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Figure 1: Examples of codimensional non-Newtonian fluid phenomena. (Far Left) A brush is dragged across paint on a canvas, leaving small
furrows in its wake. (Middle Left) Cheese is stretched into thin sheets and filaments as a slice of pizza is removed. (Middle Right) A knife
leaves furrows on mayonnaise, then spreads a thin layer onto a slice of bread. (Far Right) Multicolored toothpaste is squeezed out of a tube
in a twisting motion.

Abstract

We present a novel method to simulate codimensional non-
Newtonian fluids on simplicial complexes. Our method extends
previous work for codimensional incompressible flow to various
types of non-Newtonian fluids including both shear thinning and
thickening, Bingham plastics, and elastoplastics. We propose a
novel time integration scheme for semi-implicitly treating elastic-
ity, which when combined with a semi-implicit method for vari-
able viscosity alleviates the need for small time steps. Further-
more, we propose an improved treatment of viscosity on the rims of
thin fluid sheets that allows us to capture their elusive, visually ap-
pealing twisting motion. In order to simulate complex phenomena
such as the mixing of colored paint, we adopt a multiple level set
framework and propose a discretization on simplicial complexes
that facilitates the tracking of material interfaces across codimen-
sions. We demonstrate the efficacy of our approach by simulating a
wide variety of non-Newtonian fluid phenomena exhibiting various
codimensional features.
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1 Introduction

Non-Newtonian fluids exhibit many different codimensional fea-
tures that are visually interesting. The furrows made by a brush
moving through paint, the thin sheet and filaments of cheese on
a pizza, and the thin filaments of toothpaste are just some of the
many examples of viscoelastic phenomena to which a codimen-
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sional representation is naturally amenable. The special material
properties of non-Newtonian fluids make their codimensional mo-
tions even more interesting. For example, paint (a shear thinning
fluid) has low viscosity at high shear rates making it easy to apply
to surfaces using a brush; however, its high viscosity at low shear
rates prevents it from running or dripping after being applied. Con-
trast this behavior with quicksand (a shear thickening fluid) which
flows at low shear rates allowing one to sink, but becomes viscous
at high shear rates preventing one from climbing out. While non-
Newtonian fluids are frequently studied in both computer graphics
and computational physics, most state-of the-art methods focus on
modeling them volumetrically, and few address their codimensional
features such as thin sheets and filaments.

Motivated by the codimensional fluid simulation of [Zhu et al.
2014], the codimensional solid simulation of [Martin et al.
2010], and the unified framework for simulating fluids and solids
in [Macklin et al. 2014], we aim to simulate a wide range of non-
Newtonian fluid behaviors especially focusing on codimensional
phenomena such as twisting thin films, viscoelastic filaments, and
shear thinning or Bingham plastic furrows. We follow the work
of [Zhu et al. 2014] for simulating codimensional incompressible
flow on simplicial complexes, but provide various novel extensions

Figure 2: Plots of viscosity vs. shear rate for various types of fluid.



Figure 3: Shear thinning fluid (top left), shear thickening fluid (top
right), and Bingham plastic (bottom left) are poured onto a metal
sphere by a source that changes from a volume to a thin sheet to a
filament. The underlying simplicial complex (bottom right) is visu-
alized with green tetrahedra, blue triangles, and red segments.

in order to treat non-Newtonian fluids including shear thinning and
thickening fluids, Bingham plastics, and elastoplastics. See Fig-
ure 2.

Unlike in [Zhu et al. 2014] where fluids with high Reynolds num-
bers had most of their codimensional features created by strong
surface tension forces, our work focuses on non-Newtonian fluids
with low Reynolds numbers where the codimensional features are
mostly created by shear dependent viscosity and solid fluid contact.
Furthermore, since non-Newtonian fluids can exhibit both solid and
fluid behavior, we propose a more general framework that can sim-
ulate codimensional materials with properties that bridge the gap
between solids and fluids. This includes a new semi-implicit time
integration scheme for elasticity that uses a smoothing operator, a
semi-implicit treatment for variable viscosity incompressible flows,
and an improved treatment of viscosity on the rims of thin fluid
sheets allowing for visually appealing twisting motions. In addi-
tion, a multiple material level set tracking technique is proposed for
simplicial complexes.

2 Related Work

Researchers have simulated non-Newtonian flow using a variety
of methods including grid based methods [Goktekin et al. 2004;
Losasso et al. 2006; Batty and Bridson 2008], volumetric mesh-
based methods [Bargteil et al. 2007; Wojtan and Turk 2008; Wojtan
et al. 2009; Wicke et al. 2010], particle-based methods [Clavet et al.
2005; Paiva et al. 2009; Gerszewski et al. 2009; Zhou et al. 2013],
and hybrid particle-grid methods [Stomakhin et al. 2014]. How-
ever, most of the results produced by these methods are restricted
to volumetric phenomena. Few of the interesting codimensional
features are captured, such as the furrows left by a brush in paint
or filaments that extrude from a volume. Some work has been done
on this front. [Wojtan and Turk 2008] proposed a method to em-
bed a high resolution surface mesh in a tetrahedral FEM simulator
to get thin features, and [Batty and Houston 2011] used an adaptive
tetrahedral mesh to achieve realistic buckling and coiling of viscous
fluids. However, a codimensional approach is more computation-
ally efficient for capturing arbitrarily thin films and filaments, espe-
cially those that emanate from volumetric regions as material thins
and breaks apart (as in Figure 1, middle left).

Many complex fluid and solid phenomena that exist in high codi-
mensions have been studied in recent graphics research. These in-
clude codimension-2 materials such as paint jets [Lee et al. 2006]
and viscous threads [Bergou et al. 2010], as well as codimension-
1 materials such as viscous fluid sheets [Batty et al. 2012]. One
major application area of fluid simulation in high codimensions is
painting [Baxter et al. 2001; Baxter et al. 2004]. Much research
has been devoted to creating systems that simulate paint phenom-
ena that occur in high codimensions, such as paint jets [Lee et al.
2006], streaks [Chu et al. 2010; DiVerdi et al. 2013], and color
dispersion [Chu and Tai 2005]. These systems produce realistic
painting results and support real-time user interaction. The paint
simulation in most of these systems relies on solving the shallow
water equations on a surface [Curtis et al. 1997; Wang et al. 2005].
While this non-volumetric representation enables real-time simula-
tions, it leaves many interesting effects unexplored. For example,
dragging a brush through a glob of paint produces distinctive “fur-
rows,” which arise due to the shear thinning properties of the paint.

3 Material Models

Consider the Lagrangian form of the generalized incompressible
Navier Stokes equations

ρ
D~u

Dt
+∇p = ∇ · (σv + σe) + ~f, (1)

where ρ is density, ~u is velocity, t is time, p is pressure, σv is the
viscous stress tensor, σe is the elastic stress tensor, and ~f represents
other forces such as gravity, surface tension, and friction.

The viscous stress tensor for incompressible flow is σv = µγ̇
where µ is the viscosity and γ̇ = ∇~u + (∇~u)T is the strain rate
tensor. Non-Newtonian fluids are typically modeled using an ap-
proximation to the shear rate γ̇, and we use the Frobenius norm
γ̇ =
√
γ̇ : γ̇. Some of our examples also consider the dependence

of viscosity on temperature, and in these cases we simply multiply
µ by e−cT where c is a constant [Reynolds 1886]. This requires
the solution of an auxiliary heat equation ρDT/Dt = ∇ · (κ∇T ),

Figure 4: (Top) A low viscosity Newtonian bunny, a high viscosity
Newtonian bunny, and a shear thinning bunny drip down a slope.
The shear thinning “paint” bunny stops flowing when its shear rate
becomes small. (Bottom) A shear thickening bunny, a Bingham
plastic bunny, and an elastic bunny fall onto the ground. The shear
thickening fluid rigidifies upon impact, but then begins to flow as its
shear rate decreases. The Bingham plastic “clay” bunny deforms
as it hits the ground, but is rigid thereafter.



Figure 5: Pulling out a slice of pizza causes the cheese to stretch along the boundaries of the slice, creating a web-like collection of
viscoelastic films and filaments as it becomes very thin.

where κ is the thermal conductivity. The heat equation is solved
using a backward Euler implicit time discretization using the same
codimensional simplical complex discretization scheme [Zhu et al.
2014] that is used for pressure in Equation 1 (see Section 4).

We use the Carreau-Yasuda model [Carreau 1972; Yasuda 1979]
to determine the viscosity for both shear thinning and thickening
fluids. The relationship between shear rate and viscosity can be
written as

µ(γ̇) = µ∞ + (µ0 − µ∞)(1 + (Λγ̇)α)
n−1
α , (2)

where Λ scales the shear rate and α governs smoothness of transi-
tions. When n = 1, we recover a Newtonian fluid with viscosity
µ0. When the shear rate is zero, we also recover µ = µ0 illustrat-
ing that µ0 governs the viscosity of both shear thickening and shear
thinning fluids under low shear rate. As can be seen from looking
at the left hand side of Figure 2, this a relatively high viscosity for
shear thinning fluids stopping paint from dripping and a relatively
low viscosity for shear thickening fluids allowing one to sink into
quicksand. For shear thinning fluids, n < 1 and the second term ap-
proaches zero forcing the viscosity to asymptotically approach µ∞
at high shear rates. As can be seen in Figure 2, setting µ∞ < µ0 for
shear thinning fluids allows paint to be easily applied by a brush as
brush strokes create shear. For shear thickening fluids, n > 1 and
the viscosity increases as the shear rate increases with the amount
of increase scaled by µ0 − µ∞.

A Bingham plastic acts as a rigid body at low shear rates, but acts
as a viscous fluid after its stress exceeds a critical threshold γ̇c. In
practice, the rigid behavior can be modeled simply by using a large
viscosity. Thus, we use the model of [Beverly and Tanner 1992],

µ(γ̇) =

{
µ0, γ̇ ≤ γ̇c
µ∞ + τ0/γ̇

q, γ̇ > γ̇c
(3)

where in the typical model τ0 = γ̇c(µ0 − µ∞) makes the viscosity
continuous. However, we add the extra parameter q to provide more
animator control.

We model the elastic stress tensor as σe = µeε where µe is con-
stant and ε is the elastic strain tensor [Goktekin et al. 2004; Losasso
et al. 2006]. In order to capture rotation, we use the Green strain
εG = 1

2
(F Te F e − I), where F e is the elastic component of the

deformation gradient F . We use the multiplicative plasticity model
of [Irving et al. 2004; Stomakhin et al. 2013] to separate F into its
elastic and plastic components, F = F eF p, in which the part of
F e that exceeds a critical deformation threshold is absorbed into
F p. F is evolved as DF /Dt = ∇~uF as in [Stomakhin et al.
2013].

4 Temporal Evolution

Following [Zhu et al. 2014], we use particles connected into sim-
plicial complexes to represent non-Newtonian fluids in different
codimensions. Tetrahedra, triangles, segments, and points are used
to model fluid volumes, thin sheets, narrow filaments, and small
droplets respectively. As before, particles store their mass, position,
velocity, thickness, and connectivity, but now they also store their
temperature, deformation gradient, and information for computing
their viscosity.

Each time step, we advect the particles, update the mesh topology
and thicknesses, compute the viscosity using the relevant model,
and solve the heat equation for the temperature. Then Equation 1
is solved in a time split fashion. First the external forces such as
gravity are integrated explicitly, e.g. see [Zhu et al. 2014] for the
treatment of surface tension and Section 7 for the treatment of fric-
tion. Then we further update the velocity using a semi-implicit
discretization of elasticity as outlined in Section 6 followed by a
semi-implicit treatment of viscosity as outlined in Section 5. Fi-
nally we enforce incompressibility by solving a Poisson equation
for pressure ∇ · (∆t/ρ∇p) = ∇ · ~u, which is used to obtain our
final velocity field ~un+1 = ~u−∆t/ρ∇p.

We use the codimensional Poisson solver of [Zhu et al. 2014] to
solve for temperature, pressure, and the implicit part of viscosity
and elasticity in Equations 5 and 10 (see Sections 5 and 6). The de-
grees of freedom are placed on vertices of tetrahedra, barycenters of
triangles, and centers of segments. We interpolate attributes carried
on particles from the particles to the degrees of freedom to avoid
issues with decoupling. The volume-weighted gradient is defined
at each particle n as

Wn∇p =

(
Vn∇+ λnAn∇+

πλ2
n

4
Ln∇

)
p, (4)



Figure 6: Multiple colors of paint are poured onto a rotating cylinder. When the cylinder spins faster it creates a spray of paint. This spray
consists of many filaments and droplets, and demonstrates color mixing through the evolution of multiple level sets across codimensions.

where Vn∇ represents the volume-weighted gradient contribution
from incident tetrahedra, An∇ represents the area-weighted gradi-
ent contribution from incident triangles,Ln∇ represents the length-
weighted gradient contribution from incident segments, λ is the
particle thickness, and Wn = Vn + λnAn + (πλ2

n/4)Ln is the
total control volume for particle n. After solving the sparse linear
system, the results are interpolated back to the particles using the
PIC-FLIP scheme from [Zhu and Bridson 2005].

5 Viscosity

Following [Rasmussen et al. 2004], we take a semi-implicit ap-
proach to viscosity splitting the shear rate tensor into an explicit
part µ∇~uT and an implicit part µ∇~u. After adding in the explicit
terms to obtain a new intermediate velocity ~u∗, the implicit terms
are integrated via

~u∗∗ = ~u∗ +
∆t

ρ
∇ · µ∇~u∗∗, (5)

where ~u∗∗ includes the effects of viscosity.

The discretized matrix form of Equation 5 can be written as

(W +
∆t

ρ
GTŴ

−1
G)~u∗∗ = W ~u∗, (6)

whereW is a diagonal matrix of control volumesWn for each par-
ticle defined in Section 4, Ŵ

−1
is a diagonal matrix with an entry

µ/Wn for each particle, G is the volume weighted gradient matrix
defined by Equation 4, and GT is the negative volume weighted
divergence matrix. Note that we have assumed a spatially constant
density when applying the viscous forces.

Thin fluid sheets may exhibit complex twisting motions such as in
[Oefner 2013]. This occurs when one section of the thin sheet wraps
above/below another section creating a twisting spray of filaments

Figure 7: A “paint fountain” sprays multicolored paint radially
from a source. The combination of viscosity and surface tension
forces create twisting effects along the rim.

and droplets. In order to simulate this twisting motion, we consider
the forces on the rim of a thin sheet. The motion of the rim is dom-
inated by the viscosity force, the surface tension force, and the in-
coming momentum flux from the thin sheet [Savva 2007]. Because
the rim thickness is much greater than the thickness of the film in-
terior, viscosity on the rim comes largely from fluid also on the rim,
while the viscosity from the interior of the film is negligible. We
incorporate these two observations into our discretization by adding
extra degrees of freedom on the center of the rim segments and by
removing the degrees of freedom on the triangles incident to rim
segments when computing viscosity. These modifications achieve
two ends. First, the rim segments accurately represent the geome-
try of the rim as a cylindrical tube, and therefore accurately com-
pute the contribution of the viscosity force from fluid on the rim.
Second, the degrees of freedom on the rim are decoupled from the
degrees of freedom on the interior of the thin sheet, thus ignoring
drag from the fluid on the thin sheet. With these modifications we
are able to reproduce the effect of the twisting thin film (Figure 7).

6 Elasticity

Our semi-implicit time integration scheme for elasticity is moti-
vated by [Smereka 2003; Xu and Zhao 2003], in which a diffusion
term is introduced to convert an explicit scheme into a semi-implicit
scheme for increased stability in simulating evolving interfaces us-
ing mean curvature flow. A similar idea is used by [Zheng et al.
2006] for semi-implicit surface tension.

First consider implicit time integration for elasticity using the
Cauchy strain εc = F s − I where F s = 1

2
(F e + F Te ) is the

symmetric part of F e:

~u∗∗ = ~u∗ +
∆tµe
ρ
∇ · (F ∗∗s − I). (7)

If we make the aggressive approximation that F s obeys the same
rule for time evolution as F e, i.e. DF s/Dt ≈ ∇~uF s, then we

Figure 8: (Left) Two different colors of paint are applied to a can-
vas. (Right) A brush drags the paint along the canvas, leaving fur-
rows in its wake.



Figure 9: Mayonnaise, modeled as a Bingham plastic, flows when it is initially poured onto a slice of bread but maintains its shape afterwards.
A knife leaves furrows when it passes through the mayonnaise volume, then spreads a thin sheet onto the second piece of bread.

may write

~u∗∗ ≈ ~u∗ +
∆tµe
ρ
∇ · ((I + ∆t∇~u∗∗)F ∗s − I) (8)

where we have integrated DF s/Dt ≈ ∇~uF s implicitly in ~u but
explicitly in F s. Then from this one obtains

~u∗∗ ≈ ~u∗ +
∆tµe
ρ
∇ · (ε∗c + ∆t∇~u∗∗F ∗s), (9)

where ~u∗ + ∆tµe
ρ
∇ · ε∗c is an explicit integration. This motivates

the fact that a term of the form ∆t∇~uF s would be useful as a
smoothing operator in implicitly integrating the Cauchy strain εc.
Thus we will use S(~u) = β∆t∇~uF s as a smoothing operator for
our Green strain, where β is a relaxation factor that controls the
damping that the smoothing operator introduces into the system. In
practice we use values of β between 0 and 1, where the integration
is purely explicit when β = 0.

With this definition of S(~u), we can split the Green strain tensor
into an explicit part ε−S(~u) and an implicit part S(~u). Then after
adding in the explicit terms to get a new intermediate velocity ~u∗,
the implicit terms are integrated via

~u∗∗ = ~u∗ +
∆tµe
ρ
∇ · S(~u∗∗), (10)

where ~u∗∗ then includes the full effects of elasticity. Substituting
the volume weighted divergence and gradient into Equation 10, we
get the discretized matrix form

(W +
µeβ∆t2

ρ
GTW̃

−1
G)~u∗∗ = W ~u∗, (11)

where W̃
−1

is a block tri-diagonal matrix with a block entry
F s/Wn for each particle. We solve Equation 11 for the three com-
ponents of velocity independently by taking advantage of the codi-
mensional Poisson solver already used for incompressibility and
viscosity.

7 Solid Fluid Interactions

The distinctive behaviors of non-Newtonian fluids often arise due
to shear induced by contact with a solid body. It is therefore im-
portant to pay special attention to the treatment of solid-fluid in-
teractions. The friction force between fluids and kinematic solids

is modeled using the technique of [Bridson et al. 2002; Zhu and
Bridson 2005]. However, we note that friction and viscosity have
the same underlying cause, namely the Brownian motion tangential
to the macroscopic velocity of the particles in a continuum. There-
fore, whereas [Bridson et al. 2002] uses a constant coefficient of
friction, we scale the coefficient of friction based on the local vis-
cosity of the fluid contacting the solid. This allows the less viscous
bunny in Figure 4 (top) to slide off the incline plane, while the more
viscous bunny sticks to the surface.

We model paint brush fibers as a collection of segments using a
mass-spring model with linear springs and bending springs [Selle
et al. 2008]. When fibers collide with elements of the fluid sim-
plicial complex, we model the fiber-fluid interaction by applying
explicit forces in an immersed boundary fashion, similar to the
bubble-air interaction in [Zhu et al. 2014]. This interaction, to-
gether with friction from the canvas and our codimensional non-
Newtonian fluid solver, naturally models the codimensional transi-
tions from volumetric elements to thin furrows that occur when a
brush is dragged through paint (see Figure 11). To produce highly
detailed furrows, we also model the normal pressure force exerted
by fibers on codimension-1 fluid elements that lay on the canvas.
This is done by adding a target divergence term [Losasso et al.
2008] scaled by the fluid volume displaced by the fiber to the in-
compressible solver in order to push the fluid apart. Finally, we
use a diffusion process to push any remaining volume of a particle
still in contact with the fiber to its neighbors using Gauss-Seidel
iterations to obtain an accurate furrow shape.

8 Adaptive Meshing

We extend the codimensional meshing algorithm of [Zhu et al.
2014] by adding a boundary vertex snap operation similar to [Da
et al. 2014] to support the topological merging of elements across
different codimensions. When the distance between a pair of non-
neighboring vertices falls below a threshold, they are connected as
a single vertex. To facilitate adaptive meshing, we store a meshing
length scale on each particle. In each meshing operation, the length
threshold to collapse or split an edge is defined by the average of
meshing length scales from incident particles. We gain adaptivity
by varying these per-particle length scales. This can be done using
a variety of strategies in order to place degrees of freedom near vi-
sually interesting regions, e.g., by decreasing the length scale for
particles on high codimension elements as in Figure 5 or for parti-



Figure 10: Toothpaste, a Bingham plastic, is squeezed out in a twisting motion onto a toothbrush and a counter. Its colors are modeled using
multiple level sets. The toothpaste exhibits codimensional features where the volumes are pulled apart.

cles near solids as in Figure 9.

9 Material Interfaces

We follow the method of [Losasso et al. 2006] maintaining a vec-
tor of level set values ~φ on each particle, where each component
of the vector corresponds to a different material. Exactly one com-
ponent of each particle’s ~φ is negative denoting that the particle is
made of the corresponding material. After advection, we perform
fast marching on the simplical complexes connecting the particles
to update the signed distance values of ~φ. On thin sheets, we per-
form fast marching on triangles using the method of [Kimmel and
Sethian 1998]. For volumetric elements, we approximate the in-
terface using linear interpolation along edges to compute triangular
faces on the interior of interface tetrahedra. After initializing the
interface, we march outwards through particles on adjacent tetra-
hedra, roughly approximating signed distance as the smallest Eu-
clidean distance to an interface triangle.

Although one could use ~φ to determine various material proper-
ties, our examples rely on ~φ merely to indicate the colors of vari-
ous materials. Thus, we can increase efficiency and versatility by
computing ~φ in a postprocessing step allowing us to generate many
different coloring combination options while running the primary
simulation only once. This is facilitated by tracking the parents of
each newly created particle during the simulation. A particle’s par-
ents are the set of one or more particles from the previous time step
that correspond to the particle in the current time step. It is possible
to have more than one parent in the case of mesh collapsing opera-
tions. A set of weights are also computed and stored to record the
relative influence of each parent on its newly created child [Yu et al.
2012; Bojsen-Hansen et al. 2012].

As in [Zhu et al. 2014], we generate a skinned mesh in a post-
processing step using the simulation degrees of freedom. To render
a broader range of materials, we copy ~φ as well as texture coordi-
nates from the simulation particles to their corresponding skinned
mesh nodes. These values are interpolated when new skinned mesh
nodes are created during subdivision, so we also correct ~φ on the
skinned mesh using the projection method of [Losasso et al. 2006].

In order to gain an accurate representation of paint for rendering,
we use a shader based on the reflectance model for pigments pro-

posed by [Haase and Meyer 1992] and used in painting applica-
tions by [Baxter et al. 2004]. This model describes the relation-
ship

∑
i∈P

(KiCi)/(SiCi) = (1 − R∞)2/(2R∞), where P is the

set of pigments in the material, K is pigment absorption, C is pig-
ment concentration, S is pigment scattering, andR∞ is reflectance.
Thus we can derive the reflectance of any pigmented solution given
its pigment concentrations, absorptions, and scattering parameters.
We use the spectral data provided by [Okumura 2005] and [Smits
1999] for our paint renderings. This enables us to perform mixing
between different paint colors, as seen in Figures 6 and 7.

10 Examples

We simulate the cheese on a pizza using a shear thinning viscosity
model along with an elasticity term (see Figure 5), with parameters
µ0=2, µ∞=4, Λ=1, α=1, n=.4, µe=1.2×103, and β=.2. The initial
codimensional mesh used to represent the cheese is composed of
tetrahedra and triangles. The cheese is stretched into viscoelastic
thin sheets and a web of filaments as the slice is pulled away.

In Figure 9, we model mayonnaise as a Bingham plastic (µ0=1,
µ∞=1×103, γ̇c=1, and q=2) in order to capture its rigid behavior at
low shear rates. Mayonnaise flows from a source but holds its shape
after settling. Later, a knife scoops up some mayonnaise volume.
By adaptively remeshing volumetric elements near the knife, we are
able to see furrows left in the mayonnaise by the knife’s serrated
edge. The knife then spreads mayonnaise as a thin sheet.

In Figure 10, a tube squeezes toothpaste onto a toothbrush, then
continues squeezing toothpaste onto the counter. Multiple level sets
are used to capture the interfaces between the toothpaste’s different
colors. The tube makes sharp motions to pull apart volumetric sec-
tions of the fluid, creating thin sheets and filaments. Because tooth-
paste is a Bingham plastic it is able to flow from the tube initially,
then hold its shape after settling. The parameters for this example
are µ0=1, µ∞=2×103, γ̇c=20, and q=1.

We simulate paint using a shear thinning model. In Figure 6, we
pour four different colors of paint onto a rotating cylinder. We then
accelerate the cylinder’s rotation to create a spray consisting of var-
ious thin sheets, filaments, and droplets. Colors are mixed across
codimensions through the evolution of multiple level sets. This ex-
ample was run with parameters µ0=.2, µ∞=20, Λ=.05, α=.8, and
n=.2. In Figure 8, we apply two globs of paint to a canvas, then



Figure 11: A paint brush traces furrows through a set of letters made of paint.

Example No. Elements (thousands) Time Percentage
Par Tet Tri Seg (sec) Mesh Solve

Pizza 11 31 2.8 .1 67 6 94
Mayo 21 96 15 0 35 25 75

Toothpaste 37 205 .046 .022 208 23 77
Fountain 3.8 0 7.2 .07 1 41 58
Cylinder 22 23 17 3 20 26 74

Brush 207 89 88 33 1506 11 89
Letters 117 148 85 42 1523 32 68

Table 1: This table gives the average number of particles, tetrahe-
dra, triangles, and segments per frame for each example. The right-
most columns give the average time per frame, along with the per-
centage of time spent meshing and time spent on solving for forces
and incompressibility.

drag a brush through both. A series of furrows, modeled using thin
sheets and segments, are left in the wake of the brush. In Figure 11,
we use paints with eight different colors to spell a word on a can-
vas, then drag a brush through the letters. The interfaces between
colors persist when different letters merge together, demonstrating
our multiple level set method for tracking material interfaces. Both
of these paint brush simulations were run with parameters µ0=2,
µ∞=40, Λ=1, α=1, and n=.4.

We show the number of particles and elements in different codimen-
sions and the runtimes of these examples in Table 1. The bottleneck
of each simulation is the Poisson solver which is used for viscosity,
elasticity (where applicable), and incompressibility. The fraction of
time spent on meshing varies by examples. The cost of meshing is
greater for examples with large changes in volumetric elements or
with many codimensional transitions (e.g., the letter and cylinder
examples).

We ran additional simulations to compare our semi-implicit elastic-
ity scheme with fully implicit (see Appendix) and explicit schemes.
We found that all three produced visually similar results for differ-
ent values of µe using a CFL of 1. For a CFL of 10 the semi-implicit
scheme produces smooth results for β≥.2, while the semi-implicit
scheme with β=.1 exhibits some artifacts and the explicit scheme
does not converge.

11 Limitations and Future Work

One limitation of our method is that it does not accurately ac-
count for rotational motion in codimension-2 or bending motion
in codimension-1. By taking these factors into consideration, one
could begin to produce phenomena that exhibit viscous thin thread
coiling and thin sheet bending. For example, pouring honey is an
inherently codimensional effect involving thin filaments and thin
sheets spontaneously coiling and bending, stacking on themselves,
and sinking into a volume. Some interesting work in this vein can
be seen in [Batty and Bridson 2008] and [Bergou et al. 2010]. An-
other limitation of our method is that the explicit, semi-implicit, and
implicit time integration schemes may not produce exactly the same
results since the schemes introduce different amounts of damping.

A useful extension to our method would be a temporally coher-
ent treatment of the flows it models: since most of the interest-
ing aspects of non-Newtonian fluid phenomena occur under low
Reynolds numbers, even minor topology changes in a simplicial
complex can create artifacts in rendering. This presents a challeng-
ing problem in meshing for simplicial complexes. Additionally,
work remains to be done on the topic of two-way coupling between
codimensional non-Newtonian fluids and thin brush fibers.
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Appendix

We implemented a fully-implicit integration scheme for elasticity
for comparison purposes. If we take ε̇G = 1

2
FT γ̇F , we can write

the fully-implicit formula as

~u∗∗ = ~u∗ +
µe∆t

ρ
∇ · (ε∗ +

∆t

2
F ∗T (∇~u∗∗ +∇~u∗∗T )F ∗).

We solve for the three components of velocity in one system, dis-
cretized as

[W̄ +
µe∆t

2

2ρ
Ḡ
T

(P F̄
T

)2W̄
−1

(I + P )Ḡ]ū∗∗ = W̄ ū∗ − µe
ρ
Ḡ
T
ε̄∗,

where ū is a vector containing velocity components in all three di-
mensions and ε̄ is a vector of strains repeated three times, once for
each dimension. F̄ , W̄ , and Ḡ are matrices with three block en-
tries (F ,W , andG, respectively) along the diagonal, one for each

dimension. P is a permutation matrix used as a transpose opera-
tor. We use the Gauss-Seidel method to solve this non-symmetric
system.


