
The
Connection Machine
System

CM-5 C* Release Notes
...... ~f

Preliminary Documentation for Version 7.1 Beta
February 1993

Thinking Machines Corporation
Cambridge, Massachusetts

p
First printing, February 1993

i

p
PRELIMINARY DOCUMENTAION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation Thinking Machines assumes no liability for errors in this
document.

This document does not describe any product that is currently available from Thinking Machines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.
------------------------------ **------------------- **-- *******I..............

P

NConnection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMosr and Prism are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
Paris and CM Fortran are trademarks of Thinking Machines Corporation.

CMMD, CMSSL, and CMXl1 are trademarks of Thinking Machines Corporation.
Thinking Machinesq® is a registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

N

N

B

b

--------

Contents

1 About CM-5 C* Version 7.1 Beta 1

2 New Features in Version 7.1 ... 2

2.1 Supportfor Vector Units 2

2.1.1 New Compiler Options 2

2.1.2 New Size for physical Shape 3

2.2 Increased Performance ... 3

2.3 SDA and DataVault Support .. 3

2.4 Interface to CMX11 ... 4

2.5 Interface to CMM D ... 4

2.6 Table Lookup ... 4

2.6.1 An Example ... 6

2.7 Shape Casting ... 6

2.8 New Names for C* Run-Time Libraries 7

3 Differences from CM-200 C* .. 8

3.1 Restriction on Shape Sizes Removed 8

3.2 DifferentSize for Parallel bools 8

3.3 Programs Can't Call Paris .. 8

3.4 Improved Performance of Parallel Right Indexing 9

3.5 New * and /- Reduction Operators 9

3.6 ANSI Compliance .. 9

3.7 Parallel enums Are Supported 9

3.8 Limitations on Parallel Unions Removed 10

3.9 New Versions of read_from pvar and writeto pvar 10

3.10 New allocated_detailed shape Function 11

Version 7.1 Beta, February 1993

Copyright C 1993 Thinking Machines Corporation iii

iv C* Release Notes

4 Developing a CM-5 C* Program 14

4.1 Calling CMFortran ... 15

5 Compiling .. 16

5.1 Compiling and Linking a C* Program that Calls CM Fortran 1

6 Executing .. 19is

7 Debugging 19

8 /0 .. 2

9 Documentation Errors ... 23

9.1 Length Units for Communication Functions Should Be bools, Not Bits 23

9.2 Arguments Reversed in mnmcpy, boolcpy Example 23

9.3 The rank Function's Behavior with Scan Sets Is Incorrectly Documented 24

10 Porting CM-200 C* Programs to the CM-5 24....... 24

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

'p
a!

a

9
A

hI

~I
a

I

ft

------------------- ---- --------------------~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~I

I

I

I

I

I

I

I

r

Field Test Support
v l I--0__ -..... -- -

Field test software users are encouraged to communicate with Thinking
Machines Corporation as fully as possible throughout the test period. Please
report any errors you may find in this software and suggest ways to improve it.

When reporting an error, please provide as much information as possible to help
us identify the problem. A code example that failed to execute, a session
transcript, the record of a backtrace, or other such information is extremely
helpful in this regard.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for field test support. Otherwise, please contact Thinking
Machines' home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

US. Mail:

Telephone:

customer-support@think.com

ames!think!customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 7.1 Beta, Febrwary 1993
Copyright C 1993 Thinking Machines Corporation V

CM-5 C* Version 7.1 Beta
Release Notes

1 About CM-5 C* Version 7.1 Beta

CM-5 C* Version 7.1 is a new release of the CM-5 C* compiler, it provides
support for CM-5s with vector units, as well as for CM-5s with SPARC processors
only. CM-5 C* is an implementation of the C* language, as described in the C*
Programming Guide. Version 7.1 works with CMOST Version 7.2 S2 or later.

CMOST Version 7.2 Beta Patch 3 is required to remove some restrictions in
support for CMFS calls on CM-5s with vector units.

Section 2 lists features new in Version 7.1. Sections 3-10 contain other
information about the CM-5 C* compiler, this information is repeated, with some
changes, from the Version 7.0 Beta release notes. Change bars in the margin
indicate new or changed information.

To learn about restrictions in this release, see the on-line bug update report,
which is by default in the file /usr/doc/cstar-7 . 1-beta .bugupdate; if
this file doesn't exist on your system, check with your system administrator.

Note this restriction in the Beta release:

Segmented rank operations via the rank function are not yet supported in
programs compiled for the vector units. They will be included in a future
CMOST release.

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

2 C* Release Notes
2 NewFeatresi.-----1-.-- -- :

2 New Features in Version 7.1

Version 7.1 adds the features discussed in this section to CM-5 C*. l

2.1 Support for Vector Units p
As of Version 7.1, CM-5 C* takes advantage of the processing power of vector
units, in CM-5 systems that contain them. p

2.1.1 New Compliler Options ~

Use the -vu or -vncunit option to the ca command to specify that you are
compiling or linking for a CM-5 with vector units. Use the -spare option to
specify that you do not want to use the vector units. If you include one of these
options on the as command line, you do not have to include the -cm5 option.
Either -vu or -spare will be the default at your site; ask your system
administrator. The target for the compilation is indicated by a message that the
compiler prints; see Section 5.

Use the -keep option to keep an intermediate file with the extension you specify.
Choices are:

*· , to keep assembly language source file

* o,to keep the object file P
* dp, to keep the DPEAC assembly-language code; the file is named

file. pe. dp, wherefile is the name of the C* source code, without the . cs c
extension

Using this option does not inhibit assembly or linking.

Use the -temp option to change the location in which C* temporary files are
created from the standard location. Issue the cs command with the -cdir option
to find out the standard location; see Section 5. I

See also Section 2.5 for a discussion of the new compiler options that support the
interface to CMMD. /

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

h

C Release NotesIII3II---

2.1.2 New Size for physical Shape

On a CM-5 with vector units, the size of the physical shape is 4 times the
number of processing nodes in your partition (in other words, the size is the
number of vector units in your partition).

Note for low-level programming: Because of subgrid restrictions imposed by the
current compiler model, the positions of the physical shape are not actually
instantiated on each vector unit. We expect that eventually variables in the
physical shape will have one element in each vector unit, but for now all four
elements in the physical shape on a given node are instantiated in the first
vector unit of the node.

2.2 Increased Performance

Version 7.1 provides faster compilation and performance than Version 7.0:

* Compilation should be approximately 30 percent faster.

* Local optimization has been implemented; this should
performance.

Note, however, that if you are executing on the vector units,
involve bool, char, and short types are slow because of
required to load and store those types from memory.

result in better

operations that
extra overhead

2.3 SDA and DataVault Support

As of the Version 7.0 Beta Patch 1 release, you can use the SDA (Scalable Disk
Array) and DataVault file system via calls to CMFS library routines.

To use the SDA file system on a CM-5, you must link your program with:

-1cf.s cs -lcmfs cm5

If you have DataVault files created prior to the Version 7.0 Beta Patch 1 release,
see the Patch 1 release notes for a discussion of how to convert your files to the
format required by the patch.

Version 7.1 Beta, February 1993
Copyright C 1993 Thinking Machines Corporation

C* Release Notes 3

4 C* Release Notes

2.4 Interface to CMX11 b
A C* interface to CMX11 is available as of CMXll Version 1.5. See the release
notes for CMX1ll Version 1.5 for more information.

2.5 Interface to CMMD b

A C* interface to CMMD is available as of CMMD Version 3.0. This works only

for C* programs compiled to use the vector units. The CMMD 3.0 final I
documentation will describe this interface.

There are two new options to the ca command to support this interface: b

· Use the -node option to specify that you are compiling your C* program
to run on the nodes. b

* Use the -rrd _root option to specify the location of the CMMD library
if it's not in the standard place. Check with your system administrator for
the correct location at your site. To avoid having to specify this option
every time you compile a node-level program, you can also set the
environment variable cmO_ROOT to the correct pathname.

2.6 Table Lookup

In Version 7.1, CM-5 C* provides an efficient mechanism for parallel lookups
into a single table. If you use this mechanism, C* replicates the table once per
node or vector unit, rather than in each position of a shape. '

To use the table lookup utility, include the file <cstable.h>.

The utility consists of four functions: b

Call CC allocate shared table to allocate the table on the nodes.
It takes as its argument the size of the table (the total number of elements b
in the table times their size in bytes), and it returns a pointer to a parallel
variable that indicates the table's location on the nodes. Its definition is:

void:void *CMC_allocate_shared_table(size_t tablesize);

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

C* Release Notes 5

It is legal to use the pointer returned by this function only with the other
table lookup functions.

j * Call CMCinitialize_shared table t put values into the table. Its
definition is:

void CMC initializesharedtable(void:void *table,
const void *values,
size t tablesize);

where:

table is the pointer to the table, returned by
jI ClbC allocate_ shared table.

values is a pointer to the scalar table values.

*l table_size is the size of the table in bytes. This is the same
size specified to the
CMlC allocate shared table function.

Call CC_lookup_sharedtable to do a lookup in the table on the
nodes. Its definition is:

void CMC_lookup_shared_table(void:current *result,

void:void *table,

int:current index,

size t element size);

where:

i result is a pointer to a parallel variable of the current
shape that holds the results of the lookup.

j table is the parallel pointer to the table.

index is a parallel int of the current shape; its values

j are the indices into the table.

element size is the size of each element in the table, in bytes.

l * Call CC _free_shared table to deallocate the memory allocated on
the nodes to the table. Its definition is:

j void CMC_free sharedtable(void:void *table);

where table is the pointer returned by
j CMC allocate shared table.

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines CorporationI

6 C*- Ree- Notes-n

2.6.1 An Example

In this example, a table of 24 ints is allocated and initialized in a 16384-position
shape on the nodes. Random numbers are used as the index into the table, and
the results of some lookups are printed. Finally, the memory for the table is freed.

#include <stdio.h>
#include <stdlib.h>
#include <cstable.h>

int tabledata[241 - I
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,

23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2

) ;

main ()

shape [16384]s;
int:s index, result;
void:void *table;
int i;

table - CMC_allocate_shared_table(sizeof(tabledata));
CMC_initialize_shared_table(table, tabledata,

sizeof(tabledata));

with (s)

{
index - prand() % 24;

CMC_lookup shared_table(&result, table, index,
sizeof(result));

}

for(i - 0; i < 20; ++i)

printf("%d\n", [ilresult);

}

CMC free shared table (table);

}

2.7 Shape Casting

A pointer to a parallel variable contains information about the shape of the
parallel variable. Using the new function CM change_pointer _shape in

Version 7.1 Beta. February 1993
Copyright C 1993 Thinking Machines Corporation

k

S

I

I

I

I

I

I

I

I

II

!!N
aS I

6 C* Release Notes

IC

i

C*Releaase No---es --

CM-5 C*, you can associate a different shape with the parallel variable; you can
then treat the parallel variable as if it were in this other shape. Since the pointer
exists on the partition manager, this saves the cost of doing communication
between shapes on the nodes.

NOTE: Using this new function correctly requires a detailed understanding of the
parallel variable's layout in the memory of the nodes. Inappropriate use of the
function will cause run-time errors.

Include the file <csshape.h> when using CHC change pointer shape.
The function's definition is:

void:void *CMC_change_pointer shape(void:void *, shape);

where void: void * is the pointer to the parallel variable, and shape is the new
shape to be associated with the parallel variable.

For users familiar with Paris on the CM-2/200: This function is comparable to
the Paris CM:make-field-alias instruction.

2.8 New Names for C* Run-Time Libraries

The names of the C* run-time libraries have changed in Version 7.1. In Version
7.0, the names were libcs. a and libcs_pe. a (for the nodes). They now
depend on the target of the compilation:

* If you specify -sparc, the libraries are libcs_cm5_sparc_sp. a and
libcs 5_parcpn. a (for the nodes).

* If you specify -vu, the libraries are libcs_cm5_vu_sp. a and
libcs_m_ 5_vu n. a (for the nodes).

* If you specify -cmsim, the library is libos_cmS_cmsim. a.

You need to be aware of this only if you are using a command other than cs to
link (for example, when linking in C* functions to a CM Fortran program); see
Section 5.1 for an example.

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

C* Release Notes 7

8 C" Release Notes

3 Differences from CM-200 C*

This section lists differences between CM-5 C* and C* for the CM-2 and CM-200
(referred to as CM-200 C*).

3.1 Restriction on Shape Sizes Removed

The CM-200 C* restrictions on shape extents are not present in CM-5 C*. The
sizes of a shape's dimensions need not be powers of 2, and the total number of
positions in the shape need not be a multiple of the number of physical
processors that the C* program is using. The only restriction is that the size of
each dimension must be greater than 0.

h

3.2 Different Size for Parallel bools

On the CM-5, parallel bools occupy 1 byte of storage, not 1 bit, as on the CM-2
and CM-200. (This change is necessary because CM-5 memory is not
bit-addressable.) The semantics of using bools remain the same; you need not
change an existing program to deal with the new size. Memory usage will go up
on the CM-5, however. Also note that on the CM-5, boolsizeof gives a size in
bytes, and is therefore exactly like sizeof.

3.3 Programs Can't Call Paris

CM-5 C* programs can't call Paris routines (because there is no Paris on the
CM-5). CM-2-specific header files such as <cm/paris .h> are not available on
the CM-5.

el
b

h

hi

b

i.
Version 7.1 Beta, February 1993

Copyright C 1993 Thinking Machines Corporation

I

C* Release Notes8

AC Release- - 9

3.4 Improved Performance of Parallel Right Indexing

Parallel indexing into parallel arrays performs better in CM-5 C* than it does in
CM-200 C*.

3.5 New *= and /= Reduction Operators

CM-5 C* implements the *= and /= parallel-to-scalar reduction operators.

As a binary reduction operator, *= multiplies the values of the active elements
of the parallel RHS by the value of the scalar LHS and assigns it to the LHS. As
a unary operator, it returns the product of the active elements of the parallel
variable.

As a binary reduction operator, /= divides the value of the scalar LHS by the
product of the parallel RHS and assigns the result to the scalar LHS. When it is
used as a unary operator, it returns the reciprocal of the product of all active
positions in the parallel variable.

3.6 ANSI Compliance

The CM-5 C* compiler is generally compliant with the ANSI standard. This
means that the CM-5 C* compiler will reject some programs that previously
compiled without error.

3.7 Parallel enums Are Supported

Unlike the CM-200 C* compiler, CM-5 C* supports parallel enumS. For example,
this code:

enum color red, blue, green };

enum color:ShapeA parallel_color;

Version 7.1 Beta, February 1993

Copyright © 1993 Thinking Machines Corporation

C* Release Notes 9

10 C* Release Notes

declares the parallel variable parallel_color to be of the enumeration type
color. You can then assign a value to parallel_color as follows:

parallel_color - red; 3
This assigns the value red to every element of the parallel variable
parallel color.

3.8 Limitations on Parallel Unions Removed

The limitations on parallel unions discussed on page 60 of the C* Programming
Guide are removed in CM-5 C*. Note, however, that taking advantage of the L
removal of these limitations may make your program nonportable.

3.9 New Versions of read_from_pvar and write_topvar

CM-5 C* overloads the communication functions read_frompvar and -
writeto pvar for parallel data of any length.

The definition of read_frompvar is:

void read frompvar (t
void *destp,
void:current *sourcep,

int length); 3
where destp is a pointer to the scalar array to which the values are to be written,
sourcep is a pointer to the parallel data, and length is the length, in bools, I
of the data pointed to by sourcep.

And the definition of write_to_pvar is: I

void writeto_pvar (
void:current *destp,
void *sourcep, s
int length);

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

C*ReleaNotes ::- --

where destp is a pointer to the parallel data in which the values are to be written,
sourcep is a pointer to the scalar array, and length is the length, in bools, of
the data pointed to by destp.

NOTE: Using these versions of read_from pvar and writetopvar for
aggregate data may make your program nonportable.

3.10 New allocated_detailed_shape Function

CM-5 C* contains a new version of the allocate_detailed_shape intrinsic
function. As with the CM-200 version, this function lets you specify exactly how
a shape is to be laid out on the processing nodes. If your program has known,
stable patterns of communication, you may be able to use this function to speed
up this communication and thereby improve performance.

Note that, since the CM-5 and CM-2 versions of allocate_detailed_shape
are different, using this function makes your program nonportable.

Effective use of allocate detailed shape requires an understanding of
how shapes are mapped onto CM-5 processing nodes by the run-time system. For
the Beta release, we assume you have this understanding. The C* Programming
Guide will provide information on this topic for the official release of CM-5 C*.

Include the header file <csshape . h> when you call
allocate_detailed shape.

The format of allocate_detailed_shape is as follows:

shape allocate_detailed_shape (
shape *s,

int rank,
unsigned long extents[],
unsigned long weights [],
CMC_axis_order_t axis_orderings [],

int physical_masks[],
int subgrid lengths[],
int subgrid_sequences[]);

where:

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

C* Release Notes 11

w

12 C* Release Notes

a is a pointer to a shape. The remaining arguments specify this
shape, and the function returns it. You must provide a value
for this argument. -

rank specifies the number of dimensions in the shape. You must
provide a value for this argument.

extents specifies the number of positions along each dimension,
starting with axis 0. You must provide values for this
argument.

weights specifies the relative frequency of communication along
each axis, starting with axis 0. For example, weights of 1 for
axis 0 and 2 for axis 1 specify that communication occurs
about half as often along axis 0. Only the relative values of
the weights matter, for example, weights of 5 for axis 0 and 3
10 for axis 1 specify the same communication as weights of

I

I

I

I
1 and 2. Specifying the same values for different axes
indicates that they have the same level of communication.

The weights values are used only if neither the
physical_masks nor the subgrid_lengths argument is
specified.

Pass NULL instead of the weights array to use the default
weights, which are 1 for each axis.

azisorderings
specifies the ordering of each axis, either CC_ news order
or CC_serial_order. Pass NULL instead of this array to
specify the default ordering, which is NEWS ordering for i
each axis.

physical masks
specifies the mapping of positions to physical nodes. The l
physical mask for each axis must represent a contiguous set
of bits, and must not use any bits used by another axis. The
sum of the physical masks must use all bits 0 through n, S
where n is less than or equal to the total number of physical
bits used to represent the positions of the physical shape.

If you are compiling for a CM-5 with vector units, the lowest
two bits of the physical mask correspond to the four vector
units on a node.

Version 7.1 Beta, February 1993
Copyright C 1993 Thinking Machines Corporation

II

C elease Nwos1 13

You can pass NULL instead of the physical masks array.
If you also pass NULL for subgrid_lengths, the weights
are used to create the shape. If you specify values for
subgrid lengths, the physical masks will use the fewest
bits necessary to accommodate the extent of each axis given
the specified subgrid length; the less significant bits are used
for lower-numbered axes.

subgrid lengths
specifies the subgrid length for each axis.

If you pass NULL for subgrid lengths and specify values
for the physical masks array, the subgrid lengths will be
the minimum lengths required to represent the axis.

subgrid sequences
specifies the sequence of subgrid axes. The default is for the
highest-numbered (non-serial) axis to vary fastest (that is, the
sequence is the reverse of the axis numbers). You can also
specify that the lowest-numbered axis is to vary fastest (that
is, the sequence is 0, 1, 2,...). In either case, serial axes must
be last in the sequence. Other sequences are not allowed.

CM-5 C* provides several functions you can call to find out how the run-time
system actually laid out a shape. You can use these functions to determine if you
should use allocate_detailed shape to specify a different layout.

Include the header file <csshape .h> when you call any of these functions.

The functions are defined as follows:

CMC_axis_order_t CMC_axis_ordering(shape s, int axis);
int CMC_physical_axis_mask(shape , int axis);
int CMC_subgrid_axis_length(shape s, int axis);
int CMC_subgrid_axis_sequence(shape , int axis);
int CMC subgrid size(shape);
int CMC_subgrid axis increment(shape s, int axis);
int CMC subgrid_axis_orthogonal_length(shape s, int axis);
int CMC subgrid_axis_outer_increment(shape s, int axis);
int CMC_subgrid_axis_outer_count(shape a, int axis);

CMC_ais_ordering returns CC _news_order if the specified axis is in
NEWS order (the standard order), CuC_serialorder if it's in serial order.

CMC hysical_axismask returns an integer that represents the physical
mask for the specified axis.

Version 7.1 Beta, February 1993
Copyright 1993 Thinking Machines Corporation

C* Release Notes 13

14 C* Release Notes
--- ---- --- -- -- - --- -- --- --- -- - - -- -- -- --- -- -a

Wr1

CC_ subgrid axis_length returns the subgrid length of the specified axis.

CK_subgrid_axis_seqquence returns an integer that represents the specified
axis's place in the sequence of axes within a subgrid.

CNC subrrid size returns the total number of ositions in the subarid for the _
specified shape.

Ch_Csubgrid ax iincrement returns an integer representing how many
positions in memory separate consecutive subgrid positions along the specified
axis. This is calculated by multiplying the subgrid lengths of all axes that have
smaller subgrid axis increments (that is, the axes with lower subgrid sequences).
If the positions along the subgrid axis are contiguous in memory, the function
returns 1.

CMC subgrid_orthogonal length returns the subgrid-orthogonal-length
for the specified axis. This is the total number of positions in the subgrid divided
by the subgrid length of the axis.

CMCsubgrid axisouter_increment returns the product of the subgrid 3
axis increment and the subgrid axis length for the specified axis.

CMC subgridaxis outer_count returns the product of the subgrid lengths
of all axes that have larger subgrid axis increments (that is, axes with higher
subgrid sequences) than the axis you specify.

4 Developing a CM-5 C* Program 3
Develop your CM-5 C* program as described in Chapter 2 of the C* User's

Guide. Note these points: I
* The header files described in Section 2.2 exist in CM-5 C*.

* As mentioned above, you can't call Paris functions from a CM-5 C*
program. Therefore, Section 2.3 of the C* User's Guide does not apply to
CM-5 C*. 3

* Use the CM Fortran interface to CMSSL by calling the routines as
described below. I

Version 7.1 Beta, February 1993

Copyright C 1993 Thinking Machines Corporation

3a

I

I

I

I

I

I

I

I

I

I

I

I

I

!

C 3 :* ReleaseNote:ss 15: 's

I/O for this release of CM-5 C* is described in Section 8.

4.1 Calling CM Fortran

You can call CM Fortran subroutines as described in Section 2.5 of the C* User's
Guide, but note these points:

* The description of the VAX interface is not applicable to CM-5 C*.

* See Section 5 on compiling, below, for information on compiling and
linking a C* program that calls CM Fortran.

* As of Version 7.1, you can call CM Fortran programs compiled for the
vector units.

* The name of the C* main routine must be MAIN_() ..

* You can't pass the CMC_complex type to CM Fortran; use
C3C_doublecomplex instead. This is a temporary restriction due to an
overloading bug in the current release.

In the future, we hope to provide a more transparent interface to CM Fortran. To
minimize recoding when this interface is available, we recommend that you call
the subroutine as if you were calling it directly, then use a stub routine to provide
the correct syntax to make it work now.

For example, you might call the CM Fortran routine C:_ ROUTINE like this in
your program:

main ()

shape [10]s;

float:s i, j;

float x;

int n;

with (s)

i - pcoord(O);
CMFROUTINE(&j, &i, 1.0);

for(n-O; n < positionsof(s); n++)
printf("%f ", n] j);
printf ("\n");

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

C* Release Notes 15

16 C* Release Notes

The stub routine would look like this:

#include <csfort.h>

CMF ROUTINE(jp, ip, f)
int:void *jp, *ip;

float f;

CMCdescriptort jp_desc, ip_desc;

jp_deac - CMC_wrappvar(jp);
ip_desc - CMC wrappvar(ip);
CMC_CALL FORTRAN(cmf_routine (jp_desc, ip_desc, &f));
CMC_free_desc (jp_deac); i

CMC freedesc(ip_desc);

We expect that eventually this stub routine will be generated automatically, given
the appropriate declaration of CM '_ROUTI ; for now you have to write it by
hand.

a

I

I

I

I

5 Compiling

CM-5 C* accepts the compiler options listed in Chapter 3 of the C* User's Guide,
with the additions and changes listed in this section.

I See also Section 2.1.1 for a discussion of the compiler options new in Version
I 7.1 Beta.

Use the ca command to compile your C* program. To specify that you want to
use the CM-5 C* compiler, include the option -cm5 on your command line; you X

can omit this if your site has made the CM-5 compiler the default target of the I
as command. You can tell if the CM-5 is the default target by simply typing ca
at your UNIX prompt. You will receive a help message that begins: 3

C* driver [CM5 SPARC 7.1 Beta)

if you include the -sparc option, or a CM-5 without vector units is the default
target. Or:

C* driver [CM5 VECUNIT 7.1 Beta]

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

I

I

......... Ree.ase Notes----- 1...7_-:.' . . .'---------"

if you include the -vu option, or a CM-5 with vector units is the default target. I

If the CM-200 compiler is the default, and you want to avoid having to specify
the -cm5 option, set the environment variable CS_DEFAULT_MACHINE to cm5.

In that case, you would then have to specify the -cm2 or -cm200 option
(depending on your target CM) to use the CM-200 C* compiler.

Note these other changes in compiler options:

· These CM-200 C* options are not accepted:

* -noline
* -release
* -ucode

* -cpp

· -keep c, since the compiler does not generate C code

* The -o (optimization) option is currently disabled.

* Use the -cmsim option to compile and link a version of your program that
can run on a Sun-4 SPARC workstation. The program can't do parallel I/O,
graphics, or call other non-C* library routines.

* Using the -g option increases execution time considerably; use the
-debug option instead if this matters. The -cmdebug option provides
faster execution, at the expense of some precision in debugging.

* The -pg option is not supported. The CM-5 system libraries don't have
versions for use in profiling; in addition, Prism provides superior profiling
capabilities.

* CM-5 C* has a new -Wimplicit option. Specify this option to receive a
warning from the compiler if you call a function that has not been
previously declared or defined.

* CM-5 C* has a new -dirs option. Use this option to find out where the
compiler searches for binaries, libraries, include, and temporary files. It
produces output like this:

% a -S -dirs

C* driver [CM5 SPARC 7.1 Beta]

bin dir is /proj/cstar/release/7.1/beta/bin/

lib dir is /proj/cstar/release/7.1/beta/lib/
include_dir is /proj/cstar/release/7.1/beta/include
temp_dir is /usr/temp I

Version 7.1 Beta, February 1993

Copyright 0 1993 Thinking Machines Corporation

C* Release Notes 17

18 C* Release Notes

The binary search path is the "bin dir" directory specified in this
message, followed by your $PATH, followed by /bin, /usr/bin, and
/usr/local/bin.
The library search path is:

(1) Any directories you specified via the -L option

(2) The "lib dir" directory specified in the -dirs message

(3) Directories you specify via $LD_LIBRARYPATH

(4) /lib, /usr/lib, and /usr/local/lib

The include search path is:

(1) Any directories you specified via the -I option

(2) The "include dir" directory specified in the -dirs message

(3) /usr/include i

5.1 Compiling and Linking a
C* Program that Calls CM Fortran

Follow these steps to compile and link a program that calls CM Fortran
subroutines:

1. Compile the C* program, using the -c option. For example: b
% cs -cm5 -c testcs.cs

2. Compile the CM Fortran program, also using the -c option. For example:

% cf -cm5 -c testfcm.fcm

3. Issue cmf again to link, using one of these formats:

· For CM-5s with vector units:

% mf testos.o testfam.o -vu -Llib_dir -lcscm5_vu_ p

· For CM-5s without vector units:

% caf tstcs.o tstfcm.o -spare -Llibdir \
-los_cm5 _parc_sp

· For Sun-4s:

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

C* Relea; - ---------se Noes-19

% caf textcs.o te.tfcm.o -casim -Llib dir -cs cm5 cmaim

where lib_dir is the library directory listed by the -dirs option to the cs
command.

If your programs are compiled with -g or -cmdebug, you must also
specify -1prism5 (when linking for the CM-5) or -Iprism_sim (when
linking to run on a Sun-4) before -ics_cm5_xxx. For example:

% cmf testcs.o testfcm.o -LIib dir -prismS -lcs_c=5 vu sp

6 Executing

Execute a CM-5 C* program as you would execute any program on the CM-5:

* Log in to the partition manager and, at the UNIX prompt, type the name
of the executable program; or

* Submit the program as a batch request to NQS, as described in Section 4.3
of the C* User's Guide.

Ignore Section 4.2 of the C* User's Guide, since you don't have to explicitly
attach to a CM-5.

To execute a program compiled with the -cmim option, simply run it on a
Sun-4.

7 Debugging

The debugging functions described in Chapter 5 of the C* User's Guide do not
exist in CM-5 C*.

You can use the Prism programming environment with Cl-5 C* as of Prism
Version 1.2.

Version 7.1 Beta, February 1993

Copyright © 1993 Thinking Machines Corporation

I

C* Release Notes 19

' R N ---- s N --
Note these points in using Prism Version 1.2 with CM-5 C*: IF

When you visualize a pointer to a parallel object (for example, a parallel
variable or parallel structure), you obtain three pieces of information: k

* The CM memory address of the object being pointed to

* The address that represents the object's shape

* A memory stride that indicates how many bytes are between the
starting addresses of successive elements of the object on each
physical processor

Here are examples from a command-line Prism session:

(prism) whatis p
parallel int *p;

(prism) print p I
pp'foo'p - [addr-Oxa0000088; shape-x3c018; stride-4]
(prism) whatis
parallel struct foo *c;
(prism) print

pp'foo'c - [addr-OxaOOOOOOO; shape-Ox3cO18; stride-8]

* The Prism assign command cannot be used to change the values of
parallel variables. Assignment to simple parallel variables will be
available in the next Beta release of Prism Version 1.2.

8 1/0
8 1/0

CM-5 C* Version 7.1 provides synchronous parallel I/O support via an interface
to the CMFS functions. The interface is the same for CM-5s with and without I
vector units.

Other interfaces for I/O may exist in the future.

The CMFS I/O library is not available if you compile with the -cmsim option to
run on a Sun-4.

Note these points in using the current interface: b
* Users should not include <cm/paris. h> or <cm/cmtypes. h>.

Version 7.1 Beta, February 1993

Copyright © 1993 Thinking Machines Corporation

20 C* Release Notes

C* Release No-es 21

* Users must include <cm/cmfs.h> as they did on the CM-2.

* Link with -lccs - lcmfs m5, in that order.

* These calls are specific to the CM-2 and are not supported in the CM-5
CMFS library:

CMFS_cm_to_standard_byte_order
CMFS convertvaxtoieeefloat
CMFSconvertieeetovaxfloat
CMFS_partial_read_file_always
CMFS_partial_write_file_always
CMFS_transpose_always
CMFS_transpose_record_always
CMFS_file_geometry

CMFS_twuffle_to_serial_order_always_lL
CMFS_twuffle_from_serial_orderr_a always_l L

* There are C*-specific versions of CMFS_read_f ile always,
CMFS _read_file, CMFS _write_file_always, and
CMFS write_file. The declarations (from <cm/cmfs. h>) are:

overload CMFS_read_file, CMFS_read_file_always;
overload CMFS_write_file, CMFS_write_file_always;

int CMFS_read file (int fd, void:void *dest,
int bytes_per_position);

int CMFS_read_file_always (int fd, void:void *dest,

int bytes_per_position);
int CMFS writefile (int fd, void:void *dest,

int bytes_per_position);
int CMFS_write_filealways (int fd, void:void *dest,

int bytes_per_position);

These interfaces provide basic compatibility with CM-2 C* code that calls
CMFS.

The functions are called with pointers to parallel variables. A pointer to
a parallel variable of any type may be used. The specified length may be
any number of bytes, but performance is significantly diminished when
the length is not a multiple of four bytes. See below for a further
discussion of I/O performance.

* The lengths passed to and returned by these functions are always byte
lengths. For the C* interface, they indicate the number of bytes read or
written in each position of the parallel variable. Note that on the CM-2 the

Version 7.1 Beta, February 1993

Copyright © 1993 Thinking Machines Corporation

C* Release Notes 21

2IgIICReleaseNsN--

OCS_read _file and CFIS _ write_ file functions take bit lengths, .
and that in either case boolsizeof () should be used to specify the
length; this will make the program portable. L

* There is currently no difference between the regular and the "always"
versions of these functions. This is a temporary restriction. Users should
only use the "always" versions until this restriction is lifted. S

* Streaming and buffered I/O are not supported.

* You can use standard UNIX I/VO routines to do serial I/O on CMFS files if
the CMFS file system is NFS-mounted. See the CM-5 110 System
Programming Guide for more information.

* The total size of a file on a CMFS file system (that is, on the DataVault)
will always be rounded up to be a multiple of 512 bytes. i

* This interface does not work with files whose size is greater than or equal
to 2 gigabytes. I

* I/O performance may be significantly diminished if any of the following
is true:

* The size specified to the CMFS functions is not a multiple of 4
bytes.

· The total amount of data being read or written is not a multiple of b
16 bytes on the SDA, or 512 bytes on the DataVault.

* The file position is not on a 4-byte boundary.

· The parallel data passed to the CMFS function is an address that is
not on a 4-byte boundary (for example, when the pointer points to
a member of a parallel structure). I

* CM-5 C*'s implementation of CI'S_leek has changed. The routine now
seeks into a file the number of bytes you specify multiplied by the number /
of positions in the current shape. (In the previous implementation, it would
seek an absolute number of bytes into the file.) The routine
Q'Saerial_lseek seeks an absolute number of bytes into a file. 3

Version 7.1 Beta, February 1993
Copyright 0 1993 Thinking Machines Corporation

C* Release Notes22

.* .:%,: ese .s:3-:--:-
9 Documentation Errors

This section discusses known problems with the C* User's Guide and the C*
Programming Guide Version 6.0.2. Note that these are errors for the CM-200
version of C* as well.

9.1 Length Units for Communication Functions
Should Be bools, Not Bits

All grid communication functions, as well as the get and send functions, are
overloaded to operate on parallel data of any length.

The C* Programming Guide states that the length argument for these functions
is in terms of bits; actually, it's in terms of bools. (Note that this distinction
doesn't matter for CM-200 C*, because in that implementation a parallel bool
is 1 bit. In CM-5 C*, however, where a bool is 1 byte, it makes a difference.)

On page 158, the manual correctly gives an example for one of these functions
in which boolsizeof is used to determine the length. CM-200 C* programs that
use this technique to determine the length are portable to the CM-5; if the
program uses bits, however, you will have to recode it before it can be ported.

9.2 Arguments Reversed in memcpy, boolcpy Example

Page 6 of the C* User's Guide contains an example of the use of the functions
memcpy and boolcpy. The source and dest arguments are reversed in these
examples.

Version 7.1 Beta, February 1993
Copyright © 1993 Thinking Machines Corporation

C* Rielease Notes 23

24 C* Release Notes

9.3 The rank Function's Behavior with Scan Sets Is /
Incorrectly Documented

The documentation of the rank function on pages 199-202 of the C*
Programming Guide incorrectly explains the behavior of rank when used with
scan sets. i

The rank function operates somewhat differently from other functions when
you specify an sbit. The sbit restarts the ranking of values with the scan set, as
documented; however, it does not restart the values assigned to the ranks. For
example, if a scan set extends from position [4] through position [15], the ranks
assigned within this scan set are 4 through 15, rather than 0 through 11. 1

10 Porting CM-200 C* Programs to the CM-5 I

Most CM-200 C* programs should port without difficulty to the CM-5. You must
recompile and relink using the CM-5 C* compiler This list summarizes the
changes that you must make (when applicable) to ensure portability:

* Remove all Paris calls.

* Remove all calls to libraries not supported on the CM-5. b
* Remove all include files not supported on the CM-5 (for example,

<ca/paris .h>).

* If you express lengths in terms of bits in a function (for example, in the
overloaded versions of the grid communication functions or the get or
sand function), rewrite the code to express the size with boolsizeof I
and the appropriate parallel type.

* Change calls to allocate detailedshape to use the new format. b
* The CM-5 C* compiler disallows casts between scalar types and pointers

to parallel variables. If you call palloc () in a CM-200 C* program i

without including <stdlib. h> (which properly declares its return type)
and cast the result, the code won't compile on the CM-5. Thus, this code
won't work: h

Version 7.1 Beta, February 1993 h
Copyright C 1993 Thiniung Machines Corporation

C* RieleseNoe

/* No included stdlib.h file */

int:current *p - (int:current *)palloc(current,
boolsizeof(int:current));

Change it to this so that it will work in CM-5 C*:

#include <stdlib.h>

int:current *p - palloc(current,
boolsizeof(int:current));

i
I

IIiI

i
I

IIdI Version 7.1 Beta, February 1993

Copyright 1993 Thinking Machines Corporation

C* Release Notes 25

