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Abstract—This work focus on human robot haptic joint collab-
oration for achieving large object manipulation tasks. We present
our current lines of research addressing the topics of assistive
control, haptic measures interpretation, human intent recognition
and decision making parameters tuning in the context of large
object manipulation.

I. INTRODUCTION

In a physical human robot collaboration, each partner has
complementary capacities: cognitive for the human vs physical
for the robot. A huge challenge is the combination of these
complementary strengths to create a synergy between them.
The robot should physically assist the human partner who
is able to decide on what to do and to instantaneously plan
complex scenarios. To that end, the robot has to detect which
motion assistance is needed by the human operator at each
instant.

In the next Section, we present our physical human robot
collaboration framework for large object manipulation. In
Section III, we introduce our method for automatically tuning
the intention detection parameters. Finally, we draw some
conclusions in Section IV.

II. PHYSICAL HUMAN ROBOT COLLABORATION
FRAMEWORK FOR LARGE OBJECT MANIPULATION

In our context, the robot has no prior information about the
task and the environment. Our method consists in endowing
the robot with a library of assistances for performing standard
collaborative motions. According to the haptic cues naturally
transmitted by the human partner, the robot selects on-line
the suitable assistance for the current intended collaborative
motion. Thus, the operator can benefit from a sequence of
suitable assistances generated on-line without prior knowledge
about the task.

A. Assistive Control Framework: a Mechanical Analogy

One of the main goal is to reduce operator effort.
However, in physical human robot interaction, the safety is
fundamental. Moreover, the user’s feeling is obviously a very
important criteria.

According to these requirements, the assistance for each
collaborative motion is carried out with a virtual motion guide,
implemented according to the virtual mechanism concept [6].
This concept is based on a mechanical analogy. The robot end

effector is virtually coupled with a virtual mechanism (VM)
end effector, through a spring damper (Fig. 1):

F = K(Xvm − X) + B(Vvm − V)

with Xvm and X respectively the cartesian position of the
virtual mechanism and of the robot, Vvm and V the cartesian
velocity of the virtual mechanism and of the robot, B and K are
the cartesian coupling gains between the robot and the virtual
mechanism, respectively the damping and stiffness gains, F
the wrench applied by the spring damper on the robot.

The VM geometric model and its Jacobian (Lvm and
Jvm) define free motions, which are controlled in force, and
constraints, which are controlled in position (Fig. 2). This
assistive control ensures the passivity criteria, which guaranties
the stability of the robot in interaction with any other passive
system [2]: safe interactions with the environment and the
human partner are ensured. Furthermore, a psychology study
showed that human operators feel more comfortable and safe
with a passive robot [8]. This result can be interpreted by the
ability of the human to predict the passive robot behaviour
while this is more difficult with a robot that continuously
learns during tasks, or that has to estimate parameters for its
trajectory generation. Moreover, previous works have shown
that motion guidance can significantly reduce the manoeuvring
effort of the human operator as well as the completion time
of the task [1].

B. Human Motion Intent Interpretation through Haptic Mea-
sures: a Mechanical Based Approach

When the current assistance corresponds to the operator’s
motion intent (agreement direction), the collaborative motion
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Fig. 1. Principle of virtual mechanism: mechanical analogy
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Fig. 2. Control scheme with virtual mechanism. q and q̇ are respectively
the joint position and velocity. τ and F are respectively the joint torque and
wrench applied by the spring damper on the robot. The vm subscript denotes
the virtual mechanism.

can be performed with low effort since the motion guide is
well-suited. When the human intends another collaborative
motion, new directions of motions are solicited. The provided
guide is not well-suited anymore since it constrains directions
in which the human wants to move (disagreement direction).
Therefore, wrench and twist patterns are used to detect the
human partner intention of motion in order to select the most
suitable guide. The idea is to describe the intended motion by
a set of constraints and free direction of motion in the same
way that the robot behaviour is described by the virtual mech-
anism. Through these models, the disagreement and agreement
directions reveal the wrench and twist components that should
be measured. The relationships between human intent, current
assistance and haptic measures have been intuitively inferred
on a case study and experimentally validated [3].

C. Benefits of the Human Robot Interaction Framework

We implemented a basic algorithm of intention detection
to switch from the current assistance to the new suitable one.
This algorithm is based on the relationships between haptic
measures and human intent (See II. B). Thresholds were em-
pirically tuned to determine significant haptic measures, which
are useful for the intention detection. A user study highlights
the improvement of the human-robot interaction with this
method compared with a follower robot, for achieving a task
involving different rotation/translation motions of a long object
[4]. Both the torque applied by the operator and the completion
time of task are reduced with the proposed method (Fig. 3).

In the next section, we present a method to automatically
tune the intention detection parameters.

III. TUNING HUMAN INTENTION DETECTION
PARAMETERS

A. Goal

In order to provide a suitable assistance, the goal is to
infer the current operator’s intention among the m overall
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Fig. 3. Performance indices with and without assistance. Vertical bars denote
+/− standard errors.

possible intentions C = {C1, ...,Cm} given the n current
haptic measures F = {F1 = f1, ...,Fn = fn}. f i is the
measure of the i-th component Fi of the haptic data. The haptic
data refers to wrench components as well as the displacement
at the operator’s grasping point.

B. Method

The features that are useful for the operator’s motion intent
inference are measured in directions constrained by the VM.
This reason drives us to carry out a static analysis of these
measures. The method is based on the Naive Bayes Classi-
fier. This supervised learning algorithm relies on the Bayes’
theorem and the class independent assumption.

Learning Step: A learning step is performed once in order to
tune the intention detection parameters. According to a dataset,
the method estimates the posterior probability of belonging to
each intention by estimating the likelihood parameters:

P(Ck|
n⋂
i=1

Fi = f i) =

n∏
i=1

P(Fi = f i|Ck)

η

with η =
1

m.P(
n⋂
i=1

Fi = f i)

with η the normalizing factor, which includes the prior and
evidence that are independent of the class. The m prior
probabilities are assumed equipossible since no information
about the task are given: P(Ck) = 1

m . Each haptic component
Fi given the intention Ck is assumed to follow a normal
distribution:

P(Fi = f i|C = Ck) = N (f i, µik, σ
2
ik)

The learning problem consists in estimating a set of the gaus-
sian parameters for each haptic component given the intention
SFi|Ck = {µik, σ2

ik}, with µik the mean and σik the standard

deviation. A set of these parameters sets S = {
m⋂
k=1

n⋂
i=1

SFi|Ck}



is estimated from a training dataset of D demonstrations for
each intention. We use the maximum likelihood estimator:

µ̂ik =
1

W.D

D∑
d=1

W∑
w=1

f iw,d, σ̂2
ik =

1

W.D

D∑
d=1

W∑
w=1

(f iw,d − µ̂ik)2

The current virtual mechanism prevents from demonstrating
the switch from a motion to a next one. However, the user
might demonstrate his motion intent by forcing against the
virtual guide as long as he might be able to apply effort.
Therefore, unlike straightforward supervised classification, no
signal length is suitably defined by the demonstrations. We
need to determine the optimal number of training signal data
points W that will be used for the parameters estimation in
order to get the best intention detection performance. To that
end, one set of parameters S = SW is computed from data
points within a window of size W, with W incrementally
increased from 1 to the whole signal size (Fig. 4). Then, a
cross validation step is carried out in order to select the best
parameters set. The Matthew Correlation Coefficient (MCC)
[7] is used for assessing the multi-class classification [5].
This metric returns a value between −1 and +1 and can
be intuitively interpreted: −1 represents a total disagreement
between prediction and observation, 0 a random prediction
and +1 a perfect prediction. For each set SW , the MCC mean
µMCC in a chosen confidence level interval Iγ = [γmin; γmax]
is computed:

µMCC =
1

Nγ

Nγ∑
i=1

MCCi

with Nγ the number of MCC computed in the interval Iγ . The
chosen set of parameters S∗ is the one with the highest MCC
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Fig. 4. Illustration of windows for D demonstrations of a training dataset.

mean:

S∗ = arg max
SW

(µMCC)

Prediction step: Once the learning step has been carried out,
the assistance can be adapted on-line, according to the current
haptic measures.

The robot provides a new assistance when it predicts a new
operator intention C∗ with a confidence degree of at least γ:

C∗ = arg max
Ck

(P(Ck|
n⋂
i=1

Fi = f i)) ≥ γ

As long as the confidence level is not overstepped, the robot
remains in the current state since it is not enough confident
of the operator’s intention. Accounting for a confidence level
in the decision rule instead of the simple MAP rule allows to
be more robust.

C. Experiment

Experimental setup: We confine the experiment in the
horizontal plane. The library of assistances is composed of
four assistances for performing basic motions that an operator
might achieve in a collaborative planar task. These motions
are described hereafter:
• TY (Fig. 5. a.): pure lateral translation;
• TX (Fig. 5. b.): front/back translation;
• RO (Fig. 5. c.): rotation of the object around the operator’s

gripping point;
• RA (Fig. 5. d.): rotation of the object around the robot’s

gripping point.
Starting with a current assistance for performing RA motion,
the goal is to detect the next intended motion C∗ among C =
{TY, TX, RO, RA} (Fig. 5). The relevant features highlighted
in relationships inferred in [3] are used: FX, MZ and ∆XY.
They are expressed at the operator’s grasping point O in the
frame depicted Fig. 5. The current assistance for performing
RA motion is carried out with a virtual mechanism described
by a pivot link.
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Assistance ?

a. TY b. TX d. RAc. RO
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Fig. 5. Goal of the experiment: Which is the intended motion?

Thirty subjects intended to perform each collaborative mo-
tion five times. Although the virtual mechanism prevented
them from performing TY, TX and RO, they had to intend
to execute these motions. Each test lasted 5s. The force and
torque at the user’s handle as well as the position of each robot



joint were recorded at 500Hz. The measurements of the robot
joint positions have been used to measure the user’s handle
position, in order to obtain the displacement of the operator’s
hand. A Force/Torque sensor at the user’s handle have been
used to acquire the wrench measurement.

Data from 15 participants who have been randomly selected
constitute the training dataset. Data from 8 participants who
have been randomly selected among the remaining 15 partici-
pants are used for the cross validation dataset. A test is carried
out with data of the remaining 7 participants.

Results: The different parameters sets SW have been com-
puted. As an example, Fig. 6 presents the estimated parameter
µ̂FX |TX for each set SW. Note that the higher the window
size is, the higher the mean of the force FX is. Using a small
window for the learning step allows to predict the intention
before the operator applies too much effort. Fig. 7 presents
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Fig. 6. Mean of FX feature given the intention TX for each set of parameters
SW, i.e the evolution of µ̂FX |TX according to demonstration signals length
used for the estimation.

the classification assessment obtained with each parameters
sets SW . The red bar points out the chosen parameters set S∗

with the highest performance. The comparison between the
mean µFX |TX = 6.63N in the selected set and the mean in
sets with a higher W (Fig. 6) shows the interest of selecting a
demonstration signal length: better performances are obtained
while applying lower efforts. Finally, Table I presents the
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Fig. 7. Classification performance obtained with each set of parameters SW .

motion intention classification results carried out on 140 trials
with a confidence level of 90%. A 97% success rate has been
reached with only 2 wrong detections and 2 decisions that
have not been made by lake of confidence in the detection.

TABLE I
CONFUSION MATRIX OBTAINED WITH γ = 0.9

Predicted intention
TX TY RO RA

Actual intention

TX 35 0 1 0
TY 0 35 0 2
RO 0 0 33 0
RA 0 0 1 33

IV. CONCLUSION

Three contributions have been presented in this paper.
First, assuming that many tasks can be decomposed into a
sequence of collaborative motions, our physical human robot
collaboration framework for large object manipulation allows
to perform a wide spectrum of tasks with a sequence of
assistances generated on-line while the robot has no prior
knowledge about the task. Moreover, the robotic partner fulfils
all these important features:
• safety
• predictability
• human effort reduction
• movement redundancy (but should be enriched)
• interpretation of human disagreement and intention (un-

expected variability in order to provide suitable assis-
tance)

• task-independence
Finally, the method for tuning the intention detection pa-
rameters can be applied without demonstrating the switch
between motions. As no signal length is suitably defined by
the demonstrations, the proposed method selects the optimal
number of demonstration data points that will be used to
estimate the intention detection parameters in order to get the
best detection performance. A penalty may be applied on the
window width increase in order to have a trade-off between
the applied effort (and time switching) and the improvement
of the detection performance. The aim is to extend this method
to tackle this problem as an early recognition problem in order
to avoid the operator to apply too much efforts.
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