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Abstract—Collaborative fluency is the coordinated meshing of
joint activities between members of a well-synchronized team.
We aim to build robotic team members that can work side-by-
side humans by displaying the kind of fluency that humans are
accustomed to from each other. As part of this effort, we have
developed a number of metrics to evaluate the level of fluency in
human-robot shared-location teamwork. In this paper we discuss
issues in measuring fluency, present both subjective and objective
metrics that have been used to measure fluency between a human
and robot, and report on findings along the proposed metrics.

I. INTRODUCTION

When humans collaborate on a joint task, and especially
when they are accustomed to the task and to each other, they
can reach a high level of coordination, resulting in a well-
synchronized meshing of their actions. Their timing is precise
and efficient, they alter their plans and actions appropriately
and dynamically, and this behavior emerges often without
exchanging much verbal information.

We denote this quality of interaction the fluency of the joint
activity, or in short, collaborative fluency, and in our research
are interested in how robots could similarly perform more
fluently with their human counterparts.

As it stands, most human-robot collaboration is structured in
a stop-and-go fashion, inducing delays, and following a rigid
command-and-response pattern. Collaboration with robots,
where it occurs, holds little of the fluent quality which is part
of a satisfying collaboration, the meshed “dance” that evokes
both appreciation and confidence in a well-tuned human team.

We believe that for personal robots to play a long-term
engaging role in untrained humans’ lives, they must display
a significantly more fluent coordination of their actions with
that of their human counterparts.

The notion of fluency in human-robot collaboration is
not well defined, and its meaning is not generally agreed
upon. As can be seen by the description above, fluency is a
somewhat vague and ephemeral notion. That said, we contend
that fluency is a quality that can be positively assessed and
recognized when compared to a non-fluent scenario. Moreover,
we believe that tools for its evaluation are crucial for the design
of successful robotic teammates.

In this paper we discuss various ways to measure the extent
of fluency in a human-robot collaboration scenario, including
subjective and objective metrics, and the relationship between
the two. We also review recent work that has made use of these
and other metrics in a number of shared-location human-robot
collaborative task settings.

A. Related Work

The term “human-robot collaboration” has a number of
meanings in the HRI literature. Some frame it in the context
of mixed-initiative control and shared autonomy, arbitrating
between a remote robot’s autonomy and direct human control
(e.g. [2]). In this work, however, we focus only on the
collaboration between a human and an autonomous robot at
a shared location, making use of the co-located partners’
behavior to achieve a joint goal.

In early shared-location collaboration work, Kimura et al.
[11] study a robotic arm assisting a human in an assembly task.
Their work addresses issues of vision and task representation,
but does not investigate timing or fluency. In our own earlier
work, we investigate turn-taking and joint plans, mostly in the
context of verbal and non-verbal dialog [6]. That work also
does not include overlapping action or questions of fluency.

Sakita et al. [16] use a robot to assist a human in an
assembly task. The robot intervenes in one of three ways:
taking over for the human, disambiguating a situation, or
executing an action simultaneously with a human. While
relying on some nonverbal symbols, the interaction described
is also strictly turn-based. More recent work in this vein [13, 1]
investigates mechanisms to coordinate joint activities, and in
particular when a breakdown in the joint task coordination
occurs. None of these deal directly with timing or the fluent
meshing of the coordinated activity. Another body of research
in shared-location human-robot collaboration is concerned
with the mechanical coordination and safety considerations of
robots in shared tasks with humans (e.g. [10]).

Work in rhythm-related HRI directly addresses the notion of
timing. Weinberg and Driscoll [17] include nonverbal behavior
and physically-based anticipation in their “Haile” robotic
drummer project. Michalowski et al. [12] study the effects of
rhythmic movement of a beat-tracking dancing robot. Neither,
however, are directly related to the achievement of a joint task.

Examples of work specifically dealing with fluency of
shared-workspace collaboration includes anticipatory action
systems in shared-workspace MDPs [7], perceptual simulation
in joint tasks [8], fluency of object handovers from a robot to
a human [3], timing in multi-modal turn-taking interactions
[4], and human-robot cross-training for shared learning in
human-robot teams [14]. We discuss these works in detail in
Section V.



II. CHARACTERISTICS OF COLLABORATIVE FLUENCY

A. Fluency vs Efficiency

Team fluency is related to task efficiency, defined simply
as the inverse of the time it takes to complete identical tasks
or subtasks. One would assume that a more fluent interaction
should be more efficient. However, we have found that the two
are not directly correlated.

Indeed, the need to separately measure the fluency of an
interaction arose in the evaluation of a framework for human-
robot collaboration, in which we found that participants rated
their experience as significantly more fluent, even when there
was no difference in efficiency of the task completion [7].

This finding suggests that collaborative fluency is a separate
feature of the joint activity, requiring separate metrics.

B. Subjective vs Objective Fluency Metrics

To that end, we developed two types of fluency metrics
for human-robot collaboration: subjective metrics, which are
based on people’s perception of the fluency of an interaction;
and objective metrics, which can quantitatively estimate the
degree of fluency in a given interaction.

Subjective fluency metrics include both direct measures of
fluency that people attach to a collaboration, and downstream
outcomes of the perceived fluency, such as the trust human
collaborators put in the robot, or their sense that the robot is
committed to the team.

C. Observer vs Participant Fluency Perception

When evaluating subjective fluency perception, we need
to separate the fluency perceived by a bystander watching a
collaborative interaction, and the fluency experienced by the
human participant in a human-robot team.

We denote these two categories observer and participant
fluency perception, respectively. In our own work we found
anecdotally, that even when observers do not detect a differ-
ence in collaborative fluency between two interactions, partic-
ipants do. This suggests that participation is more sensitive to
fluency than observation.

In Section V, we review both work that evaluates observer
fluency perception and work that evaluates participant fluency
perception, although this distinction is not usually made ex-
plicit.

III. SUBJECTIVE FLUENCY METRICS

Subjective fluency metrics assess how fluent people perceive
the collaboration to be. We use questionnaires to rate agree-
ment with fluency notions, including both single statements
and composites of indicators related to the same measure.

In addition to directly evaluating fluency, we explore pos-
sible downstream outcomes of collaborative fluency. These
outcomes can include the perceived intelligence of the robot,
the perceived reliability of the robot, the trust humans put in
it, or the contribution of the robot to the team.

It should be noted that there are currently no accepted
practices, instruments, or measures to evaluate fluency in
human-robot collaboration. This section presents a review of

subjective measures that we and others have used in the past to
measure aspects of fluency, as a basis for discussion towards
future human-robot fluency studies.

A. Composite Measures

To evaluate people’s sense of human-robot fluency, we have
used the following composite measures. They include one
direct measure of fluency, and several downstream measures.

Note that the measures are phrased for the participant
fluency perception scenario, but can be adjusted for observer
fluency perception, where necessary. We report Cronbach’s al-
pha as measured in our most recent human-robot collaborative
fluency study using these measures [8].

1) Human-Robot Fluency: This composite measure evalu-
ates the overall fluency between the human and the robot, and
consists of three indicators:

• “The human-robot team worked fluently together.”
• “The human-robot team’s fluency improved over time.”1

• “The robot contributed to the fluency of the interaction.”

Cronbach’s alpha for this measure was found to be 0.801.
2) Robot Contribution: This composite downstream mea-

sure evaluates the robot’s contribution to the team, and consists
of two indicators:

• “I had to carry the weight to make the human-robot team better.”
(reverse scale)

• “The robot contributed equally to the team performance.”
• “I was the most important team member on the team.” (reverse

scale)
• “The robot was the most important team member on the team.”

Cronbach’s alpha for this measure was found to be 0.785.
3) Trust in Robot: This composite downstream measure

evaluates the trust the robot evokes, and consists of two
indicators:

• “I trusted the robot to do the right thing at the right time.”
• “The robot was trustworthy.”

Cronbach’s alpha for this measure was found to be 0.772.
4) Robot Teammate Traits: This composite downstream

measure evaluates the robot’s perceived character traits related
to it being a team member, and consists of three indicators:

• “The robot was intelligent.”
• “The robot was trustworthy.”
• “The robot was committed to the task.”

Cronbach’s alpha for this measure was found to be 0.827.
5) Working Alliance for Human-Robot Teams: We have

adapted an existing instrument, the “Working Alliance Index”
(WAI) [9], measuring the quality of working alliance between
humans, to the human-robot teamwork scenario. This down-
stream measure is made up of two sub-scales, the “bond” sub-
scale and the “goal” sub-scale, in addition to one additional
individual question.

The “bond” sub-scale consists of the following seven indi-
cators:

• “I feel uncomfortable with the robot.” (reverse scale)
• “The robot and I understand each other.”
• “I believe the robot likes me.”

1This question relates specifically to the adaptive aspect of fluency, and is
only appropriate in a robot learning or adaptation scenario.



• “The robot and I respect each other.”
• “I am confident in the robot’s ability to help me.”
• “I feel that the robot appreciates me.”
• “The robot and I trust each other.”

Cronbach’s alpha for this measure was found to be 0.808.
The “goal” sub-scale consists of the following three indica-

tors:
• “The robot perceives accurately what my goals are.”
• “The robot does not understand what I am trying to accomplish.”

(reverse scale)
• “The robot and I are working towards mutually agreed upon

goals.”

Cronbach’s alpha for this measure was found to be 0.794.
The complete composite measure additionally includes the

following indicator:
• “ I find what I am doing with the robot confusing.” (reverse

scale)

Cronbach’s alpha for the overall WAI was found to be 0.843.
6) Improvement: This composite measure is only applica-

ble for a learning and adaptation scenario, and consists of three
indicators:

• “The human-robot team improved over time”
• “The human-robot team’s fluency improved over time.”
• “The robot’s performance improved over time.”

Cronbach’s alpha for this measure was found to be 0.793.

B. Individual Measures

We have also found it useful to evaluate some of the above,
and additional, indicators individually. Additional individual
measures include:

• “The robot’s performance was an important contribution to the
success of the team.”

• “It felt like the robot was committed to the success of the team.”
• “I was committed to the success of the team.”

C. Additional Indicators

As these measures have been validated only in a limited
setting, we find it useful to also report on indicators that we
have not found successful in the evaluation of fluency. Further
study is merited to examine these measures with respect to the
perceived fluency of the human-robot collaboration.

These indicators include:
• “The human-robot team did well on the task.”
• “The robot performed well as part of the team.”
• “The human-robot team felt well-tuned.”
• “The robot did its part successfully.”

IV. OBJECTIVE FLUENCY METRICS

In addition to subjective measures, we want to attain objec-
tive measures that could serve as benchmarks to evaluate flu-
ency in human-robot collaboration. We propose four measures
relating to the fluency of an interaction, and which we have
used to estimate the contribution to fluency of various learning
and task collaboration algorithms. All of these measures are
task-agnostic, and relate only to the periods of action. Also,
they are generally understood as between a two-member team,
with one human and one robot team member.

A. Robot Idle Time

The first measure is the rate of robot idle time. This
corresponds to the percentage of the total task time that the
robot was not active. Robot idle time occurs in situations in
which the robot waits for additional input from the human,
is processing input, is computing a decision, is waiting for
additional sensory input, or is waiting for the human to
complete an action.

B. Human Idle Time

The symmetric measure is the rate of the human idle time.
This corresponds to the percentage of the total task time that
the human was not active. As humans usually have more
information in human-robot collaborative tasks, and faster
perceptual processing, we found that—more often than not—
human idle time is due to the human waiting for the robot to
complete an action in order for them to do the next step of
the collaboration.

In terms of the sense of fluency, human idle time can be
perceived as boredom, time wasted, or an imbalance between
team members.

C. Concurrent Activity

A third measure is the rate of concurrent activity. This
corresponds to the percentage of time out of the total task
time, during which both agents have been active at the same
time. Another way to understand this measure is the amount
of action overlap between the two agents.

D. Functional Delay

The forth measure is the rate of functional delay experienced
by the agents. This is the accumulated time, as a ratio of total
task time, between the completion of one agent’s action, and
the beginning of the other agent’s action.

Note that this measure can be larger than 1, if the accumu-
lated functional delay is longer than the total task time. This
occurs if within a task of length t there are n actions by an
agent, with a mean functional delay of d for each action, and
t
n < d < t.

Functional delay can also be negative, in the case that
actions are overlapping.

The functional delay can be calculated for both agents
together, or for each agent separately. However, in our ex-
perience we have found that the functional delay imposed by
the human is usually negligable, so that the total functional
delay is equal to the functional delay imposed by the robot
(i.e. the time between the end of the human’s action and the
onset of the robot’s action). We therefore usually consider only
this metric.

E. Examples

The four metrics laid out above are, of course, interrelated,
as they are all a function of the amount and timing of each
agent’s action. However, they are not interchangeable. One
measure can improve while another regresses.



To illustrate the interplay between the various measures in
some common scenarios, we analyze three template scenarios.

Figure 1 shows a strictly alternating turn taking scenario,
in which each action by the agent is immediately followed by
the next action of the other agent. The imbalance in idle times
is due to the fact that the robot starts the interaction. Strict
alternation results in no functional delay and no concurrent
action.

Task time

Human action

Robot  action

Robot Idle

Human Idle

Concurrent Action

Functional Delay

Total

0.6

0.4

0.0

0.0

Fig. 1. Objective fluency metrics in a fully separated turn taking scenario
with no processing delays induced by either agent.

Figure 2 shows a similar interaction to the previous example,
with the exception that the human starts the task, and the
robot has some processing time after the human’s action is
complete. In this example, the robot needs the full human
action to complete before being able to process it and select
its own action. A common example of this scenario is turn
taking with perceptual delay, such as speech recognition.

On the one hand, the result is a more balanced idle time
between the two agents, due to the increase in robot idle time,
and the same human idle time as in the previous example.
However, the robot’s processing incurs a functional delay on
the interaction. And, since this is still a strict turn-taking
scenario, there is no concurrent action between the agents.

Task time

Human action

Robot  action

Robot Idle

Human Idle

Concurrent Action

Functional Delay

Total

0.6

0.6

0.0

0.2

Fig. 2. Objective fluency metrics in a fully separated turn taking scenario
in which the robot has a processing delay with respect to the human’s fully
completed action.

Finally, Figure 3 shows an interaction in which the human
can start their part while the robot is still working on its last

action. Again, the robot has a functional delay. In this case,
the concurrent action measure is non-zero, and the functional
delay slightly reduced. Both human and robot idle times are
the same as in the first example.

Task time

Human action

Robot  action

Robot Idle

Human Idle

Concurrent Action

Functional Delay

Total

0.6

0.4

0.15

0.15

Fig. 3. Objective fluency metrics in a scenario in which the robot has a
processing delay, but the human can start their action before the robot’s action
is completed.

F. Validating the Objective Metrics

We are currently conducting a large-scale study relating the
objective fluency metrics to subjective notions of fluency. As
part of this study, we have developed a simple human-robot
collaborative scenario with flexible timing on both agents’ part.

The scenario is a joint workspace (Figure 4), in which the
human and the robot must transfer a number of objects from
the right (human) end table of the workspace to the left (robot)
end table. In order to do this, the human hands over the object
to the robot by placing it on the shared (middle) table.

We are using this model in both an observer and a par-
ticipant perception setup. In the observer perception study,
participants watch videos of various collaborative scenarios
controlled for the objective fluency metrics. We then measure
their subjective fluency metrics and relate the two aspects of
fluency. In the participant perception study, the participant
controls the human behavior and the robot adapts according to
a set number of behavior patterns, aimed at varying objective
fluency metric outcomes. Again, we then relate the subjective
and objective metrics in these interactions.

V. USAGE OF FLUENCY METRICS IN PAST RESEARCH

While the metrics proposed here should still be considered
a work-in-progress, they have been used both in our work and
in other studies.

A. Anticipatory Action in Collaborative MDP

Adaptive Anticipatory Action Selection is a method for
meshing an agent’s action with that of a human in a shared
workspace collaborative task [7]. A human-subject study was
conducted, evaluating the effects of this method when com-
pared to a reactive (turn-taking) method. There was neither a
significant difference in the mean task efficiency, nor in the
final convergent task efficiency between the anticipatory and
the reactive behavior.



Fig. 4. Joint activity scenario modeling a simple timed handover task, used
to evaluate the relation between objective and subjective fluency metrics.

Subjects were asked to rate a subset of five of the subjective
metrics described above. We found significant differences in
the rating of the following phrases: “The robot’s performance
was an important contribution to the success of the team”;
“The robot contributed to the fluency of the interaction”; and
“It felt like the robot was committed to the success of the
team”. No significant differences were present in the rating
of the phrases “I was committed to the success of the team”
(since removed from the fluency metrics); and “I trusted the
robot to do the right thing at the right time”.

In terms of objective metrics, the rate of concurrent motion
was significantly higher in the anticipatory group, settling at
about twice the rate compared to the reactive group. We also
found a significantly lower functional delay in the anticipatory
group, and especially as the interaction progressed. There was
no difference in human idle time between the groups.

B. Perceptual Simulation for Joint Activities

Another study evaluated the effects of Anticipatory Per-
ceptual Simulation, a computational cognitive framework that
simulates priming for robots working with humans on a
collaborative task [8].

In a human subject study, participants rated the interaction
on a questionnaire made up of the composite measures de-
scribed above, and additional composite measures not included
in the fluency metric set. There were significant differences
in human-robot fluency, the improvement of the team, the
robot’s contribution, and the WAI goal sub-scale. There were
also significant differences on the individual measures “The
robot contributed to the fluency of the interaction”, and “The
robot learned to adapt its actions to mine”. We did not find
significant differences in the composite measure of the trust in
the robot, the robot’s character, the WAI bond sub-scale, or the
overall WAI scale. In addition, we did not find differences in
the human’s commitment to the task, a measure since removed
from the set of subjective fluency metrics.

Objective task efficiency was measured and found to im-
prove by using anticipatory perceptual simulation. In addition,
two objective fluency metrics were measured: human idle time,
and the functional delay incurred by the robot. Both were
found to have been positively affected by the algorithm, with
an increasing improvement of robot functional delay as the
interaction progressed, indicating the robot’s adaptation to the
human’s action timing.

C. Fluency of Handovers

Cakmak et al. have developed methods to enable more fluent
hand-over of an object from a robot to a human [3]. They have
specifically investigated the effects of spatial contrast—making
the handover pose distinct from other poses—and temporal
contrast—accentuating the timing of the handover gesture—
on the fluency of the handover.

A survey was used to estimate the readability of handovers,
and in an experimental human-subject study, two objective
measures of fluency were evaluated across a factorial variable
set. These metrics were the human functional delay, and
the robot functional delay. The researchers have found that
temporal contrast positively effects human functional delay in
hand-over tasks.

D. Timed Petri Nets for Multi-modal Turn-taking

Chao and Thomaz designed a system based on timed
petri nets to enable multi-modal turn-taking and joint action
meshing. The system is designed for overlapping actions, both
in the verbal and in the non-verbal modality, and it specifically
aims to achieve fluency in a joint task.

A human-subject study compared a robot using the system
to allow for action-interruption to an action-completing base-
line robot, in a joint puzzle-solving interaction. Participants
rated several subjective fluency metrics relating to the relative
contribution, trust, and naturalness of the interaction. Partici-
pants in the interruption condition rated their mental contribu-
tion higher, and rated the interaction as less “awkward” than
those in the baseline condition. Task efficiency was used as
an objective metric of team fluency.

E. Cross-Training for Human-Robot Joint Learning

Nikolaidis and Shah have proposed human-robot cross-
training to improve adaptation of human-robot teams [14].
Cross-training is a method used in human teams where team
members switch roles to train on both sides of a shared plan.

The researchers used a human-subject study to compare the
cross-training method with a standard reinforcement learning
algorithm. The study used objective metrics to evaluate mental
model similarity and convergence. It also used objective and
subjective metrics to evaluate the fluency of the resulting
interaction.

In terms of subjective fluency metrics, the study used both
individual items from the “trust in robot” measure, and adapted
the following two items from the WAI “goal” sub-scale: “[The
robot] does not understand how I am trying to execute the
task” (reverse scale); and “[The robot] perceives accurately
what my preferences are”. All four measures were found to be
significantly higher for the cross-training condition, compared
to the traditional machine learning condition.

The study also evaluated three objective fluency metrics:
the rate of concurrent motion, the human idle time, and the
robot idle time. The first two measures were coded by a
single coder from video of the interaction, while the third was
automatically gleaned from the robot’s logs. The researchers
found a significant improvement in all three objective metrics.



VI. CONCLUSION AND EXTENSIONS

In this paper, we proposed a concept of human-robot
collaborative fluency, the coordination and meshing of actions
by team members. As part of the development of robots that
display collaborative fluency, we presented metrics to evaluate
fluency in human-robot collaboration. Subsets of these metrics
have been used in the past years to evaluate fluency, both in
our work, and in other work concerned with the meshing of
actions between humans and robots working on a shared task.

We have presented composite subjective measures, made
up of items we found internally valid, as well as individual
indicators used in human-robot collaboration studies. Further,
we presented four objective measures that provide benchmarks
for evaluating the fluency of a collaborative interaction.

These metrics are an evolving work-in-progress. Over the
years, we have added, refined, and removed some of these
metrics from our inventory. We are currently in the process of
relating the objective and subjective metrics to converge on a
generally agreed set of measures.

There are aspects of collaborative fluency, which these
metrics not yet address, and should be considered for future
work. These include: how to take into account correct and
incorrect actions of the robot and the human? Does the
role relationship between human and robot (e.g. supervisor,
subordinate, or peer—as proposed by Hinds et al. [5]) effect
perceptions of fluency? How to account for corrections and
repetitions of identical actions? And how to extend these
measures to larger mixed teams than just one human and one
robot?

The proposed metrics themselves also leave room for exten-
sion, for example the use of standard metrics for downstream
measures, such as cognitive load [15] or trust, as well as
the relative contribution of the different objective metrics to
collaborative fluency.

In conclusion, we believe that a validated set of human-
robot fluency metrics can greatly advance the goal of robotic
teammates accepted for long-term collaboration with humans,
be it in the workplace, school, or home.
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