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Abstract

We present a method for designing truss structures, a common
and complex category of buildings, using non-linear optimization.
Truss structures are ubiquitous in the industrialized world, appear-
ing as bridges, towers, roof supports and building exoskeletons, yet
are complex enough that modeling them by hand is time consuming
and tedious. We represent trusses as a set of rigid bars connected
by pin joints, which may change location during optimization. By
including the location of the joints as well as the strength of individ-
ual beams in our design variables, we can simultaneously optimize
the geometry and the mass of structures. We present the details of
our technique together with examples illustrating its use, including
comparisons with real structures.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; G.1.6
[Numerical Analysis]: Optimization—Nonlinear programming;
G.1.6 [Numerical Analysis]: Optimization—Constrained optimiza-
tion

Keywords: Physically based modeling, truss structures, con-
strained optimization, nonlinear optimization

1 Introduction

A recurring challenge in the field of computer graphics is the cre-
ation of realistic models of complex man-made structures. The
standard solution to this problem is to build these models by hand,
but this approach is time consuming and, where reference images
are not available, can be difficult to reconcile with a demand for
visual realism. Our paper presents a method, based on practices
in the field of structural engineering, to quickly create novel and
physically realistic truss structures such as bridges and towers, us-
ing simple optimization techniques and a minimum of user effort.

“Truss structures” is a broad category of man-made structures,
including bridges (Figure 1), water towers, cranes, roof support
trusses (Figure 10), building exoskeletons (Figure 2), and tempo-
rary construction frameworks. Trusses derive their utility and dis-
tinctive look from their simple construction: rod elements (beams)
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Figure 1: A cantilever bridge generated by our software, compared
with the Homestead bridge in Pittsburgh, Pennsylvania.

which exert only axial forces, connected concentrically with welded
or bolted joints.

These utilitarian structures are ubiquitous in the industrialized
world and can be extremely complex and thus difficult to model.
For example, the Eiffel Tower, perhaps the most famous truss struc-
ture in the world, contains over 15,000 girders connected at over
30,000 points [Harriss 1975] and even simpler structures, such as
railroad bridges, routinely contain hundreds of members of varying
lengths. Consequently, modeling of these structures by hand can be
difficult and tedious, and an automated method of generating them
is desirable.

1.1 Background

Very little has been published in the graphics literature on the
problem of the automatic generation of man-made structures.
While significant and successful work has been done in recre-
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ating natural structures such as plants, the trunks and roots of
trees, and corals and sponges (summarized in the review paper
by Prusinkiewicz [1993]), these studies emphasize visual plausi-
bility and morphogenetic realism over structural optimality. Parish
and Müller recently described a system to generate cityscapes us-
ing L-systems [Parish and M̈uller 2001], but this research did not
address the issue of generating individual buildings for particular
purposes or optimality conditons. Computer-aided analysis of sim-
ple truss structures, coupled with graphic displays of deflection or
changing stresses, has been used for educational purposes within
the structural engineering [MacCallum and Hanna 1997] and archi-
tecture [Piccolotto and Rio 1995] communities, but these systems
are not intended for the design of optimal structures.

In the field of structural engineering, the use of numerical opti-
mization techniques to aid design dates back to at least 1956 when
linear programming was used to optimize frame structures based
on plastic design theory [Heyman 1956]. Since then, extensive
research has been done in the field of “structural synthesis,” as
it is sometimes called, although its penetration into industry has
been limited [Topping 1983; Haftka and Grandhi 1986]. Tech-
niques in the structural engineering literature generally fall into
three broad categories: geometry optimization, topology optimiza-
tion, and cross-sectional optimization (also known as “size opti-
mization”) [Kirsch 1989].

Cross-sectional optimization, the most heavily researched of
these three techniques, assumes a fixed topology and geometry (the
number of beams and joints, their connectivity, and locations) and
finds the shape of the beams that will best, either in terms of mass or
stiffness, support a given set of loads. The parameters of the struc-
ture that are changed during optimization, called the design vari-
ables, are properties that affect the cross-sectional area of a beam
such as, for the common case of tubular elements, the radius and
thickness of each tube. An example of this technique in practice is
the design of the beams that are used to build utility transmission
towers [Vanderplaats and Moses 1977], where savings of only a few
hundred dollars in material costs, when multiplied by the thousands
of towers needed for a new transmission route, can be a substantial
gain.

Topology optimization addresses the issues that size optimiza-
tion ignores; it is concerned with the number and connectivity of the
beams and joints, rather than their individual shape. Because struc-
ture topology is most easily represented by discrete variables, nu-
merical techniques used for topology optimization are quite differ-
ent from those used for continuous size and geometry optimization
problems. Prior approaches to this problem have included genetic
programming [Chapman et al. 1993], simulated annealing [Reddy
and Cagan 1995], and “ground structure methods” wherein a highly
connected grid of pin-joints is optimized by removing members
based on stress limits [Hemp 1973; Pederson 1992]. A review of
these discrete parameter optimization problems in structural engi-
neering can be found in Kirsch [1989].

The third category of structural optimization, geometry opti-
mization, lies between the extremes of size and topology optimiza-
tion. The goal of geometry optimization is to refine the position,
strength and, to some extent, the topology of a truss structure. Be-
cause these problems are highly non-linear, geometry optimization
does not have as lengthy a history as size and topology optimiza-
tion [Topping 1983]. A common approach, called “multi-level de-
sign,” frames the problem as an iterative process wherein the con-
tinuous design variables are optimized in one pass, and then the
topology is changed on a second pass [Spillers 1975]. It is from
this literature that we draw the inspiration for our work.

For civil and mechanical engineers, the ultimate goal of struc-
tural optimization is a highly accurate modeling of reality. Thus,
common to all these techniques, no matter how different their im-
plementations, is a desire for strict physical accuracy. In the field

Figure 2: A cooling tower at a steel mill created by our software
compared with an existing tower. From left to right: a real cooling
tower, our synthesized tower, and the same model with the obstacle
constraints shown.

of computer graphics, however, we are often just as concerned with
the speed of a solution and its visual impact as with its accuracy.
For example, although important to structural engineers, optimiz-
ing the cross-sections of the members used to build a bridge would
be considered wasted effort in the typical computer graphics appli-
cation, as the subtle differences between different shapes of beams
are hardly noticeable from cinematic distances. Thus, rather than
being concerned only with our model’s approximation to reality,
we are interested in optimizing the geometry and topology of truss
structures with the goals of speed, user control and physical real-
ism.

2 Representing Truss Structures

Truss structures consist of rigid beams, pin-connected at joints, ex-
erting axial forces only. This simple form allows us to represent
trusses as a connected set of three-dimensional particles where ev-
ery beam has exactly two end-points, and joints can accommodate
any number of beams. In our model, the pin-joints are classified
into three types: free joints, loads, and anchors.Anchorsare points
where beams are joined to the earth, and thus are always in force
balance.Loadsare points at which external loads are being applied,
e.g. the weight of vehicles on a bridge. Lastly,free jointsare pin
joints where beams connect but which are not in contact with the
earth and have no external loads.

2.1 Constructing the Model

Before solving for an optimal truss structure, we must have a clear
idea of what purpose we want the structure to serve. For example, a
bridge must support some minimum weight along its span, the Eif-
fel Tower must support observation decks, and roof trusses need to
support the roofing material. We model these support requirements
as loads, which are placed by the user. Although most structural
loads are continuous (e.g. a planar roadbed), appoximating loading
as a set of discrete load-points is standard practice within the civil
and structural engineering disciplines [Hibbeler 1998].

In addition to having external loads, every truss structure must
also be supported at one or more points by the ground. For real
structures, the location of these anchors is influenced by topogra-
phy, geology, and the economics of a particular site, but for our
modeling purposes their positions are specified by the user.

After placement of the anchors and loads, a rich set of free joints
is automatically added and highly connected to all three sets of
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Figure 3: From top to bottom: the data specified by the user (loads
are depicted as green spheres and anchors as white cones); the free
joints added by the software above the loads; the automatically gen-
erated initial connections (beams). This structure was the initial
guess used to create the bridge shown in Figure 4.

Figure 4: A typical railroad bridge and similar truss bridge designed
by our software.

joints (see Figure 3). Specifically, our software generates free joints
on a regular three-dimensional grid defined by the locations and
spacings of the load and anchor points. Currently, our user inter-
face asks the user to provide the number of vertical “layers” of free
joints and whether these joints are initially placed above or below
the loads (for example, they are placed above the road in Figure 3).
In addition to this rectilinear placement, we also experimented with
random placement of the free joints, distributing them in a spherical
or cubic volume surrounding the loads and anchors. We found that
random placement did not affect the quality of the final results, but
could greatly increase the time needed for convergence.

After generating the free joints, the software automatically
makes connections between all three sets of joints, usually connect-
ing each joint to its nearest neighbors using a simpleO(N2) algo-
rithm. Note that during optimization, beams may change strength
and position, but new beams cannot be added. In this sense, we are
using a ground structure technique, as described in Hemp [1973].
The initial structure does not need to be practical or even stable; it
is merely used as a starting point for the optimization problem.

3 Optimizing Truss Structures

The most important property of any structure, truss or not, is that it
be stable; i.e. not fall down. For a truss structure to be considered
stable, none of the joints can be out of force balance. Because our
model consists of rigid beams exerting axial forces only, we can
describe the forces acting on any jointi as:

~Fi(
~
λ ) =~gmi +

Bi

∑
j=1

~l j

‖~l j‖
λ j (1)

whereλ j is the workless force being exerted by beamj, ~λ is the
vector of these forces for all beams,~g is the gravity vector,mi is the
mass of jointi, Bi is the number of beams attached to jointi, and
~l j is the vector pointing from one end of beamj to the other (the
direction of this vector is not important as long as it is consistent).

Given an objective functionG (usually the total mass, but per-
haps containing other terms), we can optimize a truss structure sub-
ject to stability constraints by solving the following problem:

min G(~q)
s.t. ~Fi(~q) = 0 i = 1...NJ

(2)

whereNJ is the number of joints and~q is the vector of design vari-
ables. If we wish to do simple cross-sectional optimization, this
design vector is merely~λ . If we wish to solve the more interesting
geometry optimization problem, we also include the positions of all
the free joints in~q (see Section 3.2 for more details).

In order to avoid physically meaningless solutions, we should
also constrain the maximum force that any member can exert:

‖λ j‖ ≤ λmax j = 1...NB (3)

whereNB is the total number of beams. We constrain the absolute
value ofλ j because the sign of the workless force will be positive
when the beam is under compression and negative when the beam
is under tension.

In equation 1, we approximate the mass of a jointmi as half the
masses of the beams that connect to it plus, in the case of load joints,
whatever external loads may be applied at that joint. Although in
reality the mass of a truss structure (exclusive of the externally ap-
plied loads) is in its beams rather than its pin joints, this “lumping
approximation” is standard practice in structural engineering and
is considered valid as long as the overall structure is significantly
larger than any component member [Hibbeler 1998]. This assump-
tion reduces the number of force balance constraints by a factor of
two or more, depending on the connectivity of the structure, as well
as allowing us to model members as ideal rigid beams.

3.1 Mass Functions

For a given structural material, the mass of a beam is a function
of its shape (length and cross-section). Under tension, the required
cross-sectional area of a truss member scales linearly with the force
the member exerts [Popov 1998]. Therefore, the volume of a beam
under tension will be a linear function of length and force and, as-
suming a constant material density, so will the massmT :

mT =−kTλ j‖~l j‖ (4)

wherekT is a scaling factor determined by the density and tensile
strength of the material being modeled,‖~l j‖ is the length of beam
j, andλ j is the workless force it exerts (note thatλ j here will be
negative because the beam is in tension).
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Figure 5: A depiction of Euler buckling under a compressive load.

Under compression, long slender beams are subject to a mode of
failure known as Euler buckling, wherein compressive forces can
cause a beam to bend out of true and ultimately fail (see Figure 5).
The maximum axial compressive force (FE) that can be supported
by a beam before it undergoes Euler buckling is governed by the
following equation:

FE =
π

2EI

‖~l j‖2
=

π
2Er2A

‖~l j‖2
(5)

where‖~l j‖ is the length of beamj, I is its area moment of inertia,
andA is its cross-sectional area.E is the Young’s Modulus of the
material being modeled andr is the radius of gyration, which de-
scribes the way in which the area of a cross-section is distributed
around its centroidal axis.

Because the cross-sectional area of a member is proportional to
the square ofr, we can rewrite equation 5 in terms ofA andr as

A2 ∝
FE‖~l j‖2

π
2E

(6)

Because we wish to use beams with minimum mass,λ j (for a given
beam j) will be equal toFE and our approximation of the mass
function under compression is

mC = ρA j‖~l j‖= kC

√
λ j‖~l j‖

2 (7)

whereρ is the density of the material,‖~l j‖ is the length of beam
j, andλ j is the workless force being exerted by the beam.kC is a
scaling factor determined byρ and the constants in equation 6.

Assuming the structures are made of steel I-beams, and using
units of meters and kilograms, we use the values of 5×10−6 for kT
and 1.5×10−5 for kC in equations 4 and 7 respectively. Because we
plan to do continuous optimization, we wish to avoid any disconti-
nuities in the mass function and thus we use a nonlinear blending
function betweenmT andmC centered aroundλ j = 0 to smooth the
transition.

3.2 Cross-Sectional and Geometry Optimization

Assuming that the objective functionG(~q) in equation 2 is merely
a sum of the masses of the joints, and that the vector of design
variables~q consists only of~λ , we can use the equations developed
in the last section to perform a simple version of size optimization.
Solving this non-linear, constrained optimization problem will give
us, for a fixed geometry, the minimum mass structure that is strong
enough to support its own weight in addition to the user-specified
external loads.

We are interested, however, in the more useful geometry opti-
mization problem, where both the strengths of the beams and the
geometry of the overall structure can be changed. To allow the si-
multaneous optimization of the sizing and geometry variables, we
add the positions of the free joints to the vector of design variables,
~q. We do not add the anchor or load positions to the design vector
because the locations of these two types of joints are set by the user.

Adding these variables to the optimization problem does not
change the form of the equations we have derived, but for numer-
ical stability we now also constrain the lengths of all the beams to
be above some small value:

min G(~q)
s.t. ~Fi(~q) = 0 i = 1...NJ

‖λ j‖ ≤ λmax j = 1...NB

‖~l j‖ ≥ lmin j = 1...NB

(8)

wherelmin was set to 0.1 meters in the examples reported here. Be-
cause the optimization algorithm we use (sequential quadratic pro-
gramming, described in detail in Gill [1981]) handles inequality
constraints efficiently, these length constraints add minimal cost to
the solution of the problem.

Similar to the methods discussed in Pederson [1992], we use
a multilevel design algorithm consisting of two steps. First, we
solve the optimization problem described in equation 8. Having
found a feasible (if not yet globally optimal) structure, the system
then merges any pairs of joints that are connected to one another
by a beam that is at the minimum allowable length, because these
two joints are now essentially operating as one. The system could
also, if we wanted, eliminate beams that are exerting little force
(i.e. those with small‖λ j‖), as they are not actively helping to sup-
port the loads. However, we prefer to leave such “useless” beams
in the model so as to leave open more topology options for future
iterations.

After this topology-cleaning step, the results are examined by
the user and, if they are not satisfactory for either mass or aesthetic
reasons, the optimization is run again using this new structure as
the starting point. In practice, we have found that a single iteration
almost always gave us the structures we desired, and never did it
take more than three or four iterations of the complete cycle to yield
an appealing final result.

3.3 Objective and Constraint Functions

Although the procedure outlined above generates good results,
there are many situations in which we want a more sophisticated
modeling of the physics or more control over the final results. Con-
strained optimization techniques allow us to add intuitive “control
knobs” to the system very easily.

For example, in addition to constraints on the minimum length
of beams, we can also impose constraints on the maximum length.
These constraints imitate the real-world difficulty of manufacturing
and shipping long beams. (Due to state regulations on truck flat-
beds, girders over 48 feet are not easily shipped in North Amer-
ica.) Other changes or additions we have made to the objective and
constraint functions include: minimizing the total length of beams
(rather than mass), preferentially using tensile members (cables)
over compressive members, and symmetry constraints, which cou-
ple the position of certain joints to each other in order to derive
symmetric forms.

Another particularly useful class of constraint functions are “ob-
stacle avoidance” constraints, which forbid the placement of joints
or beams within certain volumes. In this paper, we have used two
different types of obstacle constraints: one-sided planar and spheri-
cal constraints. One-sided planar constraints are used to keep joints
and beams in some particular half-volume of space; for example to
keep the truss-work below the deck of the bridge shown in Figure
7. Implementation of this constraint is simple: given a point on the
plane~r and a normal~n pointing to the volume that joints are al-
lowed to be in, we constrain the distance from the free joints~pi to
this plane withNJ new constraints:

(~pi −~r) ·~n≥ 0 i = 1...NJ (9)
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Figure 6: From left to right: initial structure, tripod solution, derrick
solution.

Similarly, to keep the beams and joints outside of a spherical vol-
ume, we add a constraint on each beam that the distance between
the center of this sphere and the beam (a line segment) must be be
greater than or equal to some radiusR. This distance formula may
be found in geometry textbooks, such as Spanier [1987]. For opti-
mization purposes, we approximated the gradients of this function
with a finite-difference method.

The primary use of obstacle constraints is to allow the user to
“sculpt” the final structure intuitively while preserving realism, but
they can also serve to produce novel structures by creating local
optima. Figure 6 shows, from left to right, an initial structure, in-
feasible because it violates the obstacle avoidance constraint, and
two designs produced as solutions from slightly different (random)
initial guesses for~λ . In each image, the red sphere is the volume
to be avoided, the green sphere at the top is the load that must be
supported, and the cylinders are the beams, colored cyan or tan de-
pending on whether they are in compression or tension. The an-
chors are located at the three points where the structure touches the
ground. The middle, tripod solution hangs the mass on a tensile
member (a cable) from the apex of a pyramid, and the derrick so-
lution on the right supports the mass in a much more complex way
(this solution has a mass about 3 times that of the tripod). Both of
these solutions are valid and both exist as real designs for simple
winches and cranes. Although it is a general concern that nonlinear
optimizations can become trapped in sub-optimal local solutions, in
our experience this has not been a problem. When, as in the above
example, the system produces a locally optimal design, we have
found that a few additional iterations of our algorithm are sufficient
to find a much better optimum.

4 Results

We have described a simple, physically motivated model for the
rapid design and optimization of models of truss structures. The
following examples illustrate the output of this work and demon-
strate the realistic and novel results that can be generated.

4.1 Bridges

Some of the most frequently seen truss structures are bridges.
Strong and easy to build, truss bridges appear in a variety of shapes
and sizes, depending on their use. A common type of truss bridge,
called a Warren truss, is shown in Figure 4 with a photo of a real
railroad bridge. The volume above the deck (the surface along
which vehicles pass) was kept clear in this example by using con-
straints to limit the movement of the free joints to vertical planes.

The initial guess to generate this bridge was created automat-
ically from thirty user-specified points (the loads and anchors),
shown in Figure 3. From this description of the problem, the system
automatically added 22 free joints (one above each load point) and
connected each of these to their eight nearest neighbors, resulting in
a problem with 228 variables (22 free points and 163 beams). The

Figure 7: A bridge with all trusswork underneath the deck.

Figure 8: A perspective and side view of a through-deck cantilever
bridge.

final bridge design consists of 48 joints and 144 beams, some of the
particles and members having merged or been eliminated during the
topology-cleaning step. Similar procedures were used to generate
the initial guesses for all of our results.

Using this same initial structure, but with constraints that no ma-
terial may be placed above the deck, we generated a second bridge,
shown in Figure 7. Note that the trusswork under the deck has con-
verged to a single, thick spine. This spine is more conservative of
materials than the rectilinear trusswork in Figure 4, but in the earlier
case the constraints to keep the joints in vertical planes prevented it
from arriving at this solution.

Another type of bridge, a cantilever truss, is shown in Figure 1.
As with the bridge shown in Figure 7, the cantilever bridge was
constrained to have no material above the deck, and the joints were
further constrained to move in vertical planes only. However, the
addition of a third set of anchor joints in the middle of the span has
significantly influenced the final design of this problem. This bridge
is shown with a real bridge of the same design: the Homestead High
Level Bridge in Pittsburgh, Pennsylvania.

The bridge in Figure 8 was generated with the same starting point
and the same objective function as that in Figure 1, but without
the “clear deck” and vertical-plane constraints. Removal of these
constraints has allowed the structure to converge to a significantly
different solution, called a through-deck geometry.

4.2 Eiffel Tower

A tall tower, similar to the upper two-thirds of the Eiffel Tower
is shown in Figure 9. This tower was optimized from an initial
rectilinear set of joints and beams, automatically generated from
eight user-specified points (the four anchor sites and a four loads
at the top). We concentrated on the top two-thirds of the Tower
because the design of the bottom third is dominated by aesthetic
demands. Similarly, the observation decks, also ornamental, were
not sythesized.
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Figure 9: Our trusswork tower, compared with a detail of the Eiffel
Tower. Because they are ornamental and not structural, the obser-
vation decks are not included in our tower.

Figure 10: Three types of roof trusses: from left to right, cambered
Fink, composite Warren, and Scissors. Illustrations of real trusses
are shown at the top of each column. The lower two trusses in each
column were generated with our software.

4.3 Roof Trusses

The frameworks used to support the roofs of buildings are perhaps
the most common truss constructions. We have generated three dif-
ferent types of roof trusses for two different roof pitches. In Fig-
ure 10 we show each category of truss (cambered Fink, composite
Warren, and Scissors) in its own column, at the top of which is an
illustration of a real example. For a given pitch, all three types of
trusses were generated from the the same initial geometry. The vari-
ation in the results is due to different objective functions: total mass
(cambered Fink and Scissors) and total length of beams (composite
Warren), and different roof mass (the Scissors trusses have a roof
that weighs twice as much as the other two types of trusses).

4.4 Michell Truss

The Michell Truss is a well-known minimum-weight planar truss
designed to support a single load with anchors placed on a circle in
the same plane Although impractical because of the varying lengths
and curved beams needed for an optimal solution, the Michell truss
has been a topic of study and a standard problem for structural
optimization work for nearly a century. We have reproduced the
Michell truss with our system, starting from a grid-like initial guess
and arriving at a solution very close to the analytical optimum (Fig-
ure 11).

4.5 Timing Information

Sequential quadratic programming, relying as it does on the itera-
tive solution of quadratic sub-problems, is a robust and fast method
for optimizing non-linear equations. Even with complicated prob-
lems containing thousands of variables and non-linear constraints
the total time to optimize any of the above examples from auto-
generated initial guesses varied between tens of seconds and less
than fifteen minutes on a 275MHz R10000 SGI Octane. Specifying
the anchor and load points and the locations of obstacles (if any)
rarely took more than a few minutes and with better user-interface
design this time could be significantly reduced. For comparison,
we timed an expert user of Maya as he constructed duplicates of
the cooling tower (Figure 2), the Warren truss bridge (Figure 4)
and the tower shown in Figure 9 from source photographs of real
structures. We found that modeling these structures at a comparable
level of detail by hand took an hour for the cooling tower, an hour
and a half for the bridge and almost three hours for the Eiffel Tower.
Although informal, this experiment showed that our method has the
potential to speed up the construction of models of truss structures
enormously, while simultaneously guaranteeing physical realism.

5 Summary and Discussion

We have described a system for representing and optimizing
trusses, a common and visually complex category of man-made
structures. By representing the joints of the truss as movable points,
and the links between them as scalable beams, we have framed the
design as a non-linear optimization problem, which allows the use
of powerful numerical techniques. Furthermore, by altering the
mass functions of the beams, the objective function, and the con-
straints, we can alter the design process and easily generate a vari-
ety of interesting structures.

Other than the location of anchors and loads, the factor that we
found to have the largest effect on the final results was the use of
obstacle avoidance constraints. Placement of these constraints is a
powerful way of encouraging the production of certain shapes, such
as the volume inside a cooling tower or the clear traffic deck on a
railroad bridge.

Not surprisingly, we also found that the number of free joints
added during the initial model construction could affect the look of
the final structure. However, this effect was largely one of increas-
ing the detail of the truss-work, rather than fundamentally chang-
ing the final shape. The initial positions of the free joints, however,
made little difference to the final designs, although they could affect
the amount of time required for the optimization. In cases where the
initial positions did make a difference, it was generally the result of
constraints (such as obstacle avoidance) creating a “barrier” to the
movement of free joints during optimization and thus creating local
minima. In our experience, however, a few additional iterations of
the algorithm were sufficient to get out of these local minima and
find a global solution.

We also found that beyond some minimum number of beams per
joint (three or four), additional connections to more distant joints
had a negligible effect on the final designs. We attribute this lack
of impact to two factors. First, because we are minimizing the to-
tal mass of the structure (or occasionally only the total length of
all members), shorter beams connected to closer joints will be used
more readily than longer ones, especially if they are under compres-
sion. Secondly, by allowing unused beams to “fade away” as the
force they exert drops to zero, initial structures with many beams
per joint can become equivalent to structures with fewer beams per
joint, allowing both more and less complex initial structures to con-
verge to the same answer.

Although successful at capturing the geometric and topological
complexity of truss structures, our work does not account for all
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Figure 11: From left to right: The initial structure from which we began the optimization, our final design, and an optimal Michell truss after
an illustration in Michell [1904]. The red sphere on the left of each image is an obstacle (on the surface of which are the anchors), and the
green sphere on the right is the load which must be supported. Gravity points down.

the details of true truss design. For example, a better objective
function would calculate the actual cost of construction, including
variables such as connection costs (the cost to attach beams to a
joint) and the cost of anchors, which varies depending on terrain
and the force they must transmit to the ground. Nor does our model
explicitly include stress limits in the materials being modeled (al-
though the constantskT and kC in equations 4 and 7 are an im-
plicit approximation). Similarly, a more complex column formula
than the simplified Euler buckling formula, such as those described
in Popov[1998], might capture more nuances of real design. True
structural engineering must also take into account an envelope of
possible load forces acting on a structure, not a single set as we
have implemented. In each of these cases, our approximations were
made not for technical reasons (for example, load envelopes could
be handled with multi-objective optimization techniques, and stress
limits with more inequality constraints), but rather because the vi-
sual detail they add is not commensurate with the added complexity
and expense of the solution.

Eventually, we would like to be able to include more abstract
aesthetic criteria in the objective function. Our current system in-
corporates the concepts of minimal mass and symmetry (via con-
straints), but many elements of compelling design are based on less
easily quantifiable concepts such as “harmony,” the visual weight
of a structure, and use of familiar geometric forms. Because our
technique is fast enough for user guidance, implementing even a
crude approximation to these qualitative architectural ideals would
allow users more flexibility in design and the ability to create more
imaginative structures while still guaranteeing their physical real-
ism.
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