

Abstract

With approximate computing, programs can save energy or increase performance by allowing
occasional mistakes. However, writing approximate programs at a granular level is challenging.
We propose a programming language that allows the programmer to place probabilistic reliability
bounds on key variables in a program. Our language, DECAF, then performs type inference using
an SMT solver to fill in the reliabilities for other approximate variables and operators. Optional
dynamic tracking allows the programmer to use approximation in situations where DECAF can-
not statically reason about reliabilities. Together, these features empower the programmer to
leverage the use approximation without the tremendous effort of manually annotating an entire
program.

DECAF is evaluated with existing approximate computing benchmarks to demonstrate the
low annotation overhead of our system. We aim to inform hardware design by allowing the
user to input hardware parameters to the system to compare the effects of various hardware
configurations. We find that architectures with more than two degrees of operator precision
can offer significant advantages over simpler two-level architectures. Additionally, we find that
solving type constraints with access to hardware parameters improves efficiency over assuming a
continuous model and rounding to supported precision levels at runtime.

2

Contents

1 Introduction 5

2 Motivation 5

3 Probabilistic Types 5
3.1 Subtyping . 5
3.2 Operators . 6
3.3 Control Flow . 6
3.4 Dependence . 6
3.5 Arrays . 7

4 Probability Type Inference 7
4.1 Constraint Generation . 7
4.2 Objective Function . 9
4.3 Extracting Values From Z3 . 9
4.4 Method Specialization . 10

4.4.1 Limiting Method Checks . 11
4.5 Name Mangling . 12
4.6 Conservative Independent Substitution for Dependent Values 12

5 Dynamic Tracking 13

6 Programming Model 13
6.1 Warnings . 13

7 Hardware Model 13
7.1 Hardware Simulation . 13
7.2 Discrete Precision Levels . 14

8 Formalism 14
8.1 Syntax . 14
8.2 Typing . 15

8.2.1 Operator Typing . 15
8.2.2 Other Expressions . 15
8.2.3 Qualifiers and Subtyping . 15
8.2.4 Statement Typing . 16

8.3 Operational Semantics . 16
8.3.1 Expression Semantics . 16
8.3.2 Statement Semantics . 17

8.4 Theorems . 18
8.4.1 Soundness . 18
8.4.2 Erasure of Probability Bookkeeping . 20

9 Implementation 21
9.1 Managing Solver Time . 21
9.2 “Separate” Compilation . 21

10 Evaluation 22
10.1 Benchmarks . 22
10.2 Solving Versus Rounding Discrete Precision Levels . 22
10.3 Granularity of Discrete Levels . 23
10.4 Compilation Time . 23

3

11 Future Work 24
11.1 Error Messages . 24
11.2 Modularity . 24

12 Conclusion 24

13 Acknowledgements 24

4

1 Introduction

Approximate computing is the notion that not every operation in a program must be completely error-free.
Allowing this relaxation may result in energy savings or performance increases [5, 10].

Approximation in computing is nothing new, showing up often where significant benefits can be seen from
an imperceptible reduction in quality. One example of this is lossy audio compression. The MPEG/audio
compression algorithm employs a “virtual ear” to determine what humans can and cannot hear in an audio
file. Sounds that are determined to be inaudible or indistinguishable from other sounds are then thrown out.
This process significantly reduces file sizes below what is possible with lossless compression [6].

However, this style of approximation requires intimate knowledge of the problem space as well as how
to achieve the desired level of approximation. Given that architectures exist that can execute arithmetic
instructions approximately [4], we designed a programming language to facilitate approximate programming
using these instructions.

Our system is built on top of EnerJ [7] which allows type annotations on variables to denote that the value
in the variable may be approximated. To indicate that a variable is to be approximated the programmer
annotates the variable with @Approx. An unqualified variable is given the default qualifier (@Precise) indicating
that a value may not be approximated. Precise values may flow into approximate variables, but the opposite
is forbidden. Approximate values may be statically cast into precise values using the endorse keyword. For
the purposes of this work we focus only on EnerJ’s ability to approximate operations, ignoring approximate
storage. A simple EnerJ program can be seen below:

@Approx int a = 1;

@Approx int b = 2;

@Approx int c = a + b; // + is approximate

@Precise int p; // @Precise is unnecessary

p = c; // Illegal

p = endorse(c); // Cast c to a @Precise int

2 Motivation

EnerJ’s annotations allow for binary specification of values as either approximate or not, but architectures
have been suggested that give the programmer access to multiple levels of approximation [9]. At an in-
struction level, each operator has a probability of returning the correct answer. With this type of system
the programmer needs fine control over every operation in a program. However, this style of programming
quickly becomes unusable as it is very difficult to come up with appropriate probabilities for every single
operation in a program. We would like to give the programmer control when they want it, and leave the rest
to the compiler.

To facilitate approximate programming in this context we propose DECAF (DECAF, an Energy-aware
Compiler to make Approximation Flexible). DECAF frames this problem as one of type inference and uses
an SMT solver to infer continuous probability types.

3 Probabilistic Types

DECAF introduces the parameterized @Approx(n) qualifier. At any point in the execution, the probability
that the value is correct is at least n where correct is defined as the value being the same as it would be
during fully precise execution. DECAF offers no guarantees about an incorrect value, it may be anything.

3.1 Subtyping

DECAF preserves soundness by permitting data flow from values with high reliability to variables with lower
reliability while preventing low-to-high flow:

@Approx (0.9) int x = ...;

@Approx (0.8) int y = ...;

5

y = x; // sound

x = y; // error

More concretely, we define a subtyping rule such that a type is a subtype of other types with lower probability:

subtyping
p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ

The full formalism for DECAF will be discussed later in Section 8.

3.2 Operators

All approximation in DECAF comes from arithmetic operators. Every operator in a DECAF program has
a probability of succeeding associated with it. In the failure case, DECAF offers no guarantees about the
result of the operation. When a binary operator is used, the result of the operation has a probability of
correctness equal to the product of the reliabilities of the two operands and the reliability of the operator.
This follows from the product rule from probability theory:

P (A ∩B) ≥ P (A) · P (B)

The following example demonstrates the uses of binary operators:

1 @Approx (0.9) int x = 1;

2 @Approx (0.9) int y = 2;

3 @Approx (0.81) int a = x + y; \\ Precise +

4 @Approx (0.70) int b = x + y; \\ + may be approximated

The sum on line 3 allows for no approximation as the product of the reliabilities of x and y is already 0.81 so
any operator reliability under 1.0 would bring the reliability of the right hand side of the assignment below
the constraint on a. However, the same sum on line 4 may be approximated as the product of the reliabilities
of the values on the right hand side of the assignment is strictly greater than the reliability of the variable
it is being assigned into.

3.3 Control Flow

Any branch in control flow must have a test that is precise. This forces the programmer to make a conscious
decision to branch on approximate values using an endorsement.

For example, take a program that would like to display a friendly greeting to the user if it is before noon:

1 int seconds = getTimeInSeconds ();

2 String greeting = "";

3 @Approx (0.9) int hour = seconds / 3600;

4
5 if (endorse(hour) < 12)

6 greeting = "Good Morning!";

However, the programmer has decided that this greeting is not always necessary and has chosen to branch
on the result of the hour conversion on line 3 by using an endorsement to cast to a precise value.

The endorse keyword is an unchecked static cast, and therefore introduces unsoundness. Alternatively,
the check keyword described in Section 5 is a sound, dynamic cast.

3.4 Dependence

DECAF conservatively treats all values as independent. An example of this can be seen below where the
assignment on line 2 fails even though it technically satisfies the annotation:

1 @Approx (0.9) int x = ...;

2 @Approx (0.9) int xSquared = x * x; // illegal

3 @Approx (0.81) int xSquared = x * x; // legal

6

While this particular case may be easy to handle, there are many cases where it is tough to know how
values depend on each other and it is unclear how to treat dependence in probability calculations as many
values may flow into variables. The proof that this transformation is conservative can be found in Section 4.6.

3.5 Arrays

In DECAF annotations on arrays apply to each element independently. That is, the code below will produce
an array containing roughly 95 twos:

@Approx (0.95) int[] twos = new @Approx (0.95) int [100];

for (int i = 0; i < 100; ++i)

twos[i] = 1 + 1;

4 Probability Type Inference

The system as described so far is very difficult to use. In many cases the programmer knows how reliable
to make inputs and outputs, but finding reliabilities for intermediate variables in the program innards is
challenging. To make programming with probability types easier we introduced the unparameterized @Approx

annotation. By leaving off the parameter to the @Approx(n) annotation the programmer indicates that they
would like n to be inferred. DECAF will infer n such that the variable’s reliability satisfies the reliability of
the variables it flows into as well as the variables that flow into it. This new annotation greatly eases the
annotation burden of using DECAF.

An example of this can be seen in the code approximating the area of a triangle:

@Approx float base = ...;

@Approx float height = ...;

@Approx (0.9) float area = base * height / 2;

While the programmer would like the final result to be correct at least 90% of the time, they do not care
about the reliability of base or height so long as they satisfy the constraint placed on area.

At a high level the inference process works as shown in Figure 1. The programmer’s annotations, informa-
tion about hardware, and an objective function that is an abstraction of energy usage is fed into Microsoft’s
Z3 SMT solver [3]. If this set of constraints is over-constrained then the program contains a type error. That
is, there exists no set of reliabilities for inferred annotations that satisfy the explicit @Approx(n) constraints.
If the system is under-constrained then we have a correct solution for the inferred annotations. At this point
DECAF will attempt to lower the objective target, thus lowering energy usage. This process continues until
the objective target cannot be lowered further.

4.1 Constraint Generation

To facilitate inference over continuous types, we made use of Microsoft’s Z3 SMT solver. Translation from
type qualifiers to constraints works as follows:

Explicit @Approx(n) Annotations Variables with the @Approx(n) annotation are bound to be equal to n.

Inferred @Approx Annotations Variables with the @Approx annotation are bound to be between 0.0 and
1.0 inclusive.

Operators Operators are treated like variables with inferred @Approx annotations.

Assignment The assignment x = y generates a constraint that asserts that the reliability of x is less than
or equal to the reliability of y.

An example of this translation can be seen in Figure 2. Here, the DECAF code on the left is translated
to the set of constraints on the right. x, y, and op1 are all bound between 0.0 and 1.0 to be inferred. z has
an explicitly declared reliability and is therefore bound to be equal to 0.81 and less than or equal to x * y

* op1.

7

Figure 1: Inference process

@Approx int x = 1;

@Approx int y = 2;

@Approx (0.81) int z = x + y;

(declare-const op1 Real)

(assert (>= op1 0.0))

(assert (<= op1 1.0))

(declare-const x Real)

(assert (>= x 0.0))

(assert (<= x 1.0))

(declare-const y Real)

(assert (>= y 0.0))

(assert (<= y 1.0))

(declare-const z Real)

(assert (= z 0.81))

(assert (<= z (* x y op1)))

Figure 2: Sample DECAF to Z3 constraint translation

8

4.2 Objective Function

While the process in Section 4.1 will produce a solution that satisfies the constraints, there may be in-
finitely many solutions. Take Figure 2 for example. One naive solution with no approximation is x = y =
0.9, op1 = 1.0. By default, Z3 likes x = 15

16 , y = 127
128 , op1 = 7

8 . However, the optimal solution for maximizing
approximation is x = y = 1.0, op1 = 0.81.

To drive Z3 towards solutions that maximize approximation we employ an objective function. This
function averages the inferred probabilities across a function, targeting a specific average precision. We then
approach an optimal result using a linear search, lowering target average precision by a constant amount
until the problem is unsatisfiable or times out.

For example, take the following statement:

@Approx (0.81) int z = a + b + c;

The constraints generated when minimizing the objective target for this statement are:

(declare-const obj-target Real)

(assert (= obj-target (/ (+ op1 op2) 2)))

(assert (<= obj-target 1.0))

(check-sat)

sat

(push)

(assert (<= obj-target 0.99))

(check-sat)

sat

...

(push)

(assert (<= obj-target p))

(check-sat)

unsat

(pop)

First, the target is set to be equal to the average of the two operators. The (push) and (pop) commands
tell Z3 to push/pop its internal stack of constraints. Thus, after over-constraining the objective target we
can get back to a near-optimal satisfiable set of constraints by popping the previous constraints off the stack,
seen here after asserting the objective target to be less than or equal to some probability p.

4.3 Extracting Values From Z3

After a successful check-sat, the values Z3 used to determine satisfiability may be extracted using the
get-value command. This command is used after successfully checking methods to record the inferred
reliabilities of variables and operators.

The result of get-value can come in two forms. First, Z3 may return an easily parsable decimal:

(get-value (x))

((x 1.0))

Alternatively, Z3 may return a fraction that must then be translated into a float:

(get-value (ret))

((x (/ 13273.0 16384.0))

This is due to the fact that Z3 uses precise real numbers internally over floating point numbers.

9

1 void example () {

2 @Approx (0.9) float area1 = triArea(1, 2);

3 @Approx (0.95) float area2 = triArea(1, 3);

4 }

5
6 @Approx float triArea(@Approx float b, @Approx float h) {

7 @Approx float c = b * h / 2;

8 return c;

9 }

Figure 3: Inference may be applied in method signatures as seen in this approximate triangle area calculator.

4.4 Method Specialization

In addition to being used on local variables the inferred @Approx annotation may be used in method signatures.
When invoking a method with an inferred @Approx annotation in its signature a specialized version of the
method will be generated to match the call site. This process is similar to function generation for C++
templates.

For example, take the implementation of an approximate triangle area calculator in Figure 3. Due to the
different return precisions, two different versions of triArea will be synthesized to satisfy the invocations
on lines 2 and 3.

DECAF’s method specialization is interprocedural. When an invocation that must be specialized is
encountered the type checker jumps into the invocation and rechecks it, effectively inlining the function. As a
result, cycles in the call structure consisting solely of specialized methods is not allowed as the compiler cannot
reason about them. While jumping into invocations an internal stack of the call structure is maintained to
detect cycles and issue errors when found.

To generate the appropriate constraints for inference across methods, constraints are emitted as previously
described, but extra constraints are emitted at the end of a function call to bind parameters and return
values. Formal parameters must have reliabilities less than or equal to actual parameters and the returned
expression’s reliability must be at least the reliability in the method’s return type. An example of this can
be seen below where the DECAF code:

void caller () {

@Approx int a = 1;

@Approx int b = 2;

@Approx (0.9) int c = add (1,2);

}

@Approx int add(@Approx int x, @Approx int y) {

return x + y;

}

results in the following constraints being emitted where method-add is the return value of add:

; Initialize caller ’s local variables

(declare-const a Real)

(assert (>= a 0.0))

(assert (<= a 1.0))

(declare-const b Real)

(assert (>= b 0.0))

(assert (<= b 1.0))

(declare-const c Real)

(assert (= c 0.9))

; Jump into add

10

; Initialize add ’s formal parameters

(declare-const x Real)

(assert (>= x 0.0))

(assert (<= x 1.0))

(declare-const y Real)

(assert (>= y 0.0))

(assert (<= y 1.0))

; Initialize operator

(declare-const op1 Real)

(assert (>= op1 0.0))

(assert (<= op1 1.0))

; Initialize add ’s return value

(declare-const method-add Real)

(assert (>= method-add 0.0))

(assert (<= method-add 1.0))

; Assign return value

(= method-add (* x y op1))

; Bind formal parameters and actual parameters

(assert (<= x a))

(assert (<= y b))

; Bind return value to c in caller

(assert (<= c method-add))

4.4.1 Limiting Method Checks

Inlining every single invocation can quickly increase code size as well as compile time, so the programmer
may provide an optional parameter at compile time to place an upper bound on the total number of times
any given method may be specialized. DECAF will then try to find a set of specializations that satisfy all
invocations even when there are more invocations than specializations.

To find this set of specializations DECAF emits a set of constraints that emulates a two-dimensional
array where each column represents a method invocation and each row represents a generated version. Each
element may be a zero or one where a one signifies that an invocation is bound to a version. Correctness
requires exactly one one in every column. That is, every invocation must be bound to exactly one version.
To enforce that methods are maximally specialized we require that every row contain at least one one. That
is, every generated version must have at least one invocation associated with it. Without this provision, Z3
will “cheat” by minimizing the number of versions bound to invocations so it can drive the operator precision
in the unbound methods to zero for a better objective score.

An example array representing five invocations of a function capped at three method generations is below:

Version

Invocation
0 1 2 3 4

0 1 0 0 1 0
1 0 1 0 0 1
2 0 0 1 0 0

Z3 technically has its own built in arrays but using them disables the real solver engine, which is why we
chose to emulate arrays with specially named variables instead.

11

4.5 Name Mangling

With our interprocedural analyses it is very possible to have variable name collisions across functions. To
mitigate this, variable names are mangled in a deterministic way when declared to Z3. It is important that
this process is repeatable for the instrumentation step described in Section 7.1.

Variable names are mangled by appending the sum of a global counter multiplied by 1000000 and the
number of variables with the same name in the call stack of inlined functions. For example, in Figure 3 from
earlier c from both calls is mangled as c-10000000 and c-22000000 for each call. If example contained a
variable named c, the two mangled names would have ones in the ones place.

Method return values are more complicated, following the name scheme:

method-<classname>-<methodname>-<caller line number>--<varnum>

where varnum is follows the number scheme for variables. If limited method checks are enabled formal
parameters are concatenated with the method return name.

Lastly, operators must be mangled:

op-method-<classname>-<top methodname>-<caller line number>-<method #>--<id>-<varnum>

Top methodname represents the topmost method that methods are being inlined into. method # is a unique
number assigned to each invocation. This is necessary to bind the operator to the correct invocation. id

is a unique identifier assigned by the Java compiler to each operator. varnum is the same counter used for
methods and variables. Not all of this information is totally necessary for inferring operators, but the names
are built up from sources for which the information is necessary. This reuse simplifies the code base.

4.6 Conservative Independent Substitution for Dependent Values

Imagine we have the following scenario:

@Approx(n) int A, X;

@Approx int B = A + X;

@Approx int C = A + B;

A and X have declared probabilities but are independent of one another while B and C have inferred
probabilities. The probability of correctness of B depends on A and X. With this in mind, how do we
calculate the probability of correctness of C? From joint probability theory we know that this is simply

P (C) = P (A)× P (B|A)

However, we don’t always know P (B|A) so it would be nice substitute P (B). In order for this to work the
substitution must be conservative, which is to say

P (C) ≤ P (A)× P (B)

To demonstrate that this is a conservative substitution we prove that

P (B) ≤ P (B|A)

Our proof begins with the theory of total probability which states that

P (B) = P (A)× P (B|A) + P (¬A)× P (B|¬A) (1)

Since it is impossible for B to be correct given that A is incorrect at the time of assignment we know that
P (B|¬A) = 0. Thus we can simplify as follows

P (B) = P (A)× P (B|A) (2)

Since P (A) is a probability and by definition between 0 and 1 inclusive, dropping it from the right hand side
will either increase its value or keep it the same. This action cannot decrease the value of the right hand
side. So, we have

P (B) ≤ P (B|A) (3)

Therefore it is conservative to substitute P (B) for P (B|A).

12

5 Dynamic Tracking

Reasoning about error statically means that DECAF thus far cannot handle situations where a variable is
modified as a function of itself. That is, the following running sum is illegal because the sum variable feeds
into itself decreasing its reliability each time:

@Approx (0.99) int[] nums = getNums ();

@Approx (0.9) int sum = 0;

for (int num : nums)

sum += num;

To facilitate this case DECAF offers a @Dyn annotation that causes a value’s reliability to be tracked dy-
namically at runtime:

@Approx (0.99) int[] nums = getNums ();

@Dyn int sum = 0;

for (int num : nums)

sum += num;

@Approx (0.9) int approxSum = check(sum , 0.9);

In this adaptation of the previous example, the running sum will have its reliability tracked at runtime. To
cast from a @Dyn type to a static @Approx type the check keyword is used. This keyword will perform a
runtime check to ensure that sum’s reliability is greater than or equal to 0.9. If this check fails an unchecked
PrecisionException is thrown.

6 Programming Model

The programming model for DECAF is to annotate program inputs and outputs with explicit @Approx(n)
qualifiers and to use inferred @Approx annotations on the innards. This model leverages programmer knowl-
edge about the problem space while freeing them from the burden of figuring out the proper constraints to
reach an end goal. Inputs may be approximate to model reads from a noisy sensor while outputs are chosen
based on the level of approximation the programmer would accept.

6.1 Warnings

DECAF also introduces warnings that provide insight into the inference system, which can be confusing for
large programs.

A warning fires if a variable could have a reliability of 0.0 while still satisfying type constraints. This
indicates that the variable never flows into any constrained variable. In this case DECAF offers no guaran-
tees about the variable and the compiler could theoretically optimize it out. The warning often indicates
programmer error or dead code.

Another warning fires if a variable must have a reliability of 1.0. This indicates that a variable marked
for approximation was constrained such that none is possible. To eliminate the warning values flowing into
this variable must be relaxed. This is not always an error, but this warning helps the developer who is seeing
less approximation than expected due to over constraining portions of their code.

7 Hardware Model

7.1 Hardware Simulation

After inference is completed, DECAF exports operator precision for each operator in the program. This
data is then read in by the instrumentation pass. Instrumentation walks the abstract syntax tree in the
same fashion as the inference compiler pass. This allows mangled variable names to be regenerated in the
same way as described in Section 4.5.

13

As approximate binary operators are found, they are replaced with function calls in the simulator. These
functions will perform the operation, failing randomly according to the reliability of the operator. The
precision levels of each operation used at runtime are recorded and exported for benchmarking purposes.

Additionally, @Dyn values are wrapped in objects with an extra field representing their dynamic reliability.
These fields are initialized to 1.0 and modified through assignment by replacing the assignment operator with
a function call.

7.2 Discrete Precision Levels

Although DECAF works with continuous probability types, most hardware will realistically not have con-
tinuous knobs for operator precision. In reality hardware will likely support a set of discrete reliabilities,
similar to the QUORA approximate architecture [9]. To accommodate this, DECAF allows the programmer
to specify discrete levels at compile time, or runtime.

If provided at runtime, operator reliabilities will simply be rounded up to the next supported precision
level.

However, if discrete levels are supplied at runtime they will be taken into account during constraint
generation. Rather than binding operators to between 0.0 and 1.0, they will be bound to one of the available
precision levels. For example, on a system supporting the levels 0.9, 0.99, and 1.0 the following constraints
would be generated:

(declare-const op Real)

(assert (or (= op 0.9)

(= op 0.99)

(= op 1.0)))

Supplying discrete levels at compile time offers significantly more approximation than rounding at run-
time. This is likely because Z3 does not try to push some operators below supported levels at the expense
of other operators.

8 Formalism

Here we formalize DECAF with the intention of proving a soundness theorem that captures the probability
type system’s accuracy guarantee.

8.1 Syntax

We formalize a core of DECAF without inference. The syntax for statements, expressions, and types is:

s ::= T v := e | v := e | s ; s | if e s s |while e s | skip

e ::= c | v | e⊕p e | endorse(p, e) | check(p, e) | track(p, e)

⊕ ::= + | − | × | ÷
T ::= q τ

q ::= @Approx(p) | @Dyn

τ ::= int | float

v ∈ variables, c ∈ constants, p ∈ [0.0, 1.0]

For the purpose of the static and dynamic semantics, we also define values V , heaps H, dynamic probability
maps D, true probability maps S, and static contexts Γ:

V ::= c |�
H ::= · |H, v 7→ V

D ::= · |D, v 7→ p

S ::= · | S, v 7→ p

Γ ::= · | Γ, v 7→ T

14

We define H(v), D(v), S(v), and Γ(v) to denote variable lookup in these maps.

8.2 Typing

The type system defines the static semantics for the core language. We first give typing judgments for
expressions and then for statements.

8.2.1 Operator Typing

We introduce a helper “function” that determines the unqualified result type of a binary arithmetic operator.

optype(τ1, τ2) = τ3

optype(τ, τ) = τ optype(int, float) = float optype(float, int) = float

Now we can give the types of the binary operator expressions themselves. There are two cases: one for
statically-typed operators and one for dynamic tracking. The operands may not mix static and dynamic
qualifiers (the compiler inserts track casts to introduce dynamic tracking when necessary).

Γ ` e : T

op-static-types
Γ ` e1 : @Approx(p1) τ1 Γ ` e2 : @Approx(p2) τ2 τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ` e1 ⊕pop e2 : @Approx(p′) τ3

op-dyn-types
Γ ` e1 : @Dyn τ1 Γ ` e2 : @Dyn τ2 τ3 = optype(τ1, τ2)

Γ ` e1 ⊕p e2 : @Dyn τ3

In the static case, the output probability is the product of the probabilities for the left-hand operand,
right-hand operand, and the operator itself. Section 3.2 gives the probabilistic intuition behind this rule.

8.2.2 Other Expressions

The rules for constants and variables are straightforward. Literals are given the precise (p = 1.0) type.

const-int-types
c is an integer

Γ ` c : @Approx(1.0) int

const-float-types
c is not an integer

Γ ` c : @Approx(1.0) float

var-types
T = Γ(v)

Γ ` v : T

Endorsements, both checked and unchecked, produce the explicitly requested type. (Note that check

is sound but endorse is potentially unsound: our main soundness theorem, at the end of this section, will
exclude the latter from the language.) Similarly, track casts produce a dynamically-tracked type given a
statically-tracked counterpart.

endorse-types
Γ ` e : q τ

Γ ` endorse(p, e) : @Approx(p) τ

check-types
Γ ` e : @Dyn τ

Γ ` check(p, e) : @Approx(p) τ

track-types
Γ ` e : @Approx(p′) τ p ≤ p′

Γ ` track(p, e) : @Dyn τ

8.2.3 Qualifiers and Subtyping

A simple subtyping relation, introduced in Section 3.2, makes high-probability types subtypes of their low-
probability counterparts.

T1 ≺ T2

subtyping
p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ

15

Subtyping uses a standard subsumption rule.

subsumption
T1 ≺ T2 Γ ` e : T1

Γ ` e : T2

8.2.4 Statement Typing

Our typing judgment for statements builds up the context Γ.

Γ1 ` s : Γ2

skip-types

Γ ` skip : Γ

seq-types

Γ1 ` s1 : Γ2 Γ2 ` s2 : Γ3

Γ1 ` s1; s2 : Γ3

decl-types
Γ ` e : T v /∈ Γ

Γ ` T v := e : Γ, v : T

mutate-types
Γ ` e : T Γ(v) = T

Γ ` v := e : Γ

if-types
Γ ` e : @Approx(1.0) τ Γ ` s1 : Γ1 Γ ` s2 : Γ2

Γ ` if e s1 s2 : Γ

while-types
Γ ` e : @Approx(1.0) τ Γ ` s : Γ′

Γ ` while e s : Γ

The conditions in if and while statements are required to have the precise type (p = 1.0).

8.3 Operational Semantics

We use a large-step operational semantics for expressions and small-step semantics for statements. Both
are nondeterministic: values produced by approximate operators can produce either an error value � or a
concrete number.

8.3.1 Expression Semantics

There are two judgments for expressions: one for statically typed expressions and one where dynamic tracking
is used. The former, H;D;S; e ⇓p V , indicates that the expression e produces a value V , which is either a
constant c or the error value �, and p is the probability that V 6= �. The latter judgment, H;D;S; e ⇓p V, pd,
models dynamically-tracked expression evaluation. In addition to a value V , it also produces a computed
probability value pd reflecting the compiler’s conservative bound on the reliability of e’s value. That is, p is
the “true” probability that V 6= � whereas pd is the dynamically computed conservative bound for p.

In these judgments, H is the heap mapping variables to values and D is the dynamic probability map
for @Dyn-typed variables maintained by the compiler. The S probability map is used for our type soundness
proof: it maintains the actual probability that a variable is correct.

Constants Literals are always tracked statically.

const

H;D;S; c ⇓1.0 c

Variables Variable lookup is dynamically tracked when the variable is present in the tracking map D.
The probability S(v) is the chance that the variable does not hold �.

var
v 6∈ D

H;D;S; v ⇓S(v) H(v)

var-dyn
v ∈ D

H;D;S; v ⇓S(v) H(v), D(v)

Endorsements Unchecked (unsound) endorsements only apply to statically-tracked values and do not
affect the correctness probability.

endorse
H;D;S; e ⇓p V

H;D;S; endorse(pe, e) ⇓p V

16

Checked Endorsements Checked endorsements apply to dynamically-tracked values and produce statically-
tracked values. The tracked probability must meet or exceed the check’s required probability; otherwise,
evaluation gets stuck. (Our implementation throws an exception.)

check
H;D;S; e ⇓p V, p1 p1 ≥ p2
H;D;S; check(p2, e) ⇓p V

Tracking The static-to-dynamic cast expression allows statically-typed values to be combined with dynamically-
tracked ones. The tracked probability field for the value is initialized to match the explicit probability in
the expression.

track
H;D;S; e ⇓p V

H;D;S; track(pd, e) ⇓p V, pd

Operators Binary operators can be either statically tracked or dynamically tracked. In each case, either
operand can be the error value or a constant. When either operand is �, the result is �. When both
operands are non-errors, the operator itself can (nondeterministically) produce either � or a correct result.
The correctness probability, however, is the same for all three rules: intuitively, the probability itself is
deterministic even though the semantics overall are nondeterministic.

In these rules, c1⊕c2 without a probability subscript denotes the appropriate binary operation on integer
or floating-point values. The statically-tracked cases are:

op
H;D;S; e1 ⇓p1 c1 H;D;S; e2 ⇓p2 c2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p c1 ⊕ c2

op-operator-incorrect
H;D;S; e1 ⇓p1

c1 H;D;S; e2 ⇓p2
c2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �

op-operands-incorrect
H;D;S; e1 ⇓p1

� or H;D;S; e2 ⇓p2
� p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �

The dynamic-tracking rules are similar, with the additional propagation of the conservative probability
field.

op-dyn
H;D;S; e1 ⇓p1

c1, pd1 H;D;S; e2 ⇓p2
c2, pd2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p c1 ⊕ c2, pd1 · pd2 · pop

op-dyn-operator-incorrect
H;D;S; e1 ⇓p1

c1, pd1 H;D;S; e2 ⇓p2
c2, pd2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �, pd1 · pd2 · pop

op-dyn-operands-incorrect
H;D;S; e1 ⇓p1 �, pd1 or H;D;S; e2 ⇓p2 �, pd2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �, pd1 · pd2 · pop

8.3.2 Statement Semantics

The small-step judgment for statements is H;D;S; s −→ H ′;D′;S′; s′.

17

Assignment The rules for assignment (initializing a fresh variable) take advantage of nondeterminism in
the evaluation of expressions to nondeterministically update the heap with either a constant or the error
value, �.

H;D; s −→ H ′;D′; s′

assign
H;D;S; e ⇓p V

H;D;S; @Approx(p′) τ v := e −→
H, v 7→ V ;D;S, v 7→ p; skip

assign-dyn
H;D;S; e ⇓p V, pd

H;D;S; @Dyn τ v := e −→
H, v 7→ V ;D, v 7→ pd;S, v 7→ p; skip

Mutation works like assignment, but existing variables are overwritten in the heap.

mutate
H;D;S; e ⇓p V

H;D;S; v := e −→ H, v 7→ V ;D;S, v 7→ p; skip

mutate-dyn
H;D; e ⇓p V, pd

H;D; v := e −→ H, v 7→ V ;D, v 7→ pd;S, v 7→ p; skip

Sequencing Sequencing is standard and deterministic.

seq-skip

H;D;S; skip;s −→ H;D;S; s

seq

H;D;S; s1 −→ H ′;D′;S′; s′1
H;D;S; s1;s2 −→ H ′;D′;S′; s′1;s2

If and While The type system requires conditions in if and while control flow decisions to be deterministic
(p = 1.0).

if-true
H;D;S; e ⇓1.0 c c 6= 0

H;D;S; if e s1 s2 −→ H;D;S; s1

if-false
H;D;S; e ⇓1.0 c c = 0

H;D;S; if e s1 s2 −→ H;D;S; s2

while

H;D;S; while e s −→ H;D;S; if e (s;while e s) skip

8.4 Theorems

The purpose of the formalism is to express a soundness theorem that shows that DECAF’s probability types
act as lower bounds on programs’ run-time probabilities. We also sketch the proof of a theorem stating that
the bookkeeping probability map, S, is eraseable: it is used only for the purpose of our soundness theorem
and does not affect the heap.

8.4.1 Soundness

The soundness theorem for the language states that the probability types are lower bounds on the run-
time correctness probabilities. Specifically, both the static types @Approx(p) and the dynamically tracked
probabilities in D are lower bounds for the corresponding probabilities in S.

To state the soundness theorem, we first define well-formed dynamic states. We write ` D,S : Γ to
denote that the dynamic probability field map D and the actual probability map S are well-formed in the
static context Γ.

Definition 1 (Well-Formed). ` D,S : Γ iff for all v ∈ Γ,

• If Γ(v) = @Approx(p) τ , then p ≤ S(v) or v /∈ S.

• If Γ(v) = @Dyn τ , then D(v) ≤ S(v) or v /∈ S.

We can now state and prove the soundness theorem. We first give the main theorem and then two
preservation lemmas, one for expressions and one for statements.

18

Theorem 1 (Soundness). For all programs s with no endorse expressions, for all n ∈ N where ·; ·; ·; s −→n

H;D;S; s′, if · ` s : Γ, then ` D,S : Γ.

Proof. Induct on the number of small steps, n. When n = 0, both conditions hold trivially since v /∈ · for
all v.

For the inductive case, we assume that ·; ·; ·; s −→n H1;D1;S1; s1 and H1;D1;S1; s1 −→ H2;D2;S2; s2
and that ` D1, S1 : Γ. We need to show that ` D2, S2 : Γ also. The Statement Preservation lemma, below,
applies and meets this goal.

The first lemma is a preservation property for expressions. We will use this lemma to prove a correspond-
ing preservation lemma for statements, which in turn applies to prove the main theorem.

Lemma 1 (Expression Preservation). For all expressions e with no endorse expressions where Γ ` e : T and
where ` D,S : Γ,

• If T = @Approx(p) τ , and H;D;S; e ⇓p′ V , then p ≤ p′.

• If T = @Dyn τ , and H;D;S; e ⇓p′ V, p, then p ≤ p′.

Proof. Induct on the typing judgment for expressions, Γ ` e : T .

Case op-static-types Here, e = e1 ⊕pop
e2 and T = @Approx(p) τ . We also have types for the operands:

Γ ` e1 : @Approx(p1) τ1 and Γ ` e2 : @Approx(p2) τ2.
By inversion on H;D;S; e ⇓p′ V (in any of the cases op, op-operator-incorrect, or op-operands-

incorrect), p′ = p′1 · p′2 · pop where H;D;S; e1 ⇓p′
1
V1 and H;D;S; e2 ⇓p′

2
V2.

By applying the induction hypothesis to e1 and e2, we have p1 ≤ p′1 and p2 ≤ p′2. Therefore, p1 ·p2 ·pop ≤
p′1 · p′2 · pop and, by substitution, p ≤ p′.

Case op-dyn-types The case for dynamically-tracked expressions is similar. Here, e = e1 ⊕pop
e2 and

T = @Dyn τ , and the operand types are Γ ` e1 : @Dyn τ1 and Γ ` e2 : @Dyn τ2.
By inversion on H;D;S; e ⇓p′ V, p (in any of the cases op-dyn, op-dyn-operator-incorrect, or

op-dyn-operands-incorrect), p′ = p′1 · p′2 · pop, p = pd1 · pd2 · pop where H;D;S; e1 ⇓p′
1
V1, pd1 and

H;D;S; e2 ⇓p′
2
V2, pd2.

By applying the induction hypothesis to e1 and e2, we have pd1 ≤ p′1 and pd2 ≤ p′2. Therefore, pd1 · pd2 ·
pop ≤ p′1 · p′2 · pop and, by substitution, p ≤ p′.

Case const-int-types and const-float-types Here, Γ ` e : @Approx(p) τ where τ ∈ {int, float} and
p = 1.0.

By inversion on H;D;S; e ⇓p′ V we get p′ = 1.0.
Because 1.0 ≤ 1.0, we have p ≤ p′.

Case var-types Here, e = v, Γ ` v : T . Destructing T yields two subcases.

• Case T = @Approx(p) τ : By inversion on H;D;S; e ⇓p′ V we have p′ = S(V).

The definition of well-formedness gives us p ≤ S(V).

By substitution, p ≤ p′.

• Case T = @Dyn τ : By inversion on H;D;S; e ⇓p′ V, p, we have p′ = S(V) and p = D(V).

Well-formedness gives us D(V) ≤ S(V).

By substitution, p ≤ p′.

Case endorse-types The expression e may not contain endorse expressions so the claim holds vacuously.

19

Case check-types Here, e = check(p, ec).
By inversion on H;D;S; e ⇓p′ V , we have H;D;S; ec ⇓p′ V, p′′, and p ≤ p′′.
By applying the induction hypothesis to H;D;S; ec ⇓p′ V, p′′, we get p′′ ≤ p′.
By transitivity of inequalities, p ≤ p′.

Case track-types Here, e = track(pt, et), Γ ` et : @Approx(p′′), and p ≤ p′′.
By inversion on H;D;S; e ⇓p′ V, p, we get H;D;S; et ⇓p′ V .
By applying the induction hypothesis to H;D;S; et ⇓p′ V , we get p′′ ≤ p′.
By transitivity of inequalities, p ≤ p′.

Case subsumption The case where T = @Approx(p) τ applies. There is one rule for subtyping, so we have
Γ ` e : @Approx(ps) τ where ps ≥ p. By induction, ps ≤ p′, so p ≤ p′.

Finally, we use this preservation lemma for expressions to prove a preservation lemma for statements,
completing the main soundness proof.

Lemma 2 (Statement Preservation). For all programs s with no endorse expressions, if Γ ` s : Γ′, and
` D,S : Γ, and H;D;S −→ H ′;D′;S′, then ` D′, S′ : Γ′.

Proof. We induct on the derivation of the statement typing judgment, Γ ` s : Γ′.

Cases skip-types, if-types, and while-types In these cases, Γ = Γ′, D = D′, and S = S′, so preserva-
tion holds trivially.

Case seq-types Here, s = s1; s2 and the typing judgments for the two component statements are Γ `
s1 : Γ2 and Γ2 ` s2 : Γ′. If s1 = skip, then the case is trivial. Otherwise, by inversion on the small step,
H;D;S; s1 −→ H ′;D′;S′; s′1 and, by the induction hypothesis, ` D′

1, S
′
1 : Γ.

Case decl-types The statement s is Tv := e where Γ ` e : T and Γ′ = Γ, v : T . We consider two cases:
either T = @Approx(p) τ or T = @Dyn τ . In either case, the expression preservation lemma applies.

In the first case, H;D;S; e ⇓p′ V where p ≤ p′ via expression preservation and, by inversion, S′ = S, v 7→ p
and D′ = D. Since S′(v) = p ≤ p′, the well-formedness property ` D,S : Γ′ continues to hold.

In the second case H;D;S; e ⇓p′ V, pd where pd ≤ p′. By inversion, S′ = S, v 7→ p and D′ = D, v 7→ pd.
Since D′(v) = pd ≤ p′, we again have ` D,S : Γ′.

Case mutate-types The case where s is v := e proceeds similarly to the above case for declarations.

8.4.2 Erasure of Probability Bookkeeping

We state (and sketch a proof for) an erasure property that shows that the “true” probabilities in our
semantics, called S, do not affect execution. This property emphasizes that S is bookkeeping for the purpose
of stating our soundness result—it corresponds to no run-time data. Intuitively, the theorem states that the
steps taken in our dynamic semantics are insensitive to S: that S has no effect on which H ′, D′, or s′ can
be produced.

In this statement, Dom(S) denotes the set of variables in the mapping S.

Theorem 2 (Bookkeeping Erasure). If H;D;S1; s −→n H ′;D′;S′
1; s′, then for any probability map S2 for

which Dom(S1) = Dom(S2), there exists another map S′
2 such that H;D;S2; s −→n H ′;D′;S′

2; s′.

Proof sketch. The intuition for the erasure property is that no rule in the semantics uses S(v) for anything
other than producing a probability in the ⇓p judgment, and that those probabilities are only ever stored
back into S.

The proof proceeds by inducting on the number of steps, n. The base case (n = 0) is trivial; for the
inductive case, the goal is to show that a single step preserves H ′, D′, and s′ when the left-hand probability
map S is replaced. Two lemmas show that replacing S with S′ in the expression judgments leads to the same

20

result value V and, in the dynamically-tracked case, the same tracking probability pd. Finally, structural
induction on the small-step statement judgment shows that, in every rule, the expression probability only
affects S itself.

9 Implementation

Constraints are generated on a compiler pass while walking the program’s abstract syntax tree. Variables
are declared to Z3 as they are visited in the AST.

A stack of variables is maintained internally. Each time a variable is used it is pushed on the stack.
Binary operators pop the first two elements off the stack, generate the appropriate constraint, and assign
the result to a new temporary variable that is then pushed on the stack. This allows us to chain binary
operations. Finally, assignment nodes pop the top of the stack and assign the left hand side to the popped
value.

For example, the assignment b = a + 2 translates to the AST on the left:

The right hand side shows how the stack changes as the AST is walked, resulting in the final assignment
constraint being emitted at the end.

9.1 Managing Solver Time

In most cases, checking satisfiability is a quick operation. However, it can take very long time in other
cases. To mitigate this, we offer configurable soft and hard timeouts on any given call to check-sat. The
programmer may need to play with these numbers a bit. In general we found better results with more time
per check-sat, but diminishing returns with long timeouts.

When a timeout fires the current check-sat is terminated and treated as if the result was unsatisfiable.
Because of this default, we do not use timeouts for the purpose of type checking; they are only used for
solving objective functions. Thus we never reject valid programs based on the length of solver time. In
practice, the type checking check-sat calls almost never take a long time whereas minimizing the objective
function can take quite a while as the target gets close to the optimal target.

A soft timeout sends a SIGINT to Z3 which (in most cases) causes it to drop the current check-sat.
However, Z3 may ignore the SIGINT resulting in the hard timeout firing. In this case, Z3 is programmatically
killed and restarted. A set of stored constraints are re-issued minus all satisfiability checks and the offending
constraints.

9.2 “Separate” Compilation

Due to the interprocedural nature of DECAF’s analyses, we cannot support separate compilation. That is,
DECAF needs to be able to jump into other compilation units often to generate specialized methods.

To mitigate this, we wrote jcat [1]. Jcat is a special tool for concatenating Java files. It treats the first file
as the output file’s public class (Java files may only contain one) and strips the public keyword from all other

21

Application Description Build Time LOC @Approx @Approx(p) @Dyn Approx Dyn

fft Fourier transform 2 sec 747 37 11 23 7% 55%
imagefill Bar code recognition 14 min 344 76 20 0 45% <1%
lu LU decomposition 1 min 775 63 9 12 24% <1%
mc Monte Carlo approximation 2 min 562 67 8 6 21% <1%
raytracer 3D image reading 1 min 511 38 4 2 12% 44%
smm Sparse matrix multiply 1 min 601 37 4 4 28% 28%
sor Successive over-relaxation 19 min 589 43 3 3 63% <1%
zxing Bar code recognition 16 min 13180 220 98 4 31% <1%

Table 1: Benchmarks used in the evaluation. The middle set of columns show the static density of DECAF
annotations in the Java source code. The final two columns show the dynamic proportion of operations
in the program that were approximate (as opposed to implicitly reliable) and dynamically tracked (both
approximate and reliable operations can be dynamically tracked).

classes. It also moves imports to the top the output file. Lastly, jcat can detect attempts to concatenate
files from multiple packages, which almost certainly will not produce a valid output file.

10 Evaluation

DECAF was evaluated by simulating hardware that supports energy saving approximate operators. Savings
are measured through the percentage of operators that were approximated given that they could have been
approximated.

10.1 Benchmarks

Our benchmarks were drawn from a set of benchmarks known to be amenable to approximate execution
[7, 8]. These benchmarks came with a set of @Approx annotations from EnerJ that we extended to support
new features. The annotation process consisted primarily of placing @Approx(0.9) annotations on program
outputs while using inferred @Approx annotations on the innards. @Dyn annotations were used as sparingly
as possible. More information about the benchmarks and annotations can be seen in Table 1.

10.2 Solving Versus Rounding Discrete Precision Levels

Although hardware with continuous precision knobs would be ideal, real world hardware will likely support
discrete levels of precision. DECAF allows the programmer to supply a set of supported discrete levels at
either compile time, or runtime. The effect of this choice can be seen below:

ro
u

n
d

ed

0.99
1.0

so
lv

ed

0.99
0.999

1.0
0.99

0.999

0.9999

1.0

22

(a) mc

ro
u

n
d

ed
0.99

1.0
so

lv
ed

0.99
0.999

1.0
0.99

0.999

0.9999

1.0

(b) raytracer

In these charts, horizontal axes show the available reliability levels while the vertical axes show the
percent of approximable operations assigned to each level. Solved indicates that discrete levels were supplied
at compile time while rounded indicates that these levels were supplied at runtime. This shows providing
known discrete precision levels at compile time offers significant benefits over supplying them at runtime.
Not only are more approximable operators approximated, but operators approximated using the rounding
approach may be approximated further under the solving approach.

10.3 Granularity of Discrete Levels

We also wanted to offer some insight into how the total number of available discrete levels affects approxi-
mation:

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4
?
5
?
6
?
7
?
8

?
2
?
3
?
4
?
5
?
6
?
7
?
8

0.99

0.999

0.9999

0.99999

0.999999

0.9999999

0.99999999

1.0

zxingsorsmmraytracermcluimagefillfft

In this graph, the horizontal axes shows the number of discrete precision levels used. The bars are
grouped by benchmarks. The vertical axes shows the percentage of approximable operations that executed
approximately at runtime. Colors denote which precision level operators executed at. Lastly, a star indicates
that precision levels were provided at runtime and rounded rather than solved at compile time because the
latter took too long to solve.

We hope this information can inform hardware designers on how many discrete levels can be added before
seeing diminishing returns to find the balance between cost and flexibility.

10.4 Compilation Time

Compilation time with DECAF can be unpredictable, as seen in Table 1. For the measurements in this
table the solving timeout was set to one minute. In general, compilation time increases significantly with
larger programs. Additionally, compile time increases when providing discrete operator precision levels to
be solved.

23

The most significant way to reduce compile time is to lower the timeout length as the majority of
compilation time is spent optimizing the objective target. It seems possible to significantly reduce timeouts
with small impacts on inference, but this has not been empirically measured. Additionally, solver time may
be mitigated by reducing the constraints on variables with explicitly declared reliabilities.

11 Future Work

11.1 Error Messages

Error messages in inference are unsatisfying and tough to fix. Due to the interprocedural nature of inference,
our error messages only indicate that an error exists somewhere in a function. To aid the programmer, the
set of constraints for that function are then dumped to standard error. This leaves the programmer to scan
through potentially thousands of lines of constraints to find a set that contradict each other.

Z3 offers an “unsatisfiable core” to get a set of constraints that are inherently unsatisfiable. Perhaps
we could use this to provide more concise error messages with enough information to figure out why the
set of variables are over constrained. This improvement would require significant effort due to the fact that
many variables within the solver are temporary variables and operators with little recorded connection to
the programmer’s code.

11.2 Modularity

The lack of modularity in DECAF results in full recompilations for small changes to files. It also means
that DECAF libraries cannot be distributed without providing access to the source code of the library. This
problem may be fixable by storing precision of function return values in terms of function arguments similar
to Rely [2].

12 Conclusion

With new approximate hardware supporting multiple precision levels the programmer is presented with fine
control over every operation in their program. DECAF aims to reduce the overhead of writing approximate
programs by using inference to find optimal operator precisions. DECAF allows the programmer to finely
tune their program manually, or let inference do the hard work. Where a no overhead static system breaks
down, the programmer has the option to use dynamic tracking to produce values that may be seamlessly
reintegrated back into static types.

In addition to aiding programmers, DECAF also helps hardware manufactures. By measuring the effect
of different hardware parameters on approximation, we hope to inform the hardware community on how to
best build approximate hardware that is both flexible and efficient.

13 Acknowledgements

I would like to thank Adrian Sampson, Dan Grossman, and Luis Ceze for their support and guidance on
this research project and life beyond undergrad. Additionally, I would like to thank the rest of the Sampa
group for their valuable feedback on practice talks.

References

[1] B. Boston. jcat. URL https://github.com/bboston7/jcat

[2] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative reliability of programs that execute on
unreliable hardware. In OOPSLA, 2013.

[3] L. DeMoura and N. Bjømer. Z3: An efficient SMT solver. In TACAS/ETAPS, 2008.

24

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support for disciplined approximate
programming. In ASPLOS, 2012.

[5] U. Karpuzcu, I. Akturk, and N. S. Kim. Accordion: Toward soft near-threshold voltage computing. In
HPCA, 2014.

[6] D. Pan. A tutorial on MPEG/audio compression. IEEE Multimedia, 2(2):60-74, 1995.

[7] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. EnerJ: Approximate
data types for safe and general low-power computation. In PLDI, 2011.

[8] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-state memories. In
MICRO, 2013.

[9] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Quality pro-
grammable vector processors for approximate computing. In MICRO, 2013.

[10] M. Weber, M. Putic, H. Zhang, J. Lach, and J. Huang. Balancing adder for error tolerant applications.
In International Symposium on Circuits and Systems (ISCAS), 2013.

25

	Introduction
	Motivation
	Probabilistic Types
	Subtyping
	Operators
	Control Flow
	Dependence
	Arrays

	Probability Type Inference
	Constraint Generation
	Objective Function
	Extracting Values From Z3
	Method Specialization
	Limiting Method Checks

	Name Mangling
	Conservative Independent Substitution for Dependent Values

	Dynamic Tracking
	Programming Model
	Warnings

	Hardware Model
	Hardware Simulation
	Discrete Precision Levels

	Formalism
	Syntax
	Typing
	Operator Typing
	Other Expressions
	Qualifiers and Subtyping
	Statement Typing

	Operational Semantics
	Expression Semantics
	Statement Semantics

	Theorems
	Soundness
	Erasure of Probability Bookkeeping

	Implementation
	Managing Solver Time
	``Separate" Compilation

	Evaluation
	Benchmarks
	Solving Versus Rounding Discrete Precision Levels
	Granularity of Discrete Levels
	Compilation Time

	Future Work
	Error Messages
	Modularity

	Conclusion
	Acknowledgements

