
1

6.001 Jeopardy

500

400

300

200

100

data

500500500500500500

400400400400400400

300300300300300300

200200200200200200

100100100100100100

not on
the finalterminologycomputing

theory
environment

modelevaluationscheme
expressions

Final Jeopardy

Scheme Expressions: 100

These are the two methods which may be
called on any object in the object-oriented
programming system from Project 4.

Scheme Expressions: 100

These are the two methods which may be
called on any object in the object-oriented
programming system from Project 4.

* What are IS-A and TYPE ?

back to contents

Scheme Expressions: 200

This is printed in response to the second
expression:

(define f
(lambda (/)
(lambda (a b)
(b / a))))

((f 6) 2 -)

Scheme Expressions: 200

This is printed in response to the second
expression:

(define f
(lambda (/)
(lambda (a b)
(b / a))))

((f 6) 2 -)

* What is 4?

back to contents

2

Scheme Expressions: 300

The usual name for the built-in Scheme
function computed by this procedure:

(define (what? p x)
(fold-right
(lambda (a b)
(cons (p a) b))

nil x))

Scheme Expressions: 300

The usual name for the built-in Scheme
function computed by this procedure:

(define (what? p x)
(fold-right
(lambda (a b)
(cons (p a) b))

nil x))

* What is map?

back to contents

Scheme Expressions: 400

If double is a procedure that takes
a procedure of one argument and
returns a procedure that applies the
original procedure twice, this is the
value returned by:

(((double (double double)) inc) 5)

Scheme Expressions: 400

If double is a procedure that takes
a procedure of one argument and
returns a procedure that applies the
original procedure twice, this is the
value returned by:

(((double (double double)) inc) 5)

* What is 21?

back to contents

Scheme Expressions: 500

This function of one argument, an infinite
stream, produces as output an infinite
stream whose values are the pair-wise
averages of the input stream. e.g.

(smooth <stream 1 3 6 2 ... >)
-> <stream 2 4.5 4 ... >

Scheme Expressions: 500

* What is

(define (smooth s)
(cons-stream

(/ (+ (stream-car s)
(stream-car (stream-cdr s)))

2)
(smooth (stream-cdr s)))) ?

back to contents

3

Data: 100

The number of cons cells in the following
data structure:

(list (cons (list 1 2) (list)) 3)

Data: 100

The number of cons cells in the following
data structure:

(list (cons (list 1 2) (list)) 3)

* What is 5?

back to contents

Data: 200

A mathematical description for the stream:

(define foo
(cons-stream 1

(add-streams
foo foo)))

Data: 200

A mathematical description for the stream:

(define foo
(cons-stream 1

(add-streams
foo foo)))

* What are the powers of two?

back to contents

Data: 300

It is the printed value of the last
expression:

(define x ‘(a b x))
(define y (list x x (list ‘x x)))
(set-cdr! (cdr y) (list (quote x)))
y

Data: 300

It is the printed value of the last
expression:

(define x ‘(a b x))
(define y (list x x (list ‘x x)))
(set-cdr! (cdr y) (list (quote x)))
y

* What is ((a b x) (a b x) x) ?

back to contents

4

Daily Double!

Data: 400

This scheme code (which doesn't use
quotation) would print out as:

((1 . 2) 3 . 4)

Data: 400

This scheme code (which doesn't use
quotation) would print out as:

((1 . 2) 3 . 4)

* What is
(cons (cons 1 2) (cons 3 4)) ?

back to contents

Data: 500

The scheme expression(s) needed to create
this data structure:

x:

Data: 500

The scheme expression(s) needed to create
this data structure:

* What is
(define x (list 1 2 3))
(set-car! x (cddr x))
(set-car! (cdr x) x)
(set-car! (cddr x) (cdr x))
(set-cdr! (cddr x) x) ?

x:

back to contents

Evaluation: 100

The value of the following expression:

(let ((a 3))
(let ((a 4)

(b a))
(list a b)))

5

Evaluation: 100

The value of the following expression:

(let ((a 3))
(let ((a 4)

(b a))
(list a b)))

* What is (4 3) ?

back to contents

Evaluation: 200

The number of times m-eval is invoked
when the following expression is entered
into the evaluator:

((lambda (x) (* x 2)) 3)

Evaluation: 200

The number of times m-eval is invoked
when the following expression is entered
into the evaluator:

((lambda (x) (* x 2)) 3)

* What is 7: combination, lambda,
3, (* x 2), *, x, 2 ?

back to contents

Evaluation: 300

Using this type of evaluation some
constructs (such as if, and, & or) would
not need to be special forms.

Evaluation: 300

Using this type of evaluation some
constructs (such as if, and, & or) would
not need to be special forms.

* What is normal order/lazy application?

back to contents

Evaluation: 400

The result of evaluating this expression:

(letrec
((fact (lambda (n)

(* n (fact (decr n)))))
(decr (lambda (x) (- x 1))))

(fact 4))

6

Evaluation: 400

The result of evaluating this expression:

(letrec
((fact (lambda (n)

(* n (fact (decr n)))))
(decr (lambda (x) (- x 1))))

(fact 4))

* What is an infinite loop?

back to contents

Evaluation: 500

The correct matching of the following
three expressions:

A: In applicative order...
B: In normal order without memoization...
C: In normal order with memoization...

...the arguments passed in to a combination...

1: ... are evaluated at most once.
2: ... are evaluated exactly once.
3: ... may be evaluated many times or

not at all.

Evaluation: 500

The correct matching of the following
three expressions:

* What is A-2, B-3, C-1?

back to contents

Environment Model: 100

If you program without these, the order of
evaluation is not important and the
substitution model is sufficient. Repeated
evaluation of sub-expressions may affect
performance, but not the resulting value.

Environment Model: 100

If you program without these, the order of
evaluation is not important and the
substitution model is sufficient. Repeated
evaluation of sub-expressions may affect
performance, but not the resulting value.

* What is a side effect?

back to contents

Environment Model: 200

The opposite of syntax, changing this may
affect how the environment model is drawn.

7

Environment Model: 200

The opposite of syntax, changing this may
affect how the environment model is drawn.

* What are the semantics of a language?

back to contents

Environment Model: 300

The environment diagram resulting from the
evaluation of this expression:

(define f ((lambda ()
(define x 10)
(lambda (y)
(+ x y)))))

Environment Model: 300

What is:

?

f:

p: y

b: (+ x y)

p: none

b: (define x 10)

(lambda (y)

(+ x y))

x: 10

back to contents

Environment Model: 400

Under dynamic scoping, the value of the
last expression below:

(define op square)
(define (foo op) (op a))
(define a 4)
(let ((a 9)

(op (lambda (x) x)))
(foo sqrt))

Environment Model: 400

Under dynamic scoping, the value of the
last expression below:

(define op square)
(define (foo op) (op a))
(define a 4)
(let ((a 9)

(op (lambda (x) x)))
(foo sqrt))

* What is 3?

back to contents

Environment Model: 500

This scheme expression results in the
following environment diagram:

foo:

p: none

b: x

p: none

b: (bar)

bar: x: 10

8

Environment Model: 500

* What is

(define foo
(let ((bar (let ((x 10))

(lambda () x))))
(lambda () (bar)))) ?

back to contents

Computing Theory: 100

The classic example of a non-computable
problem.

Computing Theory: 100

The classic example of a non-computable
problem.

* What is the halting problem?

back to contents

Daily Double!

Computing Theory: 200

This data structure allows constant time
expected query operations on large
databases of information.

Computing Theory: 200

This data structure allows constant time
expected query operations on large
databases of information.

* What is a hash table?

back to contents

9

Computing Theory: 300

The order of growth in space and the order
of growth in time of this function:

(define (sort lst)
(define (insert elt lst)
(if (or (null? lst)(< elt (car lst)))

(cons elt lst)
(cons (car lst) (insert elt (cdr lst)))))

(define (sort-iter answer rest)
(if (null? rest)

answer
(sort-iter (insert (car rest) answer)

(cdr rest))))
(sort-iter '() lst))

Computing Theory: 300

The order of growth in space and the order
of growth in time of this function:

* What is O(n) space and O(n2) time?

back to contents

Computing Theory: 400

The type of this Scheme expression:

(define (swap-args f)
(lambda (x y) (f y x)))

Computing Theory: 400

The type of this Scheme expression:

(define (swap-args f)
(lambda (x y) (f y x)))

* What is
swap-args: (a,b->c) -> (b,a->c)?

back to contents

Computing Theory: 500

The order of growth in time and the order
of growth in space of this function:

(define (h n)
(if (= n 0)

1
(+ (h (quotient n 2))

(h (quotient n 2)))))

Computing Theory: 500

The order of growth in time and the order
of growth in space of this function:

(define (h n)
(if (= n 0)

1
(+ (h (quotient n 2))

(h (quotient n 2)))))

* What is O(n) time and O(log n) space?

back to contents

10

Terminology: 100

Any procedure that takes a procedure as
an argument or returns a procedure as a
value.

Terminology: 100

Any procedure that takes a procedure as
an argument or returns a procedure as a
value.

* What is a higher-order procedure?

back to contents

Terminology: 200

This type of recursion does not require use
of the stack.

Terminology: 200

This type of recursion does not require use
of the stack.

* What is tail recursion?

back to contents

Terminology: 300

Shorthand for "the contents of the address
portion of the register".

Terminology: 300

Shorthand for "the contents of the address
portion of the register".

* What is car?

back to contents

11

Terminology: 400

This object-oriented programming technique
is often the most concise way to extend
the interfaces of several types, although it
can be challenging to correctly specify the
behavior when names overlap.

Terminology: 400

This object-oriented programming technique
is often the most concise way to extend
the interfaces of several types, although it
can be challenging to correctly specify the
behavior when names overlap.

* What is multiple inheritance?

back to contents

Terminology: 500

The problem with the following fragment
of code:

(define make-vector cons)
(define vector-x car)
(define vector-y cdr)
(define v1 (make-vector 2 3))
(define (magnitude v)

(let ((cars (* (car vec) (car vec)))
(cdrs (* (cdr vec) (cdr vec))))

(sqrt (+ cars cdrs))))

Terminology: 500

The problem with the following fragment
of code:

* What is an abstraction violation?

back to contents

Not on the 6.001 Final: 100

The inner door combo to get into the
6.001 lab.

Not on the 6.001 Final: 100

The inner door combo to get into the
6.001 lab.

* What is 21634*?

back to contents

12

Not on the 6.001 Final: 200

The hero of project 4 and his institution.

Not on the 6.001 Final: 200

The hero of project 4 and his institution.

* Who is Hairy Cdr from the Wizard’s
Institute of Technocracy?

back to contents

Not on the 6.001 Final: 300

These guys make origami and download
music from Napster and claim it’s research.

Not on the 6.001 Final: 300

These guys make origami and download
music from Napster and claim it’s research.

* Who are Professors Erik Demaine
and Frans Kaashoek?

back to contents

Not on the 6.001 Final: 400

The architect for our crazy new computer
science building.

Not on the 6.001 Final: 400

The architect for our crazy new computer
science building.

* Who is Frank O. Gehry?

back to contents

13

Not on the 6.001 Final: 500 Not on the 6.001 Final: 500

* Who is Professor Eric Grimson,
the 6.001 online lecturer? back to contents

Final Jeopardy

Category:

Capturing local state

Final Jeopardy

This function takes in one argument and
returns #t if the argument has the same
value as on the previous call to the function
and #f otherwise. The first call to the
function returns #f.

Final Jeopardy

* What is

(define previous
(let ((last #f)

(initialized #f))
(lambda (x)

(if (and initialized (equal? x last))
#t
(begin (set! last x)

(set! initialized #t)

#f))))) ?

back to contents

