
Probability Type Inference for Flexible
Approximate Programming

Brett Boston1 Adrian Sampson2 Dan Grossman3 Luis Ceze3

1MIT 2Cornell 3University of Washington

OOPSLA 2015



Approximate Computing

I Not every operation in a program has to be correct

I Possible to save energy and execution time



Motivation

I Programmer indicates what operations may be approximated
and to what degree

I Hardware allows specification of each arithmetic operator

I Hard to choose right level of approximation for each
arithmetic operation in a program

int a = 1 +0.95 4

int b = 4 +0.99 a

...

int z = y +0.9 v



Approach

I We’d like to allow the programmer to bound reliability and let
the compiler figure out operator correctness

I Our approach frames problem as one of type inference and
uses an SMT solver to solve it



Outline

I Basic Approximate Programming Language

I Probability Type Inference

I Hardware Model



All-or-Nothing Approximation

I Type annotations on variables

I Built our system on EnerJ

@Approx int a = 1;

@Approx int b = 2;

@Approx int c = a + b; // + is approximate

@Precise int p; // @Precise is unnecessary here

p = c; // Illegal

p = endorse(c); // Casts c to a precise int

I Endorse is unsound



All-or-Nothing Approximation

What if we want more than all-or-nothing approximation?

I We need something more descriptive

I We have hardware that can support more than two degrees of
reliability



Enter: The Paramaterized @Approx Annotation

@Approx(n)

At any point in the execution, the probability that the value is
correct is at least n.

Correct The value is the same as it would be during fully
precise execution.



@Approx(n) Rules: Subtyping

@Approx (0.9) int a = 1; // legal

@Approx (0.9) int b = a; // legal

@Approx (0.5) int c = a; // legal

@Approx (0.95) int d = a; // illegal

Let ≺ denote a subtyping relationship between qualified types q τ ,
then

x ≥ y

@Approx(x)τ ≺ @Approx(y)τ



@Approx(n) Rules: Binary Operators

@Approx (0.9) int x = 1;

@Approx (0.9) int y = 2;

@Approx (0.81) int a = x + y;

@Approx (0.7) int b = x + y;

I x + y is correct with probability at least 0.81, given + is
precise

I Follows from product rule; P(A ∩ B) ≥ P(A)×P(B)

I Values approximated through imprecise binary operations



Language Details

I Conservatively treat all values as independent.

I Control flow only allowed on precise values.
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I Hardware Model



Problem: Annotation Burden

I have a complex function I’d like to annotate, and I know how
precise I’d like the inputs and outputs to be. How should I go
about annotating the innards?

Answer: Guess, get errors, repeat.
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Problem: Annotation Burden

I have a complex function I’d like to annotate, and I know how
precise I’d like the inputs and outputs to be. How should I go
about annotating the innards?

Answer: Guess, get errors, repeat.
Answer: Type inference!



Solution: Type Inference

I Indicate probability
should be inferred by leaving off parameter.

I Reliability of binary operators
implicitly inferred such that the expression’s
reliability minimized as much as possible
while still satisfying reliability guarantees.

I Developers use @Approx(n)
where they have quality requirements.

// Approximate area of triangle

@Approx float base = ...;

@Approx float height = ...;

@Approx (0.9) float area = base * height / 2;



Inferring Probability Types



Inferring Probability Types Example

@Approx int x = 1;

@Approx int y = 2;

@Approx (0.81) int z = x + y;

(declare-const op1 Real)

(assert (>= op1 0.0))

(assert (<= op1 1.0))

(declare-const x Real)

(assert (>= x 0.0))

(assert (<= x 1.0))

(declare-const y Real)

(assert (>= y 0.0))

(assert (<= y 1.0))

(declare-const z Real)

(assert (= z 0.81))

(assert (<= z (* x y op1)))

I One solution to this is x = y = 0.9, op1 = 1.0

I Z3 arbitrarily selects x = 15
16 , y = 127

128 , op1 = 7
8

I Optimal result is x = y = 1.0, op1 = 0.81



Objective Function

I Average inferred probabilities across a function, targeting a
specific average reliability.

I We can approach an optimal result using a linear search.

I Lower target reliability by a constant amount until problem is
unsatisfiable, or times out.



Objective Function Example
@Approx (0.81) int z = a + b + c;

(declare-const obj-target Real)

(assert (= obj-target (/ (+ op1 op2) 2)))

(assert (<= obj-target 1.0))

(check-sat)

sat

(push)

(assert (<= obj-target 0.99))

(check-sat)

sat

...

(push)

(assert (<= obj-target p))

(check-sat)

unsat

(pop)



Method Specialization

I Methods specialized for each invocation

I Interprocedural

I Detects cycles in call structure

I Programmer can bound number of times a method will be
specialized

void example () {

@Approx (0.9) area1 = triArea(1, 2);

@Approx (0.95) area2 = triArea(1, 3);

}

@Approx float triArea(@Approx float b,

@Approx float h) {

@Approx float c;

c = b * h / 2;

return c;

}



@Dyn Types

I @Dyn types track reliability at runtime.

I Dynamic cast back to @Approx(n) with checked endorse.

@Approx int[] nums = ...;

@Dyn int sumD = 0;

for (@Approx int num : nums)

sumD += num;

@Approx int sum = checked_endorse(sumD , 0.9);
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Hardware Simulation

I Z3 exports operator reliability for each operator

I Instrumentation pass replaces operators with calls to custom
function in simulator

I Simulator performs approximate operations and records
statistics



Discrete Reliability Levels

I Realistically, most hardware will not have continuous
operation reliability knobs.

I Allow programmer to specify discrete levels at compile time,
or run time



Discrete Reliability Level Constraints

$ enerjc prog.java -Alevels=0.9,0.99,1.0

(declare-const op Real)

(assert (or (= op 0.9)

(= op 0.99)

(= op 1.0)))



Benchmarks

I EnerJ benchmarks

I Constrained inputs and outputs

I 344 LOC - 13180 LOC

I Few annotations needed to achieve approximation

I Overall outputs constrained to @Approx(0.9).



Operator Probabilities for n Discrete Levels
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Operator Probabilities for n Discrete Levels
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Also in the Paper

I Formal semantics

I Compiler warnings

I Results on solving versus rounding with discrete reliability
levels

I Available at http://sampa.cs.washington.edu/decaf



Future Work

Modularity Methods are effectively “inlined” for the purpose of
type-checking. We could solve this by storing
reliability of the return value in terms of the
reliability of function arguments.

I Similar to Rely’s system. [Carbin et al. 2013]

Error messages Errors in inference tell you only that an error exists
somewhere in the method.



Summary

I Language abstraction over flexible approximate hardware
supporting multiple degrees of approximation.

I Low annotation burden leveraging type inference.

I Hope to inform hardware community.


