The system soon returns to smooth flow.

» (In bilateral control, accelerationof each vehicle depends on distance and relative velocity of leading and following vehicle.)

For additional details:

» search for Suppressing Traffic Flow Instabilities

« or search for bkph traffic




| 2| Bilateral Contral Traffic Simula.. -

Bilateral Control Traffic Simulator

Density (cars/km) 50.0

Speed limit (m/sec) 32

Desired speed (m/sec) |25

Kd (prop --- 1isec™2) 0.4

Kv (deriv - 1/sec) 0.2

Kc (des - 1/sec) 0.1

Kg (perturbation) 0.5

deltaT (reaction sec)

Speedup ratio

| | Bilateral control

| | Enforce gap

Start/Stop

Average vel (m/sec) 0.0

5t dev. (misec) 0.0

Throughput {cars/sec)

Time (sec)

Time 5Step (sec)
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Fig. 12. Unstable traffic low using car following model.
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Fig. 13. Stable tratfic low using bilateral control.




Sensors
e Need sensors for distance and (relative) velocity
e Alternatives: radar, lidar, sonar, and machine vision

e Imaging chips are low cost — as is on-board processing



Sensors
e Need sensors for distance and (relative) velocity
e Alternatives: radar, lidar, sonar, and machine vision
e Imaging chips are low cost — as is on-board processing
e Distance: binocular stereo, trinocular stereo, ...
e Velocity: motion vision methods ...

e Distance/Velocity: time to contact (TTC)
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Competing Explanations

Many different models predict traffic flow instabilities:

e Cellular automata;

e Differential equations;

e Feedback control models;

e Fluid flow models;

e Particle tracking models;

e Car-following simulation models;

What is needed is a method for suppressing instabilities



Smooth Flow Analysis
In the absence of instabilities:
e Safe separation — speed x reaction time: d = vT
e Density — inverse of length plus separation: p=1/( +d)
e Throughput — speed x density: ¢c =vp=v/(l +vT)
e Approaches inverse of reaction time: ¢ — 1/T

e E.g. T =1 sec — ¢ approaches 3600 vehicles per hour

e In practice, throughput is considerably lower
— because flow is not smooth



lllustrative Bilateral Control System
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Block Diagram of Bilateral Control System

5 |current speed
sensor
and driver input

2 |following distance | 3 |vehicle 1 |leading distance
and speed controller and speed
Sensors system Sensors

4 |forward motion
control
of vehicle




Time To Contact (time lapse sequence)
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Time To Contact (real world sequence)
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Problems to solve

e What is the business model?

e What sensors and algorithms? TTC + trinocular stereo?

e Full automation, “modulation” or merely advisory?

e Extend to mix of automated and legacy vehicles

e Extend to multiple lanes, exits and entrances etc.



Problems to solve

e What is the business model?

e What sensors and algorithms? TTC + trinocular stereo?

e Full automation, “modulation” or merely advisory?

e Extend to mix of automated and legacy vehicles

e Extend to multiple lanes, exits and entrances etc.

e Explore use of inter-vehicle communication for sensing

e ‘Optimize” the control scheme



	IEEE_ITS_13_Traffic_Flow_Instabilities.pdf
	IEEE_ITS_13_Traffic_Instabilities.pdf
	Traffic_Instabilities.pdf
	gain_less_than_one.pdf

	sample_instabilities_composite.pdf

	comparison_screenshot.pdf



