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1 DISCRETE SAMPLING OF MICROSTRUCTURES
Given a set of microstructures, a new population of microstructures

is generated using the Stochastically-Ordered Sequential Monte

Carlo (SOSMC) method introduced by Ritchie et al. (2015).

In our implementation, the samples (or particles) are our mi-

crostructures, i.e. binary assignments of the base materials, and the

desired distribution is the one that maximizes the number of parti-

cles located near or outside the boundary of the gamut of material

properties. We evaluate the contribution of each sample towards

the desired goal thanks to the scoring function

s(pi) =
Φ(pi)
D(pi)

×
1

D(pi)
, (1)

where Φ(pi) is the signed distance of the material properties of

particle i to the gamut boundary and D(pi) is the local sampling

density at the location pi. �e sample density is de�ned as

D(pi) =
∑
k

ϕk(pi) , (2)

where ϕk (p) =
(
1 − | |p−pk | |

2
2

h2

)4
are locally-supported kernel func-

tions that vanish beyond their support radius h, set to a tenth of

the size of the la�ice used for the continuous representation of the

material gamut.

As described by Algorithm 1, given an initial microstructure, we

generate a new microstructure by randomly swapping materials

in the material assignments. However, as explained in Ritchie’s

paper, executing the procedure sequentially – in our case visiting

the voxels in a �xed order – is o�en suboptimal since the best order

is o�en unknown a priori. To introduce randomness in the program

execution, and because of the simplicity of our procedure primitives,

i.e. swapping voxel materials, we do not rely on Stochastic Future

as in Ritchie’s implementation, but directly modify the original

program into the one described by Algorithm 2.

Starting with the microstructures corresponding to the entire

gamut, we initialize the population of microstructures to evolve

by sampling N microstructures using systematic resampling (Douc

2005) based on their scores as computed by Equation 1. We then run,

for each microstructure, the program described by Algorithm 2 in

Algorithm 1 Initial procedure for generating a new microstructure

procedure genMicrostructure(input: microstructureMi , out-

put: microstructureMo )

Mo ← Mi
for all voxels do

swap material of the current voxel v with probability 0.5

end for
end procedure

Algorithm 2 Procedure for generating a new microstructure

procedure genMicrostructure(input: microstructureMi , out-

put: microstructureMo )

Mo ← Mi
while some voxels ofMo have not been visited do

while microstructureMo is unchanged do
pick a random voxel v ofMo that has not been visited

assign a randomly chosen material to v
if Mo is manifold andMo , Mi then

accept the change

end if
end while
// Synchronization point

end while
end procedure

Algorithm 3 SOSMC for discrete sampling of microstructures

procedure SOSCM(input: set of n microstructuresm, output: set

of microstructures p o)
p o ←m
for i=1..n do

// Evaluate scores of all the particlesmi ∈m
w(i) ← s(mi )

end for
// Sample N particles

p ← universal samplinд(m,N ,w)
for i=1..N do
start program genMicrostructure(pi , qi ) for the input
microstructure pi ∈ p

end for
while some particles qi ∈ q have unvisited voxels do

for all unterminated programs do
run the program until the synchronization point is

reached

p o ← p o ∪ q
for i=1..N do
// Evaluate scores for modi�ed microstructures

w(i) ← s(qi )
end for
// Sample particles

q ← universal samplinд(q,N ,w)
end for

end while
end procedure

order to evolve the population. �e program is not executed entirely
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Fig. 1. Gamuts computed with our discrete-continuous sampling scheme for 2D cubic structures (le�) , 2D orthotropic structures (middle) and 3D cubic
structures (right). The plots show the results for the projection of the gamuts on the plane defined by the macroscale Young’s modulus along the x axis
(normalized by the Young’s modulus of the sti�est base material) and the Poisson’s ratio corresponding to a contraction along the y-direction when the
material is stretched along the x-direction. All these plots correspond to microstructures that use 0.48 as Poisson’s ratio for the base material. The blue dots
correspond to the filtered one-material microstructures while the yellow dots correspond to the original two-material microstructures.

Fig. 2. Gamuts computed with our discrete-continuous sampling scheme for 2D cubic structures (le�) , 2D orthotropic structures (second from le�) and 3D
cubic structures (second from right) using 0.48 as Poisson’s ratio, and 3D cubic structures with 0.35 as Poisson’s ratio (right). The plots show the results for the
projection of the gamuts on the plane defined by the macroscale Young’s modulus along the x axis (normalized by the Young’s modulus of the sti�est base
material) and the Poisson’s ratio corresponding to a contraction along the y-direction when the material is stretched along the x-direction. The blue dots
correspond to the generated samples for 16 × 16 × 16 microstructures, the purple dots correspond to generated samples for 64 × 64 × 64 microstructures, the
orange dots correspond to the microstructures from Schumacher et al. (2015) and the yellow dots correspond to the microstructures from Pane�a et al. (2015).

but paused a�er the microstructure is modi�ed, i.e. a�er the inner

loop of the procedure has been executed, which corresponds to a

so-called barrier synchronization point. When all the programs corre-

sponding to all the microstructures of the population have reached

this synchronization point, the scores of the partially modi�ed mi-

crostructures are evaluated again and the population is resampled

using systematic resampling. We again sample N microstructures,

but since the scores have changed, the most interesting microstruc-

tures will appear several times, while the less promising ones will

leave the evolving population. Note that the microstructures, and

the associated programs, are duplicated together with their program

execution history, i.e. the information regarding which voxels have

been already visited, so that these voxels are not modi�ed a second

time. �is ensures that interesting changes in the material assign-

ments are preserved. A�er the synchronization point is reached

and the microstructures have been resampled, the execution of the

programs is resumed and the algorithm continues until all the voxels

of all the microstructures have been visited. �e entire SOSMC al-

gorithm is summarized by Algorithm 3. In our implementation, we

used N = 3000 microstructures for the 2D and 3D cubic databases,

and N = 10000 for the 2D orthotropic database.

2 MATERIAL GAMUTS
We initially targeted multi-material printers and therefore computed

databases of two- and three-dimensional microstructures made of

two materials. We used isotropic base materials whose Young’s mod-

ulus di�ered by a factor of 1000 and having 0.48 as Poisson’s ratio.

For comparison purposes with previous research (2), we adapted

these databases to one-material microstructures by replacing the

so�er material by void, �ltering out all the microstructures with

disconnected components, �lling the enclosed voids in the 3D case,

and recomputing their homogenized properties. �e two sets of

gamuts are depicted in Figure 1. We observed that the gamuts

corresponding to two-material microstructures and one-material

microstructures have a very similar shape, except in the area corre-

sponding to very so� microstructures. �is is to be expected since

microstructures made of so� material connecting small blocks of

sti� materials are not realizable in the one-material se�ing. From an

implementation point of view, it is worthwhile to note that, if the

�nal intent of the user is to design one-material structures, these

additional fabrication constraints can be directly accounted for dur-

ing the sampling stage by preventing any change that would a�ect

the validity of the microstructures. �is avoids the need of �ltering
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Fig. 3. The 64
3 microstructures span a wide range of relative shear modulus

even they have negative Poisson’s ratios. As an example, we plo�ed the
distribution of structures with Poisson’s ratio ν = −0.5 ± 0.03. Points on
the diagonal line µ = µiso are isotropic within the linear elasticity regime.

the database a posteriori and would improve the sampling density

in regions that might be undersampled if one �lters the database

in a subsequent step. Note that we sampled the microstructures

using a non-logarithmic scale for the Young’s modulus and that the

estimated density in the so� regions is higher than what it appears

to be in Figures 1 and 2.

Our initial databases were computed for microstructures corre-

sponding to 16×16×16 arrangements of voxels. �is limits the sizes

of the thinnest features of the microstructures and therefore the so�-

ness of the so�er material that can be achieved. When increasing the

la�ice size to 64, the gamut of the microstructure properties expands

in this area and reaches what can be obtained when using other

parametrization methods (see Figure 2, right). Due to high computa-

tion costs (each microstructure takes 29s to simulate in average), we

limited our initial analysis of highly discretized geometries to the

study of a database comprising about 10k microstructures. Notably,

our search method allows us to �nd a wide range of single-material

structures with negative Poisson’s ratio (ν = −0.7). While lower

Poisson’s ratio is theoretically achievable, such structures contain

extremely thin joints unsuitable for manufacturing. �ese structures

demonstrate a variety of relationships between Young’s modulus

and shear modulus. To be more precise, we de�ne µiso as the shear

modulus computed from Young’s modulus E and Poisson’s ν ratio

using the relationship µiso = E/(1 − 2 × ν ). We then compare µiso
with the actual shear modulus µ of each structure. For structures

with ν = −0.5 ± 0.03, the ratio µ/µiso achieves a range from 0.09 to

1.39 (Figure 3).
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