
Recitation 19: Michael Collins

(1) Say that we evaluate the following statement in the evaluator:

(m-eval ’(define x 6) the-global-environment)

what is the return value in this case?

How would you alter the code so that define statements of the form (define name exp) always
returned the value of the exp, rather than some undefined value?

(2) Create code to process the special forms and by extending the cond in m-eval and writing the
procedure eval-and.

(define (and? exp) (tagged-list? exp ’and))

(cond

...

((and? exp) (eval-and exp env))

...

)

(define (eval-and exp env)

(define (iter e)

(if (null? e)

#t

(if (m-eval (car e) env)

(iter (cdr e))

#f)))

(iter (cdr exp)))



(3) We’ll now create code that adds and to the evaluator, using syntactic sugar. You should write the
code that converts an and statement to a statement involving if, then passes that to the evaluator.

First, say we have the statement

(and (> x 4) (< y 5) (> z 6))

What would be an equivalent if statement?
(Hint: you can use an if statement combined with an and statement that only has two clauses.)

(if (> x 4) (and (< y 5) (> z 6)) #f)

Now write the code and->if that performs this conversion, for example
(and->if ’(and (> x 4) (< y 5) (> z 6))) should produce the correct if statement. Note that
your code should handle the expression (and), which evaluates to #t.

(define (and->if exp)

(list

’if

(cadr exp)

(cons ’and (cddr exp))

#f)

How would you define eval-and to make use of and->if?

(define (eval-and exp env)

(if (null? (cdr exp))

#t

(m-eval (and->if exp) env)))


