
Bringing Visual Servoing into Real World

Applications

Mona Gridseth Camilo Perez Quintero Romeo Tatsambon Fomena Oscar Ramirez Martin Jagersand

University of Alberta

Abstract— Substantial work has been published in visual

servoing over the years, yet we have seen few real world

applications. We discuss four different milestones (human robot

interaction (HRI), tracking, multi-view geometry and visual

servoing) needed to bring visual servoing into an unstructured

human environment. We focus our efforts on HRI and tracking

which we think are the link to bring visual servoing towards

more practical applications.

Keywords: Visual Servoing, Human Robot Interaction, Visual

Task Specification, Tracking.

I. INTRODUCTION

 Visual Servoing is a well-known technique used to control
a dynamic system using visual feedback [7]. Despite much
published research on visual servoing, it has had little
penetration in real-world applications. With its roots in
engineering, robotics research has focused on topics such as
mechatronics design, control and autonomy, while fewer works
pay attention to human-robot interfacing and user studies. This
results in an increasing gap between expectations of robotics
technology and its real world capabilities. Our aim is to bring
visual servoing towards more practical and usable
implementations. In order to create a successful visual servoing
system, four areas need to be addressed: HRI, tracking, multi-
view geometry and visual servoing.
 We illustrate these four points with a real-world example.
Consider a surgical setting where the surgeon wants to make an
incision along the midline of the patient (Figure 1). The
surgeon draws a line on the patient’s body to mark the location
of the incision. Either the incision can be performed by a robot
arm that follows this line or the surgeon can hold the scalpel
collaboratively with the robot arm in a haptic interaction. The
surgeon moves the scalpel forward or backward, while the
robot constrains the movement to follow the indicated line.
 A good interface for HRI is necessary to provide the
surgeon with an intuitive way to specify the line that the robot
should follow. Furthermore, the robot end-effector as well as
either the line on the patient or the end-points of that line must
be tracked. This is because the patient can move during the
procedure and depending on the placement of the cameras for
visual servoing (eye-in-hand and/or eye-to-hand), the end-
effector or the surrounding world will move in the images.
Multi-view geometry is used to turn the image information
from the line the surgeon specified into an error function for
visual servoing. Finally visual servoing is used to move the
robot arm.

Human Robot Interaction

 As illustrated with the above example, HRI is fundamental

Figure 1. a) and b)A surgeon marks the patient’s midline using a visual
interface. c) A view of the interface. d) Haptic interaction to perform incision.

e) Visual servoing to perform incision.

in any robotics real world application. Even for autonomous

routines the user needs an interaction to start and stop them.

Today robot arms are deployed and work successfully in

controlled environments such as factories, where they can be

pre-programmed to complete a set of fixed tasks autonomously

and accurately. However, when we want robots to aid us in our

everyday lives or in the workplace the challenge becomes

greater due to unstructured and dynamic surroundings.

Robotics researchers are looking to tackle this problem by

letting humans and robots work together to complete tasks [1,

2, 3]. This can be done by keeping the ‘human-in-the-loop’ [3],

which means the human guides the robot without controlling it

completely.

 One commonly used technique in robotics is ‘teach-by-

showing’ [7] (Figure 2). The robot is manually moved to its

goal position and that location is recorded. Afterwards the

robot can perform the same task autonomously. This works for

repetitive tasks in a controlled environment, but not for semi-

autonomous control. In the particular case of visual servoing,

tasks can be visually specified in images. A task can be defined

as the objective of bringing the end-effector of the robot arm to

its target in the work space [4]. For example a point-to-point

task aligns a point on the robot end-effector (or an object the

end-effector is holding) with a point in the workspace, whereas

a point-to-line task brings a point on the end-effector to a line

in the workspace (Figure 2). The formal relationship between

feature alignments in 2D image frames and the 3D world has

been explored theoretically [4, 5, 6], but not seen much use

otherwise. We will exploit these visual specifications in the

HRI we present in Section II. By allowing the user to specify

tasks visually we can keep the ‘human-in-the-loop’ interaction.

Figure 2. The left image shows visual tasks (point-to-point and point-to-line)
needed to perform visual servoing to move the tray into the box. The image on

the right illustrates ‘teach-by-showing’ for task specification.

Tracking

 Tracking is essential in visual servoing as it provides the

location of the target object and the robot end-effector. In

particular for visual task specification we may need to track

several points in the image frame. In the case of a point-to-line

task we need to track a point on the end-effector and two points

on the line in the workspace. Alternatively we can combine

point tracking and line tracking. In many visual servoing papers

tracking is done simply by extracting the position of black and

white markers on the robot and target object. This approach

will not work in a real-world application since we will not have

access to marked objects. Familiar types of tracking algorithms

include segmentation-based tracking, feature-based tracking

and registration-based tracking [10, 11, 12]. Any tracking

algorithm used for visual servoing needs to have good

accuracy, be able to handle large camera motion and it must be

robust.

 Multi-View Geometry

 From the user interface we get the tasks that the user has

specified and tracking provides the location of the relevant

points. In addition to specifying a task, we also need to verify

whether the task has indeed been accomplished by the robot

arm after visual servoing. Both the specification and

verification of tasks is based on data from 2D images. We need

a way to decide whether convergence to the goal in the image

space actually means that we have reached the target in the

robot work space. Dodds [6] shows that there is visual

ambiguity in 2D images as illustrated in Figure 3. Although the

two camera views show the probe touching the wire, this does

not actually happen.

 The “teach-by-showing” technique mentioned earlier is also

relevant to task specification. The robot arm is moved to the

goal position and the corresponding image features are

recorded. We know the task is completed when the error

between the current image features and the recorded ones has

reached zero. However this approach does not eliminate the

problem with image ambiguity.

Figure 3. The two first images
show a probe touching a wire due
to visual ambiguity. The third
image shows the set-up and the
fact that the probe does not touch
the wire. Images are taken from
[6] with permission of Z. Dodds.

 Depending on the level of calibration there exist tasks that
can be unambiguously specified and verified using two 2D
image views, they are said to be decidable tasks [4, 5]. One
example is a point-to-point task, which is decidable for
uncalibrated systems. Furthermore Dodds et al. [5] show that
there exist operators that preserve task decidability. Decidable
tasks can therefore be composed into more complex tasks that
are still decidable. That is, we can decompose high-level
actions into a string of simpler tasks that we know are
decidable.

Visual Servoing

 We use visual servoing to move the end-effector of a robot
arm to its target in the workspace. The inputs to visual servoing
are images from two or more cameras. From these images we
collect features that are used to create an error function. As we
will see in Section II, when working with visual tasks this error
function is constructed using the specified task. Visual servoing
is accomplished by driving the error function to zero. One
possible approach is to compute the error dynamics differential
equation and use the result to create a control law. Depending
on the level of system calibration, different types of visual
servoing exist. We focus on image based visual servoing that
uses geometric transforms going directly from projective image
space to the robot motor space [8].
 Building on results from visual servoing and multi-view
geometry we will focus on developing intuitive HRI to
facilitate effortless control of and interaction with a robot arm.
We will also discuss in more detail a tracking approach that we
have explored.

II. COMPUTER VISION FOR HRI

A. Interfaces and Input Types

An important milestone for bringing visual servoing to real
world applications is creating a system for effortless and
intuitive HRI. This means we need to match the right interface

with different types of users and applications. Part of our
research consists of developing, classifying and testing
interfaces. In this section we describe several cases where
visual input is used to specify tasks for the robot to carry out.
Following we consider interaction using (1) a touch screen, (2)
a joystick and (3) pointing.
 Going back to the surgical setting from Figure 1, the
surgeon has to specify the midline on the patient. A touch
screen tablet together with a stylus provides easy interaction
with the visual servoing images. First the surgeon chooses the
type of task from a drop down menu. In our example this is a
point-to-line task. Next the surgeon clicks on the end-effector
to indicate a point, and then on two more points in the
workspace to mark the patient’s midline. A red point and line
in the image shows the selection. Once told to start, the robot
holding the scalpel moves along the specified line and makes
the incision. Alternatively, using haptic interaction, the robot
and the surgeon hold the scalpel together. The surgeon moves
the scalpel forward to make the incision, while the robot
implements forces to make sure the incision does not deviate
from the midline.
 Robot arms can be of great assistance to wheelchair users
with low arm function. A light-weight robot arm such as the
Kinova JACO arm [9] can be attached to a wheelchair and used
to grasp and manipulate objects. For many wheelchair users a
touch tablet and stylus is not a feasible mode of interaction
because they may suffer from muscular spasms or hand
tremors. A better approach would be to use a joystick to control
a cursor on the screen. This way the user can specify visual
tasks as described before. When picking up an object the user
would first specify a point-to-point alignment to move the
robot arm close to the desired target. In order to grasp the
object from the right angle the gripper would need to be re-
oriented and re-aligned. This fine-tuning of the action can be
done by specifying one or more additional visual tasks. A
detailed example follows in the next section.
 The final mode of interaction is pointing [10] (Figure 4).
The user points towards an object he/she wants the robot arm to
manipulate. This takes advantage of a natural interaction that
humans use all the time. After the user has selected an object
the robot arm would move there and grasp it. Furthermore the
user can point to a location where the object should be put
down. In the two previous applications the user interface gives
clear feedback to the user by drawing points and lines on the
screen. If the specification appears incorrect, he/she can clear
the selection and try again. With a pointing interface, feedback
is not as straight forward. We would let the robot point towards
the object closest to the location chosen by the user. The user
can then confirm or decline this selection with a gesture.
 A system for pointing and gesture recognition can be set up
in two ways. In the first approach the user is observed with two
cameras. The line extended from the users arm to the object
he/she is pointing to can be projected to lines in the two
images. The object location in the left and right images is
combined to perform visual servoing for the robot arm.
Another possibility is to make use of 3D data replacing the two
cameras by a Microsoft Kinect sensor. The 3D point that the
user indicates is transformed to the robot base frame. Now the
robot end-effector can move to this point after an inverse
kinematics calculation.

Figure 4. Illustration of an interface where the user points to objects for the
robot arm to grasp. The pointing location is found using a Microsoft Kinect

Sensor. There will be some error between where the user points and the
location of the target object.

B. Composition of Tasks

 We want to take high-level actions for the robot to perform
and decompose them into a chain of simpler tasks that we
know can be completed. As mentioned in the introduction,
Dodds et al. [5] show that there exist task operators that
preserve task decidability. They can be used to compose
decidable tasks into more complex ones. This is similar to the
object grasping in section II-A where we suggested to first
move close to the target before re-orienting the gripper. These
simple tasks can be specified in serial one after another with
the robot completing each task before the next is specified.
Another approach is to specify several tasks in parallel
before the robot carries them out. This is useful when one task
alone is not enough to fully determine the desired pose
(position and orientation) of the end-effector; we can add more
constraints by adding more tasks. An example is illustrated in
Figure 5. We want to insert the yellow hexagon into the box.
First the gripper is brought close to the hexagon with a point-
to-point task. Then two alignments are performed to grasp the
hexagon. Next the gripper is brought close to the box with
another point-to-point task and finally a set of new tasks are
specified to align the hexagon with the box opening. As an
example of parallel specification we will describe the tasks
needed for the grasping in more detail.

Figure 5. Inserting a hexagon into the box is done in several steps. First the

gripper moves close to the target. Two steps are needed to align the gripper
and grasp the hexagon. Finally the hexagon is brought close to the box and

inserted after further alignment.

 In order for the robot grasp the hexagon we need to specify

several tasks (Figure 6) and turn that information into an error

function for visual servoing. This requires an image encoding

for the tasks. Image encodings are described in detail in [4, 5].

Assume we have the image coordinates of the required points

and lines from tracking. By specifying two point-to-line tasks

between p2 and L1 and between p4 and L2, we can align the

Figure 6. The left image illustrates two point-to-point tasks and two point-to-

line tasks needed to align the gripper with the hexagon and bring it closer to

the hexagon. They are used to create E1. The right shows two new point-to-
point tasks and the same point-to-line tasks. It shows the goal configuration

for E1, and the specification of a new visual goal E2 that will slide the robot

gripper onto the hexagon.

gripper with the hexagon. The point-to-point tasks between p1

and p5 and between p3 and p6 will decide how far along the

specified lines the gripper should move (Figure 6, left image).

Assume we are using two cameras, the subscripts L and R

indicate image coordinates in the left and right camera view

respectively. Then the image encoding for one of the point-to-

point tasks is Epp = (p5L – p1L, p5R – p1R)
T
. Similarly for one

of the point-to-line tasks the encoding becomes Epl = (p2L ∙

L1L, p2R ∙ L1R)
T
. One of the operators presented in [5] that

preserve task decidability is the AND function. The AND

function combines several tasks that all have to hold

simultaneously by stacking their image encodings into one

vector E. Hence to specify the above tasks form the left image

in Figure 6 in parallel, we stack all of them into a vector E1. In

fact it is this vector E1 that becomes the error function needed

for visual servoing. Once E1 has been driven to zero by visual

servoing, we are in the situation displayed in the right image in

Figure 6. Now we create E2 that specifies the tasks needed to

complete the grasp. The point-to-line tasks stay the same to

preserve the gripper orientation, but the point-to-point tasks

change to allow the gripper to move forward. Visual servoing

will finally bring E2 to zero and the grasp is completed.

 Given that we have an imprecisely modelled two-camera

system; can we say something about what tasks can be

accomplished solely based on observing point features?

According to [4, 5] the answer depends on the camera model

and level of calibration. Point coincidence tasks are decidable

on any family of injective two-camera models and these are

also the only tasks decidable on injective camera models.

Furthermore for weakly calibrated projective cameras, a task T

is decidable iff T is projectively invariant. Finally if T is

decidable for uncalibrated cameras, then T is projectively

invariant. This means that we can verify a robot arm

positioning task with absolute certainty using weakly

calibrated, noise free, stereo-vision systems iff the task is

projectively invariant. However with point coincidence tasks

this can be done with an uncalibrated system.
 Using results from visual task specification and multi-view

geometry we can develop different computer vision based HRI

interfaces that will bring us closer to using visual servoing in

real-world applications for a wide range of users.

III. TRACKING

 Visual tasks that are specified by the user have a set of
points associated with them. These points must be tracked. In
the case of a point-to-line task, we need to track a point on the
end-effector of the robot as well as the line in the workspace.
For the latter we can use a line tracker or simply track the two
end-points. The tracking is necessary since the object we are
working with might move. Also, depending on the placement
of the cameras we are using for visual servoing (eye-in-hand
and/or eye-to-hand), the robot end-effector or the surrounding
world will move in the recorded images. A successful
application depends on robust and accurate trackers. We must
also be able to initialize several trackers in one image. These
trackers might be of different types. We need the ability to
track points, lines and conics in order to handle different
shaped targets.
 Our work has focused on registration-based tracking. In
registration-based tracking, also called sum of squared intensity
difference (SSD) tracking, we specify a small image template
that surrounds the desired object in the first image frame. We
want to be able to find the location of this template in future
frames. We warp incoming image frames to align them with
the original template using a warp function with a
corresponding warp parameter. With each new image frame the
goal is to update the warp parameter. The Lucas-Kanade
algorithm [11] serves as a foundation for many registration-
based tracking algorithms [11, 12]. By minimizing the SSD
between the current image warped with the latest warp
parameter and the initial template, we are able to find the new
update to the warp parameter.
 In earlier work in our lab Dick et al. [13] tried a different
approach to registration-based tracking by introducing machine
learning into their system. They use approximate Nearest
Neighbour Search with pre-computed partially aligned
template images to find the corresponding warp parameter
update. Later we have tried to replace the Nearest Neighbour
Search by a different machine learning approach to see if the
behavior was similar. In this case we learn the function
between the warp updates and partially aligned image
templates using Regularized Ridge Regression. For
registration-based tracking to be useful to visual servoing, the
algorithms must be able to handle large image motion between
subsequent frames. A common problem with the Lucas-Kanade
like approaches is that they only converge for small image
motion. By introducing machine learning into the tracking
procedure we improve on convergence for large image motion.

IV. SYTEMS AND RESULTS

 In this paper we present ongoing work and describe

different relevant experiments that we have conducted so far

for HRI interfaces and tracking.

Point-to-Line Visual Servoing

 Going back to the initial surgery example we have

implemented an experiment where a WAM robot arm does

point-to-line visual servoing. We track the end-effector as

well as two points on the line in the workspace using the

Camshift tracker [14] in OpenCV (Figure 7). We capture

images from two cameras and combine the visual servoing

point-to-line error function, Epl, from both of them. Figure 8

displays the convergence of the visual servoing Epl error in

the two images. The noise in the error comes from the

tracker. The error in image I1 is lower than the error in image

I2 because camera 1 is better positioned with respect to the

scene than camera 2. Despite this we can see that the final

position of the end-effector is indeed on the specified line

(Figure 9). For a video of the visual servoing see [16].

Figure 7. The Camshift tracker is used to track the robot end-effector as well

as two points on the line in the workspace.

Figure 8. The convergence of the visual servoing error in the two image

frames.

Figure 9. Point-to-line visual servoing moves the robot end-effector to a line

defined by two green markers that are tracked as points on the line.

3D Pointing

 In section II we described an interaction mode that lets

the user point to objects he/or she wants the robot arm to

grasp and manipulate [10]. We built on the SEPO (Select-by-

Pointing) system from our lab presented by Quintero et al. in

[15]. Here the location of the user’s pointing gesture is

detected by a Microsoft Kinect sensor. They found that the

SEPO interface had users select objects with average position

accuracy of 9.6 ± 1.6 cm. That means objects such as a cereal

box on the table or a vacuum cleaner on the floor can be

successfully chosen by a user. We use the 3D location from

the SEPO interface to move the WAM robot arm using

inverse kinematics. The objects are grasped from above using

information from a point cloud to align the gripper. The

participants interact with the robot arm to remove objects

from a table and sort them into two containers [10] (Figure

10). The robot arm provides feedback by pointing at the

closest object to the chosen location so the user can confirm

or decline the selection. The final system was tested both

with and without feedback. We conducted both human-

human and human-robot experiments. In the human-human

interaction one participant pointed at objects while the other

had to interpret the pointing gestures and pick up objects.

Eight people took part in the study. The participants stated

that interacting with the robot was no more difficult than

interacting with another human. Four objects were placed in

two configurations with different level of difficulty. Without

feedback the average success rate (success means the right

object was picked and placed in the correct bin) for human-

human experiments was 75% for the more challenging object

configuration and 95% for the simpler one. For the human-

robot experiments the average success rate was 88% for both

configurations. When feedback was incorporated in the

experiments both interactions had a 100% success rate.

Figure 10. A user interacts through pointing and gestures with a robot arm

that picks objects from a table and drops them into boxes. The robot points to
the object closest to the chose location to receive confirmation from the user.

Interactive Teleoperation Interface for Semi-Autonomous

Control of Robot Arms

 In this system we propose an intuitive gesture interface

that allows the human operator to switch between

teleoperation mode and visual servoing (Figure 11). We

design two alternate motion modes: (1) a direct linkage to the

arm motion from the tracked human skeleton and (2) an

image-based visual servoing routine. A successful application

of the interface is presented for a WAM arm equipped with

an eye-in-hand camera. Coarse motions are executed by

human teleoperation and fine motions by image-based visual

servoing.

 By using an intuitive gesture interface, the user tracked by

the Kinect is able to teleoperate the robot arm, by using a

regular PC monitor that receives the image streams from

cameras 1 and 2. The HRI combines the strengths of both

teleoperation and visual servoing. For large manipulation

teleoperation is quicker than visual servoing, since the eye-in-

hand camera has a limited field of view and it would be

tedious and unintuitive for the user to define several segments

of visual servoing. For precise manipulation on the other

hand, the direct mapping of tracked human arm motions to

robot motions suffers from noise in the tracking and it is

difficult for the human to deal with the dynamics of the robot.

We find that teleoperated motions, while fast, are jittery and

not very precise. Here visual servoing relieves the human

from dealing with the dynamics of the robot, and allows for

precise motions.

Figure 11. The user in location 1 needs a kinect and a regular PC. The user
can only control the robot arm in location 2 by gesturing without touching

any external device like e.g. a keyboard or a joystick.

Tracking
 As mentioned earlier a problem for many Lucas-Kanade

like tracking approaches is that they only converge for small

image motion. Dick et al.’s [13] inclusion of machine learning

to tracking improved the convergence for large image motion.

They implemented and tested the Inverse Compositional (I.C.)

[12] and Efficient Second Order Minimization (E.S.M) [11]

algorithms as well as their own Nearest Neighbour tracker

(N.N. + I.C.) on increasing static image motion. We repeat the

same experiment, but include the Regularized Ridge

Regression (R.R. + I.C.) algorithm as well. We add random

Gaussian noise to the original object template image to create

the updated template. The experiment is run with standard

deviation from 1 to 20. Each experiment is run 5000 times and

they record how often the different trackers fail. The results of

our experiment are shown in Figure 12. We can see that the

Nearest Neighbour and Ridge Regression algorithms handle

Figure 12. Testing of tracking algorithms on increasing static image motion.
The results show the proportion of converged experiments for different

standard deviations of Gaussian noise added to the original image.

large image motion better than the I.C. and E.S.M. algorithms.

CONCLUSION

We think that visual HRI through intuitive task
specification is a first step on the way to facilitate effortless
control of and interaction with a robot arm. Our suggested
interfaces allow us to start working in more detail with visual
task specification in a practical setting. In order to create better
user control we need to gain more understanding of visual
constraints and visual task specification. HRI, tracking and
multi-view geometry as well as the theory behind visual
servoing all need to be tackled to create a successful visual
servoing system that can be used in real world applications. We
have focused on HRI and tracking as these have received less
focus in traditional visual servoing publications.

REFERENCES

[1] C. C. Kemp, A. Erdsinger, and E. Torres-Jara. Challenges for Robot

Manipulation in Human Environments [Grand Challenges of Robotics].

IEEE Robotics and Automation Magazine, vol. 14, no. 1, pp. 20-29,

March 2007.

[2] A. Edsinger, and C. C. Kemp. Human-Robot Interaction for Cooperative

Manipulation: Handing Objects to One Another. Proceedings of the

IEEE International Workshop on Robot and Human Interactive

Communication, 2007.

[3] K. M. Tsui, D. Kim, A. Behal, D. Kontak, and H. A. Yanco. "I Want

That": Human-in-the-Loop Control of a Wheelchair-Mounted Robotic

Arm. Journal of Applied Bionics and Biomechanics, vol. 8, no. 1, pp.

127–147, April 2010.

[4] J. P. Hespana, Z. Dodds, G.D. Hager, and A. S. Morse. What Tasks can

be Performed with an Uncalibrated Stereo Vision System? International

Journal of Computer Vision 35(1), 65-85 1999.

[5] Z. Dodds, G.D. Hager, A. S. Morse, and J. P. Hespana. Task

Specification and Monitoring for Uncalibrated Hand/Eye Coordination.

Proceedings of the IEEE International Conference on Robotics &

Automation, 1999.

[6] Z. B. Dodds. Task Specification Languages for Uncalibrated Visual

Servoing. PhD Thesis, 2000.

[7] S. Hutchinson, G. D. Hager, and P. I. Corke. A Tutorial on Visual Servo

Control. IEEE Transactions on Robotics and Automation, vol. 12, no. 5,

pp. 651-670, 19.

[8] Amir Massoud Farahmand, Azad Shademan, Martin Jägersand, Csaba

Szepesvári: Model-based and model-free reinforcement learning for

visual servoing. IEEE ICRA 2009: 2917-2924

[9] Kinova Robotics. www.kinovarobotics.com

[10] C. P Quintero, R. T. Fomena, M, Gridseth, and M. Jagersand. Visual

Pointing Gestures for Bi-directional Human Robot Interaction in a Pick-

and-Place Task. Submitted to IROS 2013.

[11] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying

framework. International Journal of Computer Vision, Vol. 56, No. 3,

March, 2004, pp. 221 - 255.

[12] S. Benhimane and E. Malis. Real-time image-based tracking of planes

using efficient second-order minimization. IEEE/RSJ Int. Conference on

Intelligent Robots and Systems, vol. 1, sept.-2 oct. 2004, pp. 943 – 948.

[13] T. Dick, C. Perez, A. Shademan, and M. Jagersand. A supervised

learning approach to registration-based visual tracking. Robotics:

Science and Systems, 2013.

[14] G.R. Bradski. Computer video face tracking for use in a perceptual user

interface. Intel Technology Journal, Q2 1998.

[15] C. P. Quintero, R. T. Fomena, A. Shademan, N. Wolleb, T. Dick, and M.

Jagersand. SEPO: Selecting by Pointing as an Intuitive Human-Robot

Command Interface. IEEE International Conference on Robotics and

Automation (ICRA), 2013.

[16] http://webdocs.cs.ualberta.ca/~vis/HRI/PointToLineVisualServoing.avi

http://download/
http://download/
http://download/
http://www.kinovarobotics.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6215071
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6215071
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6215071
http://webdocs.cs.ualberta.ca/~vis/HRI/PointToLineVisualServoing.avi

	RSS_paper_rewrite

