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Figure 1: Many fluid phenomena consist of thin films and filaments. (Far Left) Film Catenoid: a membrane suspended between two rings
contracts due to surface tension. (Middle Left) Fishbone: two colliding jets form a thin sheet, filaments, and droplets. This phenomena is
named for its resemblance to a fish skeleton. (Middle Right) Waterbell: a jet of water striking an impactor results in a closed circular water
sheet that resembles a bell. (Far Right) Paint Splash: a splash caused by a rock falling into a tank filled with layers of colored paint.

Abstract

Many visually interesting natural phenomena are characterized by
thin liquid sheets, long filaments, and droplets. We present a new
Lagrangian-based numerical method to simulate these codimen-
sional surface tension driven phenomena using non-manifold sim-
plicial complexes. Tetrahedra, triangles, segments, and points are
used to model the fluid volume, thin films, filaments, and droplets,
respectively. We present a new method for enforcing fluid incom-
pressibility on simplicial complexes along with a physically-guided
meshing algorithm to provide temporally consistent information for
interparticle forces. Our method naturally allows for transitions be-
tween codimensions, either from tetrahedra to triangles to segments
to points or vice versa, regardless of the simulation resolution. We
demonstrate the efficacy of this method by simulating various natu-
ral phenomena that are characterized by thin fluid sheets, filaments,
and surface tension effects.
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1 Introduction

Interfacial fluid phenomena such as the “fishbone” [Hasha and Bush
2002], “fluid polygon” [Buckingham and Bush 2001], and “water-
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bell” [Clanet 2007] exhibit codimensional features including thin
films, filaments, and droplets (see Figure 1). It is extremely dif-
ficult to simulate these very thin features that are codimension-
1 (two-dimensional films), codimension-2 (fluid filaments), and
codimension-3 (very small drops) using numerical methods that are
intended to represent only codimension-0 volumetric phenomena.
Adaptivity can improve these methods, but it is highly inefficient to
use vanishingly small tetrahedra when triangles, line segments, and
points are more natural representations. Triangles readily model
thin films such as in soap bubbles (see e.g. [Saye and Sethian 2013;
Kim et al. 2007; Patkar et al. 2013; Durikovic 2001]) or viscous
sheets [Batty et al. 2012]. Line segments are a natural way of sim-
ulating filaments and viscous threads [Bergou et al. 2010]. Points
are a convenient way to express water droplets [Foster and Fedkiw
2001; Müller et al. 2003]. Etc. Motivated by this, we set out to sim-
ulate the wide variety of liquid phenomena best represented by sim-
plicial complexes spanning the range from codimension-0 (tetrahe-
dra) to codimension-1 (triangles) to codimension-2 (segments) to
codimension-3 (points). Moreover, for many of these phenomena it
is important that the liquid retain the ability to change codimension
as needed. Our goals are similar to those of [Martin et al. 2010] and
[Stam 2009] which aims towards a unified simulation of various
codimensional solids, but liquids have the added complexity that
changes from one codimension to another are much more rampant.

Our fluid solver utilizes an underlying particle based approach aug-
mented with physically-guided meshing that evolves the simplicial
complex dynamically and provides temporally consistent connec-
tivity information for the particles. This connectivity information
is quite important for various aspects of our numerical approach: it
is used in the codimensional surface tension discretization to model
surface tension effects over the simplicial complex. The topology
of the simplicial complex is used to detect which particles are on
the boundary of a codimension-1 sheet, and to subsequently apply a
special rim-based surface tension force to those particles. The mesh
is used to detect closed air volumes which apply equation of state-
based air pressure forces to the fluid surface. Most importantly, the
connectivity determines the nature of the forces emanating from our
novel method for enforcing fluid incompressibility over simplicial
complexes.

The main contribution of our work is a new computational frame-
work to simulate codimensional surface tension phenomena using
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Figure 2: A three-dimensional simplicial complex composed of
tetrahedra, triangles, segments, and points. Colored particles are
connected to geometry of multiple codimensions.

non-manifold simplicial complexes. The framework uses a La-
grangian representation of fluid features organized into points, seg-
ments, triangles, and tetrahedra. It incorporates a novel Poisson
solver to enforce incompressibility on simplicial complexes. A
physically-guided meshing algorithm is used to naturally handle
codimensional transitions and maintain temporally coherent con-
nectivity between particles. Finally, the framework presents an al-
gorithm to construct a skinned mesh of the fluid surface from the
simplicial complexes.

2 Related Work

Researchers have developed a variety of data structures and nu-
merical methods with the aim of simulating fluid phenomena with
thin features including adaptive grids [Losasso et al. 2004; Chen
et al. 2012], unstructured meshes [Misztal et al. 2012; Clausen
et al. 2013], front tracking [Thürey et al. 2010], Voronoi dia-
grams [Brochu et al. 2010; Sin et al. 2009], vortex sheets [Kim et al.
2009; Pfaff et al. 2012], and particle based methods [Ando et al.
2012; Akinci et al. 2013]. Among these, particle based methods are
noteworthy for their inherent advantages in conserving mass, track-
ing fluid volumes, and applying surface tension forces. A disadvan-
tage of these methods is that they do not typically maintain tempo-
rally consistent connectivity information and instead compute dis-
cretization stencils on-the-fly in order to solve the fluid dynamics
equations. See e.g. [Müller et al. 2003; Adams et al. 2007; Premžoe
et al. 2003; Becker and Teschner 2007]. There have been some at-
tempts to create a mesh representation for particle based methods
in order to solve issues with bumps and noise when rendering [Yu
and Turk 2010; Ando et al. 2013]. However, these methods suffer
from problems with temporal coherency because topology is re-
computed from scratch each time step. Moreover, creating a mesh
as a postprocess does not allow for the connectivity information to
be used by the simulation to dictate its physical behavior. For ex-
ample, surface tension forces should not be applied to the interior of
a tetrahedral mesh, special rim-based surface tension forces should
be applied to particles on the boundary of the triangle mesh, etc.
There are previous works such as [Wicke et al. 2010; Clausen et al.
2013; Idelsohn et al. 2004; Misztal et al. 2010] that maintain ex-
plicit connectivity information during simulation, but they are typ-
ically focused on tetrahedral meshes and not simplicial complexes.

Front-tracking is another related Lagrangian method that explicitly
maintains a detailed surface mesh representing the fluid surface.
This explicit representation is then advected after enforcing incom-
pressibility on a coarser background discretization such as a Carte-
sian grid [Thürey et al. 2010], tetrahedral mesh [Batty et al. 2010],
or SPH particles [Yu et al. 2012]. Unfortunately features which
cannot be resolved by the background discretization are typically
deleted or absorbed into the nearby regions resulting in mass and/or
feature loss. To avoid this, we store the mass on the particles mak-
ing it straightforward to conserve mass. In this way, our method
has more in common with particle based methods (and finite ele-
ment methods) than it does with front-tracking methods. However,
the use of persistent and physically-guided connectivity informa-
tion enables our approach to address many more interesting fluid

Figure 3: A thin membrane is suspended between two rings. As the
rings move farther apart, surface tension causes the membrane to
contract. Finally the membrane splits, leaving two separate oscil-
lating surfaces and multiple droplets. Small droplets are modeled
using points while larger drops are represented by tetrahedra.

phenomena than a typical particle based method.

3 Simulation Variables

As shown in Figure 2, the fluid is represented by particles connected
into a three-dimensional non-manifold simplicial complex contain-
ing tetrahedra, triangles, segments, and points. We use tetrahedra to
represent fluid volumes, triangles to represent thin films, segments
to represent filaments, and points to represent droplets. To differen-
tiate between particles and points, throughout the paper we will use
the geometric term “point” to refer to an isolated particle without
any incident tetrahedra, triangles, or segments. Each particle has
position ~x, velocity ~u, mass m, thickness λ, and mesh connectiv-
ities C as attributes. Position and velocity are used to evolve the
particles. Mass, thickness, and mesh connectivity are used to deter-
mine the local geometry of the fluid. We assume that the fluid has
constant density ρ.

Particle connectivity is an important variable in our simulation, be-
cause changing the connectivity between particles changes the fluid
geometry that is represented by those particles. For example, four
particles connected as a tetrahedron represents an incompressible
fluid volume whereas the same four particles treated as individual
points represents four separate droplets. We define codimension-0
particles to be all particles incident to a tetrahedron, codimension-
1 particles to be all particles incident to a triangle, codimension-2
particles to be all particles incident to a segment, and codimension-
3 particles to be all points. Thus, a particle incident to a tetrahe-
dron and a triangle would be both a codimension-0 particle and a
codimension-1 particle at the same time. Furthermore, we define
codimension-0 boundary particles to be all particles on the bound-
ary of the tetrahedron mesh, codimension-1 boundary particles to
be all particles on a boundary segment of the triangle mesh that is
not a segment on the tetrahedron mesh, and codimension-2 bound-
ary particles to be all particles on the boundary of the segment mesh
but not on the tetrahedron or triangle mesh. For k ∈ {0, 1, 2},
codimension-k particles that are not codimension-k boundary par-
ticles will be denoted as codimension-k interior particles. This im-
plies that a codimension-k interior particle cannot be connected
to a simplex of a higher codimension. According to a particle’s
connectivity, we distribute its mass m into a codimensional mass
~µ = (µ0, µ1, µ2) where µk is the particle mass attributed to the in-
cident tetrahedra (k = 0), triangles (k = 1), and segments (k = 2)
respectively.



Figure 4: Fluid polygons with different numbers of corners. The constant c (which multiplies the in-plane curvature) is replaced with a
sawtooth function parameterized by the angular component of the particle’s position in cylindrical coordinates relative to the source. The
number of sides in the fluid polygon is directly related to the user-specified frequency of the sawtooth function. This produces the fluid polygon
behavior depicted in [Buckingham and Bush 2001] and provides a practical way for artists to control this phenomenon.

4 Thin Film and Filament Thickness

The thickness λ of a particle is calculated according to the parti-
cle’s codimensions, as summarized in Table 1. The expressions
for thickness are best understood in terms of the local geometry at
a particle. The local geometry for a codimension-3 particle is a
sphere. The local geometry for a codimension-2 interior particle
is given by multiple cylinders incident to the particle, where the
total length l2 of these cylinders is equal to one half the sum of
the corresponding incident segment lengths. A codimension-1 in-
terior particle’s geometry is a thin sheet with area A equal to 1/3
times the sum of the areas of its incident triangles. Codimension-0
particles simply maintain their volumetric geometry and have zero
thickness. The geometry for a codimension-2 boundary particle
represents a filament endpoint and is defined as a sphere. The ge-
ometry for a codimension-1 boundary particle is given by multiple
cylinders incident to the particle where each cylinder has an axis
along an incident boundary segment of the triangle mesh. The total
length l1 of these incident cylinders is equal to half the sum of the
corresponding incident segment lengths.

The local geometry of particles of multiple codimensions can be
defined by the combination of geometries from each codimension.
Because tetrahedral elements contribute no thickness to their in-
cident particles, the thickness of a particle of codimension-0 and
any other codimensions is equal to the thickness contribued by its
other codimensions. The geometry of a codimension-1 and 2 par-
ticle is given by summing both the cylinders contributed by inci-
dent segments and the boundary cylinders contributed by the inci-
dent triangle. For this case, λ = 2((µ1 + µ2)/(ρπ(l1 + l2)))1/2.
These local geometries may be thought of as an approximation to
the Minkowski sum of a sphere and the elements on the simplicial
complex, where the sphere’s radius varies with particle thickness.

Codimension 0 1 2 3
Interior λ 0 µ1

ρA
2( µ2
ρπl2

)
1
2 -

Boundary λ 0 2( µ1
ρπl1

)
1
2 2( 3µ2

4ρπ
)
1
3 2( 3m

4ρπ
)
1
3

Table 1: The thickness λ of particles for different codimensions.

5 Particle Evolution

We solve the incompressible Navier-Stokes equations in La-
grangian form

D~u

Dt
= −1

ρ
∇p+ ν∇2~u+

~f

ρ
(1)

∇ · ~u = 0 (2)

where p is the pressure, ν is kinematic viscosity, and ~f represents
other forces such as gravity, surface tension, and adhesion. First,
we use forward Euler to advect particles. Next, we address the
potential changes in mesh connectivity using the updated particle
positions. We apply explicit external forces to the particles to obtain
~u∗ = ~un + ∆t ~f/ρ. We then apply implicit viscosity to obtain
~u∗∗ = ~u∗ + ∆t

(
ν∇2~u∗∗

)
. This equation is solved independently

for each Cartesian component of ~u using a first order backward
Euler time discretization. Finally, we solve for the pressure

∇ · 1

ρ
∇p =

1

∆t
∇ · ~u∗∗ (3)

and apply the pressure forces via

~un+1 = ~u∗∗ − ∆t

ρ
∇p. (4)

6 Surface Tension

The net surface tension force applied to a particle is the sum of
the contributions from all incident surface triangles and all incident
segments. The triangle-based surface tension force is applied to the
surface of the fluid volume and to both sides of the thin films. First,
we find the triangles that are either surface faces of the tetrahedron
mesh or triangles in the simplicial complex. Then, we duplicate
each triangle of the simplicial complex and flip the orientation of
the duplicate to account for both sides of the thin film. The sur-
face tension forces applied from these triangles to their particles
are calculated using the method of [Zheng et al. 2013]. That is,
each triangle t contributes a surface tension force to each of its par-
ticles n as ~ft,n = σ~lt,n/2 where σ is the surface tension coefficient
and ~lt,n is the length-weighted binormal perpendicular to the edge
opposite particle n in triangle t in the plane of triangle t. The sur-
face tension forces applied from the segments to their particles are
calculated using the method of [Zheng et al. 2013] as well. That
is, each segment s contributes a surface tension force to each of its
particles n as ~fs,n = πλnσ~ds,n where λn is the thickness of parti-
cle n and ~ds,n is the unit direction vector pointing from particle n
to the opposite endpoint of segment s.

6.1 Rim-based Surface Tension

We use an additional rim-based surface tension force to calculate
the surface tension contribution from the boundary segments of the
triangle mesh to codimension-1 boundary particles. This is moti-
vated by [Bush and Hasha 2004] which declares that the curvature
force applied on the boundary of a thin sheet is associated with
both the out-of-plane curvature (calculated above via triangles) and
the in-plane curvature. The in-plane curvature force is associated
with the curvature of the boundary centerline and acts as a force



Figure 5: When a projectile breaks a bubble, surface tension
causes the rim to retract creating numerous filaments and droplets.

to smooth its curvature. Each boundary segment s applies the in-
plane curvature force to its two particles as ~fs,n = cλ̂σ~ds,n where
c is a constant (which equals π − 1 in [Bush and Hasha 2004])
and λ̂ = (λi + λj)/2 is the diameter of the boundary cylinder. In
most of our simulations, the in-plane surface tension force is dom-
inated by the out-of-plane surface tension force but still plays an
important role in smoothing the in-plane curvature on the bound-
ary of the triangle mesh. However, there are phenomena where the
in-plane surface tension force has a dramatic effect on the physical
behavior of the fluid. See Figure 4.

7 Codimensional Transitions

We allow geometry to transition from lower to higher codimensions
as needed for both efficiency and modeling as the fluid features thin.
When tetrahedra become too thin they degenerate into triangles (see
Section 12). Both triangles and segments raise their codimension
based on the particle thickness attribute. At each time step, the
thickness of a particle is updated based on its mass and connectivity
as described in Section 4. We define the thickness of a triangle λf
to be the average of the thicknesses at its three particles, and the
thickness of a segment λe to be the average of the thicknesses at its
two particles. Whenever λf or λe are below a predefined threshold,
we break the thin film or filament respectively simply by deleting
the triangle or segment.

Addressing transitions from higher to lower codimensions is more
complex. The philosophy behind our approach is that incompress-
ibility can be described using different models on different length
scales. If the thin film or filament thickness is significantly smaller
than the length scales along the other directions, we can model
incompressibility simply by updating particle thicknesses to keep
volume constant. That is, particles separated by large distances are
allowed to approach each other without resistance, resulting only
in the thickening of the geometric representation. As the particles
continue to increase their proximities, eventually the thickness be-
comes larger than we would like to allow in our higher codimen-
sional representation and as such the codimension should decrease.
This is accomplished by activating our novel incompressible flow
solver on simplicial complexes for any element whose thickness
(λf or λe) is larger than a predetermined threshold. Our switching
on and off of the Poisson equation-based incompressibility solver
bears some resemblance to previous works. [Losasso et al. 2008]

Figure 6: The volume weighted gradient at particle n depends on
the incident tetrahedra, triangles, and segments. Pressure degrees
of freedom are located at the green circles. See Section 8.1.

turned off the incompressibility to allow spray and foam regions to
freely “slip” through the grid, and [Gerszewski and Bargteil 2013]
(see also [Narain et al. 2009; Alduán and Otaduy 2011]) turned off
the incompressibility in cells where separation was desired. Once
incompressibility is enforced, we can implement transitions from
higher to lower codimensions using the mesh operations described
in Section 12.

8 Simplicial Incompressibility

Pressure degrees of freedom are placed on the particles of tetrahedra
following the approaches of [Bonet and Burton 1998; Irving et al.
2007] to avoid locking. In contrast, we place the pressure degrees of
freedom on the barycenters of triangles and the centers of segments
where we do not expect significant locking because the triangles
and segments can bend in and out of plane. This also avoids odd-
even decoupling of the segment mesh.

8.1 Volume-Weighted Gradient

We define the total volume-weighted gradient at particle n as

Wn∇p =

(
Vn∇+ λnAn∇+

πλ2
n

4
Ln∇

)
p (5)

where Vn∇ represents the volume-weighted gradient contribution
from incident tetrahedra, An∇ represents the area-weighted gradi-
ent contribution from incident triangles,Ln∇ represents the length-
weighted gradient contribution from incident segments, λn is the
particle thickness, and Wn = Vn + λnAn + (πλ2

n/4)Ln is the
total control volume for particle n obtained by summing of the vol-
ume contribution from each codimension (see Section 4).

To define the volume-weighted gradient contribution at particle n
due to incident tetrahedra, we first assign a pressure p̄t to each tetra-
hedron t by averaging the pressures from its four particles. Then,

Vn∇p =
∑
t∈Tn

p̄t
~At,n
3

(6)

where Tn is all incident tetrahedra and ~At,n is the outward pointing
area-weighted normal of the face opposite particle n in tetrahedron
t (see [Zheng et al. 2013]). To define the area-weighted gradient
contribution at particle n due to incident triangles, we note that the
pressure pf is already defined at the barycenter of each triangle f .
So,

An∇p =
∑
f∈Fn

pf
~lf,n

2
(7)



Figure 7: This tetrahedron mesh has 4 tetrahedra and 8 parti-
cles resulting in 4 equations and 8 degrees of freedom respectively.
Thus, we expect H to have a null space.

where Fn is all incident triangles. To define the length-weighted
gradient contribution at particle n due to incident segments, we note
that the pressure pe is already defined at the center of each segment
e. So,

Ln∇p =
∑
e∈En

pe ~de,n (8)

where En is all incident segments. See Figure 6.

We apply zero Dirichlet boundary conditions at all free surfaces.
Neumann boundary conditions are enforced on solid objects and
domain boundaries by modifying the volume-weighted gradient

Wn∇p =
(
I− ~N ~NT

)(
Vn∇+ λnAn∇+

πλ2
n

4
Ln∇

)
p (9)

where ~N is the normal direction of the boundary.

8.2 Poisson Equation

Equations (5) through (8) combined define a matrix G that maps
a vector of pressure values (located at the particles of tetrahe-
dra, barycenters of triangles, and centers of segments) to a vector
of pressure gradients located at the particles. Thus, the volume-
weighted divergence defined via the transpose operator, i.e. −GT ,
maps a vector of ~u values (u) at the particles to divergence values
located at the particles of tetrahedra, barycenters of triangles, and
centers of segments. Substituting the volume weighted divergence
and gradient into Equation (3), we obtain the discretized volume-
weighted Poisson equation written as

−ĜTM−1Ĝp = − 1

∆t
GTu (10)

where Ĝ is the volume-weighted gradient matrix with the modifi-
cations for Neumann boundary conditions as in Equation (9), p is
the vector of pressure values, and M is a diagonal matrix of Wnρ
values defined for each component of the gradient at the particles.

8.3 Null Space

Our solver must be capable of robustly solving a system with a
null space. The standard conjugate gradient algorithm may fail
to solve Equation (10) because the symmetric negative semidefi-
nite system matrix −ĜTM−1Ĝ may have a null space associated
with the tetrahedra. As noted in [Zheng et al. 2013], the volume-
weighted gradient operator for tetrahedra can be factored into GeH
where H is the matrix that averages the pressures at the particles of
the tetrahedra to their barycenters and Ge is the standard volume-
weighted gradient operator for pressure degrees of freedom defined
at barycenters of tetrahedra. Thus, we can rewrite the system ma-
trix as−HTGT

eM
−1GeH. Since it is common to avoid discretiz-

ing tetrahedra using pressures at tetrahedron barycenters because

Figure 8: Wind blowing on a thin film causes it to stretch into a
neck and eventually pinch off to form air bubbles which may collide.
The wind flow is simulated on a coarse background grid and is
coupled with the bubbles in a force-based way. The bubbles enclose
air volumes which are modeled using an equation-of-state based
pressure force.

of locking, see e.g. [Irving et al. 2007], one can typically safely as-
sume that GT

eM
−1Ge does not have a null space. In this case, the

null space of the system matrix would be equal to the null space
of H (note that while placing pressures at barycenters of tetrahedra
causes locking for general tetrahedral meshes, there are some spe-
cial cases where this is not true such as the BCC lattice, see [Ando
et al. 2013]). Hence, we propose an algorithm to find a basis for
the null space of H. This basis is used to project out the null space
components of the initial guess and subsequent search directions
when using the conjugate gradient method to solve Equation (10).

Consider the non-manifold tetrahedron mesh shown in Figure 7.
Here, H is a 4 × 8 matrix that averages values from particles to
tetrahedra. Suppose Hz = 0 for some z ∈ R8. Then, the equation
for tetrahedron t1 is z1 + z2 + z3 + z4 = 0, and therefore z4 =
−(z1 + z2 + z3) where z1, z2, and z3 are independent variables.
That is, the null space for this single tetrahedron is spanned by the
columns of the following matrix( z1

z2
z3
z4

)
=

(
1 0 0
0 1 0
0 0 1
−1 −1 −1

)( z1
z2
z3

)
. (11)

Incrementally, adding tetrahedron t2 incorporates an additional de-
gree of freedom for particle n5 and an additional equation z1+z3+
z4 + z5 = 0. Substituting in the equation above for z4 results in
z5 = z2, and thus the null space for these two tetrahedra is spanned
by the columns of the following matrix( z1

z2
z3
z4
z5

)
=

(
1 0 0
0 1 0
0 0 1
−1 −1 −1
0 1 0

)( z1
z2
z3

)
. (12)

Next, consider tetrahedron t3 which adds no additional particles,
and has equation z1 + z2 + z4 + z5 = 0. Substituting in the values
above for z4 and z5 yields z2 = z3. Thus, the null space associated
with these three tetrahedra is given by the columns of the following
matrix ( z1

z2
z3
z4
z5

)
=

(
1 0
0 1
0 1
−1 −2
0 1

)
( z1z2 ) . (13)

Finally, consider tetrahedron t4 which adds three additional degrees
of freedom and has equation z5 + z6 + z7 + z8 = 0. This adds
two additional independent variables z6 and z7 resulting in two ad-
ditional columns for the matrix given by

z1
z2
z3
z4
z5
z6
z7
z8

 =


1 0 0 0
0 1 0 0
0 1 0 0
−1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1

( z1
z2
z6
z7

)
. (14)



Figure 9: Two colliding liquid jets form a fluid fishbone [Hasha and Bush 2002]. Surface tension causes the rim of the thin sheet to pinch off
into many filaments and droplets.

The example above demonstrates how we build up a null space ba-
sis for H by traversing the tetrahedron mesh. First, we initialize
every tetrahedron and particle to be unvisited. Starting from any
unvisited tetrahedron, we assume the values at three particles to be
independent and express the value on the fourth particle in terms
of these independent variables (Equation 11). Then, we perform a
breadth-first traversal of all tetrahedra that share particles. For each
tetrahedron t encountered during the traversal, we check whether
all of its particles have been visited. If all of its particles have not
been visited, we add an independent variable and a column to the
null space basis matrix for all unvisited particles except for one.
Then, we calculate the value at the remaining unvisited particle. If
all particles of the tetrahedron have been visited, we use the equa-
tion for the tetrahedron to express a column of the null space basis
in terms of the other columns reducing the dimension of the null
space by one. Finally, we mark tetrahedron t and all of its parti-
cles as visited. We repeat this traversal starting from any unvis-
ited tetrahedron until all tetrahedra are visited. Then, the remaining
columns of the null space basis matrix, if any, span the null space
of H. This procedure can be implemented using integer arithmetic
which avoids floating point error during the traversal. When fin-
ished, we orthonormalize the null space basis using the modified
Gram-Schmidt process [Golub and Loan 1996].

9 Viscosity

Since we use spatially constant viscosity, we can solve separately
for each of the three spatial components [Rasmussen et al. 2004].
For the sake of exposition, we outline the discretization for the x-
component of the velocity given by u (the others are discretized
similarly). Our spatial discretization for the implicit velocity up-
date over the simplicial complex uses variants of the gradient and
divergence operators discussed in Section 8. Since the velocity de-
grees of freedom are colocated with the particles, we define the
colocated total volume-weighted gradient at particle n as

Ŵn∇u =

(
Vn∇+ λnÂn∇+

πλ2
n

4
L̂n∇

)
u (15)

where Ân∇ represents the colocated area-weighted gradient con-
tribution from incident triangles, L̂n∇ represents the colocated
length-weighted gradient contribution from incident segments, and

Ŵn = Vn + λnÂn + (πλ2
n/4)L̂n is the total control volume for

particle n. We compute ūf at triangle barycenters by averaging
the u velocities of the triangle’s three particles, and then Ân∇u
is defined by Equation (7) with pf replaced by ūf . We similarly
define ūe averaging from particles to segment centers, and define
L̂n∇u via Equation (8) with pe replaced by ūe. The definition of
the volume-weighted gradient G̃ and the volume-weighted diver-
gence −G̃T then follows naturally as outlined in Section 8. Com-
bining this with backward Euler time integration gives(

Ŵ + ∆tG̃TM̂−1G̃
)
un+1 = Ŵun (16)

where Ŵ is a diagonal matrix of total control volumes Ŵn for each
particle defined in Equation (15) and M̂ is a diagonal matrix of
Ŵn/ν values.

10 Air Pressure

The pinching and merging of thin films can result in regions of en-
closed air, as seen in Figures 8 and 13. These volumes of enclosed
air exert an outward pressure force that opposes surface tension and
atmospheric pressure, creating visual effects such as bubble oscil-
lations. We model the pressure force due to enclosed air by us-
ing the mesh to detect closed air volumes and applying equation of
state-based air pressure forces to the fluid surface surrounding such
volumes. Once the region becomes enclosed, we calculate its vol-
ume Vatm and constant k = patmVatm to be used in Boyle’s law
pairVair = k where Vair is the current volume of the mesh. The
air pressure force on each triangle bounding the enclosed air region
is computed as (pair − patm) ~A where ~A is the outward pointing
area-weighted normal of the triangle. The force on each triangle is
distributed equally to its particles.

11 Adhesion

Adhesion is an important force for various phenomena such as the
rings in Figure 3, the bottom of the waterbell in Figure 13, and the
rock that causes the splash in Figure 14. In some scenarios, one
can simply apply Neumann boundary conditions to force fluid to
remain in contact with the solid, which works well for the rings in



Figure 10: The tetrahedron edge collapse operation can result in
a codimension-0 to codimension-1 transition. The collapse of edge
ab degenerates 5 of the 7 tetrahedra sharing edge ab into triangles.

Figure 3. However, dynamically changing adhesive forces are more
important for the waterbell and rock in Figure 13 and Figure 14
respectively. As in [Guendelman et al. 2003], we use a level set
function as auxiliary information for the rigid bodies noting that
the level set is defined outside the bodies as well. If a particle’s
level set value φ is less than a user specified threshold φa, then we
apply a force Fa = α((φ−φa)/φa) ~N where ~N is the local outward
pointing normal computed from the signed distance function, and
α is the adhesion coefficient.

12 Meshing

The goals of our meshing algorithm are to maintain a temporally
consistent mesh structure and to handle all transitions between codi-
mensions. The key to our meshing approach is to use local mesh
improvement operations in all codimensions—this especially helps
with time coherency. Previous work in this area for generating
high quality meshes of a single codimension includes [Wojtan et al.
2009; Brochu and Bridson 2009; Wicke et al. 2010; Zhang et al.
2012; Clausen et al. 2013]. Our meshing algorithm is based on
these approaches with extensions to handle non-manifold simpli-
cial complexes as well as transitions between codimensions. We
first perform volumetric meshing operations, followed by thin sheet
meshing operations, and finally filament meshing operations. Note
that mass and other physical properties of the particles are redis-
tributed based on changes in control volumes induced by meshing
operations. Our meshing algorithm does not introduce breaks in
thin films or filaments. The breaking of films and filaments is con-
trolled by the triangle thickness λf and segment thickness λe as
discussed in Section 4.

12.1 Volumetric Meshing

We utilize five meshing operations to improve the quality of tetrahe-
dra, which is measured by the volume-length ratio as in [Klingner
and Shewchuk 2008]. The tetrahedron edge-face flip [Klingner and
Shewchuk 2008] supports 2-2, 2-3, 3-2, and 4-4 flips. The tetrahe-

Figure 11: The flat boundary tetrahedron remove operation facil-
itates a codimension-0 to codimension-1 transition. (Left) None of
the faces of tetrahedron abcd are connected to any other tetrahe-
dron, so it is degenerated into triangles abc and acd. (Right) One of
the faces of tetrahedron abcd is connected to another tetrahedron
(aebd), so the abcd is degenerated into the face bcd.

Figure 12: (Left) An edge collapse that results in a codimension-1
to codimension-2 transition. (Right) A triangle crumple merge that
results in a codimension-1 to codimension-0 transition. The input
triangles can either be triangles in the triangle mesh or boundary
faces of the tetrahedron mesh.

dron edge split splits an overly long edge of the tetrahedron mesh by
introducing a new particle. We also split an edge if its distance to ei-
ther of its opposite vertices is smaller than a threshold (i.e. a “spade”
tetrahedron). When an edge split is performed, the tetrahedra and
triangles incident to that edge are also split. The tetrahedron face
split splits a face of a tetrahedron into three faces if the tetrahedron
is a “cap” tetrahedron where the distance of the face to its opposite
particle is smaller than a threshold and the projected point of that
particle onto the face plane is inside the face. Similar ideas can
be seen in [Clausen et al. 2013] for face contraction. The tetrahe-
dron edge split and tetrahedron face split may generate short edges
which are collapsed via the tetrahedron edge collapse. This oper-
ation merges the particles of the short edge into a single particle.
This handles a codimension-0 to codimension-1 transition that al-
lows a fluid volume to become a thin sheet. See Figure 10. We also
use flat boundary tetrahedron remove to enable transitions from
codimension-0 to codimension-1 for sliver tetrahedra as shown in
Figure 11 (far left). If none of its faces are connected to other tetra-
hedra, we simply choose one of the two pairs of in-plane triangles
as the codimension-1 representation (Figure 11 left). If one of the
faces is connected to another tetrahedron, then the other face in
that pair degenerates to a codimension-1 triangle (Figure 11 right).
When one pair of faces has two incident tetrahedra and the other
pair has none, we can simply delete the other pair of faces.

12.2 Thin Film Meshing

We use four triangle mesh operations for thin film meshing. The
triangle edge flip [Brochu and Bridson 2009] flips a triangle edge
to maintain good triangle aspect ratios. The triangle edge split
[Brochu and Bridson 2009] splits long triangle edges. The triangle
edge collapse collapses a short edge by merging its particles. This
operation handles the codimension-1 to codimension-2 transition
that allows a thin sheet to devolve into a filament (Figure 12 left).
The triangle crumple merge generates a new tetrahedron between
two incident triangles when their dihedral angle is smaller than a
threshold, resulting in a codimension-1 to codimension-0 transition
where thin films become fluid volumes (Figure 12 right). The col-
lision between elements of different codimensions is handled by
deleting the particles and elements of one codimension and merg-
ing their mass into the particles of the other codimension. Users can
specify the direction of merging between codimensions. E.g., in
some examples a droplet represented by tetrahedra may merge into
a sheet of triangles via a codimension-0 to codimension-1 merge
(see Figure 3), while in other examples a sheet of triangles may
merge into a fluid volume via a codimension-1 to codimension-0
merge (see Figure 14).

12.3 Filament Meshing

We use two segment mesh operations for filament meshing. The
segment edge split splits a long segment into two segments by
adding a particle. The segment edge collapse merges the particles
of a short segment into a single particle. When this segment is iso-



Figure 13: A vertical jet of water strikes a circular horizontal impactor which results in a circular water sheet referred to as a waterbell
[Clanet 2007]. The circular sheet of fluid is represented using triangles while the pinch-offs are represented using segments. The circular
sheet adheres to the pillar via adhesion and encloses an air volume which is modeled using an equation-of-state.

lated, it becomes a single point, constituting a codimension-2 to
codimension-3 transition. Note that we do not allow segments to
directly transform into triangles although one could. Instead, we
prefer to transform segments directly into tetrahedra by applying a
Delaunay remeshing algorithm [Zheng et al. 2013] to codimension-
2 particles that are close together.

12.4 Adaptivity

We add adaptivity into our meshing algorithm in order to put more
degrees of freedom near the boundaries of thin films and on fila-
ments for greater visual detail. We place more degrees of freedom
on filaments by setting the minimum and maximum allowed edge
lengths of segments to be smaller than those for triangles and tetra-
hedra. For thin films, we place successively smaller triangles near
the film’s rim. This is accomplished by setting the minimum and
maximum allowable edge lengths for the edge collapse and edge
split operations based on the graph distances of particles to the rim.
At each timestep, before meshing operations are applied, an inte-
ger value is assigned to each particle to represent its graph distance
to the rim. The minimum and maximum allowed edge lengths in-
crease as a function of the graph distances of an edge’s incident
particles up to a threshold, after which they are held constant.

13 Skinned Mesh

Just as an articulated skeleton drives a surface mesh via skinning,
our simulated degrees of freedom are a proxy stand-in for the phys-
ical mesh that one would observe. Thus, in a post-processing step
we use the degrees of freedom from the simulation to construct a
representation of the fluid surface. For clarity, we use “nodes” to
refer to vertices of the skinned mesh to distinguish them from the
particles of the simulation mesh.

The skinned mesh is generated from elements of the simulation
mesh according to their codimensions. Points are converted into
tessellated spheres. Segments that are not connected to any trian-
gles or tetrahedra are converted into tessellated surfaces. Each par-
ticle on a segment is expanded into a ring of nodes, where the radius
of the ring is derived by smoothing the thickness values (derived in
Section 4) of the particle and its neighbors. The axis about which

the ring is created is calculated using the directions along segments
incident to the particle. If a particle is on the codimension-2 bound-
ary, the surface of the skinned mesh at that point is sealed with a
tessellated hemisphere, producing rounded-off filament ends. Each
triangle is expanded into two new triangular faces, and we align
the orientation of neighboring triangles such that these expanded
triangles can be labeled as part of either the upper or lower layer.
These two layers are then stitched together along the codimension-1
boundary. This process is described in Algorithm 1. For tetrahedra,
we simply add the boundary faces of the tetrahedron mesh to the
skinned mesh.

Algorithm 1 Codimension-1 Skinning Process
1: // Expand triangles into two layers.
2: Align triangle normals.
3: Add upper node and lower node to skinned mesh for each par-

ticle on codimension-1 mesh.
4: Mesh upper and lower layers of triangles such that their nor-

mals are opposites.
5: for all upper and lower nodes do
6: Average incident triangle normals to find the node normal.
7: Move node a distance of λ/2 in its normal direction.
8: end for
9: // Stitch layers together at the fluid rim.

10: Add semicircle of nodes for particles on codimension-1 bound-
ary.

11: Mesh nodes of neighboring semicircles together to seal rim.
12: if gap is detected in rim due to tetrahedron connected to triangle

boundary then
13: Mesh semicircle of nodes from codimension-1 particle to

node from codimension-0 particle.
14: end if

Special consideration must be given to skinning the simulation
mesh at particles of multiple codimensions. On the interface be-
tween tetrahedron and triangle elements, we test the topology of the
simulation mesh to determine whether tetrahedron faces should be
connected to the upper or lower layer of the expanded triangles. If
a tetrahedron shares an edge with a triangle, we test its topology by
considering the winding order of its particles. If the particles of the
common edge are in the opposite order on the triangle than they are



Figure 14: To demonstrate that our method is effective for simulations with a large volumetric component as well, we drop a rock into a tank
filled with layers of colored paint. While the fluid in the tank remains composed predominantly of tetrahedra, the resulting splash tapers into
a thin sheet and pinches off into filaments along its rim. The thin sheet and filaments later re-merge with the fluid volume.

on the tetrahedron face, then the tetrahedron face is connected to the
upper layer; otherwise it is connected to the lower layer. This test is
not sufficient, however, to evaluate a tetrahedron face that has only
a single particle in common with the triangle mesh. Thus, we use a
breadth-first search as a heuristic for assigning upper/lower layers.
Beginning with the set of tetrahedron faces whose upper/lower layer
is known (because they share an edge with a triangle), we assign the
same upper/lower layer to unvisited neighboring tetrahedron faces.

Particles of multiple codimensions are also found where a segment
is connected to the boundary of the triangle mesh or the tetrahedron
mesh. Because we want to visualize the transitions from thin sheets
to filaments in various fluid phenomena, it is especially important to
maintain these connectivities in the skinned mesh. In the case of a
segment connected to the triangle boundary, we stitch a tessellated
representation of the segment to the expanded triangle boundary.
First, we expand the particle at the junction into two semicircles
of nodes. Each semicircle is composed of n nodes, where the first
and last nodes are shared by both semicircles. Each semicircle is
meshed with the nodes corresponding to one of the particle’s two
neighbors on the codimension-1 boundary to seal the fluid rim. We
then create a tessellated surface comprised of two rings of nodes
around the protruding segment. The two semicircles together con-
stitute a simple cycle of 2n − 2 nodes. This cycle is taken to be
the first ring of the surface. The second ring is created by expand-
ing the other particle on the segment into a ring of 2n − 2 nodes.
Triangles are added between these two rings to seal the surface. In
the case of a segment connected to a tetrahedron, we opt to take a
simple approach. The particle of the segment that is not incident to
the tetrahedron is expanded into a ring, but the particle incident to
the tetrahedron is not expanded. Triangles are added between the
resulting nodes to form a cone.

After transforming the simulation degrees of freedom into the
skinned mesh representation, we take steps to improve the qual-
ity of the mesh. First, we correct non-manifold edges. These edges
are created as a by-product of the naturally non-manifold simplicial
complex; i.e., a section of a sheet represented by tetrahedra may
have a tetrahedral edge or particle that is on the surface of both
sides of the sheet. In these cases, the skinning process duplicates
the non-manifold edge or particle and correspondingly adjusts the
surface faces of the tetrahedra so that the two sides of the skinned

mesh are not attached. Finally, we apply smoothing operations to
the skinned mesh to improve its appearance. For most cases we find
that Laplacian smoothing [Sorkine et al. 2004] produces reasonable
results. Where it is important to smooth fluid features without los-
ing volume (e.g., for the water droplets in Figure 3), we selectively
apply Loop subdivision [Loop 1987] to the isolated parts of the
simulation mesh that contain relatively few particles.

14 Examples

In the film catenoid example (Figure 3), a membrane suspended
between two rings is stretched until surface tension forces cause the
membrane to pinch off and separate into two membranes, producing
many small droplets in the process. In the bubble burst example
(Figure 5), a projectile breaks a bubble. In the bubble blow example
(Figure 8), wind blowing on a membrane causes it to expand and
eventually pinch off due to surface tension.

In Figure 9, two colliding liquid jets form a fluid fishbone composed
of a thin sheet with filaments and droplets around its rim. A water-
bell, shown in Figure 13, is formed when a volumetric jet of fluid
strikes a pillar and spreads out in the shape of an umbrella before
the combination of surface tension forces and gravity pinches the
circular thin fluid sheet into the shape of a bell. The fluid polygon
shown in Figure 4 also begins with a volumetric jet of liquid strik-
ing a horizontal impactor and spreading out. In Figure 14, we drop
a rock into a paint-filled tank to form a multicolored paint splash
[Oefner 2013].

The runtimes of these examples vary based on the physical pro-
cesses being simulated and the resolution of the mesh. The solver
and mesher exhibit reasonable runtimes, and an optimized imple-
mentation could yield even better performance results. Each of
the simulations runs on a desktop machine using between one and
twelve cores. The least expensive example is the fluid polygon
with about 18,000 particles, which runs at an average of 6 seconds
per frame. The per-frame runtime averages of the fishbone, film
catenoid, and bubble burst examples are 22 seconds, 11 seconds,
and 23 seconds, respectively. With a smaller timestep, the bubble
blow example is slower and runs at an average of 90 seconds per
frame. The most expensive examples are the waterbell with about
165,000 particles, which runs on a single core at 10 to 30 minutes



per frame depending on frame complexity, and the paint splash with
about 140,000 particles, which runs at about 30 minutes per frame.

15 Discussions and Conclusions

We presented a novel method for simulating codimensional surface
tension driven phenomena on simplicial complexes. Our method
models fluid features (volumes, thin films, filaments, and droplets)
in different codimensions and solves incompressible flow with sur-
face tension in those codimensions in a unified way. This enables
the simulation of many sophisticated interfacial phenomena.

One interesting direction for future work is to improve the surface
tension model on thin films and filaments. It is difficult for our cur-
rent method to accurately model the highly regular structures of the
fluid polygon and fishbone seen in real experiments [Buckingham
and Bush 2001; Hasha and Bush 2002]. Although similar results
can be acheived by applying artistic controls, such controls may in-
troduce artifacts (e.g., a nonphysical acceleration of the filaments
in Figure 4). Another limitation of our method is its assumption
that fluid is a continuum: it does not account for atomistic effects
in vanishingly thin fluids, which can be important in phenomena
like breaking fluid sheets. Reduced thin film [Ribe 2002] and fila-
ment [Ribe 2004] models constitute another research direction and
the way to mix those models in different codimensions would be in-
teresting to explore further. The primary distinction of our method
is its ability to solve the full Navier-Stokes equations with surface
tension on different codimensions in a unified way.

There are many other interesting avenues for future work as most
of the real-world phenomena that we considered have received little
to no attention from the simulation community due to their inherent
complexities. For example, we have only barely touched upon the
plethora of potential meshing operations not only for simulations
but also for reconstructing a skinned mesh from the simulation de-
grees of freedom. Parallelization of numerical methods on simpli-
cial complexes also poses various challenges similar to but more
severe than those for methods that rely heavily on meshing in a sin-
gle codimension. Surveying the literature, it appears that some of
these complex phenomena are only approximately understood es-
pecially when compared to the more thorough understanding that
researchers have of volumetric fluid effects. It might prove fruit-
ful to collaborate with those researchers as the ability to simulate
these phenomena numerically enables a wide variety of parameter
studies including those that may be difficult, impossible, or even
nonphysical in order to develop a better understanding of these var-
ious phenomena.
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MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc. of the
2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,
154–159.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. In ACM Trans-
actions on Graphics (TOG), vol. 28, ACM, 122.

OEFNER, F., 2013. Orchid. http://fabianoefner.com/
?portfolio=orchid.

PATKAR, S., AANJANEYA, M., KARPMAN, D., AND FEDKIW,
R. 2013. A hybrid Lagrangian-Eulerian formation for bub-
ble generation and dynamics. In Proceedings of 2013 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
105–114.

PFAFF, T., THUEREY, N., AND GROSS, M. 2012. Lagrangian
vortex sheets for animating fluids. ACM Trans. Graph. 31, 4,
112:1–112:8.

PREMŽOE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER, R. T. 2003. Particle-based simulation of fluids. In
Computer Graphics Forum, vol. 22, Wiley Online Library, 401–
410.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S.,
SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW, R. 2004.
Directable photorealistic liquids. In Proc. of the 2004 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 193–202.

RIBE, N. 2002. A general theory for the dynamics of thin viscous
sheets. Journal of Fluid Mechanics 457, 255–283.

RIBE, N. M. 2004. Coiling of viscous jets. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 460, 2051, 3223–3239.

SAYE, R. I., AND SETHIAN, J. A. 2013. Multiscale modeling
of membrane rearrangement, drainage, and rupture in evolving
foams. Science 340, 6133, 720–724.

SIN, F., BARGTEIL, A. W., AND HODGINS, J. K. 2009. A point-
based method for animating incompressible flow. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput.
Anim., ACM, New York, NY, USA, SCA ’09, 247–255.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, ACM, 175–184.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver for
computer graphics. In Computer-Aided Design and Computer
Graphics, 2009. CAD/Graphics’ 09. 11th IEEE International
Conference on, IEEE, 1–11.
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WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2009.
Deforming meshes that split and merge. In ACM Trans. Graph.
(TOG), vol. 28, ACM, 76.

YU, J., AND TURK, G. 2010. Reconstructing surfaces of particle-
based fluids using anisotropic kernels. In Proc. of the 2010 ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim., 217–225.

YU, J., WOJTAN, C., TURK, G., AND YAP, C. 2012. Explicit
mesh surfaces for particle based fluids. Comp. Graph. Forum
31, 2pt4 (May), 815–824.

ZHANG, Y., WANG, H., WANG, S., TONG, Y., AND ZHOU, K.
2012. A deformable surface model for real-time water drop an-
imation. Visualization and Computer Graphics, IEEE Transac-
tions on 18, 8, 1281–1289.

ZHENG, W., ZHU, B., KIM, B., AND FEDKIW, R. 2013. A new
incompressibility discretization for a hybrid particle MAC grid
representation with surface tension. (submitted).

http://fabianoefner.com/?portfolio=orchid
http://fabianoefner.com/?portfolio=orchid

