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Abstract 
While biological motion control systems are generall y 
simple and robust, their robotic analogs tend to be just the 
opposite.  While function has driven many of the control 
architectures to date, we feel that a biologicall y-inspired 
system for monitoring the energy consumption of virtual 
muscles can lead to the development of more humanoid 
motion and gesture. 

Animal and Robotic Motion Control 

While animals of all shapes and sizes are able to 
successfull y move their bodies to perform complicated 
tasks such as running or flying, robotic research in 
modeling animal movements has progressed slowly.  In 
part, this may stem from the fact that most motion control 
structures have taken a very functionalist approach.  In 
essence, this approach analyzes the physical system of a 
given robot and creates a control structure that directly 
manipulates these physical properties to create the desired 
movement.  While this approach makes a good deal of 
sense, the difference between robotic motion (involving 
motors and electricity) and animal motion (often 
involving muscles and a chemical energy source) has 
caused the resulting systems to deviate enormously from 
their biological inspiration.   

We have approached this problem looking to the 
biological system in humans for inspiration and direction.  
This approach, though, makes the problem twofold: first, 
how does the animal motion control system work and 
second, how can we model that system using 
computational architectures, software, and a robot?  
Because we are still struggling to understand the 
biological system, this would appear to needlessly 
complicate the task.  However, we feel that expanding the 
robotic motion control model will result in more effective 
and human-li ke gesture creation. 

Functional Focus 

Because robotic motion generall y focuses on 
manipulating the environment, the most common type of 
robotic arm control places an emphasis on the desired 

state of the end effector (typicall y a claw or hand).  Some 
simple trigonometry produces a simple transform that 
produces joint angles from a desired position and 
orientation of the hand.  By changing the hand position 
slightly and re-performing the transform, a series of 
contiguous angles creates a trajectory.  This method is not 
completely without biological inspiration.  Cruse (1987) 
examined gestures in several different planes of motion 
and postulated that human motor planning is done in part 
by minimizing the “cost” associated with certain 
“uncomfortable” joint angles during a trajectory.  While 
this work does not directly say that planning is done on a 
joint-by-joint basis, it does imply that joint angles are 
meaningful parameters to monitor and command during 
gesture formation. 

Many robots have successfull y employed this idea of 
using the orientation of the end effector as the basis for 
gesture formation.  For example, the humanoid robot DB 
in the Kawato Dynamic Brain Project has used this type 
of control to perform several humanoid tasks ranging 
from oculomotor responses to more full -bodied tasks such 
as drumming and dancing.  Schaal and Tevatia (1999) 
explicitl y say:  

 
“… [M]ovement planning and learning in task space 
… require appropriate coordinate transformation 
from task to actuator space before motor commands 
can be computed.”  

 
Their recent work with different computational forms of 
the Jacobian (Schaal and Vijayakumar 2000) has created a 
system that is capable of learning fairly general tasks 
using this transform-based method.  Their paper cites the 
robot’s abilit y to learn rhythmic and discrete gestures by 
monitoring position, velocity, and acceleration profiles for 
each of the joint angles.  Through both faster computers 
and mathematical simpli fication, the thrust of this 
approach was to make this method computationally 
tractable.    
 While this work is strong from a task-execution 
standpoint, it is highly unli kely that this method holds a 
strong analog to the biological motion control structure.  
The first and biggest difference is that movement comes 
not from simple actuated joints but from the muscles that 



attach to the limbs themselves.  This distinction is criti cal 
because the mapping from muscles to joints is not simple: 
some muscles span across several joints, thereby causing 
motion in several joints from a single muscle (or muscle 
pair).  And while muscles do have sensory organs that 
provide some notion of position and velocity, biological 
research has suggested that this feedback is not used 
directly, but instead contributes to a more complex 
control system.  McMahon (1984) demonstrated how 
some of the pre-cortex control structures might work, and 
Hogan’s (1990) research on the mechanics of arm 
movement suggested biologicall y sensible “spring-li ke” 
model for limb movement. 

At the Humanoid Robotics Group at MIT, our 
humanoid Cog employs a simple, spring-based control 
architecture as the basis for movement.  While sensors in 
the arm joints sense torque and position, these values are 
used as feedback to a simple linear spring law.  Under this 
system, joint angles are not specified directly, but instead 
are the result of the parameters of the software spring 
(equili brium position, stiffness, and damping) and 
properties of the environment and limb (gravity, inertia, 
end load).  Using one simulated spring at each joint, 
Willi amson was able to implement some simple balli stic 
gestures using a postural primiti ves model (1996) as well 
as rhythmic gestures using a simple neural oscill ator 
(1999). 
 While the system was able to successfull y learn to 
reach for a visual target with some accuracy (Marjanovic, 
Scassellati, and Willi amson, 1996), this simple spring law 
system has some limitations.  Although the system creates 
biologicall y inspired movement, the sensory information 
from the arm is far less complex than the feedback 
provided by human muscles.  Additionally, the robot’s 
“muscles” have no memory of the past; the motion of the 
arm at any given time is determined entirely by its state at 
that instant.  These limitations are particularly debilit ating 
when the robot is attempting to learn novel, humanoid 
gestures. 

Biological Modeling Focus 

In response to these shortcomings, we have initiated work 
expanding the underlying control architecture in hopes of 
creating a more humanoid learning environment for the 
robot.  The first step has been to broaden our basic muscle 
model to include a model for energy consumption.   

The biochemistry of how muscles turn chemical energy 
into movement is understood and generall y considered a 
closed question.  However, despite thorough knowledge in 
this area, power consumption issues in robotic arm control 
are generall y ignored.  This is because, obviously, motor 
energy consumption is not a criti cal engineering issue.  
Either the robot is tethered and therefore afforded an 
unlimited energy supply or, if the energy supply is 
limited, consumption is dominated by factors other than 
action selection, such as mechanical eff iciency or 
engineering design choice.  However, a lack of functional 

impact in the robotic world does not mean that feedback 
about energy consumption is not important to the process 
of movement organization and action selection.   

In Adams (2000), the argument is made that a model of 
energy consumption will help robotic learning in two 
direct ways.  First, a model of energy consumption allows 
for greater equivalency between the robot and those 
interacting with it.  This is particularly important for 
imitation-based learning.  If a human attempts to perform 
a task, but is unsuccessful due to energy constraints (such 
as attempting to hold a heavy object in an awkward 
position), the robot must have a concept of why the task 
was unsuccessful for the human.  Without some basis for 
understanding the “cost” associated with exertion, the 
robot is unable to differentiate an intentional act from a 
conspecific’s failure due to fatigue.   

Second, limitations imposed by this model will help the 
robot develop along human lines.  This is important in 
instances where typical robotic abilit y is more functional 
that of a human.  By either providing or faili ng to curb 
superhuman abiliti es, we run the risk of faili ng our 
research goals by allowing the robot to learn human tasks 
in decidedly non-human ways.  For example a camera that 
can sense variations in temperature would be helpful in 
locating people in the visual field, yet one is not 
employed because such a device could very well alter the 
robot’s social development in a fundamental way.  In the 
same way, creating a model of energy metabolism in 
order to prevent robot’s virtual muscles from exerting 
themselves in a superhuman way provides humanoid 
boundaries on learning new gestures.   

 

Robotic Implementation 

We have implemented such a system, called meso, on 
Cog.  Using our message-passing architecture (called 
sok), this system simulates the behavior of the major 
organs involved in energy production.  Energy is 
“expended” by monitoring the torque values sent to the 
motors; as more torque is commanded, the metabolic 
system draws more “energy” from the various organs. 

The system, in its current implementation, provides a 
small set of variables representing chemical levels at 
different points in the human energy metabolism.  Local 
energy stores in each of the muscles (or glycogen), 
general energy supply in the bloodstream (or glucose), 
and different longer-term energy stores such as fatty tissue 
and li ver glycogen are all maintained.  These variables 
communicate with each other through simulated chemical 
messengers such as insulin, glucagons, and epinephrine.  
When the robot exerts a force in one of its joints, this 
causes the local energy store for that muscle to be 
depleted in proportion with the strength of the exertion.  
As this fuel source is depleted, a variety of chemical 
messengers are triggered, causing different energy stores 
to provide energy to “ fuel” the motion.   



Because healthy humans never “ run out” of energy, this 
system doesn’ t typicall y interfere with the robot’s motion.  
The system does have two major impacts on the behavior 
of the robot.  First, as the robot moves, the rise and fall of 
the different chemical levels provides the robot with 
meaningful feedback about the nature of the gesture.  If 
the robot is required to suddenly exert a high level of 
force, the metabolic system will react differently from a 
slower but lengthier motion.  By using these cues, the 
robot can, for example, differentiate one type of gesture 
over another as being more “energy eff icient” .  The 
second impact the system has is to prevent exertions that 
would be superhuman in nature.  If an exertion causes the 
short-term energy stores to be depleted beyond their 
limits, the system intercedes in the motor command 
system and reduces the force output.  This introduces the 
humanoid limits on exertion that encourage proper 
learning. 

Any implementation of the metabolic system must deal 
with the issue of complexity.  While the metabolic system 
is well understood at the chemical-reaction level, the 
interplay between each of the reactions, if modeled 
explicitl y, would create a system with unacceptable 
complexity.  In fact, for this application, the requirements 
are even more stringent: the model must operate on a 
robot in real-time; hence the complexity of the model 
must allow the system to create the proper feedback on 
the proper timescale. 

However, creating a model with a reasonable level of 
complexity can be achieved given our fairly modest goals. 
The current system only recreates two aspects of human 
metabolism.  First, it provides the robot with humanoid 
behavioral limit s by placing appropriate restrictions on 
the nearly unlimited power that the robot is capable of 
exerting.   Second, the model creates the accompanying 
metabolic experience that goes along with testing these 
limits.  Without entering into the debate of whether a 
robot actuall y has “experiences” , it is enough to say that 
this system provides a set of metabolic variables that 
correspond to the robot’s actions and provide information 
regarding the level of exertion.  Meso accomplishes these 
goals by treating the metabolism as a simple control 
mechanism.  While the values of the variables in the 
model are not meant to represent actual values found in 
humans (these vary too greatly for specific values to be 
useful), they do change in proportion with the human 
reactions.  The levels of the variables in the various 
processes are then applied to the electro-mechanical 
system to achieve the second goal.   

The time scale for these processes is also significant.  
In the current environment, interactions with Cog are, 
from a metabolic standpoint, short (i.e., less than one 
hour).  While a small set of individuals do interact with 
the robot over a period of weeks, months, and years, the 
robot has not yet been designed to accumulate any sort of 
state over a period longer than an hour.  As such, this 
implementation of meso focuses on modeling metabolic 

effects that happen over roughly an hour.  Because 
developing these longer-term effects could prove 
beneficial in the future, some consideration is paid to 
allowing for future development in this direction.  Many 
of the long-term metabolic effects can be represented in 
this model by dynamicall y (but slowly) changing the 
coeff icients of the reactions establi shed in meso.  Other 
long-term metabolic changes could include the results of a 
trauma: long periods without nutrients or an unbalanced 
diet.  But because the overall fitness level rarely (if ever) 
changes in perceptible ways over short-term interactions, 
neglecting this part of the model will not change the 
nature of the short-term behaviors. 

Also, from a biological standpoint, any model of the 
metabolic system must recognize that each person’s 
metabolism is entirely different.  While the basic 
chemical reactions are the same in all people, the higher 
level relationships (for example, the amount that the heart 
rate goes up for a given amount of work) vary greatly not 
only from person to person, but vary for a given person 
over the course of his li fe.  Factors such as genetic 
makeup, environmental qualit y, and general fitness level 
change the relationships greatly, in some cases by an 
order of magnitude.  As such, there is no single “right” 
behavior, but instead a range of values that the system can 
emulate.  In meso, the right set of parameters and 
associations are establi shed, but the specific relations can 
be manipulated.  With that basic framework, future work 
can model the influence of these other more distant (and 
often longer-term) factors.  

Finall y, the meso system creates a “virtual” metabolic 
state for the robot, but stops short of providing easy 
emotional or behavioral cues.  Like the metabolic state in 
humans, the sensing of the chemical state of the body is 
vague and poorly understood.  These senses do not result 
in concrete thoughts, but instead are thought to create a 
feeling that may or may not be acted upon by a higher 
level of control.  While meso provides parameters that 
correspond to nebulous feelings such as “ tiredness” , the 
correct use of this variable to create humanoid behavior is 
an open question.  
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