
CM-5
User's Guide

Version 7.2, August 1993

i

MIT-LCS
Project SCOUT

By agreement with TMC,
photocopies of CM5 manuals

may be used by Project SCOUT
participants.

This copy is restricted to use
by project participants

_ ��

CI~~~~FMUGA111

I

First printing, August 1993

The information in this document is subject to change without notice and should not be construed as a

commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any

product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines

Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability

arising from the application or use of any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.

CMosr, CMAX, and Prism are trademarks of Thinking Machines Corporation.

CO is a registered trademark of Thinking Machines Corporation.

Paris, 'Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.

Thinking Machines® is a registered trademark of Thinking Machines Corporation.

AVS is a trademark of Advanced Visualization Systems, Inc.
Motif is a trademark of Open Software Foundation, Inc.
SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142 -1264
(617) 234-1000

Contents

About This Manual .. vii

Customer Support ... ix

Chapter 1 Introduction .. 1

1.1 Parallel Progranlming on the CM-5 1

1.2 The SPMD Programming Model 2

1.2.1 Data Parallel Programming 2

1.2.2 Message-Passing Programming 3

1.3 Scalable Computing ... 4

1.4 CM-5 Hardware . .. 4

1.4.1 Processors .. 5

1.4.2 Vector Units .. 5

1.4.3 Networks ... 5

1.5 CM-5 Software ... 6

1.5.1 Data Parallel Software 6

1.5.2 Message-Passing Software 7

1.5.3 Assemblers .. 7

1.5.4 CMAX ... 8

1.5.5 The C(MOST Timeshared Operating System 8

1.5.6 Prism Programming Environment 8

1.6 I/O on the CM-5 .. 9

1.6.1 Hardware ... 9

1.6.2 Software .. 9

Chapter 2 The Basics ... 11

2.1 The User's View of the CM-5 12

2.2 Gaining Access ... 13

2.2.1 The rlogin Command 13
2.2.2 The sah Command 14

2.3 Writing and Compiling Your Program 14

2.3.1 Linkig ... 15

2.4 Executing Your Program ... 15

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation iii

ivr-- 9lr-1 CM- UserrGud

2.4.1 Providing Accounting Information

2.4.2 Executing in Batch Mode

The UNIX Batch Commands

The NQS Batch System

DJM (Distributed Job Manager)

2.5 Debugging Your Program ..

2.5.1 The Errors File and Core Files

2.5.2 Fortran Tracebacks

2.6 TEming a Program ..

2.7 Getting Information ...

2.7.1 Finding Out about the CM-S's Configuration

2.7.2 Finding Out about the Status of the System

2.7.3 Finding Out about the Status of NQS

2.7.4 Finding Out about the Status of DJM

2.8 Obtaining On-Line Documentation

r 3 Using Prism

3.1 Starting Prism....

3.2 A Tour of Prism ..

3.3 Executing a Program ...

3.3.1 Interrupting, Continuing, and Single-Stepping

3.4 Debugging a Program ...

3.4.1 Setting a Simple Breakpoint

3.4.2 Using Commands

3.4.3 Using the Event Table

3.4.4 Displaying and Moving through the Call Stack

3.5 Visualizing Data

3.5.1 Other Representations

3.5.2 Other Methods of Choosing the Data to Visulize

3.6 Obtaining Performance Data

3.6.1 Collecting Performance Data

3.6.2 Displaying Performance Data

3.6.3 Other Performance Analysis Features

3.7 Getting Help
3.7.1 Other Help Features

3.8 Customizing Prism ..

3.9 Leaving Prism ...

Versin 7.Z2 AuSa 1993

Copyrigs 1993 Tinkg Machina Corporation

Chapte

15

16

16

16

17

18

18

20

20

21

21

22

24

25

26

27

27

28

30

31

32

32

33

33

34

35

37

38

39

40

40

42

42
44

45

45

iv CM-5 User Gide

Contents v

3.10 Commands-Only Prism .. 46

3.11 Using Prism with CMAX ... 46

Chapter 4 CM-5 Languages and Libraries 47

4.1 CM Fortran ... 47
4.1.1 Programming Models 48
4.1.2 Intrinsic Functions 49
4.1.3 Utility Library ... 49
4.1.4 Development and Monitoring Facilities 49
4.1.5 Documentation Provided 49

4.2 C* ... 50
4.2.1 Documentation Provided 51

4.3 CM Scientific Software Library 52
4.3.1 Linear Algebra 52
4.3.2 FF's 53
4.3.3 Ordinary Differential Equations 53
4.3.4 Linear Programming 53
4.3.5 Random Number Generation 53
4.3.6 Statistical Analysis 54
4.3.7 Communication Functions 54

4.4 Visualization Programming 54
4.4.1 A Distributed Graphics Strategy 54
4.4.2 An Integrated Environment 55
4.4.3 The CMAVS Visualization Environment 55

Documentation Provided 56
4.4.4 Vmsalization Programming with CMXll 56

Creating and Controlling a Display 56
.Rendering Your Data 57

'Graphics Programming 57
Documentation Provided 57

4.5 Message Passing with CMMD 58
4.5.1 Programming Models 58

4.5.2 Cooperative Processing and Asynchronous Processing 58
4.5.3 Remote Memory Access and Active Messages 59
4.5.4 CMMD I/O ... 59
4.5.5 Supporting Utilities 60
4.5.6 Documentation Provided 60

4.6 The CMAX Converter ... 60
4.6.1 Documentation Provided 63

Version 7.Z2, August 1993
Copyright 0 1993 Thinking Machines Corporation

~~$lll~~g*3[P(I(III~~~~L~Bgi~~I W 111111 III , I I1111' w 11- I --------- --------- -- __ l

........... CM-S..."'I· -UserII~· U-I ud

4.7 Assembly Language

4.7.1 Documentation Provided

63

63

Appendix A Moving from the CM-2 to the CM-5 65

A.1 Updating the Program .. 65
A.1.1 CM Fortran .. 65

A.1.2 C* 66

A.2 Compiling and Linng .. 67

A.2.1 CM Fortran .. 67

A.2.2 C* 67

A.3 Executing .. 67

A.4 *Lisp .. 68

Appendix B A Sample CM Fortran Program

Appendix C Glossary

Index ...

69

71

77

Version 7.Z2, Augst 1993

Copyright C) 1993 Thinking MachiWS Corporation

vi CCf-5 User S Guide

About This Manual
- -- --- -- -- - -- -- -- --- -- -- -- - -.-

Objectives of This Manual

This manual is an introduction to using the Connection Machine CM-5
supercomputer. It describes the hardware and software that make up the system,
and gives an overview of the commands and tools available to help you develop
and run CM-5 programs.

Intended Audience

This manual is intended for people who want to write programs for and run
programs on the CM-5 system. We assume that you have some familiarity with
the UNIX operating system.

Revision Information

This is a new manual.

Organization of This Manual

Chapter 1 is an introduction to the CM-5.

Chapter 2 describes the basics of using the CM-5.

Chapter 3 describes how to use Prism, the CM-5's programming
environment.

Chapter 4 is an overview of the CM-S's languages, libraries, and related
software.

Appendix A covers some of the issues involved in porting programs from a
CM-2 or CM-200 system to the CM-5.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation vii

vii CM-S User_~_~ ~~~~__.~. Guid...~..~,;~~~,_ l...._C . ssr*··l ---I-~~e

Appendix B provides the source code for the sample program primes. fcm.

Appendix C is a glossary of UNIX and CM-5 terms used in the manual.

Related Documents

For in-depth information about the design of the CM-5, consult the CM-5
Technical Summary. Consult the other volumes of the CM-5 documentation set
to learn more about may of the topics discussed in this manual.

See your Sun documentation for information about the UNIX operating system.

Notation Conventions

The table below displays the notation conventions used in this manual:

Meaning

UNIX and CMOST commands, command options,
and file names.

Combinations of keystrokes are shown with a
connecting hyphen. To type the t r 1 - d
combination, for example, press the d key while
holding down the Control key.

Parameter names and placeholders in function and
command formats.

typewriter

% bold typewriter
typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter font and system output is
shown in regular typewriter font.

Version 7.2, August 1993

Copyright C) 1993 Thinking Machines Corporation

Convention

boldface

Ctrl-d

italics

CM-5 User f Guideviii

Customer Support

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-support@think.com

ames! think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version Z7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation ix

Chapter 1

Introduction

The Connection Machine CM-5 supercomputer combines high performance and
ease of use for programmers working on large, complex, data-intensive
applications.

This chapter begins by describing parallel programming on the CM-5, and then

presents an overview of the CM-S's hardware, software, and I/O. For a more in-

depth discussion of these topics, see the CM-5 Technical Summary.

1.1 Parallel Programming on the CM-5

The Connection Machine CM-5 supercomputer offers users high performance
through a complete range of parallel processing approaches. The CM-5 supports
both data parallel programming and message-passing programming:

' The CM's data parallel compilers (CM Fortran, C*, *Lisp) present the user

with a global address space and a single thread of control.

" The CMMD communications library, callable from Fortran 77, C, and C++

(as well as from CM Fortran and C*) provides fast communication
between independent tasks (or threads of control).

* Both models utilize the rapid synchronization and low-latency commu-

nication capability of the CM-5.

In the past, programmers of supercomputers were forced to choose between these
two models. The CM-5, however, supports both; in fact, data parallel programs

Version 7.2, August 1993

Copyright O 1993 7Thinking Machines Corporation

2 l ...1 C- Usr[G.d el '

and message-passing programs can run simultaneously, under timesharing, on a
single partition of a Ch-5.

1.2 The SPMD Programming Model

It is sometimes said that virtually all successful parallel programs in existence
today are written in the SPMD (Single Program, Multiple Data) style of program-

ming: a style in which a single program runs on a multi-processor system, with
each processor acting on its share of the program's multiple data items.

Both data parallel programming and message-passing programming on the CM-5
use the SPMD model. The differences are:

• whether your program takes primarily a global view or a local view of the

system

* the mechanisms by which the actions of the CM-5's processing nodes are

coordinated

1.2.1 Data Parallel Programming

Data parallel programs take a global view of the system. A single program
executes on the control processor. This program controls all the processing
nodes, requesting synchronized computation, communication, and I/0 as needed.

These programs are written in the CM's data parallel languages, such as CM For-
tran or C*, using the data parallel compilers and run-time system to control data
layout and inter-processor communication and synchronization. They also make

use of the CM's specialized parallel library routines and I/O functionality.

With data parallel programming, the programming nodes work in synchrony. For

example, let's consider a finite difference code that needs to perform one opera-

tion on its boundary elements and another on interior elements. Code written to
deal with this case in a data parallel language would look something like:

where (boundary_elements)

do a

elsewhere
do b

end where

Version 7.Z2, August 1993

Copyright © 1993 Thinking Machines Corporation

CM-5 User a Guide2

Chapter 1. Introduction 3

On a CM-5, both branches can execute simultaneously. That is, each processor

decides, for each data element, whether to fetch and execute the instructions for

the where branch or for the elsewhere branch. All processors synchronize at
the beginning and end of the where block; but within the block, each computes
asynchronously with respect to the others. Most important, the synchronization

is still automatic, under control of the system software, and presents no problem
to the programmer.

This single flow of control, so similar to that of a standard "serial" program,
makes data parallel programs the easiest of parallel programs to debug, and helps
account for the popularity of this programming style.

For more information on data parallel programming, we recommend that you
consult the documentation for CM Fortran or C*.

1.2.2 Message-Passing Programming

Message-passing programs take a node-level view of the system. Again, a single

program executes; but in this programming style, a separate copy of the program
executes independently on each node. The nodes divide tasks and data among

themselves according to the needs of the application; they may stay closely syn-
chronized or become completely asynchronous. All communications and
synchronization, as well as data layout, are under the application's explicit
control.

The message-passing programming style is most useful when an application
requires the dynamic allocation of tasks or data. Such applications typically use
a class of algorithms known as node-expansion algorithms: examples are divide
and conquer algorithms, branch and bound algorithms, asymmetric traveling
salesman problems, and tree search problems.

On the CM-5, message-passing programs use the CM's communications library,

CMMD. CMMD functions can be called from C, C++, Fortran 77, CM Fortran,

or C*; the ability to use standard high-level languages is appreciated by users

who have existing programs that they wish to port to a parallel supercomputer.

Won 7Z2, August 1993
Copyright © 1993 Thinking Machines Corporation

4 CM-S User's Guide-~.x~

1.3 Scalable Computing

The ability to choose among programming models is an important feature of the
CM-5, since it lets users choose the technique that is best, not only for their
application, but for each part of their application. Also important is the Connec-
tion Machine's support for Scalable Computing, and its provision of tools geared
specifically to the needs of its users, such as the Prism programming environ-
ment and the CMAX Fortran 77-to-CM Fortran translator.

Connection Machine data parallel programming has always been inherently scal-
able. Because the CM's data parallel software lays out data arrays at run time, a
single program can run on any size Connection Machine, with computation and
communication patterns optimized for machine size. Now, the CM-5 allows mes-
sage passing to be scalable as well.

1.4 CM-5 Hardware

The architecture of the CM-5 is optimized for data parallel processing of large,
complex problems. Figure 1 shows this architecture.

Figure 1. Organization of the CM-5.

Version 7.2, August 1993
Copyright c) 1993 Thinking Machines Corporation

Large numbers of proce
each with Its own memo

logins, /0O, and
administration

I - - -

- - -
-

4 CM-5 User 's Guide

Ul...:·

interfaces
and devices

Graphics
outwu

Chlua~lcper 1. Introduction 5-·- -- ·-

1.4.1 Processors

A CM-5 has many parallel processing nodes, each with its own memory. Nodes
can fetch from the same address in their memories to execute the same instruc-
tion, or from individually chosen addresses to execute independent instructions.

These processing nodes are supervised by a control processor. The system
administrator can divide the nodes into groups, known as partitions. There is a
separate control processor, known as a partition manager, for each partition.
Each user process executes on a single partition, but can exchange data with pro-
cesses on other partitions.

Control processors that don't manage partitions manage the system's !/O devices
and interfaces. This organization allows a process on any partition to gain access
to any I/O device, and ensures that access to one device does not impede access
to other devices.

1.4.2 Vector Units

The CM-5 can optionally contain high-performance arithmetic hardware, known
as vector units. These vector units use wide data paths, deep pipelines, and large
register files to improve peak computational performance. Users who have
CM-5s with vector units typically compile their programs for, and run their pro-
grams on, the vector units.

1.4.3 Networks

Every control processor and parallel processing node in the CM-5 is connected
to two communication networks, the Data Network and the Control Network.

Wh%' Y · .

in general, the Control Network is used for operations that involve all tie noaes
at once, such as synchronization operations and broadcasting. The Data Network
is used for bulk data transfers where each item has a single source and
destination.

A third network, the Diagnostics Network, is visible only to the system adminis-
rator, it keeps tabs on the physical well-being of the system.

External networks, such as Ethernet and FDDI, can also be connected to a CM-S
via the control processors.

Aug=, 1993
) 1993 Ihbindng Machines Corporation

Chapter . Introduction 5

-6 M -- S Usr' Guide---------

1.5 CM-5 Software

As suggested above, the Connection Machine CM-5 provides software to support
both data parallel and message-passing programs. Figure 2 diagrams the current
CM-5 software offerings.

Data Parallel Code Message-Passing Code

)P.--3~

CMF, C* C++

CM/AVS
CMX11 CMSSL

CMMD

RTS

pndbx

CMAX

Figure 2. CM-5 software.

1.5.1 Data Parallel Software

* The CM-5 currently offers three high-level languages for data parallel pro-
gramming: CM Fortran, C*, and *Lisp. These languages are nearly
identical to their CM-200 counterparts. A few implementation-specific dif-
ferences exist: these are detailed in Section 4.1 for CM Fortran and
Section 4.2 for C*. Readers interested in *Lisp should consult the docu-
ment Porting to CM-5 *Lisp.

* Data parallel libraries include CMSSL (the CM Scientific Software
Library) and CMX1I (a visualization library that provides parallel exten-
sions to the Xll standard). Section 4.3 briefly introduces CMSSL; Section
4.4.4 introduces CMX11.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Prism

CMAX

User Applications

CMosT

CM Hardware

6 CM-5 User 's Guide

Chapter 1. Introduction 7

CM/AVS is a Graphical User Interface for visualization that links the com-
puting power of the CM-5 with the convenience of a specialized graphics
workstation. It is described in Section 4.4.3.

1.5.2 Message-Passing Software

Message-passing programs on the CM-5 can be written in C, C++, Fortran 77,
CM Fortran, or C*. They are supported by a message-passing library, CMMD.
This library and its associated support utilities in the operating system are sum-
marized in Section 4.5.

1.5.3 Assemblers

The assembly language for the CM-5 is DPEAC; its assembler is dpas. The CM
Fortran and C* compilers compile programs into DPEAC code.

The DPEAC language is a superset of the SPARC as assembly language. Sun's
C, C++, and Fortran 77 compilers compile programs into as.

On a CM-5, as statements can control the SPARC microprocessors in the nodes
and in the partition manager; DPEAC statements can control both the SPARC and
the vector units.

The dpas assembler reads DPEAC sources and outputs UNIX object (.o) files.
It does this by preprocessing its source, translating the DPEAC-specific state-
ments into SPARC assembly source, and running the resulting text through the as
assembler. Any SPARC assembly statements are passed unchanged to the as
assembler.

Because the dpas assembler contains an excellent preprocessor for both as and
DPEAC statements, it is sometimes very useful as a preprocessor for an as
program.

For full information on DPEAC and dpas, see the DPEAC Reference Manual.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

I

-

r

8 CM-5 User 's Guide

1.5.4 CMAX

CMAX - the "CM Automated X-lator" - assists the conversion of standard
Fortran 77 into CM Fortran. CMAX provides a convenient migration path for
serial programs onto the CM-5. Software may be maintained in either Fortran 77
or CM Fortran. CMAX is described in Section 4.6.

1.5.5 The CMOST Timeshared Operating System

The CM-5 operating system, CMosT, is an enhanced version of the UNIX operat-
ing system. As such, it enables the CM-5 to interact efficiently with other devices
in a heterogeneous, networked computing environment, while at the same time
managing the interactions of CM-5 system components and managing the time-
shared execution of multiple parallel programs.

As a resource on a heterogeneous computing network, CMOST provides:

· standard UNIX utilities, user interfaces, protection, and security

· support for all standard UNIX-based communications protocols

· the ability to access files and exchange data with other systems

As a resource within the CM-5 system, CMOST provides:

* fast interprocessor communications

* the parallel operations required for best utilization of processing hardware,
especially the array of processing nodes

* central administration and resource management to support all CM-5 com-

putation and I/O facilities

* timeshared execution of parallel programs

1.5.6 Prism Programming Environment

Prism is a programming environment that integrates debugging, profiling, and
other useful tools in a convenient windowed environment. A graphical interface
is available from terminals and workstations that are running the X Window Sys-
tem. A command interface is available from other terminals. Although designed

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Chapte-... r 1 . ~ :.----- Inroduction. 9...........

primarily for use with data parallel programs, Prism can also be useful for other
program development. Prism is described in Chapter 3.

1.6 1/0 on the CM-5

1.6.1 Hardware

The CM-5 supports a wide range of I/O devices, including:

* Scalable Disk Array (SDA). The SDA is an extremely high-performance,
highly expandable disk storage system packaged within the CM-5
cabinetry.

* CM HII'PI interfaces. CM-HIPPI and CMS-HIPPI are bus interface control-
lers that are designed to transfer data at a high speed according to the ANSI
HIPPI draft standard. The interfaces are primarily intended to link the
CM-5 and its storage devices to other supercomputer systems.

* CM-2/200 I/O devices. For application portability, the family of CM-2 and
CM-200 peripherals continues to be supported on the CM-5. These devices

reside on Thinking Machines' proprietary CMIO bus, which is connected
to the Data Network. These peripherals are:

* DataVault, a high-performance, disk-based mass storage system

· CM-IOPG, an YO controller that provides four ports for connection
to SCSI-based devices, such as cartridge tape drives

1.6.2 Software

CM-5 software supports three file systems:

* SFS, the Scalable File System, provides access to the CM-5's high-perfor-

mance Scalable Disk Array (SDA).

* CMFS, the Connection Machine File System, provides access to all I/O
devices that are shared by the CM-5, CM-2, and CM-200. These devices

(sometimes called the CMIO-bus devices) include the DataVault mass stor-
age system, the CM-HIPPI, and VME-based devices.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter . Introduction 9

I0 CM- I C~.r-----rry--.---------YY··Y·-.~YYII--. · ··YI~ -S1I~C·l Use r' uide-

* The standard NFS-mounted UNIX file system.

The CM Fortran Utility Library, C* 1/O procedures, and CMMD V1/ routines

allow applications to access disk files in any of these file systems. These proce-
dures allow applications to open, close, truncate, and seek within files. They also

allow applications to read and write data in parallel streams between the proces-
sing nodes and the SDA or DataVault.

In addition, UNIX files can often be accessed by standard UNIX commands,
while special CMFS library procedures enable you to manipulate files stored on
devices accessible via VME or CM-HIPPI.

This flexibility in file access, together with the fact that the CM-5 writes files in

canonical UNIX order, allows the CM-5 to share data with other machines in a
heterogeneous environment.

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

10 CM-5 User Gide

Chapter 2

The Basics

This chapter covers the basic procedures you need to know in order to create,
compile, execute, and debug programs on the CM-5. If you have used the UNIX
operating system, much of what is covered in this chapter will be familiar to you.
If you are not familiar with UNIX, you should begin by reading an introductory
book about the operating system.

All the procedures discussed in this chapter can be carried out from within Prism,
the CM-5's programming environment; Chapter 3 describes Prism.

Your CM-5 should have sample programs you can use, if you want to try running
a program on the computer before writing one yourself. Typically, these pro-
grams should be in the directory /usr/examplee; if this directory does not
exist, check with your system administrator for the location of sample programs
on your system.

In this guide, we refer to a program called primes, which is a simple data paral-
lel CM Fortran program for calculating and displaying prime numbers. By
default, this program, along with its source code, is in the directory /ur/exam-
ples/prism on a partition manager. Check with your system administrator if
it isn't there. We provide the source code in Appendix B, in case you can't find
it on-line.

We suggest that you copy the source file, primes . f cm, to your home directory,
from which you can compile it and use it within Prism, following the directions
we provide in this chapter.

Version 7.2. Auust 1993 11

Copyright C 1993 Thinking Machines Corporation

.
.. J !. .

12 CM-S User's~ GuideC-~uarrrpafflp~nua~err----.I-

2.1 The User's View of the CM-5

As we mentioned in Chapter 1, a CM-5 has one or more partition managers, each
of which controls some number of parallel processing nodes. These partitions
operate independently of each other, although data can be passed back and forth
between partitions. Your system administrator determines the exact configura-
tion of your site's CM-5.

Each partition manager is a host on a network You can log in to a partition man-
ager over the network to gain access to the nodes that the partition manager
controls, as well as to all the CM-5's 1/0 devices. Your system administrator can

determine which users can log in to a given partition manager.

In Figure 3, the CM-5 has two partition managers, named Mars and Venus; each

is currently managing a partition of 256 nodes; this CM-5 has the optional vector-
unit hardware, so each partition can also be viewed as containing 1024 vector
units. The system also has control processors managing some /O peripherals,
and another control processor that is dedicated as a system console.

Figure 3. A sample CM-5 system.

You execute your program from the partition manager. The partition manager
downloads code to the processors and broadcasts identical memory maps to each
processor (node or vector unit). The processors then execute the code, each act-
ing on its own data and executing computations and branches accordingly.

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

" Partition #1 (Mars)

D:" Partition #2 (Venus)

,3 Interprocessor communications networks

- ·----------------------- --- - --------------

CM-5 User ~ Guide12

Chaptr 2iiiiiTaiZ-iZiiiciiiiii-iiiiZ. -¥ 13- -i--T __----.....

Multiple users can be logged in to a partition manager at the same time, running
processes under timesharing. You can also issue commands over the network to
submit your program to a batch queue for execution.

2.2 Gaining Access

To gain access to a partition manager, you must know its name. Find out the
names of partition managers from your system administrator. The system admin-
istrator can also tell you if you have permission to use the partition manager.

From your terminal or workstation on the network, you can gain access to the
partition manager via the UNIX command rlogin or rsh.

2.2.1 The rlogin Command

Use the riogin command to log in to a partition manager remotely across the
network. To log in to the partition manager Mars, for example, issue the com-
mand:

% rlogin mars

You will then see messages from the partition manager; it will also ask you to
confirm your terminal type. For example,

term (xterm)

asks if you are using an X terminal. If the terminal type is correct, simply press
your Return key. If it isn't, enter the correct terminal type and press Return.
(If you don't know your terminal type, ask your system administrator for help.)

You should then see the UNIX/CMOST prompt:

You are now logged in to the partition manager. You can issue any CMOST com-

mand and execute programs. For example,

% primes

executes the program primes.

Version 7.2, August 1993

Copyright @ 1993 Thinking Machines Corporation

Ctapte 2 The Basics 13

14
~lul~uaw~aaoP~aoP~oumr~-WIY~pCM-S User ---- G-ide

To log out of the partition manager, issue the command

% logout

2.2.2 The rsh Command

Use the rsh command to execute a program or issue a CMOST command without
logging in to the partition manager. The rsh command creates a "remote shell"
on the partition manager. Simply specify the name of the partition manager, fol-
lowed by the command or program name, on the rsh command line. For
example,

% rsh mars primes

executes the program primes on Mars.

After the program executes, you are returned to your local UNIX shell.

2.3 Writing and Compiling Your Program

You can create your program as you normally do, on your local computer.

If you are creating a C* or CM Fortran program, you can compile it on the parti-
tion manager, or on any computer that has CMOST and the C* or CM Fortran
compiler installed. To compile the primes program from the source file
primes. fcm, for example, issue this command:

% cmf -cm5 -o primes primes.fcm

If you are creating a C or Fortran 77 program, you can also compile it on the
partition manager, or on any computer that has a cc or f 77 compiler.

Generally it's a good idea not to compile on the partition manager (if you have
a choice), to avoid overloading it.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

CM-5 User a Guide

Chapte . he Basics 511. 11 i~1 I I

2.3.1 Linking

A CM-5 executable program actually consists of two programs, one that executes
on the partition manager and the other that executes on the CM processors.
CMOST uses a special linker, cmld, to create this executable program. If you are
developing your program in a high-level language, you typically don't need to
deal with cmld. You would use it if, for example, you were creating a C* pro-
gram that calls CM Fortran subroutines.

2.4 Executing Your Program

As shown above, you execute your program as you normally would on a UNIX
system: you specify the name of the executable program at the UNIX prompt, or
as an argument to the rsh command. The program then runs under timesharing
on the CM-5.

2.4.1 Providing Accounting Information

On some CM-5 systems, users are required to provide an account ID when run-
ning a program, so that time on the system can be charged to the correct project.
Obtain the account ID from your system administrator. You then specify this
account ID before running a program by setting the UNIX environment variable
CM_ACCOUNT_ID to your number. For example:

% setenv CM ACCONTID 1234

To avoid having to reissue this command constantly, you can put it in your

. cshrc file, so that it is executed automatically when you log in or issue an rsh
command.

Note that this mechanism doesn't work if you are executing in batch mode; see
below.

Version 7.2, August 1993
Copyright D 1993 7hinking Machines Corporation

Chapter 2. The Basics 15

16 CM- User...---'s1 gp -ide "

2.4.2 Executing In Batch Mode

You can also run your program in batch mode. You can use either the standard
UNIX batch command, the NQS batch system, or (if it is available at your site)
the Distributed Job Manager (DJM).

The UNIX Batch Commands

The CM-5 supports the standard UNIX batch commands at and batch. For
example,

% at 0815am Jan 24
at> primes

at> Ctrl-d

This causes the program primes to be executed at 8:15 a.m. on January 24th.
Ctrl-d means "press the d key while holding down the Control key." This is the
way to signal the end of information you are providing to the standard input.

The NQS Batch System

NQS is a batch system that your system administrator can set up to control the
execution of programs on the CM-5. In it, you submit a request to a queue, which
either runs on a partition manager or feeds requests to a queue on a partition
manager. A request consists of one or more programs. When your request
reaches the bead of the queue, it is executed. Queues can be configured in various

ways: for example, so that they are active only at certain times, or so that they
accept requests only from certain users. A partition manager can be set up so that
it accepts requests only from NQS queues, or so that requests from the queue
timeshare with other processes running on the partition.

Use the qsub command to submit a request to a queue. Specify the name of the
queue on the command line, using the - option. You can specify the name of
the program from the standard input, as with the at command. For example, if
the queue's name is b_queue, you could type this:

% qsub --q b_queue
primes
Ctrl-d

Alternatively, you can put the program's name in a script file. This is especially
useful if you have multiple programs to run, or you have CMOST commands you

Version 7.2, August 1993
Copyright 1993 Thinking Machines Corporation

16 CM-5 User S Guide

Chapter2.The--..--..--B.....-I---1m m u m m~~~~~~~~~~m u~~~~~m m~~~~~------u-------m---

want to issue along with the program. If the script file's name is /myname/
primes_script, you would issue the command as follows:

% qsub -q b_queue /myname/primes_script

Use the -I option to specify your account ID, if one is required; obtain the
account ID from your system administrator.

To find out how to obtain status information from NQS, see Section 2.7.3. For
a complete discussion of NQS, see the manual NQSfor the CM-5.

DJM (Distributed Job Manager)

DJM (Distributed Job Manager) is a batch queuing system and interactive job
manager available on some CM-Ss. It is similar to NQS: you submit a request to
a queue for execution, and queues can be configured in various ways. Check with
your system administrator to find out if DJM is available at your site.

NOTE: If DJM is running at your site, you should typically use it to run your CM-5
programs. Otherwise, you might have difficulty obtaining the resources to run
your program.

Use the J sub or j run command to submit a job. You can specify the name of
the program from the standard input, or in a script file. For example, if the script
file's name is /myname/primes_script, you would issue the command as
follows:

% sub /myname/primes_script

If you don't include the appropriate options (see below), DIM then responds by asking

questions about the job:

Number of processors (32)?

Estimated CPU time (5min)?
Estimated memory (128M)?

(The defaults in parentheses may differ at your site.)

Make your best estimates of the resources your job will need to run. If your esti-
mates are too low, DJM will not effectively schedule your job; if they are too
high, the job may be delayed unnecessarily, waiting for the resources to be avail-
able. The actual resources consumed by your job are printed at the end of the
output file when the job finishes. You can use this information to provide better
resource estimates the next time you run your job.

Version Z2, August 1993
Copyright O 1993 Thinking Machines Corporation

Chapter Z. The Basics 17

1... C-M- ser'... Gd-_e__-

When you have answered DJM's questions, it prints a job ID:

Job submitted successfully. Job id is 43.

Output from the job is written to the file myjob. onnn, where myjob is the name
of the program that ran and nnn is its job ID. You can override this by specifying
the -stdout option; this sends output to the standard output.

Use the -queue option to specify the queue to which the job is to be submitted.
If you omit the option, DJM submits the job to the first queue that meets the
requirements for your job. You can also use the -nproc, -cputime, and -mem
options to specify your job's resources on the command line, rather than having
to respond to DJM's questions.

To fmd out how to obtain status information from DJIM, see Section 2.7.4. For
complete information on DJM, see your local DJM documentation.

2.5 Debugging Your Program

The standard way of debugging a data parallel program on the CM-5 is to use

Prism, as described in Chapter 3. Prism supports the CM Fortran, C*, C, and

Fortran 77 languages.

Debugging of messsage-passing programs is different from conventional debug-
ging, since you may need to look at the status of the program in a specific node,
or group of nodes. To debug the node program, you can use the CM-5 node-level

debugger pndbx, which you can run in conjunction with Prism or with a debug-
ger like dbx or gdb.

2.5.1 The Errors File and Core Files

Certain errors can cause cores for some of the nodes to be dumped and an errors
file to be generated. For example:

· a segmentation fault on the nodes

· a bus error on the nodes

* division by on the nodes

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

CM-5 User 's Guide18

Chapter.2. The Basi-- 19----- __ ----- ...

These in turn can be caused by programming errors. For example, here are some
C* errors that can cause core to be dumped:

* dereferencing a bad parallel pointer

* using an invalid send address

· doing out-of-bounds array referencing of parallel variables

· using an invalid parallel coordinate

Problems of this sort are generally signaled by an obscure CMOST mes-
sage - for example:

CMOST: yellow interrupt

The errors file is called CMTSD_errors .pid, where pid is the process ID of the
process you were running; it is located in the directory from which you executed
your program. The file is generated by the timesharing daemon when a user pro-
gram crashes; it contains a list of the status of each node (and of the partition
manager, if an error was detected there). The file will tell you which nodes
crashed, and give you some information about the crash, such as what memory
address the node was trying to reference, whether it died because of a segmenta-
tion fault, and so on.

If your program was using the CM-5's vector units, additional error files are
created in the directory from which you ran the program. They are called
CMTSDdp .pnX.pid, where X is the node identifier and pid is the process ID.
These files contains an ASCII dump of the contents of every register on the vector
units, for every node that has a different error.

The core files are named CMTSD_corepnX.pid, where X is the node identifier-
and pid is the process ID; they are located in the directory from which you
executed your program. You may also see a regular core file for the partition
manager executable program.

To avoid wasting space, only unique cores are dumped. That is, if several nodes
have the same error, only the core for the first node with that type of error is
dumped. Also, the first node with no error (if there is such a node) will dump
core.

You can examine these node core files using pndbx, the CM-5's node-level
debugger. For information on how to do this, see the CMMD User s Guide.

If you don't want node core files generated, set the environment variable
CM_NO_PNCORE (if you are running the C shell) to any value. For example:

Version 7.2, August 1993
Copyright () 1993 Thinking Machines Corporation

-
-

Chapter Z, The Basics 19

20..... IC- Userllr !r G/d............. -

% setenv CM NO_PN CORE 1

You can also issue this command:

% limit coredumpsize 0

Issuing this command prevents the creation of core files from any program,
whether or not it runs on the CM-5.

To re-enable the generation of CM-5 core files, unset the environment variable:

% unsetenv CM NO_PNCORE

2.5.2 Fortran Tracebacks

When a Fortran or CM Fortran program dies, it may generate a traceback. The
traceback file will be called prog. trace, where prog is the name of your pro-
gram. If there are multiple tracebacks in the file (because the program crashed
multiple times), the last traceback is the most recent; it tells you the routine that
was executing on the partition manager when the program died.

Note, however, that the information may not be especially valuable, since the
partition manager is not necessarily synchronized with the nodes. For example,
the partition manager may continue working for a while before an error status
from the nodes is propagated to it and the program halts. Therefore, the routine

or instruction that is executing on the partition manager when the nodes die may
have nothing to do with the error.

2.6 Timing a Program

CMOST provides a timing utility that lets you determine how much time any part
of a program takes to execute on the nodes. The timer consists of a set of instruc-
tions that you insert at the appropriate places in your program.

Prism also provides performance data about your program. See Chapter 3.

The timing utility has these features:

It can be used in C* or CM Fortran programs.

Version 7.2, August 1993
Copyright) 1993 Thinking Machines Corporation

CM-5 User Guide20

Cha7ZYpZterZ~Zl;_. 2Teasc 2.......------------_---

* A timer calculates total elapsed time used by the process (or any part of
it) and the total amount of time the CM processors are active, with micro-
second precision.

* Multiple timers can be active at the same time.

* Timers can be nested. This allows you, for example, to start one timer that
will time the entire program, while using other timers to determine how
different parts of the program contribute to the overall time.

* You can have up to 64 timers running in a program.

To get timings for the primes program, you would include these calls at the
appropriate places in the code:

CALL CM TIMER CLEAR(O) ! Initialize timer 0

CALL CM TIMER START(O) ! Start timer 0

CALL CM TIMER_STOP(O) ! Stop the timer

CALL CM TIMER PRINT(O) ! Print the results

For complete information on using the timing utility from CM Fortran or C*, see
the user's guides for those languages.

CMMD provides comparable functions for use within message-passing pro-
grams. See the CMMD User a Guide for more information.

2.7 Getting Information

CMOST provides commands you can use to find out information about the CM-5
and processes running on it. It is especially important to be able to get informa-
tion about the CM-S's configuration, since the system administrator can easily
reconfigure it to add or remove partition managers, change the number of nodes
in a partition, and so on.

2.7.1 Finding Out about the CM-5's Configuration

To find out the general configuration of a CM-5, log in to a partition manager and
issue the command cmpartition:

% cmpartition

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter Z 77te Basics 21

2CM-S.U r..e.. ' _ IIHIF
The output might look like this:

Name

mars

venus

Partition Manager
mars.think.com

venus.think.com

Size

128

128

State

ACTIVE

ACTIVE

This describes a CM-5 system with two partition managers, Mars and Venus, each
of which controls 128 nodes.

For more complete information, use the list -1 option:

% cmpatition list -1

CM System G1
256 Processors

2 Partition Managers
mars.think.com

venus.think.com

Available PN Ranges: All PNs in use
IOP Addresses 480

Partition Manager
mars.think.com

venus.think.com

Size

128

128

This provides the additional useful
requests only.

State

ACTIVE

ACTIVE

Nodes

0-127

128-255

Description

Batch only

information that Mars is set up to run batch

2.7.2 Finding Out about the Status of the System

To find out information about the partition and the programs running on it, use
the CMOST command cmps, which is modeled after the UNIX command pa. The

command provides information about the partition on which you execute it. The
output looks like this:

32 PN System, 29168K mem. free, 6160K VU mem. free, 2 procs, TS-9/13/92-23:00

Daemon up: 1 day, 2:57

USER PID CMPID

mob *900 1

rhv 7900 0

TIME

234:13

16:36

TEXT ILH

896K 254K

200K 230K

ILS IGS IGH VUS VUH COMMAND

56K OK OK 64K 8K primes

56K OK OK 64K OK wil

The first line of the cmps output provides general information about the parti-
tion, including the number of processing nodes (referred to as PNs) it contains
and the amount of memory available on the nodes and the vector units.

Version 7.2, Augut 1993

Copyright 0 1993 Thinking Machines Corporation

Name

mars

venus

22 C1M-5 User 5 uide

C" ¥ " ¥¥ ?1hate¥ ¥u¥¥r~- ----The -- Basic 2-----..... ----.....

The columns give information about each process:

* The PID and CMPID fields give the process's SunOS and CMOST pro-
cess-ID number.

* The TIME field indicates the amount of time that the CMOST timesharing
daemon has made available to the process, regardless of whether the pro-
cess actually used the nodes.

* The TEXT field indicates the total amount of program memory allocated
to the process.

* The fields ILH, ILS, IGS, IGH, vuWS, and vuH give specifics on stack and
heap memory used by the process. Note these points:

* The numbers reported are the maximum for any single node or (in
the case of VUS and VUH), any single vector unit. Thus, in the case
of VUS and VUH, the total amount of memory taken up per node
is 4 times the total of these two fields.

* Memory is allocated uniformly across the nodes, even in message-
passing processes.

* To calculate the total amount of memory used by a process, you
must multiply by the number of nodes or vector units in the parti-
tion on which it is running.

For more details on these fields, see the cmps man page on-line.

· The coMmANi field gives the name of the program being executed.

To find out information about the partition manager and the programs running
on it, use the standard UNIX command ps.

If you are running under the X Window System, you can use the xcmps com-
mand to get a graphical display of CM-5 usage on your partition. Sample output
is shown in Figure 4. By default, the display is updated every 10 seconds. For
more details, see the xcmps man page on-line.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter Z he Basics 23

24 CM- minir- II Ie II ~- -llllFCQ^'+i111 I'

CPU uInge Memory usage

nwmdl: lI1 mn : 111

a.t w 2t 7 .tou: I117

0 so 100 0 SO 100
used % used

Actve proceeee 8 Free mienwy.l 27561
SBtem Uptimel I day I hour 59 minutes Pattlion Simze 4

FguRe 4. Output of the xoqis commrand.

2.7.3 Finding Out about the Status of 40s

To find out information about NQS, issue the command qstat on a partition
manager. Use the -u option to obtain information about requests from a specific

user. For example,

% qstat -u sharon

might produce this output:

..

NOS Version: 2 REQUESTS on diamond

REQUEST NAME OWNER QUEUE PRI NICE CPU MEM STATE

oodiamond. primes sharon pn_128 32 30 3600 UNLIMITED RUNNING

This shows that user Sharon has one request running on the queue pn_la8. The

other fields give information about characteristics of the request.

To find out information about batch queues, use the -b option. For example,

% qstat -b

might produce this response:

Version 7.2, A t 1993
Copyrigluht 1993 hnking Mlch e C orprain

CM-5 Wj Uw S- Gatjsk24

Chaper~ulluu 2. The Basics

NQS Version: 2 REQUESTS on diamond.think.com

QUEUE NAME STATUS TOTAL RUNNING QUEUED HELD TRANSITION

ql AVAILBL 1 1/1 0 0 0

q2 AVAILBL 2 2/10 0 0 0

This indicates that there are two queues on the partition manager diamond; they
are named q. and q2. The TOTAL field tells you the number of requests in the
queue. The other fields give information about the status of the requests in the
queue.

2.7.4 Finding Out about the Status of DJM

Use the j stat command to find out information about the Distributed Job Man-
ager (DJM). With no arguments, j stat lists the current jobs. For example:

% jstat
USER JID MACH SERV PROCS TIME MEM STATUS COMMAND

sharon 43 cm5 ea 32 0:02 512M Running myjob

mark 24 cm5 256 240:00 600M Que npr rdt

This indicates that user Sharon has a job running on 32 processors of partition
manager ea of a CM-5; its job ID is 43. The PROCS, TIME, and N fields indicate

the actual number of processors and amount of CPU time and total amount of
memory being used.

User Mark's job is queued; in this case, the PROCS, TIME, and MEN fields indicate

the number of processors and amount of CPU time and memory requested when

the job was submitted. The status npr indicates that the job is not running
because the requested number of processors is not available.

Version 7.2, August 1993

Copyright O 1993 Thinking Machines Corporation

Chapter 2 he Basics 25

26............... CM~'~Z....."7 L -- Use-r-'s;!!~- G..d -... ...

Another use of the j stat command is to find out the available queues and the
resource limits associated with them. Use the -limits option to obtain this
information. For example:

% istat

foreign

default

big
ded

limits
SACs MACH

50 cm5

100 cm5

100 cm5

100 cm5

TIMI

20min

1hr

unlim

unlim

128M

2G

unlim

unlim

NPROC

unlim

512

unlim

unlim

DED

no

no

no

yes

FOR

yes

no

no

no

UQUZ

999

4

2

1

URUN

999

4

2

1

TRUH

999

8

3

2

To=
unlim

unlim

unlim

unlim

In the output:

* SRCH indicates the order in which DIM searches the queues to determine
in which one a job will run. It searches from the lowest-numbered queue
to the highest, and submits the job to the first queue that meets the job's
requirements.

* TIME, ME, and NPROC give the maximum usage characteristics of the
queue.

* DED specifies whether or not the queue is for dedicated jobs (that is, jobs
that require exclusive use of the partition).

* FOR indicates whether the queue is for "foreign" jobs - that is, jobs that
are run directly on the machine without going through DIM.

* UQUE and unRu indicate the maximum number of jobs an individual user
can have queued and running in this queue.

* TRUN and Tm indicate the total number of jobs that can be running con-
currently in this queue, and the total amount of memory they can consume.

2.8 Obtaining On-Line Documentation

The CM-5 has a considerable amount of on-line documentation available to users.
See Section 3.7.1 to find out how to view this documentation from within Prism.

From outside Prism, use the standard UNIX man command to view the manual
page for a UNIX or CMOST command or routine.

Version 7.2, August 1993
Copyright 1993 Thinking Machines Corporation

26 CM-5 User's Guide

Chapter 3

Using Prism

The Prism programming environment is the standard way in which users interact
with the CM-5 in developing and executing their data parallel programs. Prism
provides an integrated graphical environment in which you can:

· execute the program

* debug the program

* analyze the program's performance

* visualize data from the program

* obtain on-line documentation for the CM-5

* ... and much more

This chapter gives an overview of how to use Prism. For complete information
on Prism, see the Prism User 's Guide and Prism Reference Manual.

In this chapter we use the sample data parallel program primes to illustrate
many of Prism's capabilities. If you have the program (and a CM-5) available,
you can follow along on-line as we help you get started. To compile the program
for debugging via Prism, specify the -g option; note that compiling with -g
causes performance to be artificially slow. To compile the program to collect per-
formance analysis data, specify the -cmprofile option. See Section 2.3.

3.1 Starting Prism

Prism runs under the X Window System.

Version 72, August 1993 27
Copyright 0 1993 Thinking Machines Corporation

28s---a-- CM -' --s as- Usr ~I- --·I fi Jis ^ ~·-Q6III Gu-de

To start Prism, first log in to a partition manager as described in Chapter 2. For
example:

% rlogin mars

Start X on the partition manager as you normally do; if you're not familiar with
X, ask your system administrator for help. Make sure your DIPLAY environ-
ment variable is set for the terminal or workstation from which you are running
X. For example, if your workstation is named Valhalla, you can issue this com-
mand (if you are running the C shell):

% setenv DISPLAY valhalla:O

To start up Prism, issue the command prism at your UNIX prompt; you can
include the name of your executable program as an argument. Thus,

% prism primes

loads the primes program. (This assumes that you are starting Prism from the
directory in which primes is located.) The main Prism window then appears, as
described below.

If you don't have an X terminal or workstation, you can run a non-graphical ver-
sion of Prism; specify the -c option on the command line. This version of Prism
is discussed in Section 3.10.

3.2 A Tour of Prism

Figure 5 shows the main window of Prism with the primes program loaded. In
Prism, you can operate with a mouse, use keyboard equivalents of mouse actions,
or issue keyboard commands.

Version 7.2, August 1993
Copyright) 1993 Thinking Machines Corporation

28 CM-5 User i Guide

29Chapter 3. Using Prism

PflnI qapers.U&C-u ,

menus..._.
bar

stat .
region

line-number
region -

command
window

lFile Execute Debug Performance Events Utilities Doc

Load... unPrln.ont inue INe t lln rUp Il t Do o Collctlo w

Program: primes Status: not stuted

Une Source File: luserscmsgS9bowkersdesrcimalniprimes.fcm
1 - program findprime.
2 implicit none
3 integer . n, nextprime
4 parameter (n = 70000)
5 logical primes(n). candid(n)
6 integer identit(n)
7
a C
9 C Initialization

10 C
11

l1_ 12 identity = 1:n
13 primes = .False.
14 candid = true.
15 candid(1) = false.
16 call loop(n, identity, primes, candid)
17 call results(n primes)
18 end
19
20
21 subroutine loop(n, identity. primes, candid)
22 logical primes(n), candid(n)
23 integer identity(n)
24 integer I. n. nextprime
25
26
27 C
28 C Loop: Find next valid candidate, mark it as a prime,
29 C invalidate all multiples as candidates, repeat.
30 C
31
32 nextprime 2
33 do while (nextprime .le. sqrt(real(n)))
34B primes(nextprime) . true.
35 candid(nextprime:n:nextprime) = False.

(1) stop at "primes.cm":34

Figure 5. Prism's main window.

Left-clicking on items in the menu bar displays pulldown menus that provide

access to most of Prism's functionality.

You can add frequently used menu items and commands to the tear-off region,

below the menu bar, to make them more accessible; many items are there by

default.

The status region displays the program's name and messages about the pro-

gram's status.

The source window displays the source code for the executable program. You

can scroll through this source code and display any of the source files used to

compile the program. When a program stops execution, the source window

updates to show the code currently being executed. You cannot edit the file in the

Version 72, August 1993
Copyright 0 1993 Thinking Machines Corporation

tear-off
region

source
window

--- ---- --- -- -- - --- -- -- - -- --.. .. .- -.. .. .- ... 1 -- -- -- ---.. --- --

He

L,

ip

I

30~ ~~ '' CM C P~- - D~.~I·I·~II -- ar -S Usr' Gu-~Ide

source window; instead, you call up a separate editor if you want to make
changes to your code.

The line-number region is associated with the source window. You can click to
the right of a line number in this region to set a breakpoint at that line. In
Figure 5, a breakpoint is set at line 34. The execution pointer (>) in the line-num-
ber region shows the line at which the program is currently stopped. The scope
pointer (-) shows the beginning of the scope that Prism uses in interpreting the
names of variables. The symbol * appears when the execution pointer and the
scope pointer are at the same line.

The command window at the bottom of the main Prism window has two areas.
The history region, at the top, displays messages and output from Prism. You can
type commands on the command line at the bottom of the window, rather than
use the graphical interface.

3.3 Executing a Program

Once primes is loaded, you can execute it from within Prism. The simplest way
to do this is to click on Run in the tear-off region of the main Prism window.
(You can also choose the Run selection from the Execute menu, or issue the run
command on the command line.)

After you have clicked on Run:

* The status changes to running.

* Many menu items are grayed out, indicating that they are temporarily
unavailable.

* An Input/Output window appears; when the program has finished execu-
tion, the results will appear here. Figure 6 shows what it will look like for
primes.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

CM-5 User Guide30

Chaplulter 3. ~ s in Prism 31------ - ---

U

Figure 6. The Input/Output window.

3.3.1 Interrupting, Continuing, and Single-Stepping

You can also interrupt execution of a program in Prism, and single-step through

it. Let's run primes again. As before, start execution by clicking on Run; you

don't need to reload the program. Notice that Prism reuses the same Input/Output
window.

While the program is executing, click on the Interrupt button in the tear-off

region (notice that this button doesn't turn gray; this indicates that the function

is still available). When you click on Interrupt:

* Prism displays a message in the history region, stating where the program

was interrupted.

* The source window updates to show the code being executed. The execu-

tion pointer in the line-number region points to the line currently being
executed.

* The status of the program is stopped.

When the program is stopped, you can single-step through it:

* Click on Step in the tear-off region to execute the next line.

* Click on Next in the tear-off region to execute the next statement (a func-

tion call counts as a single statement).

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

HunbOr of prlme 6935
69997

]

--

Clupter 3. Using Prism 31

CM-5 User a GuidaI

In both cases, the execution pointer moves to point to the new execution polq
in the source window. If the step takes a long time to execute, unavailable burtalo,
and menu selections are grayed out.

We can also issue the stepi and nexti commands from the command line to
step by machine instruction. When you issue these commands, the history region
displays the instruction at the address at which you stop. ~

Click on Continue in the tear-off region to continue execution without single.
stepping. The program will run to completion.

3.4 Debugging a Program

In Prism, you can perform standard debugging operations like setting break-
points and examining the call stack. Prism also provides a comprehensive
method for controlling the execution of a program by means of an event table.

3.4.1 Setting a Simple Breakpoint

A breakpoint stops execution of a program. The easiest way to set a breakpoint
in Prism is to left-click the mouse to the right of the line number at which you
want the program to stop. Notice that when you move the mouse pointer into this
area, it turns into a B. When you left-click next to a line, the B appears at that

point.

Set a breakpoint at line 15 of primes. Note that when you do this, Prism displays
a message in the history region:

(1) stop at "primes.fcm":15

Now, when you execute primes, the program will stop whenever it reaches line

15.

To delete the breakpoint, left-click on the B; it disappears.

Version 7.2, August 1993
Copyright) 1993 Thinking Machines Corporation

Chapter-- 3. Usg Prism33----. -

3.4.2 Using Commands

You can set more complicated breakpoints by issuing the stop command on the
command line. For example, issue this command:

stop in loop after 10

This tells Prism to stop execution the tenth time the program reaches the function
loop. Note that it causes a B to be placed at line 32 in the line-number region,
next to the first line in the routine loop.

Similarly, you can use the trace command to stop execution, then have it start
again automatically.

3.4.3 Using the Event Table

The breakpoints and traces described above are events that control the execution
of a program. Prism provides an event table that lets you create all such events
in one place before you execute your program.

To display the event table, choose Event Table from the Events menu. Figure 7
shows the event table, listing the two breakpoints we discussed above.

event --
list

Common
Events
buttons

[Event Table I I I
(1) top at "primes. Fcm":34
(2) stop In loop after 10

Id Location l ! Watch| I

Actions 1
Condition I I After -lr

Stop i Instruction El Sllent El 1 event
New Save HeplaceDelete fields

Common Events
Debugging Printing

Stop lo IIStop psond' "Prlnt '

ITrace .o¢. iTracee . IITracond Dis-pl;ay

I L' " 1Help |

Figure 7. The event table.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

I Ii I -'- I ~~~I 0·I~L-

Chapter 3. Using Prism 33

...... i --- S_ Use -;d- -:7

The top area of the event table is the event list - a scrollable region in which
events are listed. When you execute the program, Prism uses the events in this
list to control execution. Each event is listed in a format in which you could type
it as a command in the command window. It is prefaced by an ID number
assigned by Prism. For example, in Figure 7, the events have been assigned the
IDs 1 and 2. Creating an event by issuing a command, or in any other way, adds

an event to this list.

The middle area of the event table is a series of fields that you fill in when editing
or adding an event; only a subset of the fields is relevant to any one event. For
example:

* Fill in the Location field to specify a line number when setting a break-
point at a line.

* In the Actions field, specify any actions that are to accompany the event

(for example, printing the value of a variable or displaying the call stack).
You can include most Prism commands in this field.

* In the Condition field, specify a logical condition that must be met if the
event is to take place.

The area headed Common Events contains buttons that provide shortcuts for

creating certain standard events. For example, if you click on Stop <cond>, the
Condition field is highlighted and the cursor is placed in it. You can then enter
a condition and click on Save to add the event to the event list. The program will

stop when the specified condition is met.

3.4.4 Displaying and Moving through the Call Stack

You can use Prism to display and move through the call stack - the list of proce-
dures and functions currently active in a program. Choose the Where selection
from the Debug menu to display a window containing the call stack; the window

is updated automatically when execution stops or you issue commands that
change the stack. You can click on a function in the window to make that func-
tion current. You can also click on Up or Down in the tear-off region to move
up or down one level in the call stack

If you run primes to the breakpoint you have set in loop, the call stack looks
like the one shown in Figure 8. Note that the first two levels of the call stack are
routines called by the CM-5 timesharing daemon and the run-time system,

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

CM-5 User 's Guide34

ChpterllB8lIIBa -3 Using Pim

respectively; you don't have to be concerned with them in debugging your
program.

Figure 8. The Where window.

3.5 Visualizing Data

One of Prism's most important features is the ability to display graphically the
values of the large arrays that are typical of data parallel prognamming.

In the primes program, the largest variable is also called prines; it is an array
of 70,000 logicals. Each element of the array is set to true if its index is a prime
number, and false if it isn't.

Let's print the values of primes.

First, issue the command reload from the command line t reload primes.
This deletes any existing events.

Then scroll through the source window and set a breakPoint u1 line 62.

In the source window, find a line where primes appears (fr example, line 43).
Move the mouse pointer to primes. Press the left mouse buoan, and drag the
mouse until primes is highlighted. Now let go of the butrt

Version Z2 August 1993
Copyright O) 1993 Thinking Machines Corporation

Chapter 3. Using Prism 35

36... . .-C - Usr' IGu-idei~~ ~~ci"~~ C11 i'~~15!~iu~::~-~ ~11 ii~ii ~ Liii̧ L~-------......

Keeping the mouse pointer in the source window, press the right button. A menu
appears. Right-click on Print in this menu.

Prism then displays a visualizer for the array, as shown in Figure 9.

Figure 9. A visualizer for primes.

The figure shows the values of the first elements of the array. You can scroll
through the window to see other elements.

Other representations are available besides straight text. Left-click on Options
to display a menu. Then left-click on the Representation selection to display
another menu. Left-click on Threshold in this menu. The T's and F's apparently
disappear. In fact, the T's have changed into black pixels, the F's into white pix-
els. To make them more visible, follow these steps:

1. Left-click on Options again.

2. Left-click on Parameters from the menu.

3. Change the number in the Field Width box to 20.

4. Left-click on Apply. The black values will be much more visible.

Now left-click on Ruler in the Options menu. A ruler surrounds the values,
making it easier to see separate elements. Figure 10 is an example.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

le ptiuons

F

Fr

FTF
F
F
T
F
r
F
F
F
r
F
r
F
F

,

CM-5 User 's Guide36

Chaptlr a P ~ rrPlaa. Pr-- m 37--- -

Figure 10. A threshold visualizer for primes.

To see the index of an individual value, move the mouse pointer onto the value.
Press the Shift key; while pressing it, press the left mouse button. The index and
value are displayed.

To close the visualizer, left-click on File in the visualizer window, then left-click
on Close.

3.5.1 Other Representations

In addition to the text and threshold visualizers shown above, Prism provides a
variety of other representations that you may find useful, depending on the kind
of data you want to look at:

* Use the Colormap representation (if you have a color workstation) to dis-
play the values as a range of colors.

* Use the Dither representation to display the values as a shading from
black to white.

* Use the Graph representation to display the values as a graph, with the
index of each array element on the horizontal axis and its value on the
vertical axis.

Version 7.2, August 1993
Copyright O 1993 Thinking Machines Corporation

Soprbnss

Ele -ptions 1 E
Ii

i --- Adll~

F'

U0

U0

UM

U0

Ii
i.
j

I 9

j

]

Chapter 3. Using Prism 37

38 CM- Usr' GuideC-l·~uuulraarrraa~lp~app

· Use the Surface representation (if your data has more than one dimension)

to render the 3-dimensional contours of a 2-dimensional slice of data.

* Use the Vector representation to display complex numbers as vectors.

You can change the parameters of a visualizer to adjust the display. For example,
you can pick a minimum and a maximum for many of these representations.

In addition, for most representations, you can set a context, using an expression
that evaluates to true or false for every element of the array; the values of ele-
ments that evaluate to false are grayed out.

Finally, you can display summary statistics for an array or parallel variable,
showing its minimum, maximum, mean, and other information.

3.5.2 Other Methods of Choosing the Data to Visualize

In the example at the beginning of this section, we chose the variable to visualize
by dragging the mouse over it in the source window. Prism provides several other
methods for choosing the variable. You can also visualize expressions.

In Prism, you can either print or display data. Printing data shows the value(s)
of the data at a specified point during execution. Displaying data causes its
value(s) to be updated every time the program stops execution. (You can also
update a print visualizer, by choosing an option from its File menu.)

Here are some of the ways in which you can print or display data:

* You can create print and display events in the event table, or by choosing

Print or Display from the Events menu. This lets you specify, for exam-
ple, the location in the program at which the printing is to take place.

* You can print or display at the program's current stopping place by choos-
ing Print or Display from the Debug menu. This pops up a dialog box in
which you can specify the variable or expression, along with the kind of
window in which you want the values to be shown.

* You can print from the source window by pressing the Shift key while
pressing the left mouse button and dragging over a variable or expression.
(If you don't press the Shift key, a menu pops up, from which you can
choose Print or Display; that's what we did above.)

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

38 CM-5 U/ser 's Guide

Chapt.er. . Usn/rs 39 .7 ...

From the command window, you can issue the print or display com-
mand. As part of the command, you can include a mask that sets the
context for printing or displaying. For example,

where (x .ne. 0) print x

tells Prism to print the values of the array x in the history region of the com-
mand window; the cases in which x is not equal to 0 are omitted.

3.6 Obtaining Performance Data

Prism lets you collect performance data on your program. Collecting and analyz-
ing performance data can help you uncover and correct bottlenecks that slow

down a program.

Prism collects separate data for the nodes and the partition manager - referred
to as the subsystems - and for different computing resources within each subsys-
tem. Note that this is different from the way most other performance analyzers
and profilers work; they simply measure CPU time.

To collect performance data, compile your program with the -cmprof ile
option.

If you haven't already compiled the program with this option, you can recompile
from within Prism, then reload the program:

1. Choose the Shell selection from the Utilities menu. Prism creates a win-
dow containing a UNIX shell. You can issue UNIX commands from this
shell, just as you would from any UNIX shell.

2. Issue this command to recompile primes with the -cmprof ile option:

% cmf -cmprofile -o primes primes.fcm

3. When the program is recompiled, you can load it from within Prism. Click
on Load in the tear-off region. A dialog box appears. Find primes in the
list of programs. Click on it to highlight it, and then click on Select. Prism
then loads the program.

Version 72, August 1993
Copyright C0 1993 Thinking Machines Corporation

Chapter 3. Using Prism 39

40"#sl CM- GIde

3.6.1 Collecting Performance Data

To collect performance data, you must turn collection on before running the pro-
gram; collection then remains on until you explicitly turn it off. To turn
collection on, click on Collection in the tear-off region. The toggle box next to
it is filled in.

Then execute your program, as described in Section 3.3. (Note that you shouldn't
set breakpoints or otherwise interrupt execution, since this distorts the perfor-
mance data.) When the program finishes execution, the data is ready for display.

3.6.2 Displaying Performance Data

Prism displays three different levels of performance data:

· Performance statistics for the resources, along with totals for each sub-
system.

* Per-procedure performance statistics for a specified resource or subsys-
tem. You can choose either flat or call-graph display of these statistics.

* Per-source-line performance statistics for a specified resource and
procedure.

All statistics are displayed as panes in the Performance Data window, along
with the percentage or the amount of time that each histogram bar represents.

To display the performance data, choose Display Data in the Performance
menu. You see a Performance Data window like the one shown in Figure 11.

Version 7.Z2, August 1993

Copyright © 1993 Thinking Machines Corporation

.1

CM-5 User s Guide40

Chapter 3. Using Prism

[] umfnmiso Dats I a

I le gpons Help Tota time: 8.0 s El
Resources

Mode: fiat

Resource: Node cpu (system)

PM Total I 199.7 X

Node cpu (user) - 38.2 X

Node cpu (system) r 1150.1 X

Coam (Send/CGet)

Cam (NEWS)

Comm (Reductions) 1 7.6

Com (PM <--> Node) 10.0 X

Node not profiled

Node I/O

NodeConm Total r 96.0 X

MAIN I 0.1

loop -150.0 X

results

Figure 11. A Performance Data window for primes.

At the top left of the Performance Data window is a pane that shows the usage
of the CM resources. Note that the partition manager (PM) and its resources are
measured separately from the nodes and their resources. The resources of each
subsystem can sum to 100 percent, because both the partition manager and the
nodes can be active for the entire time the program is running. In the case of the
primes program, most of the activity is on the partition manager.

To the right of this pane is a pane that shows individual procedures' use of a
specific resource - in this case, the Node cpu (system) resource. Left-click on
a resource or subsystem to display its procedure-level data.

Figure 11 shows the procedure data in flat mode. In flat mode, the window lists
all procedures in the program and each one's total use of the selected resource
or subsystem.

You can also display the procedure-level data in call-graph mode. In call-graph
mode, you see which procedures call which other procedures, and the use of the

sion Z7.2, August 1993
Copyright C 1993 Thinking Machines Corporation

41

Procedure: loop

subroutine loop(n. dentitw, primes, candid)
logical primes(n). candid(n)
integer dentity(n)
integer 1. n. nextprime

C
C Loop: Find next valid candidate, mark it as a prime,
C invalidate all multiplee as candidates, repeat.
C

nextprime = 2
do while (nextprime ,le. qrt(real(n)))

primes(nextprlme) = true.
candid(nextprime:n:nextprime) = false. 149.9 X
nextprime = minval(identUt. i. candid)

end do

... - ____ --.. ----- ----- - --- ------- - ----- -

I P

W

42 CM-S-·el User's Guide-P61~Y~I

selected resource or subsystem for each individual call. In this case, procedure
NMN calls the other procedures listed; each accounts for the listed percentage of
time that MAIN uses of the resource. To switch modes, choose Mode from the
Options menu in the Performance Data window.

At the bottom of the Performance Data window is a pane that shows per-
source-line usage of the selected resource or subsystem. Click on a procedure to
show the source lines in that procedure.

To close the window, choose Close from the File menu.

3.6.3 Other Performance Analysis Features

Prism has additional features you can use in analyzing the performance of your
program:

* Prism's performance advisor prints out a summary and analysis of the per-
formance data it has collected. It zeroes in on the lines of code that are the
heaviest users of the most-used resource. Working on these lines will
result in the greatest performance gains in your program. To display the
advisor, click on Advice in the Performance menu, or issue the perf ad-
vice command.

* You can save your performance daa to a file and subsequently reload it.
This is useful if, for example, you collect the data in commands-only
Prism, and you subsequently want to view it graphically. To save the data,
choose Save Data from the Options menu in the Performance Data win-
dow or issue the perf save command. To load the data, choose Load

Data from the Options menu in the Performance Data window or issue
the perfload command.

3.7 Getting Help

There are several ways in which you can get help in Prism:

The Help menu in the menu bar provides help on several major topics. It
includes the Help Index, which gives in-depth information about all
aspects of Prism.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

42 CM-5 User Guide

Chapter 3 : ' : :-.7:::7:: 7 Us:g Pr....i1 ---m --

* The Help selection in menus and the Help button in windows and dialog
boxes provide instructions for using these screen areas.

* Command-line help provides information about commands you can issue
from the command window.

Choose Index from the Help menu to display the Help Index. Figure 12 shows

the Help Index.

help dex E

Help Index

This Is an Index to Prism's on-line help system. For
complete Information on the help system, choose the
selection Using Help In the Help menu,

Advice
arrays, C and C. using In expressions
breakpoints
call stack
CM, obtaining on-line documentation for
Collection
colors, changing default
command window, using
commands-only option
commands reference
compiling
Continue
core fles

Select Cancel Ail Cne

Figure 12. The Help Index.

Left-click on call stack, then
Figure 13.

left-click on Select to display the topic shown in

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 3. Using Psm 43

44 CM-S- User's GuideB~I~C~*~s~I-.-- ----

a= 1' i I: : : : i . . I Iu
--- Related Topics ---
Choosing the Current Fl
ResoMng Names

Displaying and Moving through the Call Stack Using the Command Wr
Using the Menu Bar

--- Terms ---
The call c Is the list of procedures and functions currently active current function
on the stack. This help topic describes how to displey the call stack --- Commands ---
and move through t to change the current function. down

up
where

Displaying the Call Stack

From the menu bar: Choose the Where selection from the
Debug menu. The Where window is displayed; It shows the
current cal stack. The window Is updated automatically when
execution stops, or when you Issue commands that change the stack

From the command window: Issue the where command on the
command line. If you Include an Integer as an argument the integer
specfles how many active procedures are to be displayed; otherwise, J~ -,

Figure 13. A help topic.

Each topic window can have lists of related topics, subtopics, terms, and com-

mands to the right of the topic discussion. Choose an item in these lists in the

same way you chose a topic from the main Help Index.

3.7.1 Other Help Features

Prism's help system contains many other useful features. For example:

* Choose Ttorial from the Help menu to display a tutorial that will guide

you through loading, executing, and analyzing the primes sample pro-

gram.

* Choose Commands Reference from the Help menu to display a list of all

Prism commands. Left-click on a command, then left-click on the Select

button to display information about it.

* Choose Release Notes from the Utilities menu to display release notes for

Thinking Machines' software products.

* Choose Man Pages from the Doc menu to view an on-line copy of a
manual page for a CMOST command or a language or library routine.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

i

I
.,

-

----~~~~~~~~~~
I

CM-5 User i Guide44

I----Ch---p-------- 3 Uing- Prism---

Choose Online Doc from the Doc menu to view sections of on-line docu-
mentation about the CM-5. This brings up a dialog box in which you can
enter the topic on which you want information. Clicking on Search in this
dialog box passes the topic to a special version of xvai., Thinking
Machines' wide-area information server; xwai.s searches through the doc-
umentation and lists the most relevant sections. You can then display any
of these sections.

3.8 Customizing Prism

Prism provides several methods for changing the way it looks and acts:

* Choose Tearoff from the Utilities menu to enter tear-off mode. In tear-off
mode, clicking on a menu selection adds a button for that selection to the
tear-off region below the menu bar. Clicking on a button in the tear-off
region while in tear-off mode removes the button. You can also use the
tearoff and untearoff commands to do the same thing. Use the
pushbutton command to add a Prism command to the tear-off region.

* Choose Customize from the Utility menu to display a window you can
use to change various default Prism settings - for example, its behavior
when there is an error.

* You can also add settings to your X resource database that change Prism
defaults.

3.9 Leaving Prism

To leave Prism, choose Quit from the File menu. Prism displays a dialog box
asking you to confirm.

Version 7.2, August 1993

Copyright 0 1993 Thinking Machines Corporation

Chapter 3. Using Prism 45

46_ CM- User's GuidePsr·~-as-- -~--a~r;,~s~--s

3.10 Commands-Only Prism

Commands-only Prism runs from your UNIX shell; you would use it if you were
logged in to a partition manager from a dumb terminal, for example, and X
wasn't available to you.

Use the -c option to the prism command to start up commands-only Prism. You
receive this prompt:

(prism)

You can issue any Prism command at the prompt; output appears below the com-
mand you type, instead of in the history region above the command line. There
are, of course, limitations: for example, you can't create visualizers in com-
mands-only Prism, and you cannot obtain the graphical display of the
performance analysis data. You can, however, use the print or display com-
mand to print out the values of data, and you can use the perf command to
display a text version of the performance data.

To obtain on-line documentation in commands-only Prism, issue the doc
command.

Issuing doc displays a menu of available documents (including release notes and
bug-update files). Choose the number associated with the document you want to
view. In most cases, this displays another menu of the chapters within the docu-
ment. Choose the number associated with the chapter, and the first screenful of
text for that chapter is displayed. Answer y in response to the more? prompt or
simply press the Return key to display the next screenful. Answer n to retun
to the menu. You can also view manual pages by typing m from a menu.

Issue the quit command to leave commands-only Prism and return to your
UNIX prompt.

3.11 Using Prism with CMAX

You can use Prism's split-screen capability to debug and analyze the perfor-
mance of a CM Fortran program you have created using the CMAX Converter,
comparing it with the original Fortran 77 program. See Section 4.6 for more
information.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

CM-5 User tr Guide46

Chapter 4

CM-5 Languages and Libraries

This chapter gives an overview of the languages, libraries, and related software
currently available for the CM-5. For complete information, see the manuals for
the individual products.

4.1 CM Fortran

Fortran for the Connection Machine system is standard Fortran 77, supplemented
with the array-processing extensions of the ANSI and ISO standard Fortran 90.

The array-processing extensions provide convenient syntax and numerous intrin-
sic functions for manipulating arrays. For example, Fortran 90 allows an array
to be treated either as a set of scalars or as a first-class object. Thus, in the state-
ment A A + 1, A can be a scalar, a vector, a matrix, or a higher-dimensioned
array. In any case, the statement will cause all elements of A to be operated on
in parallel. Array sections can also be specified and can be used anywhere whole
arrays are used: in expressions and assignments and as arguments to procedures.

Version 2.1 of CM Fortran also supports Fortran 90 pointer arrays and 64-bit
integers.

Newly written Fortran programs can use these array extensions to express effi-
cient data parallel algorithms for the CM. These programs will also run on any
other system, serial or parallel, that implements Fortran 90. CM Fortran also
offers several extensions beyond Fortran 90, such as the FORALL statement and
some additional intrinsic functions. These features are well known in the Fortran
community and are particularly useful in data parallel programming.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation 47

41 CM- Usr' Gwderolupalrrrusuauclc

Many existing Fortran 77 programs can be converted into CM Fortran with the
assistance of the CMAX Converter, discussed in Section 4.6.

41.1 Programming Models

Version 2.1 of CM Fortran on the CM-5 supports both data parallel and message-
passing programming styles. (Earlier versions support only the data parallel
proamming style.)

When used alone, CM Fortran operates in a "global" manner, as it does on
the CM-2 and CM-200. That is, it handles scalar data on the partition man-
ager, but lays out parallel arrays across all the processing nodes of the
CM-5 partition on which it executes. (CM-2/200 users should note that the
compiler's view of the CM-5 hardware is identical to the slicewise execu-
tion model on the CM-2/200.) Parallel data is laid out across the processing
elements, with each element executing elemental code on its local data,
independently of the others. The partition manager executes scalar code
and calls run-time functions for inter-processor communications.

Within this basic pattern, two execution models are supported:

• The "VU model" makes use of the optional vector units on the
CM-5. It lays-out and processes parallel arrays on all the vector units
within the partition.

* The "nodes model" ignores the vector units. It lays out parallel
arrays in SPARC memory across the processing nodes, and uses the
SPARC microprocessor within each node to operate on them.

The compiler switches -sparc and -vu select the desired execution
model.

When used within a CMMD message-passing program, CM Fortran
operates in a "local" manner. Independent copies of the CM Fortran
program run on every node. Scalar data is handled by the micro-
processor on the node; parallel data is handled by either the
microprocessor or the VUs, depending on the available hardware
and on the compiler switch chosen. Communication among proces-
sors is handled by the application via CMMD message-passing
routines.

Version 72 August 1993
Copyright 0 1993 Thinking Machines Corporation

4 CM-5 Ulser Gukk

-. .-------C te 4.7Z CM --¥-' ,-- -- Langua -gesand -'¥1" - -: - - . 1Z---------'------ L r e......... "r e

4.1.2 Intrinsic Functions

Fortran 90 defines a rich set of intrinsic functions that take an array object as

argument and use parallel computation to construct a new array (or scalar).
Intrinsics include reduction intrinsics (such as SUM and MAVAL,) and parallel
prefix (or scan) operations; array construction functions such as TRANSPOSE,
RESHAPE, PACK, UNPACK, and SPREAD; and array multiplication functions
(DOTPRODUCT and MATM). In addition, CM Fortran offers such instrinsic func-
tions as DIAGONAL, REPLICATE, RANK, PROJECT; bit intrinsics such as

FIRSTLOC, LASTLOC, LEADZ, POPCNT, and POPPAR; and a set of intrinsics (new
with Version 2.1) that provide a form of "equivalence" (or storage association)
on array subgrids.

4.1.3 Utility Library

The CM Fortran Utility Library provides a convenient interface to CM-5 opera-
tions that the language cannot express easily or that the compiler does not yet
generate. The Utility Library provides an interface from CM Fortran to lower-
level software such as run-time functions. It also provides the CM Fortran
interface to I/O. Utility Library I/O calls can access any CM file system.

4.1.4 Development and Monitoring Facilities

CM Fortran programs are typically developed within the Prism programming
environment, with its graphical debugger, performance analysis tools, and data
visualizers.

Timing of CM Fortran programs is accomplished using the CMOST timing func-
tions, such as CM_timer_start, CM_timer._rint, and so on.

Run-time safety is enabled by the cmf compiler switch -safety or (for a subset
of safety checks) -argument_checking.

4.1.5 Documentation Provided

· Getting Started in CM Fortran

· CM Fortran Programming Guide

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

Chcpter 4. CM-5 Languages and Libraries 49

50 CM-S Ur Guide-- -I I n 1.1 I -j I I

* CM Fortran Reference Manual

· CM Fortran Utility Library Reference Manual

* CM Fortran User Guide

· CM Fortran Optimization Notes: Slicewise Model

* CM Fortran Array Operations Quick Refrrence Guide

· On-line manual pages for all CM Fortran intrinsic functions and Utility
Library procedures, and release notes for the version of CM Fortran you
are using

4.2 C*

C* is an extension of the C programming language, designed to support data par-
allel programming. It is based on the standard version of C specified by the
American National Standards Institute (ANSI).

C* extends C with a small set of new features that allow programmers to use the
Connection Machine system efficiently. Examples are shapes, which are used
to logically configure parallel data; parallel versions of arrays and structures; and
where statements, which restrict the set of positions within an array on which
operations are to take place.

C* also adds a few new operators to Standard C. For example, the <? and >?
operators are available to obtain the minimum and maximum of two variables
(either scalar or parallel). The corresponding compound assignment operators
< ?- and > ? " are also provided. The operator %% provides a true modulus opera-

tion (as compared to the remainder operator %).

In addition, C* provides parallel functions for computation and communication.
Functions may be overloaded: you can declare more than one version of a func-
tion with the same name (one for scalar data, for example, and another for
parallel data). The compiler automatically chooses the right version.

The C* language on the CM-5 is identical to C* on the CM-2 and CM-200. There
are, however, some implementation differences of which programmers should be

Version 72, Augusr 1993
Copyright © 1993 Thinking Machines Corpora

50 CM-5 User a Guide

Chaper4. CM- Laguages anda~ ibraries--1

aware. These differences are detailed in the C* Release Notes for Version 7.1.
The most important ones are as follows:

* The CM-2/200 C* restrictions on shape extents are not present in CM-5 C*.
The only restriction is that the size of each dimension must be greater
than 0. (Note that on a CM-5 with vector units, the size of the physical
shape is the number of vector units in the partition, not the number of
nodes.)

* On the CM-5, parallel bools occupy 1 byte of storage, not 1 bit, as on the
CM-2 and CM-200. The semantics of using bools remain the same; you
need not change an existing program to deal with the new size. Memory
usage will go up on the CM-5, however.

* C* on the CM-5 supports parallel enums.

- Because the CM-5 C* compiler is generally compliant with the ANSI stan-

dard, it will reject some programs that previously compiled without error.

* CM-5 C* programs cannot call Paris routines.

In addition, the cs command has several new options for use on the CM-5, but
does not accept certain CM-2/200 options. For example, the -vu option specifies
compilation for a CM-5 with vector units; the -sparc option specifies compila-
tion for a CM-5 without vector units.

Version 7.1 of C* supports node-level (message-passing) programming, in the
same manner that CM Fortran Version 2.1 does.

4.2.1 Documentation Provided

* Getting Started in C*

* C* Programming Guide

* CM-5 Ca* Users Guide

* CM-5 C* Performance Guide

* Release notes for the version of C* that you are using

Version 7.2, August 1993

Copyright 0 1993 Thinking Machines Corporation

Chapter 4. CM-5 Languages and Libraries 51

52~_~~~~~___~~~~~~~ CM-Sc User-s Guide - -~-~P O ~ ~DDP- - -- ----------------------

4.3 CM Scientific Software Library

The Connection Machine Scientific Software Library (CMSSL) is a growing set
of numerical routines that support computational applications while exploiting
the massive parallelism of the Connection Machine system. CMSSL provides
data parallel implementations of familiar numerical routines in the areas of linear
algebra, ordinary differential equations, signal processing, statistical analysis,
and linear programming. It also offers a number of communication functions that
facilitate computations on both structured and unstructured grids.

On the CM-5, CMSSL is callable from CM Fortran. The user interface for these
routines is identical with the CM Fortran user interface offered on the CM-200;
the actual implementation of the routines, however, often differs, to take best
advantage of the hardware of each machine.

Version 3.1 of CMSSL concentrates on six critical areas of programming: numeri-
cal linear algebra, Fourier Transforms, ordinary differential equations, linear
programming, random number generation, and statistical analysis.

4.3.1 Linear Algebra

Most CMSSL linear algebra routines are designed to support multiple instances.
The difference between invoking computation on a single instance and on mult-
iple instances lies only in the dimensionality and layout of the data structures

used as parameters to the CMSSL routine.

Within the general area of linear algebra, CMSSL offers:

* Matrix operations on dense, grid sparse, and arbitrary sparse matrices. For
dense matrices, CMSSL includes inner and outer product routines; matrix,
matrix vector, and vector matrix multiplication routines; a 2-norm routine;

and an infinity norm routine. For grid and arbitrary sparse matrices, the
library provides matrix, matrix vector, and vector matrix multiplication.

* Linear equation solvers for dense, banded, and sparse systems of equa-
tions: LU and QR factorization and solution routines, triangular system
solvers, a Gauss-Jordan system solver, and matrix inversion; factorization
and solution of banded systems via pipelined Gaussian elimination (with
optional pairwise pivoting) or via substructuring with either cyclic reduc-
tion, balanced cyclic reduction, pipelined Gaussian elimination, or
transpose; and several standard iterative solvers, including the Conjugate

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

52 CM-5 User a Guide

Chapr4.CM-SLanguages- and L---ibraris -3

Gradient, Bi-Conjugate Gradient with Stabilization, Quasi-Minimal
Residual, and Restarted Generalized Minimal Residual methods.

Eigensystem analysis of real symmetric tridiagonal, dense Hermitian,
dense real symmetric, and sparse systems, via a number of methods
including Jacobi rotations, k-step Lanczos method, and k-step Arnoldi
method.

4.3.2 FFTs

CMSSL offers routines for the computation of Fourier Transforms by Cooley-
Tukey type algorithms on one or more axes of arrays with an arbitrary number
of axes. Currently, a complex-to-complex FFT is provided. Real-to-complex and
complex-to-real FFT are planned for a future release.

4.3.3 Ordinary Differential Equations

CMSSL provides a routine that solves the initial value problem for a system of
N-coupled first-order ordinary differential equations by explicitly integrating the
set of equations using a fifth-order Runge-Kutta-Fehlberg formula.

4.3.4 Linear Programming

CMSSL provides a routine that solves multidimensional minimization problems
using the simplex linear programming method. The goal is to find the minimum
of a linear function of multiple independent variables.

4.3.5 Random Number Generation

CMSSL provides two random number generators. Both use a lagged-Fibonacci
algorithm to produce a uniform distribution of random values. Both may be
reinitialized for reproducible results.

Version 7.Z2 August 1993

Copyright) 1993 Thinking Machines Corporation

Chapter 4. CM-5 Languages and Liraries 53

54~~~~~~~~~----- CM- User'sIIIPL~- Gud

4.3.6 Statistical Analysis

CMSSL offers two histogramming operations: one that tallies the occurrences of
each value in a CM array, and one that counts the occurrences of values within
specified value ranges. The latter facilitates breaking data from particularly large
data sets into subranges, perhaps as a preliminary step before doing more
detailed analysis of interesting areas.

4.3.7 Communication Functions

CMSSL includes routines for efficient data motion for nearest-neighbor opera-
tions on regular grids, for all-to-all communication on segmented arrays, and for
gather and scatter operations on unstructured grids. The library also provides
utilities for data distribution for load balancing of communication. Routines
offered include polyshift, all-to-all broadcast, several gather and scatter utilities,
and partitioning of an unstructured mesh. There is also a communication com-
piler, a set of routines that compute and use message delivery optimizations for
basic data motion and combining operations. The communication compiler
allows you to compute an optimization (or trace) just once, and then use the trace
many times in subsequent data motion and combining operations.

4.4 Visualization Programming

4.4.1 A Distributed Graphics Strategy

In keeping with its role as a network resource, the CM-5 uses a distributed graph-

ics strategy to support a wide range of user applications. The key items in this
strategy are;

* the parallel processing power of the Connection Machine supercomputer

* the specialized power and interactive visualization environments, such as
AVS, provided by dedicated graphics display stations

* the use of standard protocols, such as Xll, to allow communication among
a variety of hardware and software

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

54 CM-5 User $ Quide

ClarCM-S Lang---g Libraes 5-

A full range of interconnections is supported, from high-speed HIPPI interfaces
through FDDI and Ethernet for longer-distance communications, to allow fast
communication between the CM and graphics display stations.

As an example, a scientific visualization program could use the CM to compute
image geometry (including, for example, polygon coordinates and color
information) and then send it from the CM directly to local memory on the graph-
ics workstation, where the results of simulations done on the CM can be
displayed and analyzed interactively.

4.4.2 An Integrated Environment

By using the distributed graphics strategy described above, together with an
underlying protocol such as Xll or the AVS graphical user interface, programmers

can create and use a wide variety of integrated environments for their computa-
tional and visualization tasks. Connection Machine software provides an
environment that permits the exchange of very large data sets between the CM
and framebuffers, workstations, or X window terminals.

4.4.3 The CM/AVS Visualization Environment

CM/AVS adapts and extends the Application Visualization System (AVS, from
Advanced Visualization Systems, Inc.) to the realm of the CM-5. This graphical
user interface enables an application to operate on data that is distributed on
CM-5 processing nodes and to interoperate with data from other sources. A user
normally runs AVS on a local workstation and uses the modules and functions
that CM/AVS provides to process data on the CM-5. That way, the advantages of
user-interface-intensive workstation visualization are combined with the power
of data-intensive CM-5 applications.

The building blocks of an AVS application program are small, packaged units of
code, called modules. Most modules process a set of inputs into a set of outputs.
Eah module incorporates a function, which can be as simple as adding two arrays
or as complicated as rendering the isosurfaces of a volume. AVS modules execute
on the workstation; CM/AVS modules execute on the CM-5. Hundreds of visual-
ization modules are available from AVS and Thinking Machines and in the public
domain.

Version 7.2, August 1993

Copyright) 1993 Thinking Machines Corporation

Chapter 4. CM-5 Languages and Libraries 55

.5, CM.S.sr '- G..................................de..................

Data for module inputs and outputs is typed. CM/AVS provides a parallel version
of the AVS "field" data type used to represent arbitrary arrays of data. CM/AVS's

parallel field data is allocated on the CM-5 processing nodes as CM Fortran
arrays or C* parallel variables.

Within CM/AVS, parallel fields appear identical to regular serial fields; the two
may be used interchangeably. When CM/AVS modules that operate on parallel
data are connected with AVS modules that operate on serial data, CM/AVS rou-
tines convert the data between parallel and serial fields as required. The
conversion is transparent to the user and to the module writer.

Documentation Provided

* C/AVS User s Guide

* CM/AVS Release Notes

* On-line man pages viewable through the AVS man page viewer, and
release notes for the version of CM/AVS you are using

In addition, users should have the AVS document set.

4.4.4 Visualization Programming with CMX11

The CMX11 visualization library is designed for distributed graphics program-
ming in a heterogeneous computing environment. This library, callable from CM
Fortran and C*, allows you to display data from CM-5 memory on an X windows
server screen anywhere on your network.

Creating and Controlling a Display

The CMX11 library provides functional CM Fortran and C* interfaces that make
it easy to create and control one or more windows on an Xll server as a CM
display.

* Specify the X11 server you wish to use by setting the environmental vari-
able DISPLAY or by using the -display option on the command line

when you invoke your program.

* Within your program, call the subroutine CMXCreateSimpleDisplay to
connect to the display specified.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

CM-5 User S Guide56

Cha...,--pter --------...CM-S L..g a a Laries----- 7......

Other routines allow you to manage the display from your application. For exam-
ple, you can get information on the display size or set the display colors.

Rendering Your Data

The CMX11 library provides parallel extensions to the standard X drawing primi-
tives that accept parallel arrays of coordinate and color information. These
routines enable you to draw large sets of points, lines, arcs, rectangles, filled
polygons, text strings, or an image array - each with a single subroutine call.

Graphics Programming

The basic CMX11 drawing and display capabilities do not require any X pro-
gramming. However, the library provides routines that give you access to the
underlying X structures. If you are an experienced X programmer, these enable
you to integrate your CMX11 program with an existing X or Motif application.

Documentation Provided

Anyone who wants to perform simple visualization operations on the results of
CM-5 computations will find sufficient information in the Thinking Machines
CMX11 documentation:

* CMXII Reference Manual

* CMXII Release Notes

· On-line man pages for all CMXl 1 routines, and release notes for the ver-

sion of CMX11 you are using

For more elaborate graphics programming, users who are unfamiliar with X may
wish to consult the following publications in addition:

* Xlib Programming Manual, Adrian Nye (Sebastopol, CA: O'Reilly, 1988)

* Xlib Reference Manual, Adrian Nye (Sebastopol, CA: O'Reilly, 1990)

* X Window System User's Guide, Valerie Quercia and Tim O'Reilly
(Sebastopol, CA: O'Reilly, 1990)

Version 7.Z2, August 1993

Copyright C 1993 Thinking Machines Corporation

Chtapter 4. CM-5 Languages and Libraries 57

$8 CM-S User Guide

4.5 Message Passing with CMMD

The CMMD communications library supports message-passing programming on
the CM-5. This programming involves explicit message passing between proces-
sing nodes.

The CMMD library is callable from C, C++, and Fortran 77; programs are com-

piled with the appropriate Sun compiler. At Version 3.0, CMMD is also callable
from CM Fortran Version 2.1, with the program compiled by the cmf compiler,
and from C* Version 7.1, with the program compiled by the cs compiler. Pro-
grams or program modules written in CM Fortran or C* use the vector units on
the CM-5. Other programs or modules use only the microprocessor on each node.

4.5.1 Programming Models

CMMD supports two programming models:

• The host/node programming model involves writing two programs that
will run simultaneously. One program runs on the host, while an indepen-
dent copy of a second program runs on each processing node. On the
CM-5, the host is the partition manager that controls a given partition,

while the nodes are the processors within the partition. The host begins
execution by performing needed initializations (including initializing the
CMMD message-passing environment) and then invoking the node pro-
gram; it may have little involvement in subsequent computations.

U The hostless programming model uses the host only to initiate execution
and to act as an I/O server. A CMMD-supplied host program performs

these tasks; the user writes a single application, which runs on each of the
nodes. The nodes pass messages to each other, but do not explicitly talk
to the host.

4.5.2 Cooperative Processing and Asynchronous Processing

CMMD supports both cooperative and asynchronous message passing. With
cooperative concurrent message passing, synchronization occurs only between
matched sending and receiving nodes and only during the act of communication.
At all other times, computing on each node proceeds asynchronously with
respect to the other nodes.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

C hirtA- 4. IM-5 INgu.agesan...ibrari - ...e5

A scl ofr global functions provides for broadcast, reduce, scan, and concatenate
opernli)",s and for global synchronization. As their name implies, global func-
tion ilnvolve all nodes in the partition; executing the function synchronizes the
nodes.

CMMD nlso permits fully asynchronous message passing. Asynchronous mes-
saga p1,1Ning is usually interrupt-driven: a node signals a readiness to send or
receivoe message, then performs other work until its partner node is ready for
the rnllmnission. If preferred, however, asynchronous message passing may be
drivel Iy polling.

To opllmize performance of repeated patterns of message passing, CMMD pro-
vi(em virtual channels. With channels, two nodes establish a one-way
trats11siNIon link that can be used multiple times. Once the channel is estab-
lislledl, leto sending node writes a predefined array into the channel; the receiving
node rltls the channel, then resets it for another use. No synchronization is
necle(l.

4.5.3 Remote Memory Access and Active Messages

In ,tltllliotn to the message-passing functionality listed above, which uses a hand-
sh kke 1)rotocol, CMMD provides protocol-free messaging capabilities. These are
partlcllirly useful for programmers who want to define their own protocols.
Two ti1.ior items in this area are remote memory access and the Active Message
facilily.

· With remote memory access, one node reads or writes a portion of a
second node's memory, as if the two nodes shared a common memory.

* With the Active Message facility, one node activates some routine on a
,Ncond node. The routine may itself activate further routines that either
,rspond to the first node or activate routines on yet other nodes.

4.5.4 CMMD I1O

CNIMI) extends UNIX I/O to provide for both independent and cooperative I/O.
A il<o tly be open for a single node or for all nodes. If open for all nodes, it can
be I, oo of three modes:

· Il independent mode, any node can read or write the file independently.

Version 7. AS't 093
Copyright t tlnking Machines Corporationi ""'

Cha~nter 4 C-5 1.4jguages and Libraries 59

60 CM-S User-s Guide---- --- --------- --- j 1, I , I

* In synchronous-sequential mode, all nodes read and write the file simulta-
neously, each reading or writing a separate, but sequential, portion of the
file.

d In synchronous-broadcast mode, one portion of a file is read and broadcast
to all nodes simultaneously.

CMMD also provides double-precision file pointers, to allow applications to
access very large files.

4.5.5 Supporting Utilities

The supporting facilities provided for data parallel programs, such as the CM
timers, typically treat the nodes as a collective, since the nodes each store part
of the same data set. Message-passing programs, in contrast, are supported by
facilities that allow independent access to each node: for example, the CMMD
timers and the pndbx debugger (used either independently or from within
Prism). The CMMD User a Guide provides hints for using program development
and monitoring facilities.

4.5.6 Documentation Provided

* CMMD Reference Manual

* CMMD User 's Guide

* On-line man pages for all CMMD routines, and release notes for the ver-
sion of CMMD you are using

4.6 The CMAX Converter

CMAX - the "CM Automated X-lator" - is an aid to converting standard
Fortran 77 into CM Fortran. CMAX provides a convenient migration path for
serial programs onto the massively parallel Connection Machine system, both
for data parallel applications and for CM Fortran/CMMD message-passing
applications.

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

60 CM-5 User $ Guick

Ch---- - _--apte- r4.CM ------SL age and--------- Libraries 61C

computer environment and third-party software developers can use the converter
as a "preprocessor" for routine Fortran compilation for CM systems. In this
sense, CMAX provides a migration path onto the Connection Machine system.

The major difference between serial and data parallel Fortran programs is the

substitution of array operations for loop iterations, and the concomitant need to
lay out some arrays across the processing nodes. These are the tasks performed
by the CMAX converter.

CMAX is a Do loop vectorizer. It analyzes loop constructs and translates them
into CM Fortran array operations. For greatest efficacy, the converter performs

an interprocedural dependence analysis of the whole program (not just of indi-
vidual subroutines) and applies vectorization techniques such as loop fissioning,
scalar promotion, and loop pushing to the input code. CMAX also recognizes the
intent of numerous programming idioms, such as structured data interactions and
dynamic array allocation. When translating code, it makes full use of powerful
Fortran 90 features such as array-processing intrinsic functions and dynamic

allocation statements, as well as the FORALL statement defined by High Perfor-
mance Fortran. CMAX thus provides entree both to the Connection Machine
system and to the emerging HPF standard.

CMAX provides a convenient interface to the user. The Prism development envi-
ronment provides facilities for examining CMAX output and comparing it
line-by-line with the input program; see Figure 14, which shows a Prism window
with the CM Fortran code in one pane, and the corresponding Fortran 77 code
in the other pane. CMAX command options and in-line directives allow the user

to control the converter's actions and decision rules. The CMAX library provides

canonical, portable - and translatable - Fortran 77 utilities for expressing
common operations like dynamic array allocation and circular array element

shifts. The converter generates detailed notes of a conversion, explaining all the
changes it has made.

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Charpter 4. CM-5 Languages and Libraries 61

CM-5 User's Guide

Figure 14. CM Fortran and Fortran 77 code in a split screen.

Although CMAX is designed primarily to assist in the creation of new applica-
tions, it accepts as input any program that is written in standard Fortran 77 and
follows standard guidelines for scalability. These simple guidelines guarantee
that a program runs efficiently on any size data set, large or small, and on any
number of processors, from one to thousands. The combination of guidelines
plus converter can assist substantially the task of upgrading "dusty deck" pro-
grams to take advantage of modem architectures and language features.

The conventions of scalable Fortran programming express three basic objectives:

* Make it easy for a compiler to recognize how data and computations may
be split up for independent or coordinated processing. For example: loop
over as many array axes as possible in a single operation; use standard
idioms to express common, well-structured data dependences.

* Avoid constructions that rely on a particular memory organization, such
as linearizing multidimensional arrays or changing array size or shape
across program boundaries.

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

62

Une Source File: userslcmsg7ftlefforgel1101 b.fcm

10 real (sizel)
11
12 PFe LAYOUT al(:NEWS)
13 PRINT 40. 'Test: ilO1b'
14 FORALL (= 1:12) al(i) = mod(l,7)
15 CALL ilOb (al.sizel)
16 PRINT 10, a
17
18 - include 'test-Formats.inc'
19
20 STOP
21 END
22 3. x77:
23 '# x77: Transformation of I101B rom ilOlb.f
24 :* x77:
25 '* x77: Transform DO/ENDDO (1) I

11
13 print 40, 'Test: 110b'
14 do i 1,sizei
14 al(i) = mod(i,7)

end do
15 call iOb(al, sizel)
16 print 10. al
17
1 - include 'test-formats.inc'
19
20 stop
21 end
22
23
24 C Item 101, Priority 5
25 C Fortran-77 source:

l I' cl_ -

· r yll g * u au-Pa_ rr_ ----------------

Chapter 4. CM-5 Languages and Libraries
_ ___ --------..- ------- - -------- ~6

Use data layout directives and library procedures (with some conditiona-
lizing convention) to take advantage of the specific performance
characteristics of each target platform. For example, Fortran 77 programs
targeted to the CM system can use compiler directives to fine-tune data
layout and access the CM libraries for procedures that are specially tuned
for performance on the CM system.

4.6.1 Documentation Provided

" Using the CMAX Converter

4.7 Assembly Language

The initial implementation of CM-5's processing node uses a SPARC micropro-
cessor. Low-level programming can therefore be carried out in SPARC assembly
language; this is not recommended, however, since the implementation of the
CM-5 processing node is expected to track the RISC microprocessor technology
curve to provide the best possible functionality and performance at any given
time. Thus, SPARC assembly language programs may not be portable to future
CM-5s.

Thinking Machines provides an instruction set called DPEAC for programming
the optional vector-unit hardware. DPEAC is an extension of SPARC assembly
language, providing additional assembly-level operations that are CM-5 specific.

4.7.1 Documentation Provided

DPEAC Reference Manual

Version 7.2 Agust 1993
Copyright 0 1993 Thinking Machines Corporation

63

P'i

Appendix A

Moving from the CM-2 to the CM-5

This appendix is for CM-2 and CM-200 users who want to port their programs to
the CM-5. For complete information on porting a CM Fortran program, see the
CM Fortran User Guide. For complete information on porting a C* program,
see the CM-5 C* Release Notes.

A.1 Updating the Program

A.1.1 CM Fortran

Programs written in the CM Fortran language run on both the CM-5 and the
CM-2/200. You need not make any changes in the use of language features to port
a program from one platform to another. Some other system features, however,
are platform-dependent. For example, send addresses on the CM-5 are 8-byte
integers. Arrays that contain send addresses, therefore, should be declared (on
any CM) as DOUBLE PRECISION or REAL* 8. Send address arrays declared in this
way are portable across all CM platforms. Also, some compiler switches apply
to only one platform. Optimizations are the same for the CM-5 and the slicewise
model on the CM-2 and CM-200; Paris optimizations do not apply to the CM-5.

Assemblers also differ: the Paris instruction set is not supported on the CM-5, so
calls to Paris must be removed from CM-2/200 programs before they are ported
to the CM-5. Such calls are typically replaced by calls to the Utility Library.
Other library calls may also be non-portable:

* CMMD and CMXll1 are supported only on the CM-5.

* CM-2/200 visualization libraries are supported only on the CM-2 and
CM-200.

Version 7.Z2, August 1993

Copyright C 1993 7hinking Machincs Corporation 65

66 CM-5 User i Guide

* The CM Fortran Utility Library, CMSSL, and CM/AVS are supported on all
CM systems.

A.1.2 C®

Most CM-2/200 C* programs should port without difficulty to the CM-5. You
must recompile and relink using the CM-5 C* compiler. This list summarizes the
changes that you must make (when applicable) to ensure portability:

* Remove all calls to libraries (like Paris) not supported on the CM-5.

* Remove all include files not supported on the CM-5 (for example,
<cm/paris. h>).

* If you express lengths in terms of bits in a function (for example, in the
overloaded versions of the grid communication functions or the get or
send function), rewrite the code to express the size with boolsizeof
and the appropriate parallel type.

* Change calls to allocate_detailed shape to use the new format for
CM-5 C*.

• The CM-5 C* compiler disallows casts between scalar types and pointers
to parallel variables. If you call palloc () in a CM-2/200 C* program
without including <stdlib. h> (which properly declares its return type)
and cast the result, the code won't compile on the CM-5. Thus, this code
won't work:

/* No included stdlib.h file */

int:current *p = (int:current *)palloc(current,

boolsizeof(int:current));

Change it to this so that it will work in CM-S C*:

#include <stdlib.h>

int:current *p - palloc(current,

boolsizeof(int:current));

Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

_Ip I 'A' M ing"-'- from t - I -

A.2 Compiling and Linking

A.2.1 CM Fortran

In compiling CM Fortran programs, note that the CM-2/200 options -paris and
-slicevise are not supported on the CM-5; the CM-5 supports only the options

-spare and -vu.

On the CM-5, cmf does not invoke the linker ld directly. If you link as a separate
step, we recommend reinvoking cmf.

A.2.2 C*

You compile and link CM-5 C* programs as you do CM-2/200 C* programs. CM-S

C* supports most CM-2/200 compiler options. Exceptions are:

* -noline
· -release

* -ucode

-pg

-keep c, since the compiler does not generate C code

A.3 Executing

When executing a CM Fortran or C* program, note that you do not issue the
commands cmattach or cmcoldboot. A CM-5 partition manager is always
"attached" to the nodes it controls. In addition, the cmsetsafety command is
not available on the CM-5.

The CM-2/200 checkpointing facility is not currently supported on the CM-5.

Version 7.2, August 1993
Copyright C 1993 Thinking Machines Corporation

,. -r 'ir_4 c

Appndix A· Movingftom the CM-2 to the CM-5 67

/!68JIIUL CM- Uss..d.e -iJ lE ' !1 J - ¥

A.4 *Lsp

CM-5 supports the *Lisp interpreter. Most CM-2/200 *Lisp code will port without
any changes. However, operations that are not part of *Lisp, such as calls to Paris
or other low-level facilities, either will not work on the CM-5 or will require sig-
nificant revision. For complete information, see the manual Porting to CM-S5
*Lisp.

Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

CM-5 User Guide68

/ /

Appendix B

A Sample CM Fortran Program
.?:

This is the source code for the CM Fortran program prim

example in this manual:

program findprimes

implicit none

integer i, n, nextprime

parameter (n - 70000)

logical primes(n), candid(n)

integer identity(n)

C Initialization
C

identity - [l:n]

primes - .false.

candid - .true.

candid(l) - .false.

call loop(n, identity, primes, candid)

call results(n, primes)

end

subroutine loop(n, identity, primes, candid)

logical primes(n), candid(n)

integer identity(n)

integer i, n, nextprime

C Loop: Find next valid candidate, mark it as a prime,

C invalidate all multiples as candidates, repeat.

C

nextprime - 2

do while (nextprime .le. sqrt(real(n)))

primes(nextprime) - .true.

Version 7.2 August 1993 69

Copyright @ 1993 Thinking Machines Corporation

'I
'* I

CM-5 User a Guide

candid(nextprime:n:nextprime) - .false.

nextprime - minval(identity, 1, candid)

end do

At this point, all valid candidates are prime

primes(nextprime:n) - candid(nextprime:n)

end

subroutine results(n, primes)

logical primes(n)

integer i, n

Print results

print *, "Number of primes: ", count(primes)

do i - n,1, -1
if (primes(i)) then

print *,i

goto 10

end if

end do

10 end

Version 7.Z2, August 1993
Copyright © 1993 Thinking Machines Corporation

70

C

C

C

C

C

C

-- - -- --- ------ -- -- --- --------- -- -- -- -- -- -.. ------------- ------ ---

Appendix C

Glossary

This glossary presents brief explanations of UNIX and CM-5 terms used in this manual. For
a more comprehensive discussion of the UNIX system, consult The UNIX Programming
Environment, by Brian W. Kernighan and Rob Pike (Prentice-Hall, 1984), or one of the
many other books written about UNIX.

C* A data parallel extension of the C programming language.

CM/AVS

CMAX

CM Fortran

CMFS

CMIO bus

A graphical user interface that adapts and extends the Application
Visualization System to the CM-5.

A software tool that translates Fortran 77 programs into CM Fortran.

An implementation of the Fortran 77 programming language,
extended with array-processing facilities from Fortran 90.

Connection Machine File System. A UNIX-like file system that can
reside on CMIO-bus data-storage devices, such as a DataVault.

An I/O bus that connects CM-2 and CM-200 I/O devices to the CM-S's
Data Network.

CMMD A communication library used in creating node-level message-pass-
ing programs on the CM-5.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation 71

72¥ CM-SZ'T;~Z-'~yZ~ User's Guide---11- - --

The CM-5's operating system, an enhanced version of UNIX.

CM Scientific Software Library. A library of routines that perform
data parallel versions of standard mathematical operations.

A library of routines that manage the transfer of parallel data
between the CM-5 and any X11 terminal or workstation.

control processor

Control Network

.cshrc

C shell

current directory

Data Network

DataVault

A CM-5 processor that manages partitions or I/O.

A communication network on the CM-5, used for operations that
involve all the nodes at once, such as synchronization operations and
broadcasting.

In the C shell, a script file run after login to set up the characteris-
tics of the shell.

See shell.

See directory.

A communication network on the CM-5, used for bulk data transfers
where each item has a single source and destination.

A high-performance, disk-based mass storage system for use in CM
systems.

A node in the UNIX file system.
other directories. The current or
which relative pathnames refer.

A directory can contain files and
working directory is the directory to

Version 7.Z2, August 1993
Copyright © 1993 Thinking Machines Corporation

CMoST

CMSSL

CMXI1

directory

72 CM-5 User a Guide

73

environment variables
Variables whose settings are available both to a shell and to pro
grams called from within the shell. You can change the settings of
these variables to provide information about your environment to

programs. Compare shell variables.

The name of a UNIX file. See also pathname.

The name of a class of users to which a user is assigned.

The name assigned to a computer running the UNIX system.

The name by which a user is known to the system.

A utility that provides a mechanism for maintaining programs by
ensuring that the files constituting a program all exist and are up-to-
date.

On the CM-5, the unit containing a microprocessor, a bus, memory, a
network interface, and optionally vector units.

A group of CM-5 processing nodes, under the control of a control
processor, used for executing user tasks.

partition manager

pathname

A CM-5 control processor that supervises the nodes in a single parti-
tion.

A name that includes all the directories that have to be traversed to
reach a given file or directory. An absolute pathname starts with
root - that is, at the beginning of the file system hierarchy: for
example, /usr/bin. A relative pathname starts with the working
directory: for example, my subdirectory/file name.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

Appendix C. Glossary

filename

group ID

hostname

login ID

make utility

node

partition

-..... -- - ----

74 CM-S- User -- G--de

A debugger that provides independent access to each node, used in
debugging CMMD programs.

The CM-5's programming environment.

An instance of a running program. Each process in a system has a
unique process ID.

A symbol that indicates that the system is ready to accept com-
mands. You can use a shell variable to set what your prompt will be.
In this guide, the prompt is displayed as a percent sign (%).

relative pathname See pathname.

remote operations

riogin

root

Commands that involve interaction with UNIX systems other than
the local system to which you are logged in. The rlogin command
allows you to log in to a remote UNIX system; the rsh command
allows you to execute a UNIX command on a remote system without
logging in; and the rcp command allows you to copy a file to or
from a remote system.

See remote operations.

The beginning directory
tem - specified as /.

rsh

script file

SDA

in the hierarchy of the UNIX file sys-

See remote operations.

A file that contains commands or programs to be executed. You can
submit a script file for execution by NQS. Also called shell script.

Scalable Disk Array. A high-performance, highly expandable disk
storage system packaged within CM-5 cabinetry.

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation

pndbx

Prism

process

prompt

74 CM-5 User Ir Guide

Scalable- Fil Sysem 'A-il-s.stmhangsheilesiii stre.o

SFS

setenv

shell

shell script

shell variables

Scalable File System. A file system that manages the fries stored on
a Scalable Disk Array or Integrated Tape System.

The C shell command for setting an environment variable.

A command interpreter that lets you issue commands to be executed
by the kernel. There are different shells that provide slightly differ-
ent features. The C shell, the Bourne shell, and the Korn shell are

popular UNIX shells.

See script file.

A set of predefined variables whose values you can change to cus-
tomize your shell. For example, you can set the prompt variable to
change your UNIX prompt. Compare environment variables.

standard input, output, and error
Standard input is the input device for commands. Standard output is
the device to which commands send their results. Standard error is
the device to which commands send error messages. Typically, all
three are defined to be your terminal. You can change this - for
example, by using redirection to send output to a file instead of to

your terminal.

subshell

superuser

symbolic link

user ID

See shell.

A special user on a UNIX system who can read or modify any file in
the system.

An entry in a directory that points to an already existing file with a
different path. This allows a user to gain access to a file without
specifying an absolute pathname.

A number associated by the system with a login ID.

F:I
Version 7.2, August 1993

Copyright 0 1993 Thinking Machines Corporation

Appendix C Glossary 75

76- - - - - - CM-------- ------ - - U Gwmmmmmmmw~~~~~~~inuinmininmminummminu..uinmm~~~~~~~~~~~~~~~--

On the CM-5, optional high-performance arithmetic hardware. Each
node has four vector units, if they are present in the system.

working directory See directory.

Version 7.2. August 1993
Copyright © 1993 Thinking Machines Corporation

vector units

76 CMW-5 User r Guide

Index
-------~a~LI88881

A
accounting information, providing, 15
as, 7
assembly languages, 7, 63
at command, 16

B

batch command, 16
batch mode, executing in, 16

C

C shell, 72
C*, 71

documentation for, 51
overview of, 50
porting program from CM-2/200 to CM-5,

66
checkpointing, 67
CM Fortran, 71

development and monitoring facilities, 49
documentation for, 49
intrinsic functions in, 49
overview of, 47
porting program from CM-2/200 to CM-5,

65

programming models for, 48
utility library, 49

CM-2/200, 9
CM-5

distributed graphics strategy for, 54
gaining access to, 13

hardware of, 4
networks in, 5
operating system of, 8
parallel programming on, 1
software for, 6
user's view of, 12

CM-HIPPI, 9

CM-IOPG, 9
CM/AVS, 55, 71

CM ACCOuNTID, 15

CM NO PN COU, 19

CMS-HIPPI, 9
CMAX, 4, 8, 60,71

and Prism, 46
CMFS, 9, 71
CMIO bus, 9, 71
cmld, 15

CMMD, 3, 58, 72

Active Message facility, 59
cooperative and asynchronous processing,

58

documentation for, 60
programming models for, 58
remote memory access, 59
supporting utilities, 60

CMoST, 8, 19, 72

cmpartition, 21
-cmprofile compiler option, 27, 39
cmps, 22
CMSSL, 72

communication functions, 54
FFTs, 53

linear algebra, 52

linear programming, 53
ordinary differential equations, 53
overview of, 52

statistical analysis, 54
CTSDcore_pn file, 19
CTSD_dp. pn file, 19

CMTSD errors file, 19

CMX11, 56, 72

compiling, 14

Control Network, 5, 72
control processor, 5, 72
core files, 18
.cshrc, 72

Version 7.2, August 1993
Copyright 0 1993 Thinking Machines Corporation 77

78-·· CM-5----· User's Guide--- rrulw~*r~py~l --- -----------------

D

Data Network, 5, 9, 72
data parallel programming, 2
data parallel software, 6
DataVault, 9, 72
dbz, 18

debugging, 18

within Prism, 32
Diagnostics Network, 5
directory, 72
DISPLAY environment variable, 28
DJM, 17

status information for, 25
documentation, obtaining on-line, 26
dpae, 7
DPEAC, 7, 63

E

environment variables, 73
errors file, 18

event list, 34
executing, 15

from within Prism, 30

F

file systems, 9

G

-gr compiler option, 27
gdb, 18

H

hostname, 73

/0, 9
integrated environment, 55

J
Jrun, 17

j tat, 25
jaub, 17

L

linking, 15

*Lisp, 6

porting program from CM-2/200 to CM-5,
68

M

make utility, 73
man command, 26
man pages, viewing, 26
message passing, 3, 7, 58

See also CMMD

N

nodes, 5, 73

NQS, 16

status information for, 24

P

partition, 5, 73
partition manager, 5, 12, 73

logging in to, 13

logging out of, 14
pathname, 73

performance data, 39

pndbx, 18, 19, 74

PNs. See nodes
Prism, 8, 18, 74

and CMAX, 46
commands-only mode, 46
customizing, 45

debugging in, 32
executing in, 30
getting help in, 42
leaving, 45

obtaining performance data in, 39
starting up, 28
tour of, 28
visualizing data in, 35

Version 7.2, August 1993
Copyright 1993 Thinking Machines Corporation

CM-5 User s Guide78

Index
re~s~lranp;~p~~Ii 79

* r-mummmuuuminumin..~P~P~"~---M -.*-- ...P.-..

prism commnbiA %,
-C option, 4c%

process, 74
programs, sal\\l\ ,%

0
qetat, 24
qsub, 16

R

rlogin, 13, '14

rh, 14, 74

S
sample progtl\,, I t a%)
scalable conl.tr . 0

Scalable DiMl ,, i
SDA,9,75 A"f" DA
SFS, 9, 75

SPARC assctl,lt 7, 2

SPMD progl'"'"l*""a '4%El, 2

symbolic link, 76
system status, finding out about, 22

T
timing utility, 20
tracebacks, 20

U

/usr/example, 11

V

vector units, 5, 12, 19, 76
visualization programming, 54
visualizing data, 35

X

xcmps, 23

Version 7.2. 1,"W.I I ugj

Copyright 'C~ tu tol I .,V#" Machines Corporation

