
A Two-Stage Bayesian Network Approach for
Robust Hand Trajectory Classification

Frank Dittrich, Stephan Puls and Heinz Woern

Institute for Process Control and Robotics (IPR)
Karlsruher Institute of Technology (KIT)

76133 Karlsruhe, Germany
{frank.dittrich, stephan.puls, woern}@kit.edu

Abstract—In this paper, a hand gesture based approach is
presented for the unidirectional information transfer from the
human worker to the machine worker, designed for industrial
applications. In order to allow high variance in respect of the
location and orientation of the user relative to the RGB-D sensor,
no detailed information about the finger setup is processed
for the classification. For the recognition of various gestures,
3D hand trajectories are extracted and injected into a two-
stage probabilistic inference mechanism. In our approach, we
use Hidden Markov Models to optimize the classification rate
for intended gestures, and a Bayesian Network for the robust
elimination of unintended gestures. We show how empirical and
heuristic information about the stochastic process are combined
and used for the probabilistic modeling, in order to improve
the overall robustness of the classification. The evaluation of
our approached showed that the two-stage scheme allows for
a directed rejection strategy on the basis of heuristic driven
restrictions, without the loss of classification performance.

I. INTRODUCTION

The here described approach for unidirectional human robot
communication is applied in research scenarios related to safe
human robot cooperation in the industrial domain. Here, a
modular cognitive system provides information about activities
and work processes in the workspace, based on the analysis
of RGB-D sequences from a multi-sensor-setup. For the coop-
eration process, certain requirements are imposed, in order to
enable the design of processes where the human worker can
interact with the robot in a natural and intuitive way. Mainly,
these requirements are the shared workspace of human and
robot, with no spatial or temporal separation, and the use of
the human body for interaction and communication.

For the first part, certain measures must be taken in order to
ensure the safety of the human worker during the cooperation
process. Details about these measures and the overall Safe
Human Robot Collaboration (SHRC) system can be found in
Section IV.

The here presented approach deals with the unidirectional
communication as part of the natural and intuitive human robot
interaction, using the human body as the input device.

A. Basic Concept

For the before mentioned cooperation scenarios, two major
interaction classes were determined, namely the command
gestures for the input of commands and states, and the

movement gestures for the positioning of the robot. In order
to communicate commands and states to the robot, various,
sometimes numerous gestures have to be learned not only
by the SHRC system, but also by the user. Therefore it is
important, that they are easy to describe and easy to remember.
Also for the robustness of the gesture classification, these
body gestures have to be discriminative amongst each other.
Considering that this approach is applied in an industrial
context with rather large workspaces, it is also required that
the gestures can be executed with one hand or arm, and with
high variability in matters of position and orientation.

Fig. 1: A circular trajectory of the left hand in the 3D space,
describes a circle on the 2D plane of the upper body.

To meet the demands, we use the concept of a virtual
drawing board. Here, the user has to imagine a plane right
in front of him and parallel to the upper body, where he
can draw various signs with one hand. The hand is hereby
represented by one point in the 3D space, allowing for a high
variability in respect to the position and orientation of the user
relative to the RGB-D sensor, since no additional information
about the finger setup is needed. For the classification of
various symbols, the 2D hand trajectory is examined (Fig. 1).
Therefore, the gestures can be described to the user via simple
2D drawings (Fig. 2), which are easy to memorize because of
the inherent ability and training of humans to use 2D symbols
for handwriting.

For the robust gesture recognition, two types of probabilistic
models are used to infer from data in the 2D plane and 3D
space, in a two-stage decision process. In the first step the
probabilistic evaluation of the 2D trajectories is conducted
by Hidden Markov Models (HMMs), which showed good
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Fig. 2: Visualization of distinct hand and respectively com-
mand gestures.

results here and in earlier applications of on-line handwrit-
ing recognition. In the second step, a Bayesian network is
deployed for the robust classification of intentionally executed
gestures by the user, and the elimination of false detections of
unintended gestures. For modeling and training, both empirical
and heuristic information are used.

B. Related Work

Gestures are part of the nonverbal communication between
humans. Figurative motions of certain body parts are used to
clarify assertions or can be used as main form of commu-
nication [7]. Consequently, gestures are actions which have
assigned denotation.

The recognition of spontaneously occuring gestures was
already investigated by Eickerler and Rigoll in 1998 [3].
Differences of images of a grey-scale camera were analyzed
and changing regions were identified. Thus, the gesturing
person had to stand still while only moving gesture related
body parts.

In [2], skin color detection is used to extract hand motions.
Based on HMMs, these motions are classified and gestures
identified. The gestures are used to command a mobile robot.
A similar approach is used in [4], which detects one hand
only for recognition of air-written alpha-numerical signs.
The recognition of hand signs is investigated in [1]. In that
context, the relationship between face and hands is important.
Due to the fact that sign language is similarly expressive
as spoken languages resultung ambiguities and complexity
hinder the simple and intuitive interaction between humans
and machines. Also, these approaches have in common, that
the interaction space in which human movement is allowed is
very restrictive, usually attributed to the used camera setups.

Progress in the entertainment electronics has recently
yielded in widely available 3D sensing camera systems, e.g.
Microsoft Kinect or ASUS Xtion. These sensors allow for
direct interaction with computer systems without the need
for additional auxiliary means. In [8], a method is proposed
which maps human kinematics onto a humanoid robot system
using a Kinect sensor. Consequently, the human motions can
be captured and reproduced directly through the robot. This
method is mainly applicable due to strong similarities of
human and robot kinematics. For general industrial robots this
method cannot be applied. Furthermore, such direct mapping
does not contain information for guiding (partly) automated
processes.

II. ROBUST RECOGNITION OF ARM GESTURES

As shown in the schematic layout of the recognition system
(Fig. 3), the gesture classification is based on the estimate
sequence S1:t of a full body tracking approach. In our SHRC
system we use the Random Decision Forest based approach
from the Microsoft KINECT SDK. In order to reduce noise in
the estimation results, an optical flow driven inference scheme
is deployed similar to [6].
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Fig. 3: Schematic layout of the gesture recognition system.

A. Arm Trajectories

1) 3D Trajectories Extraction: In order to extract trajec-
tories from the hand movement, the user has to stop the
motion of the hand at the beginning and the end of the gesture
execution. In this way, the gesture trajectory can be extracted
with an activity recognition approach. Even though measures
are taken in order to remove noise from the tracking results, the
estimates of the hand are still unstable and distributed around
the true hand position, when the whole arm is not moving.
Therefore we assume activity when a certain distance dmin
is covered in the last ∆ sampling steps, not by the sum over
all h trajectory segments, but by the position difference of the
hand positions at time steps t and t−∆:

d(ht,ht−∆) ≥ dmin . (1)

Here, the vector ht depicts the hand position at time step t,
and the function d(ht,ht−∆) is the distance metric induced
by the l2-norm.

The modular SHRC system allows for different configu-
rations, where real-time Optical Flow (OF) estimates can be
available. With OF estimates present, the activity recognition
is augmented by the following activity measure:

l = Kω ∗ ||u||2 ,
l(xht) ≥ fmin .

(2)

The function l results from the convolution of the optical
flow magnitude field ||u||2 = ||(ux, uy)||2 with an isotropic
Gaussian with standard deviation ω. The 2D point xht

depicts
the back-projection of the 3D hand position into the OF
estimate at time step t. The scalar fmin describes the lower
boundary of the local OF, for the activity assumption.



The before defined activity measures are now used for the
extraction of 3D trajectories by recognizing and extracting
activity sequences.

Fig. 4: Left: Resulting skeleton information from the full body
tracking. The red joints are assigned to the upper body region.
Center: Estimation result of the upper body plane and the
body axes. Right: 2D Projection result (green) of a 3D circle
trajectory (red).

2) Dimension Reduction: As described in the introduction
(Section I-A), the probabilistic evaluation of the trajectories
is done partially in 2D. Following the concept of the virtual
drawing board, the extracted 3D trajectories have to be pro-
jected onto the upper body plane. One appropriate method for
this task is the Principal Component Analysis (PCA) [9]. In
the first step, the upper body plane is estimated:

µ̃ = E{P|Su} ,

Σ̃ = Cov{P|Su} = EΛET ,

=
(
e1, e2, e3

)κ1 0
κ2

0 κ3

eT1
eT2
eT3

 , κ1 ≥ κ2 ≥ κ3 .

(3)

Here the random variable P describes the upper body point
positions conditioned on Su = {pu1t−h:t

, pu2t−h:t
, . . .} which

is a set of upper body point samples (Fig. 4) over a certain
time frame h. The plane is defined by the expected value µ̃,
describing the translation, and the two eigenvectors (e1, e2)
of the covariance matrix Σ̃, describing the rotation. The
eigenvectors and the corresponding eigenvalues are contained
in the matrices E and Λ, which are the result of the eigen-
decomposition of Σ̃. The procedure described in Eq. 3 is the
PCA of the upper body points in a certain time frame. Because
of the nature of the PCA and the choice of the body samples,
the eigenvector e1 is aligned with the vertical body axis, and
the eigenvector e2 is aligned with the horizontal body axis
(Fig. 4). The estimation of the plane is conducted in every time
step and during the gesture execution, therefore smoothness of
the result is important because of the temporal context of the
trajectory points. Here, the examination of the sample point
history promotes the smoothness of the estimates.

Based on the estimation result, the points of the 3D tra-
jectory {t3Di

} are projected on the body plane using µ̃ and
(e1, e2):

t2Di
=

(
eT1
eT2

)
(t3Di

− µ̃) . (4)

The resulting 2D trajectory {t2Di
} (Fig. 4) is a 2D point

series, where each point is depicted by the coordinates relating
to the body axes. It should be mentioned, that because the
features description of the 2D trajectory sample points contains
absolute angle information, it is important that in addition to
the body plane approximation, the body axis are estimated too.
This ensures that trajectory coordinates are comparable.

(a) Original (b) Resized (c) Smoothed (d) Resampled

Fig. 5: From left to right: Successive processing steps of the
2D trajectory.

3) 2D Trajectory Preprocessing: Because of noise in the
hand tracking and the movement of the user while generating
the 3D trajectory, the resulting 2D trajectory is flawed (Fig.
5(a)) and has to be preprocessed. The single processing steps
are partially similar to the applied methods in [5].

The first step is the size normalization of the trajectory,
which is necessary because the features for the HMM observa-
tion sequence contain information about the position increment
(∆x,∆y). The ratio of maximum expansion in respect to both
axes is hereby not preserved:

p̄x =
px − pxmin

pxmax
− pxmin

Sx, p̄y =
py − pymin

pymax
− pymin

Sy . (5)

Here, the constants Sx and Sy describe the target size, and
pmin and pmax are the position extrema.

The smoothing step removes discontinuous and rough parts
with a moving average filter (Fig. 5(c)).

p̂t =
p̄t−1 + p̄t + p̄t+1

3
. (6)

In the resampling step, the sample point count per trajectory
is set to a constant value NS , where all points are equidistant
(Fig. 5(d)). This step is very important for the probabilistic
evaluation of the trajectory by the HMMs, because the more
sample points an observation sequence has, the less likely it
becomes. Therefore, comparing sequences with different sizes
is not practical.

B. Probabilistic Inference

The results from the previous section are used for the
probabilistic inference. This comprises two types of graphical
models, separate HMMs λi for every gesture i ∈ {1, . . . , Ng}
and one star-shaped Bayesian network for the concluding
robust gesture classification.

1) Sequence Evaluation: In our approach, HMMs are used
for the stochastic evaluation of 2D trajectories. Here the as-
sumption is, that the 2D trajectory is an observation sequence
from a hidden stochastic process with markov properties. The
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Fig. 6: Restrictive Left-To-Right model type for all HMMs,
with Pji = P (sj |si)

observation itself is a stochastic process conditioned on the
hidden states. The HMM can be used to model the stochastic
behavior of gesture trajectories: the state transition probability
distribution PX(si|sj) can be used to model the temporal
behavior of the sequence, and the emission probability dis-
tribution PZ(oi|sj) assigns an uncertain observable behavior
to the individual states. In order to reason about an unknown
trajectories T , the probability P (O(T )|λi) is calculated, which
describes numerically how good this trajectory can be ex-
plained with the HMM λi [12].

We chose the same design parameters for all deployed
HMMs, each one representing one gesture class. We use a
maximum restrictive left-to-right model type as depicted in
Figure 6. The initial state distribution is set to Pπ(s1) = 1.

For the description of the trajectory T we use the following
features for every sample point pt = (px, py):

∆xt = pxt−2
− pxt+2

,

∆yt = pyt−2 − pyt+2 ,

γ = tan

(
∆yt
∆xt

)
.

(7)

The absolute angle information requires, that symbols on
the virtual drawing board are always entered in the same
orientation, which is comparable to writing on a lined sheet of
paper. The advantage of this approach is that symbols like the
semi circle (Fig. 2 (a)) can be distinguished, when entered
in different orientations. This allows for the description of
different commands and states with the same basic symbol
type. For instance the semi circle in 90 degree rotation steps
can be used to describe commands like left, up, right and
down.

After the extraction of the feature vectors, a quantization
strategy is deployed using k-means clustering. The result is
a scalar and discrete observation sequence O(T ), which can
now be processed with the HMMs.

Prior to the application of the HMMs, all models have to be
trained with sample trajectories, in order to approximate the
stochastic behavior of the individual gesture classes. Recording
sufficient training samples by executing the gesture numerous
times is not practical. This is mainly due to the fact, that
trajectories are extracted all the time, if they are gestures
or not. So it is not easy to control exactly which trajectory
should be saved when executing a gesture. Therefore we use
2D mouse trajectories which are entered by a simple software
tool. With this method, producing sufficient training data is
convenient and takes only a few minutes or even seconds. For

the training of the HMM parameters, we use the Baum-Welch
method, described in [12].

In order to reason about an unknown trajectory T , we
determine the most likely state sequence Smax

Smax = arg max
S

P (S|O(T ), λ)︸ ︷︷ ︸
P∗

(8)

using the Viterbi algorithm [12]. Both Smax and P ∗
max will

be processed in the following classification step.
2) Gesture Classification: Most applications use solely

the measure P ∗
max for the gesture classification. In such a

classification scheme, if a gesture is executed, the chances
are very high that the correct gesture is detected. However,
if no further information is injected into the decision process,
the chances are also high, that gestures will be recognized
when no gesture execution was intended. Therefore, we use
the information from the sequence analysis in a subsequent
processing step, where it is combined with further information
and restrictions in a Bayesian manner, thereby optimizing the
classification and increasing the robustness of the decision
process against unintended gestures. Here the results of the
empirical data driven inference is combined with heuristics
which describe constraints based on expert knowledge.

a) 3D Trajectory Input Space: A highly discriminative
constraint is the restriction that the input of gestures is only
allowed in a certain region relative to the body. The deviation
from that constraint is measured by the sum over the distance
of all 3D trajectory points from the region, and will be
described by the random variable H1.

b) 3D Trajectory Length: Also the length of the 3D
trajectory has to be in a certain range. The trajectory length
will be described by the random variable H2.

c) 3D Trajectory Geometry: In order to make the ap-
proach more robust against false classification, discriminative
geometric features of the 3D trajectory are extracted:

∆SE = d(pS ,pE) ,

∆CS = d(pC ,pS) ,

∆CE = d(pC ,pE) .

(9)

The distinct points pS ,pE and pC are the first, last and
center 3D trajectory points respectively. The function d is
the distance metric induced by the l2-norm. The geometric
features are described by the random variables H3, H4 and
H5 respectively.

d) 3D Trajectory Distance Smoothness: In addition, a
measure for the smoothness of the trajectory T in respect of
the distance to the body plane is determined:

σD = Var{D|T} . (10)

The random variable D describes the distance of 3D trajectory
points to the body plane. The variance σD conditioned on T
is therefore a measure for how parallel the trajectory runs to
the body plane. This measure will be described by the random
variable H6.



e) State Sequence Analysis: In order to make the stochas-
tic modeling of the 2D trajectories by the HMMs less restric-
tive, transition and observation probabilities which were set
to zero in the course of the model training, were assigned
very small values afterwards. This measure highly increases
the HMM’s classification quality, but it also creates another
problem. Trajectories which describe almost linear movements
are presented to the HMM as a sequence of similar observation
symbols. The measure P ∗

max for those trajectory types can
be very high. The examination of such state sequences Smax
shows that the highest likely explanation for such observations
are fast and costly transitions from state s1 to a state where the
observation symbols are highly likely, where it resides until
the end of the sequence. Considering the factorization of the
joint probability, this explanation is plausible. Because such
state sequences are very homogenous, the entropy of Smax is
an adequate measure:

H(XS) = −
∑N

i=1
P (si) log2 (P (si)) . (11)

Here N is the number of states, XS is the random variable
which describes the state sequence and P (si) = P (XS = si)
is the distribution of the states given the state sequence.
Demanding a high negative value for H , combined with the
model type (Fig. 6), enforces heterogenous state sequences
and thereby observation sequences which follow the temporal
modeling of the HMM. The entropy, dependent of the HMM
λi, is described by the random variable Ei. The random
variable SPi

describes the probability measure P ∗
maxi

.
f) Bayesian Network for Classification: As depicted in

Figure 7 the joint probability factorizes in the following way:

P (G,E,SP ,H) =

M∏
k=1

P (Ek|G)P (SPk
|G)

6∏
l=1

P (Hl|G)P (G)

(12)
Here, G is the variable which describes the gestures gi, E and
SP are the vectors of the HMM dependent Ei, and SPi

, H
is the vector of the random variables Hi, and the value M is
the number of HMMs or learned gestures.

The restrictive independence assumptions help to simplify
the modeling step of the single distributions, using training or
expert knowledge. For the classification we first search for the
gesture gi, which maximizes:

P (G = gi|E,SP ,H) =
P (G,E,SP ,H)

P (E,SP ,H)
. (13)

Because (E,SP ,H) is given as evidence, and the prior
distribution P (G) is assumed as uniformly distributed, the
classification can be formulated as:

î = arg max
i

M∏
k=1

P (Ek|gi)P (SPk
|gi)

6∏
l=1

P (Hl|gi) . (14)

In the last step, if Pî = P (gî|E,SP ,H) exceeds a certain
threshold, we infer that an intentionally executed gesture was
detected, and î is the gesture index.

...

...

...

Fig. 7: Bayesian Network for the classification task.

III. EXPERIMENTS

For the evaluation of our approach all HMMs were trained
with 30 hidden state symbols and 40 observation symbols,
using the method described in Section II-B1.
In the first experiment, the classification performance of the
HMMs was analyzed.

SCL SCU SCR SCD CL CR SV

SCL 1
SCU 0.98 0.02
SCR 1
SCD 1
CL 1
CR 1
SV 1

TABLE I: Confusion matrix of the HMM based classification,
using 50 test samples per gesture class. SCL, SCU , SCR,
SCD depict the semi-circle gestures oriented left, up, down
and right, CL and CR depict the full circle with left and right
direction of orientation, SH depicts the snake shaped gesture
in vertical orientation (cf. Fig. 2).

For training and evaluation of the HMMs we created 150 2D
trajectory samples, using the mouse as input device (Section
II-B1). The set was then divided into a training set with 100
samples, and a test set with 50 samples per class. Table I
shows the confusion matrix of the HMM based classification
task. The entries show clearly that the HMM based 2D
classification, combined with the discriminative symbols and
trajectory features, delivers highly reliable information about
intended gestures.

For the experimental evaluation of the second step of the
decision process, we recorded a full body tracking sequence
of random executed trajectories by the user. Here it was
the objective not to enter any gestures, but try to imitate
conventional movements appropriate to the application in a
work environment. The first line of Table II shows that the

% SCL SCU SCR SCD CL CR SV

HMM 36.0 3 4 4 6 9 0 8
2-Stage 0.0 0 0 0 0 0 0 0

TABLE II: Detection of unintended gestures based on 100
extracted arm trajectories.

information of the HMM alone leads to many misclassifica-



tion. Here a maximality examination combined with a global
threshold was used for the inference. The second line shows
no misclassification for the two-stage approach.

In order to conclude the overall robustness of our approach,
we evaluated the classification quality of the two-stage ap-
proach, based on a sequence of 20 intended gesture per gesture
class. The gestures were executed by the user, using his right
hand. Table III shows that despite the restrictions modeled in

SCL SCU SCR SCD CL CR SV

2-Stage 0.95 1 1 1 1 1 0.90

TABLE III: Classification rate of our two-stage approach in
percent, based on 20 intended gesture executions per class.

the second stage, the classification rate is comparable to the
results presented in Table I. The performance of the two-stage
approach in detection and classification of intended gestures,
and the elimination of false gesture detections, shows an
improved overall robustness.

IV. OVERALL SYSTEM

The here proposed approach to human robot communication
is embedded in a research system to enable safe, workspace
sharing human robot cooperation. Thus, different modules are
incorporated for sensing the robot’s environment, analyzing
and reasoning about sensor data, and planning the robot’s
reactions. Consequently, this resembles a cognitive cycle:
Perception, Cognition, and Action.

The perception includes, besides full human body tracking,
position sensing of the robot and state information of the
gripper or handled workpiece.

The cognition consists of the presented approach to gesture
recognition and spatio-temporal reasoning about situations
[10]. The achieved situational awareness allows the distinction
between different situation concepts. The human co-worker
might be monitoring the production process, can be distracted
by other co-workers or through his work load, or can be
interacting with the robotic system. Performed gestures and
actions have to be considered regarding this contextual in-
formation. Thus, the same gestures can either be directed
towards the robot or might be addressed to an outside person.
Consequently, the reasoning system concludes the robot’s
objective, which can be, e.g., to comply with gestures or
proceed with a given task.

In order to achieve safety for the human co-worker the
robotic motion is determined through an reactive, online path
planning module [11]. Based on the full human body tracking
it is possible to determine possibly impending collision during
robot motion. If such a collision is predicted, the robot is
stopped and a re-planning is invoked. During planning the
risk for collision is determined and if it is too high the path
re-planning will retry until the human co-worker clears the
workspace.

V. CONCLUSION

We presented in this paper a robust unidirectional gesture
approach, which is based on the trajectory of one hand only.

Additional information about the finger setup is not needed
for the robust gesture detection and classification.

The objective of our two-stage bayesian network approach
was the robust classification of intended hand gestures, com-
bined with an elimination strategy of unintended gesture
executions. The here proposed heuristic driven restrictions
showed in the evaluation, that their selection and stochastical
modeling obtained the high classification quality of the HMM
classifiers, while rejecting hand trajectories which did not
represent a gesture execution of the user.
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