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Abstract— Substantial work has been published in visual 

servoing over the years, yet we have seen few real world 

applications. We discuss four different milestones (human robot 

interaction (HRI), tracking, multi-view geometry and visual 

servoing) needed to bring visual servoing into an unstructured 

human environment. We focus our efforts on HRI and tracking 

which we think are the link to bring visual servoing towards 

more practical applications. 
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I. INTRODUCTION 

      Visual Servoing is a well-known technique used to control 
a dynamic system using visual feedback [7]. Despite much 
published research on visual servoing, it has had little 
penetration in real-world applications.  With its roots in 
engineering, robotics research has focused on topics such as 
mechatronics design, control and autonomy, while fewer works 
pay attention to human-robot interfacing and user studies. This 
results in an increasing gap between expectations of robotics 
technology and its real world capabilities. Our aim is to bring 
visual servoing towards more practical and usable 
implementations. In order to create a successful visual servoing 
system, four areas need to be addressed: HRI, tracking, multi-
view geometry and visual servoing.  
      We illustrate these four points with a real-world example. 
Consider a surgical setting where the surgeon wants to make an 
incision along the midline of the patient (Figure 1). The 
surgeon draws a line on the patient’s body to mark the location 
of the incision. Either the incision can be performed by a robot 
arm that follows this line or the surgeon can hold the scalpel 
collaboratively with the robot arm in a haptic interaction. The 
surgeon moves the scalpel forward or backward, while the 
robot constrains the movement to follow the indicated line.  
      A good interface for HRI is necessary to provide the 
surgeon with an intuitive way to specify the line that the robot 
should follow. Furthermore, the robot end-effector as well as 
either the line on the patient or the end-points of that line must 
be tracked. This is because the patient can move during the 
procedure and depending on the placement of the cameras for 
visual servoing (eye-in-hand and/or eye-to-hand), the end-
effector or the surrounding world will move in the images. 
Multi-view geometry is used to turn the image information 
from the line the surgeon specified into an error function for 
visual servoing. Finally visual servoing is used to move the 
robot arm. 

Human Robot Interaction 

     As illustrated with the above example, HRI is fundamental     

Figure 1. a) and b)A surgeon marks the patient’s midline using a visual 
interface. c) A view of the interface. d) Haptic interaction to perform incision. 

e) Visual servoing to perform incision. 

in any robotics real world application. Even for autonomous 

routines the user needs an interaction to start and stop them. 

Today robot arms are deployed and work successfully in 

controlled environments such as factories, where they can be 

pre-programmed to complete a set of fixed tasks autonomously 

and accurately. However, when we want robots to aid us in our 

everyday lives or in the workplace the challenge becomes 

greater due to unstructured and dynamic surroundings. 

Robotics researchers are looking to tackle this problem by 

letting humans and robots work together to complete tasks [1, 

2, 3]. This can be done by keeping the ‘human-in-the-loop’ [3], 

which means the human guides the robot without controlling it 

completely.  

      One commonly used technique in robotics is ‘teach-by-

showing’ [7] (Figure 2). The robot is manually moved to its 

goal position and that location is recorded. Afterwards the 

robot can perform the same task autonomously. This works for 

repetitive tasks in a controlled environment, but not for semi-

autonomous control. In the particular case of visual servoing, 

tasks can be visually specified in images. A task can be defined 

as the objective of bringing the end-effector of the robot arm to 

its target in the work space [4].  For example a point-to-point 



 

 

task aligns a point on the robot end-effector (or an object the 

end-effector is holding) with a point in the workspace, whereas 

a point-to-line task brings a point on the end-effector to a line 

in the workspace (Figure 2). The formal relationship between 

feature alignments in 2D image frames and the 3D world has 

been explored theoretically [4, 5, 6], but not seen much use 

otherwise. We will exploit these visual specifications in the 

HRI we present in Section II. By allowing the user to specify 

tasks visually we can keep the ‘human-in-the-loop’ interaction.  

  

Figure 2. The left image shows visual tasks (point-to-point and point-to-line) 
needed to perform visual servoing to move the tray into the box.  The image on 

the right illustrates ‘teach-by-showing’ for task specification. 

Tracking 

      Tracking is essential in visual servoing as it provides the 

location of the target object and the robot end-effector. In 

particular for visual task specification we may need to track 

several points in the image frame. In the case of a point-to-line 

task we need to track a point on the end-effector and two points 

on the line in the workspace. Alternatively we can combine 

point tracking and line tracking. In many visual servoing papers 

tracking is done simply by extracting the position of black and 

white markers on the robot and target object. This approach 

will not work in a real-world application since we will not have 

access to marked objects. Familiar types of tracking algorithms 

include segmentation-based tracking, feature-based tracking 

and registration-based tracking [10, 11, 12]. Any tracking 

algorithm used for visual servoing needs to have good 

accuracy, be able to handle large camera motion and it must be 

robust. 

 Multi-View Geometry 

      From the user interface we get the tasks that the user has 

specified and tracking provides the location of the relevant 

points. In addition to specifying a task, we also need to verify 

whether the task has indeed been accomplished by the robot 

arm after visual servoing. Both the specification and 

verification of tasks is based on data from 2D images. We need 

a way to decide whether convergence to the goal in the image 

space actually means that we have reached the target in the 

robot work space. Dodds [6] shows that there is visual 

ambiguity in 2D images as illustrated in Figure 3. Although the 

two camera views show the probe touching the wire, this does 

not actually happen. 

      The “teach-by-showing” technique mentioned earlier is also 

relevant to task specification. The robot arm is moved to the 

goal position and the corresponding image features are 

recorded. We know the task is completed when the error 

between the current image features and the recorded ones has 

reached zero. However this approach does not eliminate the 

problem with image ambiguity. 

 

Figure 3. The two first images 
show a probe touching a wire due 
to visual ambiguity. The third 
image shows the set-up and the 
fact that the probe does not touch 
the wire. Images are taken from 
[6] with permission of Z. Dodds. 

 

  
      Depending on the level of calibration there exist tasks that 
can be unambiguously specified and verified using two 2D 
image views, they are said to be decidable tasks [4, 5]. One 
example is a point-to-point task, which is decidable for 
uncalibrated systems. Furthermore Dodds et al. [5] show that 
there exist operators that preserve task decidability. Decidable 
tasks can therefore be composed into more complex tasks that 
are still decidable. That is, we can decompose high-level 
actions into a string of simpler tasks that we know are 
decidable. 

Visual Servoing 

      We use visual servoing to move the end-effector of a robot 
arm to its target in the workspace. The inputs to visual servoing 
are images from two or more cameras. From these images we 
collect features that are used to create an error function. As we 
will see in Section II, when working with visual tasks this error 
function is constructed using the specified task. Visual servoing 
is accomplished by driving the error function to zero. One 
possible approach is to compute the error dynamics differential 
equation and use the result to create a control law. Depending 
on the level of system calibration, different types of visual 
servoing exist. We focus on  image based visual servoing that 
uses geometric transforms going directly from projective image 
space to the robot motor space [8]. 
      Building on results from visual servoing and multi-view 
geometry we will focus on developing intuitive HRI to 
facilitate effortless control of and interaction with a robot arm. 
We will also discuss in more detail a tracking approach that we 
have explored.  

II.    COMPUTER VISION FOR HRI 

A. Interfaces and Input Types 

An important milestone for bringing visual servoing to real 
world applications is creating a system for effortless and 
intuitive HRI. This means we need to match the right interface 



 

 

with different types of users and applications. Part of our 
research consists of developing, classifying and testing 
interfaces. In this section we describe several cases where 
visual input is used to specify tasks for the robot to carry out. 
Following we consider interaction using (1) a touch screen, (2) 
a joystick and (3) pointing. 
      Going back to the surgical setting from Figure 1, the 
surgeon has to specify the midline on the patient. A touch 
screen tablet together with a stylus provides easy interaction 
with the visual servoing images. First the surgeon chooses the 
type of task from a drop down menu. In our example this is a 
point-to-line task. Next the surgeon clicks on the end-effector 
to indicate a point, and then on two more points in the 
workspace to mark the patient’s midline. A red point and line 
in the image shows the selection. Once told to start, the robot 
holding the scalpel moves along the specified line and makes 
the incision. Alternatively, using haptic interaction, the robot 
and the surgeon hold the scalpel together. The surgeon moves 
the scalpel forward to make the incision, while the robot 
implements forces to make sure the incision does not deviate 
from the midline. 
      Robot arms can be of great assistance to wheelchair users 
with low arm function. A light-weight robot arm such as the 
Kinova JACO arm [9] can be attached to a wheelchair and used 
to grasp and manipulate objects. For many wheelchair users a 
touch tablet and stylus is not a feasible mode of interaction 
because they may suffer from muscular spasms or hand 
tremors. A better approach would be to use a joystick to control 
a cursor on the screen. This way the user can specify visual 
tasks as described before. When picking up an object the user 
would first specify a point-to-point alignment to move the 
robot arm close to the desired target. In order to grasp the 
object from the right angle the gripper would need to be re-
oriented and re-aligned. This fine-tuning of the action can be 
done by specifying one or more additional visual tasks. A 
detailed example follows in the next section. 
      The final mode of interaction is pointing [10] (Figure 4). 
The user points towards an object he/she wants the robot arm to 
manipulate. This takes advantage of a natural interaction that 
humans use all the time. After the user has selected an object 
the robot arm would move there and grasp it. Furthermore the 
user can point to a location where the object should be put 
down. In the two previous applications the user interface gives 
clear feedback to the user by drawing points and lines on the 
screen. If the specification appears incorrect, he/she can clear 
the selection and try again. With a pointing interface, feedback 
is not as straight forward. We would let the robot point towards 
the object closest to the location chosen by the user. The user 
can then confirm or decline this selection with a gesture.   
      A system for pointing and gesture recognition can be set up 
in two ways. In the first approach the user is observed with two 
cameras. The line extended from the users arm to the object 
he/she is pointing to can be projected to lines in the two 
images. The object location in the left and right images is 
combined to perform visual servoing for the robot arm. 
Another possibility is to make use of 3D data replacing the two 
cameras by a Microsoft Kinect sensor. The 3D point that the 
user indicates is transformed to the robot base frame. Now the 
robot end-effector can move to this point after an inverse 
kinematics calculation. 

Figure 4. Illustration of an interface where the user points to objects for the 
robot arm to grasp. The pointing location is found using a Microsoft Kinect 

Sensor. There will be some error between where the user points and the 
location of the target object. 

B. Composition of Tasks 

      We want to take high-level actions for the robot to perform 
and decompose them into a chain of simpler tasks that we 
know can be completed. As mentioned in the introduction, 
Dodds et al. [5] show that there exist task operators that 
preserve task decidability. They can be used to compose 
decidable tasks into more complex ones. This is similar to the 
object grasping in section II-A where we suggested to first 
move close to the target before re-orienting the gripper. These 
simple tasks can be specified in serial one after another with 
the robot completing each task before the next is specified. 
Another approach is to specify several tasks in parallel 
before the robot carries them out. This is useful when one task 
alone is not enough to fully determine the desired pose 
(position and orientation) of the end-effector; we can add more 
constraints by adding more tasks. An example is illustrated in 
Figure 5. We want to insert the yellow hexagon into the box. 
First the gripper is brought close to the hexagon with a point-
to-point task. Then two alignments are performed to grasp the 
hexagon. Next the gripper is brought close to the box with 
another point-to-point task and finally a set of new tasks are 
specified to align the hexagon with the box opening. As an 
example of parallel specification we will describe the tasks 
needed for the grasping in more detail.  

 
Figure 5. Inserting a hexagon into the box is done in several steps. First the 

gripper moves close to the target. Two steps are needed to align the gripper 
and grasp the hexagon. Finally the hexagon is brought close to the box and 

inserted after further alignment. 

      In order for the robot grasp the hexagon we need to specify 

several tasks (Figure 6) and turn that information into an error 

function for visual servoing. This requires an image encoding 



 

 

for the tasks. Image encodings are described in detail in [4, 5]. 

Assume we have the image coordinates of the required points 

and lines from tracking. By specifying two point-to-line tasks  

between p2 and L1 and between p4 and L2, we can align the  

Figure 6. The left image illustrates two point-to-point tasks and two point-to-

line tasks needed to align the gripper with the hexagon and bring it closer to 

the hexagon. They are used to create E1. The right shows two new point-to-
point tasks and the same point-to-line tasks. It shows the goal configuration 

for E1, and the specification of a new visual goal E2 that will slide the robot 

gripper onto the hexagon.   

gripper with the hexagon. The point-to-point tasks between p1 

and p5 and between p3 and p6 will decide how far along the 

specified lines the gripper should move (Figure 6, left image). 

Assume we are using two cameras, the subscripts L and R 

indicate image coordinates in the left and right camera view 

respectively. Then the image encoding for one of the point-to-

point tasks is Epp = (p5L – p1L, p5R – p1R)
T
. Similarly for one 

of the point-to-line tasks the encoding becomes Epl = (p2L ∙ 

L1L, p2R ∙ L1R)
T
. One of the operators presented in [5] that 

preserve task decidability is the AND function. The AND 

function combines several tasks that all have to hold 

simultaneously by stacking their image encodings into one 

vector E. Hence to specify the above tasks form the left image 

in Figure 6 in parallel, we stack all of them into a vector E1. In 

fact it is this vector E1 that becomes the error function needed 

for visual servoing. Once E1 has been driven to zero by visual 

servoing, we are in the situation displayed in the right image in 

Figure 6. Now we create E2 that specifies the tasks needed to 

complete the grasp. The point-to-line tasks stay the same to 

preserve the gripper orientation, but the point-to-point tasks 

change to allow the gripper to move forward. Visual servoing 

will finally bring E2 to zero and the grasp is completed. 

      Given that we have an imprecisely modelled two-camera 

system; can we say something about what tasks can be 

accomplished solely based on observing point features? 

According to [4, 5] the answer depends on the camera model 

and level of calibration. Point coincidence tasks are decidable 

on any family of injective two-camera models and these are 

also the only tasks decidable on injective camera models. 

Furthermore for weakly calibrated projective cameras, a task T 

is decidable iff T is projectively invariant. Finally if T is 

decidable for uncalibrated cameras, then T is projectively 

invariant. This means that we can verify a robot arm 

positioning task with absolute certainty using weakly 

calibrated, noise free, stereo-vision systems iff the task is 

projectively invariant. However with point coincidence tasks 

this can be done with an uncalibrated system. 
      Using results from visual task specification and multi-view 

geometry we can develop different computer vision based HRI 

interfaces that will bring us closer to using visual servoing in 

real-world applications for a wide range of users. 

III. TRACKING 

      Visual tasks that are specified by the user have a set of 
points associated with them. These points must be tracked. In 
the case of a point-to-line task, we need to track a point on the 
end-effector of the robot as well as the line in the workspace. 
For the latter we can use a line tracker or simply track the two 
end-points. The tracking is necessary since the object we are 
working with might move. Also, depending on the placement 
of the cameras we are using for visual servoing (eye-in-hand 
and/or eye-to-hand), the robot end-effector or the surrounding 
world will move in the recorded images. A successful 
application depends on robust and accurate trackers. We must 
also be able to initialize several trackers in one image. These 
trackers might be of different types. We need the ability to 
track points, lines and conics in order to handle different 
shaped targets. 
      Our work has focused on registration-based tracking. In 
registration-based tracking, also called sum of squared intensity 
difference (SSD) tracking, we specify a small image template 
that surrounds the desired object in the first image frame. We 
want to be able to find the location of this template in future 
frames. We warp incoming image frames to align them with 
the original template using a warp function with a 
corresponding warp parameter. With each new image frame the 
goal is to update the warp parameter. The Lucas-Kanade 
algorithm [11] serves as a foundation for many registration-
based tracking algorithms [11, 12]. By minimizing the SSD 
between the current image warped with the latest warp 
parameter and the initial template, we are able to find the new 
update to the warp parameter. 
      In earlier work in our lab Dick et al. [13] tried a different 
approach to registration-based tracking by introducing machine 
learning into their system. They use approximate Nearest 
Neighbour Search with pre-computed partially aligned 
template images to find the corresponding warp parameter 
update. Later we have tried to replace the Nearest Neighbour 
Search by a different machine learning approach to see if the 
behavior was similar. In this case we learn the function 
between the warp updates and partially aligned image 
templates using Regularized Ridge Regression. For 
registration-based tracking to be useful to visual servoing, the 
algorithms must be able to handle large image motion between 
subsequent frames. A common problem with the Lucas-Kanade 
like approaches is that they only converge for small image 
motion. By introducing machine learning into the tracking 
procedure we improve on convergence for large image motion.       

IV. SYTEMS AND RESULTS 

      In this paper we present ongoing work and describe 

different relevant experiments that we have conducted so far 

for HRI interfaces and tracking. 

Point-to-Line Visual Servoing 

      Going back to the initial surgery example we have 

implemented an experiment where a WAM robot arm does 

point-to-line visual servoing. We track the end-effector as 



 

 

well as two points on the line in the workspace using the 

Camshift tracker [14] in OpenCV (Figure 7). We capture 

images from two cameras and combine the visual servoing 

point-to-line error function, Epl, from both of them. Figure 8 

displays the convergence of the visual servoing Epl error in 

the two images. The noise in the error comes from the 

tracker. The error in image I1 is lower than the error in image 

I2 because camera 1 is better positioned with respect to the 

scene than camera 2. Despite this we can see that the final 

position of the end-effector is indeed on the specified line 

(Figure 9).  For a video of the visual servoing see [16]. 

 

 
Figure 7. The Camshift tracker is used to track the robot end-effector as well 

as two points on the line in the workspace. 

 
Figure 8. The convergence of the visual servoing error in the two image 

frames.  

 

 
Figure 9. Point-to-line visual servoing moves the robot end-effector to a line 

defined by two green markers that are tracked as points on the line. 
 

3D Pointing 

      In section II we described an interaction mode that lets 

the user point to objects he/or she wants the robot arm to 

grasp and manipulate [10]. We built on the SEPO (Select-by-

Pointing) system from our lab presented by Quintero et al. in 

[15]. Here the location of the user’s pointing gesture is 

detected by a Microsoft Kinect sensor. They found that the 

SEPO interface had users select objects with average position 

accuracy of 9.6 ± 1.6 cm. That means objects such as a cereal 

box on the table or a vacuum cleaner on the floor can be 

successfully chosen by a user. We use the 3D location from 

the SEPO interface to move the WAM robot arm using 

inverse kinematics. The objects are grasped from above using 

information from a point cloud to align the gripper. The 

participants interact with the robot arm to remove objects 

from a table and sort them into two containers [10] (Figure 

10). The robot arm provides feedback by pointing at the 

closest object to the chosen location so the user can confirm 

or decline the selection. The final system was tested both 

with and without feedback. We conducted both human-

human and human-robot experiments. In the human-human 

interaction one participant pointed at objects while the other 

had to interpret the pointing gestures and pick up objects. 

Eight people took part in the study. The participants stated 

that interacting with the robot was no more difficult than 

interacting with another human. Four objects were placed in 

two configurations with different level of difficulty. Without 

feedback the average success rate (success means the right 

object was picked and placed in the correct bin) for human-

human experiments was 75% for the more challenging object 

configuration and 95% for the simpler one. For the human-

robot experiments the average success rate was 88% for both 

configurations. When feedback was incorporated in the 

experiments both interactions had a 100% success rate. 

 

 
Figure 10. A user interacts through pointing and gestures with a robot arm 

that picks objects from a table and drops them into boxes. The robot points to 
the object closest to the chose location to receive confirmation from the user. 

 

Interactive Teleoperation Interface for Semi-Autonomous 

Control of Robot Arms  

      In this system we propose an intuitive gesture interface 

that allows the human operator to switch between 

teleoperation mode and visual servoing (Figure 11). We 

design two alternate motion modes: (1) a direct linkage to the 

arm motion from the tracked human skeleton and (2) an 

image-based visual servoing routine. A successful application 

of the interface is presented for a WAM arm equipped with 

an eye-in-hand camera. Coarse motions are executed by 

human teleoperation and fine motions by image-based visual 

servoing. 

      By using an intuitive gesture interface, the user tracked by 

the Kinect is able to teleoperate the robot arm, by using a 

regular PC monitor that receives the image streams from 

cameras 1 and 2. The HRI combines the strengths of both 

teleoperation and visual servoing. For large manipulation 



 

 

teleoperation is quicker than visual servoing, since the eye-in-

hand camera has a limited field of view and it would be 

tedious and unintuitive for the user to define several segments 

of visual servoing. For precise manipulation on the other 

hand, the direct mapping of tracked human arm motions to 

robot motions suffers from noise in the tracking and it is 

difficult for the human to deal with the dynamics of the robot. 

We find that teleoperated motions, while fast, are jittery and 

not very precise. Here visual servoing relieves the human 

from dealing with the dynamics of the robot, and allows for 

precise motions. 

 
Figure 11. The user in location 1 needs a kinect and a regular PC. The user 
can only control the robot arm in location 2 by gesturing without touching 

any external device like e.g. a keyboard or a joystick. 

Tracking  
      As mentioned earlier a problem for many Lucas-Kanade 

like tracking approaches is that they only converge for small 

image motion. Dick et al.’s [13] inclusion of machine learning 

to tracking improved the convergence for large image motion. 

They implemented and tested the Inverse Compositional (I.C.) 

[12] and Efficient Second Order Minimization (E.S.M) [11] 

algorithms as well as their own Nearest Neighbour tracker 

(N.N. + I.C.) on increasing static image motion. We repeat the 

same experiment, but include the Regularized Ridge 

Regression (R.R. + I.C.) algorithm as well. We add random 

Gaussian noise to the original object template image to create 

the updated template. The experiment is run with standard 

deviation from 1 to 20. Each experiment is run 5000 times and 

they record how often the different trackers fail. The results of 

our experiment are shown in Figure 12. We can see that the 

Nearest Neighbour and Ridge Regression algorithms handle  

 

Figure 12. Testing of tracking algorithms on increasing static image motion. 
The results show the proportion of converged experiments for different 

standard deviations of Gaussian noise added to the original image.  

large image motion better than the I.C. and E.S.M. algorithms. 

CONCLUSION 

We think that visual HRI through intuitive task 
specification is a first step on the way to facilitate effortless 
control of and interaction with a robot arm. Our suggested 
interfaces allow us to start working in more detail with visual 
task specification in a practical setting. In order to create better 
user control we need to gain more understanding of visual 
constraints and visual task specification. HRI, tracking and 
multi-view geometry as well as the theory behind visual 
servoing all need to be tackled to create a successful visual 
servoing system that can be used in real world applications. We 
have focused on HRI and tracking as these have received less 
focus in traditional visual servoing publications. 
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