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Abstract—Humans often collaborate with each other, achieving
an astounding coordination with no need of complex verbal
instructions. One key element at the basis of this ability is the mu-
tual implicit understanding of the two partners. Just by looking
at each others’ action, the two collaborators can infer several
action related information which otherwise should have been
explicitly pointed out, reducing the fluidity of the interaction.
For instance, often one can infer, just by observing the other
passing an object, some properties of that object which would
not be otherwise accessible, as its temperature or its weight. This
understanding allows both partners to be always prepared in
advance, when their turn comes to act on the object, yielding to
a fluid and timely interaction. Such efficient collaboration would
be extremely desirable also between humans and robots. We
suggest that a fundamental step toward this aim consists in the
achievement of an action-based mutual understanding between
the two partners. In this work, we evaluate whether humans
can read a not-visible property of a manipulated object also
when the manipulator is a humanoid robot. We have therefore
designed a simple set of lifting behaviors for a humanoid robot
and we have measured in which conditions human subjects are
able to infer object weight from robot motion. Moreover, we
have assessed whether this information could also be used by
humans to improve their subsequent actions on the same object.
The results suggest that if robot motion is planned taking into
account its understandability by a human observer, the implicit
information transfer between robot and human can be as efficient
as that observed between humans. These findings indicate that
to achieve fluid human-robot collaboration, an effort needs to
be made at the planning level, to design robot motions which
are not only efficient energy-wise, but which also guarantee an
automatic transfer of object-related information to the partners.

I. I NTRODUCTION

In everyday life it is usual to see humans helping each
other, from the kid passing a toy to his friend who cannot
reach it, to the mechanic, to whom the assistant hands over
the needed tool at the right moment. In all these situations,
collaboration arises naturally, often even without the need
of words. This implies that the observation of the other’s
action is enough to communicate to the observer the actor’s
intention and needs. This ability is common even to young
children, who naturally exhibit a proactive helping behavior
[13]. Moreover, such implicit communication usually informs
the action partners not only about the goals or the intentions
of the cooperator, but conveys also details about the objects at
hand. For instance, the complexity of holding a slippery object,
or an object which is too warm or too heavy, can be inferred

easily from the observation of the person who is carrying it.
This implies that when the object will be passed to me, I will
be prepared to handle it correctly, with no need of a precise
verbal explanation of the potential danger associated to the
passage. Even when the situation is not dangerous, knowing
in advance objects properties (e.g., their weight) allows to
improve the planning of subsequent actions on the same object,
increasing the efficiency and fluidity of the interaction.

One important difficulty when interacting with a robot is
that it is usually designed without taking into account this
kind of implicit stream of information, which in humans is
associated even to the simplest action. Indeed, often robot
motion planning is designed to optimize different motion
parameters as energy consumption, motion smoothness or
user safety. Of course, these aspects are fundamental in the
economy of the collaboration. However, disregarding the
implicit communication so common in human interaction
can determine severe drawbacks. In fact, when receiving a
parcel from a robot, the human collaborator has to either
adjust his force reactively, or be informed explicitly about
object weight, which requires additional attention. Therefore,
this approach works quite well in situations in which the
objects to be passed are well known in advance by all the
co-workers, but in an unstructured task it would often result
in a not efficient cooperation.

Moreover, while in general robotic devices have a very
different embodiment from humans, this difference diminishes
between human and humanoids. So, if even a not experienced
user can assume that industrial robots are stronger and more
heat resistant that a human, this intuition can not be as easily
applied to a robotic platform whose size and dimensions
are not too dissimilar from those of a man or of a child.
This similarity could induce subjects to attribute to the robot
the same range of strength as a human, hence determining
a mis-reading of the information associated to its motion
(e.g., understand the rapid lifting of an object as if the
object was particularly light), with negative consequences
on the interaction. This could of course have a further
impact also on the acceptance of the robot: an incongruence
between expectations and real robot behavior determining a
failure of an hand over could undermine the trust in the robot
- something that, once lost, is very difficult to be re-gained[4].



An important question therefore becomes whether it
is possible to make a robot partner able to implicitly
communicate with a human as humans naturally do. This
topic has been extensively investigated in the context of
human-robot interaction, with particular emphasis on the role
of non-verbal communication (in terms of pose, expressions,
gestures, actions) in allowing the transmission, between
partners, of information about the status of the robot, its
future intentions, its availability as helper or its need for
help [12, 1, 8]. We are interested to extend this capability to
communicate through robot motion also the hidden properties
of the manipulated object, to facilitate the future collaboration
in the use of the same object, with no need of a dedicated
communication channel.

In this paper we have addressed the feasibility of this
objective, by evaluating the possibility for a humanoid robot
to provide information about the weight of an unknown object,
just by performing a lifting action. Humans have in fact
been shown to be very good at inferring object weight from
the observation of someone else’s action [11, 3]. We have
therefore designed a set of simple robot lifting actions that
could potentially convey weight cues to the human partner
and we have tested whether this information can be actually
exploited by a human observer to plan his own subsequent
actions.

II. M ETHODS

The study consisted of two separate experiments, one aimed
at evaluating the ability to judge weight from the observation
of a lifting action (Weight Judgment Task, Fig. 1A) and one
designed to assess whether such weight estimate is used by the
observer to prospectively plan his/her own successive lifting
(Motor task, Fig. 1B and C). The first task consisted in asking
subjects to estimate the weight of a few opaque bottles after
having watched movies of an actor (either human or robot)
lifting them. In the second experiment, instead, participants
were requested to observe a lifting action performed in front
of them (again either by a human or by a robot) and then
to actively lift the same object previously lifted by the actor.
In both tasks, the robotic actor was the iCub robot, i.e., a
humanoid robot developed as part of the EU project RobotCub,
approximately1m tall and with the appearance of a 3.5 years
old child [9]. Robot motion was designed by defining three
viapoints in joint coordinates and by manually assigning the
velocity at each joint and the duration of each movement phase
by using a graphical user interface. More details about the
human and the robot lifting motions are reported in Fig. 2 and
in Fig. 3, respectively. The motivations behind the selection
of the robot kinematics are discussed in the Results section.
Below we report a detailed description of the two tasks.

A. Subjects

30 healthy, right-handed subjects agreed voluntarily to par-
ticipate in the experiments. 12 subjects participated to the

Fig. 1. Snapshots of the experimental conditions: A)Weight Judgment Task;
B) Motor Task - HUMAN condition; C) Motor Task - ROBOT condition.

Weight Judgment Task (mean age: 32 years± 10.4 (SD); 3
females and 9 males), while the remaining 18 subjects (mean
age: 29 years± 8 (SD); 9 females and 9 males), took part
to theMotor Task (8 subjects in theHuman condition and 10
subjects in theRobot one).

B. Weight Judgment Task

Subjects were instructed to observe several videos in which
an actor (either a human or a robot) lifted and placed a
set of bottles apparently identical but of different weights
(respectively100, 200, 300 and 400g for the HUMAN video
and 100, 250 and 400g for the ROBOT video, see Fig. 1A).
After the observation of the stimuli, participants had to judge
the observed weight, by selecting a number between 1 and
9, corresponding to a range from50g to 450g with 50g

increments. When the actor was HUMAN, she was informed
of object weight before action execution. This choice was
made to mimic the natural object-passing scenario, where the
person who manipulates the object first is usually aware of
its weight (see Fig. 2 for a description of actor’s movements
characteristics). When the actor was ROBOT, its motion was
planned as described before (and in Fig. 3). Before each
experiment subjects were asked to lift nine bottles from50g to
450g with a step of50g in order to have a clear range of the
weights that they would have had to recognize subsequently.
The two sets of videos (HUMAN and ROBOT) consisted of
32 trials for the HUMAN set (i.e., eight lifting movements
for each of the four bottles) and 30 trials for the ROBOT set
(i.e., ten lifting movements for each of the three bottles) both
performed in random order.

C. Motor task - weight estimation for movement planning

This task was aimed at evaluating whether the observation
of human or robotic lifting actually allows the partners to
prepare in advance their own next action on the same object.
We asked subjects to observe a human or a robot lifting and
placing an opaque bottle (as in the previous experiment) and
then to lift the same bottle themselves from a custom-built
analog scale (see Fig. 1B and C). For each lift, we measured
participant’s loading phase duration, i.e., the time spentby
the subject between the beginning of the lifting and the
time the bottle actually abandoned the supporting surface



Fig. 2. Human lifting action features. A) Snapshot of the humanlifting
motion with superimposed the trajectories for different weights (blue - 100g,
red - 200g, green - 300g and cyan - 400g. B) Kinematic features of the human
actor’s lifting actions as a function of object weight. Error bars represent
standard errors of the average.

(see [6] for details on the method). Ideally, humans tend to
maintain this time invariant with respect to the lifted weight
(at least for a small range of loads), but to do so they have
to know in advance the weight they will have to lift. In
fact, until the complete object lift off, the subject does not
receive any feedback about object weight, performing the
force loading in a complete feed forward fashion [7]. A
perfect knowledge of the object prior to the lifting would
then imply a minimal dependence of loading phase duration
on its weight, as it will be predictively compensated. When
the object is unknown, instead, lighter-than-expected objects
will be raised too early, and heavier-than-expected loads will
take longer time to lift off (see Fig. 5 A for a representation
of this trend; blue line and symbols for the known object
weights and green line and symbols for the unknown ones).
For each subject we computed the percentage of variation in
loading phase duration between the heaviest -400g - and the
lightest - 100g - weight (Perc. Var. in the following). With
this parameter we could infer the amount of information
about object weight gained from someone else’s (human or
robot) action observation.

Both when the actor was a human or a robot, we performed
additional control conditions. More precisely:

The HUMAN experiment was structured in three different
phases:Known, in which the subject had to lift the bottle
and bring it on the scale from a starting point at about25cm

distance. This was done to let subject directly experience the
weight of the bottle. After that, he had to lift the bottle from
the scale and place it on a higher support;Unknown, in which
the subject had to perform the lifting of the bottle directlyfrom
the scale without having any previous information concerning
its weight;Observation, in which the subject had to observe a
human actor performing the lifting movement from the starting
point (the same of the phaseKnown) to the scale and then
perform the lifting action. Each of the three phases consisted
of 32 trials in random order (i.e., eight lifting movements for
each of the four bottles). Also the order of the three phases
was randomized between subjects.

The ROBOT experiment, performed on a different group of
subjects, was structured in two phases:Control andRobot. In

the Control phase subjects had to perform the lifting of the
bottle after having observed the robot lifting it in a invariant
way, i.e., with no variation in the action kinematics as a
function of the lifted weight. In theRobot phase the robot
lifted the bottles with different action kinematics for different
weights (see Fig. 3 for more details. Note that in theControl
condition the motion features of the lifting applied to all the
weights were those for the400g bottle in this phase). Each
of the two phases consisted of 15 trials performed in random
order (i.e., five lifting trials for each of the three bottles). Also
the order of the phases was randomized between subjects.

In the HUMAN Observation condition and in both ROBOT
conditions, subjects had to provide also a verbal estimate
of object weight, before the execution of the lifting action,
choosing a value between50g to 450g with 50g increments.

The analog scale used in this task was obtained by inserting
a load sensor into a custom built structure and recorded load
forces during the lifting of the bottles at a frequency of 1000
Hz. In the HUMAN experiment the kinematics of the action
was recorded at 250Hz by means of an infrared marker
(Optotrak CertusR© System, NDI) placed on the actor’s right
hand at the level of the metacarpophalangeal joint of the
middle finger. The kinematics of the iCub actions was recorded
by computing the end effector position from the joints state
measured through the encoders of the motors in the robot arm
and saving the hand coordinates on a file at a sample frequency
of 100 Hz [10]. Before each experiment subjects were trained
with a metronome to perform the lifting of the bottles from the
scale at about a constant pace (each movement lasted about
1.5s). During this training phase subjects lifted two transparent
bottles (100 and400g respectively) used as samples in order
to provide an idea of the range of weights used in the real
experiment.

III. R ESULTS

In this work we have studied whether it is possible to make
a robot implicitly communicate with its motion an invisible
property of the object it is manipulating, i.e., its weight.

A. Weight judgment from Human Observation

First we have investigated how good humans are at
judging weight after the observation of a lift-and-place action
performed by a human actor. Subjects were requested to
estimate how heavy was an opaque bottle after observing
a movie depicting a human actor lifting it. Participants
exhibited a quite good precision in weight estimation, with
an average absolute error of80g ± 4g (SE) for weights
ranging from100g to 400g in 100g steps (see open symbols
in Fig. 4A). Considering the signed estimates, they tended
to overestimate lighter bottles (+52g for the 100g, +7g for
the 200g) and underestimate the heavier ones (−69g for the
300g, −59g for the400g), but the estimated weight increased
with the presented weight. In particular the average regression
of estimated weight over real weight was0.59 ± 0.04 (SE)
with an averageR2 of 0.77 ± 0.07 (SE). A One-Way



Repeated Measures ANOVA on the estimates, followed
by a Bonferroni post-hoc comparison, showed that the
estimates for all the bottles were significantly different among
each other (p < 0.001), with the exception of the200g and
300g for which the difference in judgment was not significant.

The second question we were interested to was on which
kinematics information subjects mostly based their judgment.
The lifting actions recorded from the human actor were natural
actions, in which multiple kinematics parameters varied asa
function of object weight (see Fig. 2A). In particular, between
lifting 100g and400g movement duration varied of51%, peak
vertical velocity varied of−32%, peak horizontal velocity of
−36%, while lateral and vertical movement amplitude varied
of 0.4% and −8% respectively. To assess which of these
parameters was more informative for observers’ weight evalu-
ation, we ran a multiple linear regression of the estimates with
respect to the previous movement kinematics properties over
the whole sample. TheR2 of the multiple regression was0.33
and the regression was significant (P < 0.001). However, the
only variables for which the estimated coefficients in the linear
model were signifcantly different from0 were peak vertical
velocity (p < 0.001) and movement duration (p < 0.05, one-
sample t-tests). Hence, we evaluated for each single subject
the linear regression of weight estimate over these two main
movement properties. The meanR2 of the multiple regressions
was0.35 (range0.07−0.48), and the regression was significant
in ten of the twelve subjects. Apparently therefore the cues
particularly relevant for weight estimation on the basis of
action observation are the vertical velocity of the action (as
already suggested by [3]) and its duration, which in turn are
strongly correlated in the natural lifting action showed inthe
videos (P < 0.001, R2 = 0.24).

B. Weight judgment from Robot Observation

We have therefore designed a set of robotic lifting actions in
which vertical velocity and hence movement duration varied
as a function of object weight (see Fig. 3 for details) and we
have tested, again with movies, whether this simple modifi-
cation in robot kinematics was sufficient to allow subjects to
discriminate the weight of an opaque bottle.

Fig. 3. Robot lifting action features. A) Snapshot of the robot lifting motion
with superimposed the trajectories for different weights (blue - 100g, magenta
- 250g and cyan - 400g. B) Kinematic features of the lifting actions as a
function of object weight. In theControl condition the robot always moved
its arm with the kinematic features associated in this graph to the400g weight.

Subjects showed a remarkable ability in weight estimation
also in presence of the robotic actor, with an average absolute
error comparable to that exhibited in the human task (72g±6g

(SE) for the discrimination among three bottles of100g, 250g
and 400g, see also Fig. 4). Also in this case, they tended to
overestimate the lightest bottle (on average of about+64g)
and underestimate the heaviest one (−19g), but the estimate
increased significantly with the presented weight (P < 0.001

in a One-Way Repeated Measures ANOVA). Bonferroni post-
hoc showed that subjects could discriminate between the400g

bottle from both the100g and the250g ones (Ps < 0.001),
while the difference in the estimates between the two lighter
objects was not significant. The average regression of esti-
mated weight over real weight was0.72± 0.04 (SE) with an
averageR2 of 0.62± 0.1 (SE).

Fig. 4. Weight Judgment Task results. A) Average weight estimates in the
HUMAN and the ROBOT condition. B) Individual subject’s absolute error of
the estimate in the ROBOT condition over his/her own performance in the
HUMAN condition. Most data lie on the identity line, indicating a similar
performance in the two tasks. The red dot represent the sample average. The
squares indicate the average error in the weight estimate forthe subjects in the
Motor task (see section III-C). The black square refers to the weight judgment
associated to the observation of the robot moving invariantly with respect
to object weight (Control condition), while the green square represents the
average judgment when robot motion varied as a function of object weight,
as in the movies used in theWeight Judgment Task. Note how also in the
Motor task, weight judgment is similar after the observation of a human or a
robot actor (i.e., the green square is on the identity line),as far as the robot
moves appropriately to the lifted weight. When this is not the case, the errors
in the robot condition are much higher than in the human one (black square
lying over the identity line).

A comparison between the performance in weight judgment
when the robot or the human was the lifter did not show any
significant difference in terms of the slopes of the regression
of estimated weight over real weight nor in terms of average
absolute errors in the estimate (P > 0.05 in the corresponding
paired-sample t-tests). This can be seen in Fig. 4 both for
population averages (panel A) and at the individual level (panel
B). Hence, the simple modification in the robot lifting actions
proposed succeeds in allowing the human partner to correctly
estimate the lifted weight, as much as a human lifting action
would.

C. Weight estimation for action planning (Motor task)

In this task we have evaluated whether the observation of a
human lifting allows the partner not only to correctly judgethe
object weight, but also to prepare in advance his next actionon
the same object. To this aim, we assessed participants’ loading



phase durations for the lifting of different weights (see [6]
and Methods section for details) as a function of their a priori
knowledge of the object to be lifted. First, we compared a con-
dition where subjects had no information about objects weight
before the lift (“Unknown”), with a condition in which they
had the possibility to lift it before the measure was performed
(“Known”) or they could infer its weight by observing a human
lifting it (“Observed”). The results confirmed that knowing
object weight in advance allows for maintaining much more
constant the loading phase duration than lifting an unknown
weight (compare a Perc. Var. of31% ± 8% in the “Known”
condition with the100% ± 11% of the “Unknown” and the
blue and the green line and symbols in Fig. 5A, respectively,
for a representative subject). Furthermore the observation of
a lifting action provides enough information to significantly
increase such constancy (Perc. Var.63%± 8%, P < 0.01 for
all comparisons, in a One-Way Repeated Measures ANOVA
on Perc. Var. followed by Bonferroni Post-hoc, see red line
and symbols in in Fig. 5A).

Fig. 5. Lifting action results. A) Loading phase duration asa function of
object weight in different conditions for a representativesubject. B) Average
percentage of variation in loading phase duration between heavy (400g) and
light (100g) bottles for Robot observation across all subjects. The horizontal
lines indicate the corresponding percentage of variationsmeasured during the
human condition. The star indicates significant difference evaluated with a
pair sample t-test.

After that, we evaluated whether the observation of the
robotic lifting previously designed could be as efficient in
facilitating human action planning. Moreover, we wanted toas-
sess whether the proposed kinematic modification was actually
necessary to improve human performance in a collaboration,
or if a standard robot motion could achieve a similar result.
Therefore, we evaluated human stability in loading phase
duration also when the robot was lifting the opaque bottle with
a motion not explicitly planned to vary with object weight, but
just aimed at the maximization of motion smoothness. The
results clearly showed that the weight cues independent of
robot kinematics (e.g., the slip among robot fingers of the
heavier bottles) are not enough to allow for a correct planning
of the subsequent action on the bottle (Perc. Var. on average
91%±12% see light gray square in Fig. 5 B). On the contrary,
the proposed robot lifting is very efficient in allowing the
human partners to anticipatorily plan their subsequent actions,
significantly reducing the dependency of the loading phase
duration on object weight (see dark gray square in Fig. 5 B;
Perc. Var. on average69%± 10%, P < 0.05 in a pair-sample

t-test).

IV. D ISCUSSION

Humans are extremely good at collaborating. This happens
effortlessly in every day life, when we prepare together
with a friend something in the kitchen or when a worker
cooperates with his co-workers in building a new piece of
furniture. Interestingly, the fluidity in the interaction seems
to be connected to the ability to continuously exchange with
the partner implicit information about what we are going to
do next or which tool we are going to grasp. This stream
of information is so rich that it even allows the partners to
infer object properties which would be not perceivable at first
sight. So, if someone is passing me a heavy suitcase or a
hot dish, a glance to his movement is enough to tell me that
I will have to be careful and tune my own action appropriately.

In this paper we have investigated this particular case of
implicit information transfer, i.e., the communication ofthe
weight of an unknown object, mediated by the kinematics of
the action with which this object is passed. Such information
is not only easily extracted by humans during the observation
of their human partners, but is also exploited during the
subsequent actions on the passed object in a predictive fashion.
On the contrary, at least in a small range of weights as the
one used in this experiment (100g − 400g), the change in
weight alone is not sufficient to modify the way a humanoid
robot lift the objects. Therefore, a robot motion not explicitly
designed to somehow communicate weight to the human
partner does not allow the collaborator to be prepared to the
weight to be lifted. However, a simple modification which
recalls the dependency of lifting velocity to object weight
common to human behavior, is enough to make the implicit
weight understanding in the robot lifting as effective as during
human-human collaboration both for weight judgments and for
the preparation to subsequent manipulations of the object.

We point out that achieving such implicit communication
requires an extra effort in the planning of robot motion,
aimed at considering the observers’ intuitive comprehension
of the observed robot behavior. This approach is strongly
connected to the idea that seamless collaboration in human-
robot interaction depends on the understandability and the
intuitiveness of the robotic behavior [5, 2, 8]. In particular
we propose that, in addition to make the goal of the robotic
action, its uncertainty about the task or its availability as a
helper transparent to the human partner, it would be important
to communicate implicitly also the properties of the objectat
hand, to facilitate his/her future interactions with it.

A possible confound in our results relies in the fact that the
lifting actions performed by the human and by the robotic actor
were different, with the robot action spanning more the vertical
direction and the human action being more horizontally ori-
ented. This could have in theory introduced a difference in the
difficulty of the task, potentially facilitating the interpretation
of the weight in the robotic condition. We cannot exclude this



hypothesis, although the facilitation - if present - did notmake
the task trivial, as subjects’ performance was comparable to
that measured in the task with the human actor, never reaching
negligible errors. Moreover, the comparison between the two
robotic conditions, in which robotic motions were similar,
confirms that when the robot behavior is not appropriately
designed to foster weight understanding, subjects are not able
to infer this object property, even in this possibly simpler
situation. Further studies are now planned to design a more
precise comparison between human and robotic actions and
to assess also the relevance of the adoption of a human-like
versus a robotic-like motion kinematics. In particular, future
research will be aimed at assessing the impact of this implicit
object properties communication in more interactive scenarios,
as for instance, object handover, where a prospective estimate
of the object to be received could be determinant in making
the object transfer successful and effortless.

V. CONCLUSION

Achieving the same fluidity and timing observed usually
between humans in human robot collaboration is a long term
aim of robotic research. A key element to this ideal efficiency
relies in the implicit action-based communication common
to humans, which allows both partners to be continuously
informed about others’ intentions and even about invisible
properties of the object at hand. In this work we have shown
that it is possible to achieve an efficient implicit communi-
cation also between a humanoid and a human, as far as the
robot passing action is planned by taking into account also its
understandability from the point of view of the human partner.
Hence, humans can infer which weight a robot is lifting as
efficiently as they do for a human lifting and use this acquired
knowledge of weight to plan in advance their own lifting
action. This approach can be applied to several other object
properties (e.g., temperature, weight distribution, slipperiness)
or action properties (e.g. future use of the manipulated object),
which can be inferred by the collaborator just by observing
the actor’s motion, with no need of an explicit explanation.We
believe that allowing the inference of similar object or action
properties from robot motion could be a promising path to
foster more natural and proficient human-robot collaborations.
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