
The
Connection Machine
System

CM Fortran Utility Library
Reference Manual

........................ ... ::...
Preliminary Documentation for Version 2.0 Beta

January 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, January 1993

PRELM-NARY DOCUMENTATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines assumes no liability for errors in this
document.

This document does not describe any product that is currently available from Thinking Machines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.

CMosr, CMAX, and Prism are tmdemarks of Thinking Machines Corporation.
C * is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMXll are trademarks of Thinidng Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines is a registered trademark of Thinldng Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright C 1991-1993 by Thinking Machines Carporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

��*************************rrrX**********

Contents

Field Test Support ... vi

About This Manual .. vii

Chapter 1 Introduction .. 1

1.1 Why a Utility Library? ... 1

1.2 Contents of the Utility Library 2

1.3 The Utility Library Header File 3

1.4 Restrictions on Utility Procedures 3

Chapter 2 Inquiries, Random Numbers,
and Dynamic Allocation 5

2.1 System Inquiry Functions .. 5

2.1.1 Language Comparison 6

2.2 Array Inquiry Subroutine ... 7

2.2.1 Language Comparison 7

2.3 Random Number Generation 8

2.3.1 Language Comparison 8

2.4 Dynamic Array Allocation .. 9

2.4.1 Allocation Example 10

2.4.2 Controlling Array Layout 11

2.4.3 Detailed-Layout Allocation Example 11

2.4.4 Restrictions ... 13

2.4.5 Language Comparison 13

Chapter 3 Data Motion .. 15

3.1 Array Transfers ... 15

3.1.1 Language Comparison 16

3.2 Scatters with Combining ... 17

3.2.1 Constructing Send Address Arrays 17

3.2.2 Address-Construction and Scatter Example 19

3.2.3 Language Comparison 20

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation 1li

iv CM Fortran Utility Library

3.3 Parallel Prefix Operations 21
3.3.1 Scan Segments .. 22
3.3.2 Scanning Example 23

3.3.3 Language Comparison 24

3.4 Ranking and Sorting . .. 25

3.4.1 Axis Segments .. 25
3.4.2 Ranking and Sorting Examples 27

3.5 Table Look-ups 28

3.5.1 Language Comparison 29

3.6 Gathers/Scatters on Serial Axes 30
3.6.1 Conditions for Fast Performance 30

3.6.2 Gather/Scatter Examples 32

3.6.3 Language Comparison 32

Chapter 4 Parallel 1/0 .. 33

4.1 CM File Operations 33
4.1.1 Opening, Closing, and Removing CM Files 34
4.1.2 Reading and Writing CM Files 35
4.1.3 Manipulating CM Files 39
4.1.4 Example of CM File Operations 42

4.2 Parallel I/O via Devices and Sockets 43

Appendix Dictionary of Utility Procedures 47

CMF ALLOCATE ARRAY ... 50

CMF ALLOCATE DETAILED ARRAY 53

CMF ALLOCATE LAYOUT ARRAY 57

CMF ALLOCATE TABLE ... 59

CMF ARCHITECTURE .. 61

CMF AREF 1D 62

CMF ASET 1D ... 64

CMF AVAILABLE MEMORY ... 66
CMF CM ARRAY FROM FILE .. 67

CMFCM ARRAY FROM FILE FMS 69

CMF CM ARRAY FROM FILE SO 71
CMF CM ARRAY TO FILE ... 73
CMF CM ARRAY TO FILE FMS 75
CMF CM ARRAY TO FILE SO 77
CMF DEALLOCATE ARRAY 79

Version 20 Beta, January 1993
Copyright 1991-1993 hinking Machines Corporation

Contents v

CMF DEALLOCATE TABLE ... 80

CMF DEPOSIT GRID COORDINATE 81
CMF DESCRIBE ARRAY ... 83
CMF FE ARRAY FROM CM ... 84

CMF FE ARRAY TO CM 85

CMF FILE CLOSE .. 86

CMFFILEFDOPEN ... 87

CMF FILE GET FD ... 88

CMFFILE LSEEK .. 89

CMFFILE LSEEK FMS ... 91

CMF FILE OPEN 93

CMFFILE REWIND ... 94

CMFFILE TRUNCATE .. 95

CMF FILE UNLINK ... 97

CMFGET GEOMETRY ID .. 98

CMF LOOKUP IN TABLE .. 99

CMF MAKE SEND ADDRESS .. 101
CMF MY SEND ADDRESS .. 103
CMF NUMBER OF PROCESSORS 105
CMFORDER .. 106

CMF RANDOM ... 107
CMF RANDOMIZE 109
CMF RANK 110
CMF SCAN .. 114
CMF SEND 119
CMF SIZEOF ARRAY ELEMENT 122
CMFSORT .. 123

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

Field Test Support
---- --- r a r~a sa

Field test software users are encouraged to communicate with Thinking
Machines Corporation as fully as possible throughout the test period. Please
report any errors you may find in this software and suggest ways to improve it.

When reporting an error, please provide as much information as possible to help
us identify the problem. A code example that failed to execute, a session tran-
script, the record of a backtrace, or other such information is extremely helpful
in this regard.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for field test support. Otherwise, please contact Thinking
Machines' home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportethink.com

ames! think! customer-support

Thinking Machines Corporation
Customet Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 2.0 Beta, January 1993
Copyright C 1991-1993 Thinking Machines Corporation vi

About This Manual

Objectives of This Manual

This manual provides reference and usage information about the procedures in
the CM Fortran Utility Library.

Intended Audience

This manual assumes familiarity with CM Fortran programming.

Organization of This Manual

The chapters of this manual describe the functional categories of utility
procedures and suggest how to use them. The appendix is a dictionary of the
individual procedures.

Revision Information

This is a preliminary draft of a new manual. The Utility Library was previously
documented in an appendix to the CM Fortran User s Guide, Version 1.1.

Related Documents

* The CM Fortran Reference Manual defines the language; the CM Fortran
User s Guide provides information about using the compiler.

* The dictionary entries in this manual are available on line as man pages.
View them with the command man on CM-5 or caman on CM-2/200,
specifying the utility procedure name in uppercase.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation vii

Chapter 1

Introduction

The Utility Library provides convenient access from CM Fortran to the capabili-
ties of lower-level CM software. The purpose is typically to achieve functionality
or performance beyond what is currently available from the compiler.

As the compiler continues to develop, some of the utility procedures become
redundant with CM Fortran language features. This manual compares utility pro-
cedures with the corresponding language features in the current release and notes
any differences in behavior or performance.

1.1 Why a Utility Library?

CM Fortran programmers can use Utility Library procedures in situations where
one is normally tempted to make explicit calls to lower-level software. There are
several advantages to using the Utility Library instead in these situations:

* Convenience. The utility procedures take CM Fortran array names and
other CM Fortran data objects as arguments. There is no need to convert
CM Fortran objects into the data types used by lower-level software.

* CM Portability. With the few exceptions noted, the utility procedures sup-
port all CM hardware configurations and execution models, regardless of
the particular lower-level software involved. There is no need to recode
these calls to port a program from one CM system to another, even though
the underlying system software may be quite different.

* Support. The Utility Library is a supported part of the CM Fortran prod-
uct. Unlike some of the underlying system software, the library remains
stable over time so that programs using it do not require maintenance.

Version 20Beta, January 1993

Copyright 0 1991-1993 Thinking Machines Corporation 1

2 C Fotra Utlit Lirar

1.2 Contents of the Utility Library

The chapters that follow describe the Utility Library procedures under these
functional categories.

* Inquiries

* System inquiry

· Array inquiry

· Random number generation

* Dynamic array allocation

· Data motion (interprocessor)

* Array transfers

* Scatters with combining (plus
array address construction)

* Parallel prefix operations

* Ranking and sorting

* Data motion (local)

· Table look-ups

· Gathers/scatters on serial axes

* Parallel I/O

* CM file operations

· CM I/O via devices or sockets

1.3 The Utility Library Header File

Each program unit that uses procedures from the Utility Library must include its
header file:

INCLUDE '/usr/include/cm/CMF_defs.h'

The pathname of ClF_def s. h may be different if your system administrator has
revised the CM directory structure.

The compiler command cmf links with the Utility Library automatically; no
explicit linking is required.

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

2 CM Fortran Utility Library

Refe M-----anua 3

1.4 Restrictions on Utility Procedures

* Aligned arrays. The utility procedures do not operate on arrays that are
aligned with other arrays of higher rank or aligned with non-zero dimen-
sion offset(s) with any other array.

* Lower bounds. The utility procedures assume that all array dimensions
have a lower bound of 1. Any other lower bound value is ignored. (An
exception is the parallel I/O procedures, which accept arrays with any
lower bound value.)

A few restrictions apply only to particular procedures. These are noted both in
the text discussing the functional categories and in the individual procedure
descriptions in the appendix.

Version 20 Beta, January 1993
Copyright 1991-1993 Thinling Machines Corporation

Reference Manual 3

0 '

Chapter 2

Inquiries, Random Numbers,
and Dynamic Allocation

2.1 System Inquiry Functions

Three functions report information about the CM system that is executing the
program. They all take no arguments and return integer scalar results.

CFARCHITECTURE returns a predefined constant that identifies the CM hard-

ware platform and execution model:

ARCH - CMF_ARCHITECTURE()

CMF_NaMBER_OF_PROCESSORS reports the number of processing elements
available:

NUM - CF NUMBER_OFPROCESSORS()

The table below shows the return values of these two inquiry functions. Notice
that the CM system component that serves as the "processing element" is differ-
ent for the various platforms and execution models.

Version 2.0 Beta, January 1993
Copyright X 1991-1993 Thinking Machines Corporation

6 .M Fortran UtilityLibrary

i;
CM Fortran hardware platforms and execution models.

Compiler CMF ARCHITECTURE CMF_NUMBER_OF_
options returns PROCESSORS returns

CM-5

Vector units -cm5 -vu CMF CM5 VU number of vector units

Nodes -cm5 -sparc CMF_CM5_SPARC number of nodes

CM-200

Slicewise -cm200 -slicewise CMF CM200 SLICEWISE number of nodes

Paris -cm200 -paris CMF_CM200_PARIS number of processors

CM-2

Slicewise -cm2 -slicewise CMF CM2 SLICEWISE number of nodes

Paris -cm2 -paris CMF_CM2_PARIS number of processors

CM Fortran
Simulator -cmsim CMF _CMSIM number of processors (1)

See the CM Fortran User Guide for more information on execution models and
the hardware platforms they support.

A third inquiry function, CMF AVAILABLE_MEMOR reports the number of bytes
of memory still available in each processing element:

MEM = CMF AVAILABLE MEMORY()

NOTE: This function returns incorrect results for the vector unit model in Version
2.0 Beta.

2.1.1 Language Comparison

No comparable language feature.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

9

6 CM Fortran Utility Library

R--efre-ce-Manua

2.2 Array Inquiry Subroutine

The subroutine CM DESCRIBE ARR AY prints information about a CM array to
standard output:

CALL CMF_DESCRIBE_ARRAY(ARRAY)

The output includes the home, rank, and dimension extents of the array, as well
as detailed information about its layout on the processing elements.

The Utility Library also provides two special-purpose array inquiry functions.

* CMF_GET_GEOMETRY_ID is used only in constructing destination
addresses for scatter operations; it is described in Section 3.2.1.

* CMF SIZEOF_ARRAY_ELEMENT is used only for certain operations on
CM files; it is described in Section 4.1.3.

2.2.1 Language Comparison

No comparable language feature.

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 7hinking Machines Corporation

Reference Manual 7

2.3 Random Number Generation

Two subroutines serve to fill a CM array with pseudo random numbers:

CALL CIF RANDOMIZE(SEED)

CALL CMF_ ANDOM(DEST, LIMIT)

CMF_RANDOMIZE sets a seed for the random number generator used by
CM_ RAINDOM. a_RANDOM uses the initialized random number generator to
store a pseudo random number in each element of the DEST array.

The LIMIT argument should always be specified as 1.0 for floating-point values.
For integers, the argument serves as the exclusive upper bound of the values gen-
erated. If you do not want to set a limit for integer values, specify the LIMIT

argument as 0.

The random number generator algorithm used by these routines is Wolfram's
Rule 30 Cellular Automaton, described in Stephen Wolfram, "Random
Sequence Generation by Cellular Automata," Advances in Applied Mathematics
7, pp. 123-69 (1986). This paper may be more readily available as a reprint in
Stephen Wolfram, Theory and Application of Cellular Automata, World Scien-
tific (1986).

The cellular automaton is run on a finite string of bits, i-0O,...,N-l, with periodic
boundary conditions (so that site N is equivalent to site 0). In the CM imple-
mentation N = 59.

* For integer data the random numbers are generated by simply running the
automaton for 32 generations.

* For real, double-precision real, complex, or double-precision complex
data, the random numbers are generated by running the automaton for s
generations (where s is the mantissa length), and setting the exponent bits
and sign bit so that the result is uniformly distributed between 2.0 and 1.0.
Then 1.0 is subtracted from the result to yield a number that is uniformly
distributed between 0.0 and 1.0.

2.3.1 Language Comparison

No comparable language feature.

I ga

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library8

Refe~B~ren Manal-

2.4 Dynamic Array Allocation

Three subroutines allocate CM arrays at run time, giving the programmer differ-
ent levels of control over the array's layout. A fourth subroutine deallocates an
array created by any of the other three.

CALL CMF ALLOCATE ARRAY

& (FE_ARRAY, EXTENTS, RANK, TYPE)

CALL CMF ALLOCATE LAYOUT ARRAY

e& (FE_ARRAY, EXTENTS, RANK, TYPE, ORDERS, WEIGHTS)

CALL CMF ALLOCATE_DETAILED_ARRAY

& (FE_ARRAY, EXTENTS, RANK, TYPE, ORDERS,
r& SUBGRIDS, PMASKS)

CALL CMF_DEALLOCATE_ARRAY(FE_ARRAY)

The FE_ARRAY argument is an integer front-end vector whose length is the pre-
defined constant CMF_sIZEOF_DESCRIPTOR. This array is treated as the
descriptor of a CM array; the remaining arguments specify information to be
placed in the slots of the descriptor. All three variants take as arguments:

* EXTENTS a front-end vector that contains dimension extents

* RANI a scalar integer that indicates rank

· TYPE A pre-defined integer constant that indicates type:
CF_LOGICAL, CRF_S_INTEGER,

CMF_FLOAT, CMF_DOUBLE,

CMFCOMPLEX, CMF_DOUBLE_COMPLEX

The FE_ARRAY argument cannot be used as a CM array within the program unit
that calls the allocation subroutine, since that program unit treats it as a front-end
array. Instead, you pass the FE_ARRAY argument (that is, the descriptor) to
another program unit that explicitly declares it a CM array. This method is illus-
trated in the following example.

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Reference Manual 9

2.4.1 Allocation Example (Canonical Layout)

SUBROUTINE ALLOCATE()
IMPLICIT NONE

INTEGER NEWARRAY(CMFSIZEOFDESCRIPTOR)
INTEGER EXTENTS(7), RANK, I
PARAMETER (RANK=3)

INCLUDE '/usr/include/cm/CMF_defs.h'

DO I=1,RANK

EXTENTS(I) = I * 10

END DO

CALL CMFALLOCATEARRAY

& (NEW_ARRAY, EXTENTS, RANK, CMF S INTEGER)

CALL PRINTDIMS3D(NEWARRAY)

CALL CMF DEALLOCATE ARRAY(NEW ARRAY)
END SUBROUTINE ALLOCATE

SUBROUTINE PRINTDIMS3D(IN)
IMPLICIT NONE

INTEGER IN(:,:,:)

PRINT *,"Shape of DUMMY is (",DUBOUND(IN,1),

& -,",DUBOUND(IN,2),

& ", n,DUBOUND(IN,3),")"

END SUBROUTINE PRINT DIMS3D

'j; i

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library10

Refeene Mannal 11a~

2.4.2 Controlling Array Layout

The "layout" and "detailed" variants of the allocation procedures take additional
front-end vector arguments that contain layout information for each of the array
dimensions. The significance of these arguments is comparable to the various
forms of the cmf compiler directive LAYoUT.

* ORDERS contains symbolic constants indicating the ordering of each
dimension: Cma_SERIAL_ORDER, Ca_NEWS ORDER, or (for CM-2/200
only) C'F-SEhDORDER.

* WEIGHTs is a vector of integers indicating relative dimension weights.

* sUBGRIDS is a vector of integers indicating the desired subgrid length for
each dimension (comparable to the BLOCK item in the detailed-layout
directive).

* PAs5xs is a vector of integers that serve as bit-masks to indicate the
desired processors (comparable to the: PDESC item in the detailed-layout
directive). If ORDERS contains the value C'_SERIAL_ORDER for any
dimension, then Pmaxs must contain o for that dimension.

There is no form directly comparable to the: BLOCK : PROC form of the detailed
LAYOUT directive. However, if maaxs contains all zeros, the system computes
the number of processors for each axis as extent / subgrid-length, rounded if nec-
essary to the next power of 2.

2.4.3 Allocation Example (Detailed Layout)

IMPLICIT NONE

INCLUDE '/usr/include/cm/CMF_defs.h'
INTEGER NEWARRAY(CMF_SIZEOF_DESCRIPTOR)

INTEGER EXTENTS(7),ORDERS(7),SUBGRIDS(7),PMASKS(7)

INTEGER RANK,I

INTEGER NPN,NPN_FRAC,FRAC,SG1,SG2

REAL A(200)

PARAMETER (RANK = 2)

PARAMETER (FRAC = 4)

PARAMETER (SG1 = 5, SG2 = 40)

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Reference Manual 11

2 CM.Fortran.Uility.Librar

A = 1.0 ! initialize if CM-2 running in auto-attach mode

NPN = CMFNUMBER OF PROCESSORS()
NPNFRAC = NPN/FRAC

PMASKS(1) = (NPN FRAC - 1) * FRAC

PMASKS(2) 5 FRAC - 1

SUBGRIDS(1) = SG1

SUBGRIDS(2) = SG2

EXTENTS(1) = NPN FRAC * SG1
EXTENTS(2) = FRAC * SG2

DO I = 1,RANK

ORDERS(I). = CMF NEWS ORDER
END DO

CALL CMF ALLOCATE DETAILED ARRAY

& (NEWARRAY,EXTENTS,RANK,CMF FLOAT,ORDERS,SUBGRIDS,PMASKS)

CALL USENEWARRAY(NEWARRAY, EXTENTS)

CALL CMFDEALLOCATE ARRAY(NEWARRAY)
END

SUBROUTINE USENEWARRAY(A,EXT)
INTEGER EXT(2)
REAL A(EXT(1),EXT(2)), B(EXT(1),EXT(2))

CMF$ LAYOUT A(:,:)
CMF$ ALIGN B(I,J) WITH A(I,J)

B - CSHIFT(A,DIM=1,SHIFT=l)

C Other operations on arrays A and B

RETURN

END

Version 2.0 Beta, January 1993
Copyright 0D 1991-1993 Thinking Machines Corporation

12 CM Fortran Utility Library

Reference Manual 13

*

2.4.4 Restrictions

In addition to the general restrictions listed in Section 1.4, the following restric-
tions apply only to the dynamic allocation utilities.

* All four dynamic allocation utilities are incompatible with run-time safety,
including argument checking and NaN checking. Do not use -safety or
-argument_checking to compile a program that uses these procedures.

· The procedure CMF_ALLOCATE_DETAILEDARRAY is not supported
under the Paris execution model on CM-2 or CM-200.

2.4.5 Language Comparison

The dynamic allocation utility procedures are largely, but not completely, redun-
dant with the CM Fortran statement ALLOCATE, which creates deferred-shape
CM arrays. Some differences are:

Deferred-shape arrays cannot appear in COlON, so their names are not
s Yavailable to all program units. In contrast, arrays created with

CMF ALLOCATE_ARRAY or one of its variants can be globally available.

* Data types and ranks of deferred-shape arrays must be known at compile
time. With CMF_ALLOCATE_ARRAY, they can be decided at run time
(although used only in subroutines where the appropriate type and rank are
declared).

* If a deferred-shape array is subject to a LAYOUT directive, the directive
must appear in the specification part of the program unit (before any
executable code). If you use the utility CM ALLOCATE _LAYOUTARRAY

or CWF_ALLOCATE DETAILED ARRAY instead, you can compute before
the call to determine layout-related values, such as subgrid lengths.

· The dynamic allocation utilities are incompatible with run-time safety, but
deferred-shape arrays can be used in programs compiled with -safety.

Neither the Utility Library nor the CM Fortran language provides for dynamic
allocation of front-end arrays or scalars. For this purpose, use the CM Fortran
subroutines FMALLOC and FFREE in libcmf 77 .a (described in the CM Fortran
User's Guide). These subroutines provide an interface to the standard malloc
and free functionality that, together with the %vAL operator, enable you to man-

&^ age front-end storage.

Version 20 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

e ni

Chapter 3

Data Motion

This chapter describes the utility procedures that perform three distinct kinds of
data movement:

* Array transfers between the control processor and the parallel unit

· Data communication among the parallel processing elements

· Scatters with combining

· Parallel prefix operations

* Ranking and sorting

* Data motion on serial (locally stored) array dimensions

· Table look-ups

* Gathers/scatters on serial axes

3.1 Array Transfers

Two subroutines perform block transfers of array data between the serial control
processor and the parallel processing unit:

CALL C FE ARRAY TO C(DEST, SOURCE)

CALL CF FE ARRAY FROM CM(DEST, SOURCE)

CMF_FEARRAY TOCM copies the contents of a front-end array soURCE into a
CM array DEST. CCM_F_ARRAY FROMCM performs the opposite procedure.
The source and destination arrays must match in shape and type.

Version 20 Beta, January 1993

Copyright) 1991-1993 Thinking Machines Corporation 15

3.1.1 Language Comparison

The FORALL statement can express CM-FE array transfers, such as:

FORALL (I=1:N) FEARRAY(I) = CMARRAY(I)

However, in Version 2.0 this statement generates a DO loop with calls to read-
to-processor or write-from-processor; that is, it transfers array data
between the system components one element at a time. For this release, the array-
transfer utilities give better performance.

(,

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility ibrary16

Reference anua 17

3.2 Scatters with Combining

The caF_sm_ family of subroutines are used to scatter elements from a source
array to specified locations in a destination array. If more than one value is sent
to a single location, the values are combined according to the operation specified
in the subroutine name:

CALL mF _SEND_combiner

& (DEST, END ADDRESS, SOURCE, MASK)

The combiners are OVERWRITE, ADD, MAX, MIN, IOR, AND, and IEOR

* F SEND_OVERWRITE operates on CM arrays of any type. It arbitrarily
chooses one of the colliding values to store in the destination location.

* CF_SENDADD operates on any numeric type.

c* Q'_SENDMA and _MIN operate on integer and real arrays (single- or
double-precision).

* CMFoENDIOR, _AND, and _IEOR operate on integer and logical
arrays. They correspond to logical inclusive OR, logical AND, and logical
exclusive OR, respectively. Integer operations are done on a bitwise basis.

The MASK argument controls which elements of sooRCE are selected for the
operation. The SEND_ADDRESS argument is a CM array of destination addresses,
constructed with the procedures described below. It must be conformable with
the souRcE array.

3.2.1 Constructing Send Address Arrays

A send address is an internal format for the linearized address of an n-dimen-
sional coordinate. As such, it specifies an absolute location for a data element
that is independent of its relative grid location.

Three procedures are used to convert grid coordinates (specifying the desired
locations in the DEBST array) into send addresses for use with C_SENO_D

GEOMETRY CMF_GET_GEOMETRY_ID(ARRAY)

CALL CMF MAKEENDADDRESS (ARRAY)
CALL CMF_DEPOSIT_GRIDCOORDINATE

& (GEOMETRY, SEND ADDRESS, AXIS, COORDINATE, MASK)

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

Refeence Manual 17

(A related subroutine, CMF_MY SEND_ADDRESS (ARRAY), fills an array with the
send addresses of its own elements.)

To construct a send-address array for use with CMF_SEND_, perform the follow-
ing steps:

1. Declare an array to hold the send addresses. The array must have the same
shape and layout as the SOURCE array with which it will be used.

REAL*8 SEND ADDRESS

DIMENSION SENDADDRESS(...) ! same shape as source

NOTE: The SEND_ADDRESS array may be declared as INTEGER, or as

DOUBLE PRECISION or REAL*8. The CM-2/200 computes send addresses
as 4-byte values; the CM-5 uses 8-byte send addresses. Both platforms
accept either 4-byte or 8-byte send-address arrays. However, there may be
a performance penalty for using 4-byte addresses on the CM-5, as the sys-
tem coerces the values to 8-byte length. There is no performance penalty
for using 8-byte send-address arrays on the CM-2, although there is some
waste of memory. For maximum portability, CM Fortran programs should
declare send-address arrays as DOUBLE PRECISION or REAL*8. INTEGER
send-address arrays should only be used in programs to be run on the
CM-2, and only when conserving memory is an issue.

2. Call CMF_MAKESEND _ADDRESS to initialize the send address array.

CALL CMFMAKESENDADDRESS(SENDADDRESS)

3. Use the function CMF_GET_GEOMETRY_ID to retrieve the geometry iden-
tifier of the DEST array:

GEOMETRY = CMF GET GEOMETRY ID(DEST)

A geometry contains information about the shape and layout of a CM
array, in this case, the array for which send addresses are being
constructed.

4. Call CMF DEPOSIT GRID COORDINATE on the coordinates for one axis.

CALL CMFDEPOSIT GRID COORDINATE

& (GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

The subroutine CMF_DEPOSIT_GRID_COORDINATE incorporates the grid
coordinates for one axis into the send addresses being constructed. The
COORDINATE array contains the grid coordinates for the axis of GEOME-
TRY specified by AXIS.

(9®

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library18

Referece Manual 19

NOTE: The grid coordinates passed to CMF_DEPOSIT GRIDCOORDI -

NATE should be 1-based. If you have specified a lower bound other than
1 for an array, you must adjust the coordinates specified in COORDINATE

by subtracting 1 less than the lower bound.

5. Call CMF DEPOSIT_GRID COORDINATE again for each remaining axis
of the DEST array, incorporating into the send address the COORDINATE

values for that axis.

6. Pass the array of send addresses to the desired casmD_ procedure.

3.2.2 Address-Construction and Scatter Example

The example below shows how to construct send addresses for a call to
CWF SEND ADD.

SUBROUTINE HISTOGRAM(OUT, IN, V1, V2)
IMPLICIT NONE

REAL, ARRAY(:,:) :: OUT, IN

INTEGER, ARRAY(:,:) :: V1,V2

REAL*8, ARRAY(DUBOUND(IN,1),DUBOUND(IN,2)) :: SADDR

INTEGER GEOM

CMF$ ALIGN SADDR(I,J) WITH IN(I,J)

INCLUDE '/usr/include/cm/CMFdefs.h'

.C Get OUT array's geometry identifier

GEOM = CMF GET GEOMETRY ID(OUT)

C Construct send addresses for OUT array

CALL CMFMAKESENDADDRESS(SADDR)
CALL CMF DEPOSIT GRID COORDINATE(GEOM, SADDR, 1,Vl,.TRUE.)

CALL CMFDEPOSITGRIDCOORDINATE(GEOM,SADDR,2,V2,.TRUE.)

C Perform send-with-add

CALL CMFSEND ADD(OUT, SADDR, IN, .TRUE.)

RETURN
END

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Reference Manual 19

3.2.3 Language Comparison

Beginning with Version 2.0, the FORALL statement generates parallel send-with-
combiner instructions for n-to-m-dimensional scatters when the possibility of
data collisions exists. Except for arrays of high rank (as noted below), the perfor-
mance of FORALL is comparable to that of C_ SENDm_combiner.

To express send-with-combiner operations with FORALL, supply an index array
(conformable with the source array) for each dimension of the destination array.
Then use a reduction function to combine multiple values being sent to the same
destination element.

For example, a 1-to-l-dimensional send-with-add operation is written as:

FORALL(I=1:8) A(I)=SUM(B(1:1000),MASK=V(1:1000) .EQ.I)

where
A is A(8) of numeric type.
B is B(1000) of numeric type.
v is v (lo0o) of type integer.

A 1-to-i-dimensional send-with-add operation that adds in the original destina-
tion value is written as: %I

FORALL(I=1:N) A(I) = A(I) + SUM(B(:), MASK=V(:).EQ.I)

For a 2-to-2-dimensional send-with-add, use an index array (conformable with
the source array) for each dimension of the destination array:

FORALL(I=1:N,J=-1:M)

& OUT(I,J) =

& SUM(IN(:,:),
& MASK=(X(:,:).EQ.I).AND.(Y(:,:).EQ.J))

A 1-to-2-dimensional send-with-add operation is written as:

FORALL(I=1:N,J=1:M)

& OUT(I,J)=
& SUM(IN(:), MASK=X(:).EQ.I .AND. Y(:).EQ.J)

A permanent restriction on this use of FORALL is that it generates parallel
instructions only if the rank of OUT plus the rank of IN is below a certain thresh-
old. The threshold in Version 2.0 is 7. For arrays of higher rank, use the utility
procedure cF_smwD_combiner for best performance.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

20 CM Fortran Utility Library

Reference Man11

3.3 Parallel Prefix Operations

The subroutines in this section perform parallel prefix operations, or scans, on
one axis of an array:

CALL CMF_SCAN_combiner (DEST, SOURCE, SEGMENT, AXIS

& DIRECTION, INCLUSION, SEGMENT_MODE, MASK)

These subroutines apply a binary operator cumulatively over the elements of the
SOURCE array AXIS, combining each value with the cumulative result from all
the values that precede it. The result for each element is stored in the correspond-
ing element of the DEST array.

The combiners are COP, ADD, MAX, MIN, IOR, AND, and IEOR.

* _END_COPY operates on CM arrays of any type. It copies the first
element of an axis to all the other elements of that axis.

* CsFSEND ADD operates on any numeric type.

* CMF_SEND_MAX and _MIN operate on integer and real arrays (single- or
double-precision).

* cF_SEND_OR, _AND, and _IEOR operate on integer and logical
arrays. They correspond to logical inclusive OR, logical AND, and logical
exclusive OR, respectively. Integers operations are done on a bitwise basis.

DIRECTION can be CMF_ UPWARD or CMFDOWNWARD. If the value is
CMF_UPWARD, the values are combined from the lower numbered elements

toward the higher. If the value is CMF_DOWNWARD, the values are combined from
higher numbered elements toward the lower.

The scan can be limited to selected elements of the array axis through the MaSK
argument, a logical CM array conformable with SOURCE and DEST. Selected ele-
ments are those that correspond to a .TRUE. element in the MASK array. Array
elements that correspond to a . FALSE. value in MASi are excluded from the
computation, and the corresponding element of DEST is not changed.

In addition, the array elements along the axis may be partitioned into distinct

sets, called segments, through the use of the SEGMENT, SEGMENT MODE, and
INCLUSION arguments. Each segment is treated as a separate set of values. SEG-
MENT is a logical CM array conformable with SOURCE and DEST;

SEGmENT_MODE and INCLUSION are predefined integer constants.

Version 2.0 Beta, January 1993
Copyright Q 1991-1993 Thinking Machines Corporation

Reference Manual 21

22 CM" Forn Uiy,,,,,,. brr,

3.3.1 Scan Segments

Each element of SEGMENT that contains . TRUE. marks the corresponding ele-
ment of SOURCE as a segment boundary (the start or end of a segment). Segments
begin (or end) with an element in which the value of SEGMENT is .TRUE., and
continue up (or down) the axis through all elements for which the value of SEG-

MENT is .FALSE.. The effect of these boundaries depends on the value of
SEGMENT MODE.

* If SEGMENTMODE is CMF_NONE, the scan operation proceeds along the
entire length of the array axis and the values in SEGMENT have no effect.

* If SEGMENT MODEisCMF SEGMENTBIT, then:

* The MASK argument does not affect the use of the SEGMENT array.
That is, elements containing .TRUE. in the SEGMENT array create
a segment boundary even if the corresponding value of MASK is
.FALSE.. (The MASK array still selects the elements of SOURCE to
be included, as described above.)

* A SEGMENT value of. TRUE. indicates the start of a segment for
both upward and downward scans. t

* When the INCLUSION argument is CMF_EXCLUSIVE, the first
DEST element in each segment is set to zero. (There is no scan result
value for this element because in exclusive mode the first element
of each segment of SOURCE is excluded from the scan.)

* If the value is CMF_START_BIT, then:

* The MASK argument applies to the SEGMENT array as well as to the
SOURCE array. That is, elements containing . TRUE. in SEGMENT
array create a segment boundary only if the corresponding element
of MASK is also .TRUE..

* A SEGMENT value of. TRUE. indicates the start of a segment for

upward scans, but the end of a segment for downward scans. That
is, the SOURCE element corresponding to a. TRUE. SEGMENT ele-
ment is the first element in a segment for an upward scan, but the
last element in a segment for a downward scan. In downward scans,
the new segment begins with the first unmasked element following
the segment boundary.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library22

Refere-ce Manual- 3

* When the INCLUSION argument is CMF_EXCLUSIVE, the first
DEST element in each segment (which is set to zero in CMFSEG-
MENT_BIT scans) is used to store the final scan result of the
preceding segment. Note that this result value does not contribute
to the scan result for the segment in which it is stored.

3.3.2 Scanning Example

The table below shows the results for a single row along an axis being scanned
by the subroutine CwU_SCAN_ADD. The soURCE argument is an integer array
filled with the value 1. The MASK and sGMENT arguments are logical arrays with
the values indicated at the top of the table (where T stands for . TRUE. and F

stands for . FALSE.).

The table shows scan results for both directions, both inclusion modes, and all
three segmentation modes. The dots indicate masked elements; the underlining
groups elements that are considered part of the same segment.

MASK

SEGMENT

SOURCE

TTTTFFFFTTFFTT TF
FF TFFFTFF FFFFTFF
1 1 1 1111 1 11111 1 1

SEGMENT-
DIRECTION INCLUSION MODE DEST

upward exclusive none 0 1 2 3 4 5 . 6 7 8.
downward exclusive none 8 7 6 5 4 3 . 2 1 0 .

upward inclusive none 1 2 3 4 5 6 . 7 8 9 .

downward inclusive none 9 8 7 6 5 4 . 3 2 1 .

upward exclusive segment 0 1 0 1 0 1 2 01 .
downward exclusive segment 1 o 1 o 2 1 . . 0 1 0 .

upward inclusive segment 1 2 1 2 1 2 . . 3 1 2.

downward inclusive segment 2 1 2 1 3 2 . 1 2 1 .

upward exclusive start 0 1 2 1 2 3 . 4 5 1 .
downward exclusive start 2 1 5 4 3 2 .. 1 1 0 .

upward inclusive start 1 2 1 2 3 4 . . 5 1 2 .
downward inclusive start 3 2 1 5 2 11 .

Version 2.0 Beta, January 1993
Copyright 1991-1993 hinking Machines Corporation

Refeence Manual 23

24 CM Fortran Utility Library

3.3.3 Language Comparison

A scan operation is expressed with FORALL as:

FORALL (I=1:N) A(I) = SUM(B(1:I))

In Version 2.0, this statement generates a sum of spread rather than a scan
instruction. The utility procedure cmF_scAN_combiner gives better perfor-
mance.

(

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library24

Refernce anual 25

3.4 Ranking and Sorting

Two subroutines determine the numerical rank of the values along a dimension
of a CM array; a third sorts the values by rank.

CMF_oRDER places the numerical rank of each element along the specified axis
of a source array into the corresponding element of the destination array, under
the control of a logical mask. The source, destination, and mask arguments must
be conformable arrays.

CALL C F_ORDER (DEST, SOURCE, AXIS, MASK)

C2W_RANK performs the same operation, but it also enables you to break the axis
into segments. The direction argument (either cw_P PWARD or CM_DOWWARD)
determines whether the smallest or the largest value is given rank 1.

CALL CMFRAN (DEBST, SOURCE, SEGMENT, AXIS,

& DIRECTION, SEGMENT_MODE, MASK)

CIF_SORT places the sorted values themselves in the destination array. It, too,
enables you to control the direction of the sort and to segment the source axis.

CALL CF_ SORT (DEBST, SOURCE, SEGMENT, AXIS,

& DIRECTION, SEGMENT_MODE, MASK)

Language comparison: CM Fortran has no ranking or sorting functions.

3.4.1 Axis Segments

CMF_RANK and CMF_SORT take SEGMENT and SEGMENT_MODE arguments that
partition the source array axis into distinct segments. Each segment is treated as
a separate set of values for ranking purposes.

The SEGMENT argument is logical array that is conformable with SOURCE
and DEST. Each element of SEGMENT that contains . TRUE. marks the cor-
responding element of SOURCE as a segment boundary. The.effect of these
boundaries depends on the value of SEGMENT_MODE.

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

25Reference Manual

The SEGMENT_MODE argument is a pre-defined integer constant, one of
CUFNONE, CEF -SEGMENT BIT, or CMFSTART_BIT.

* If SEGMEET_MODE is CIF_NONE, the elements are sorted along the entire
length of the array axis and the values in SEGMENT have no effect.

* If SEGMENT_MODE is CM_SEGMENT _ BIT, then:

* A SEGMENT value of . TRUE. indicates the start of a segment for
both upward and downward sorts.

* The MASK argument does not affect the use of the SEGMENT array.
That is, elements containing .TRu. in the SEGMENT array create
a segment boundary even if the corresponding value of MAS is
. FALSE.. (The MASK array still selects the elements of SOURCE to

be included.)

* If SEGMENTODE is CmF_START_BIT, then:

* A SEGaMENT value of .TRUE. indicates the start of a segment for
upward sorts, but the end of a segment for downward sorts. That is,
the souRCE element corresponding to a . TRUE. SEGMENT element

is the first element in a segment for an upward sort, but the last ele- q: '
ment in a segment for a downward sort. In downward sorts, the new
segment begins with the first unmasked element following the seg-
ment boundary.

* The MASK argument applies to the SEGMENT array as well as to the
SOURCE array. That is, elements containing . TRUE. in the SEG-

MENT array create a segment boundary only if the corresponding
element of mausc is also .TRuz..

Specific behavior of ClEF_RA and Cm,_SORT on segmented axes is illustrated
in the examples shown below. Note that the segmentation is not carried over into
the destination array:

* c m mRA ranks each element within its own segment, but the numbering
of the elements is continuous along the entire length of the axis. In the
finalexamplebelow, DEST is [xxx 1 3 2],not [XXX 1 2 1].

* CMFsoRT sorts each segment independently, but the values are placed in
the destination without regard to segments. In the final example below,
DESTis [7.0, 2.0, 3.0, XXX],not 7.0, XXX, 2.0, 3.0]).

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library26

Reference Manual 27" ~~~ ~'~~ '"""·' -.'"~ : . ~:~ ~~i~.'.~~ ~"''"""' ~:-.~~. ~ i~5'~"~~''~ ~7''' ' /~'~'~ "'~ ~, .

3.4.2 Ranking and Sorting Examples

Upward sort and rank:

If SOURCE =
and SEGMENT =

then rank DEST =
and sort DEST =

[1.0 7.0 3.0 2.0]

[T F F F I

[1 4 3 2]

[1.0 2.0 3.0 7.0]

Downward sort and rank:

If SOURCE =
and SEGMENT =

then rank DEST =

and sort DEST =

[1.0 7.0 3.0 2.0]

[T F F F]

[4 1 2 3]

[7.0 3.0 2.0 1.0]

Upward sort and rank with mask:

If SOURCE =

and SEGMENT =

and MASK =

then rank DEST =

and sort DEST =

[1.0
[T

[T

7.0 3.0 2.0]

F F F]

T F T]

[1 3 XXX 2]

[1.0 2.0 7.0 XXX]

Segmented upward sort and rank:

If SOURCE =
and SEGMENT =

then rank DEST =

and sort DEST =

[1.0 7.0 3.0 2.0]

[T F T -F]

[1 2 4 3]

[1.0 7.0 2.0 3.0]

Segmented upward sort and rank with mask:

If SOURCE =
and SEGMENT =

and MASK -=

then rank DEST =

and sort DEST =

[1.0 7.0 3.0

[T F T

[F T T

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

2.0]

F]

T]

[XXX 1 3 2]

[7.0 2.0 3.0 XXX]

Reference Manual 27

28 M orra1UiltyLi brr

3.5 Table Look-Ups

Three procedures are used to perform "table look-ups," that is, vector indirection
on a serial dimension of a CM array. Under the conditions noted below, the
look-up utility uses the indirect addressing hardware on the CM processing ele-
ments to perform local memory accesses, rather than generating communication.

TABLE ID = CMF ALLOCATE TABLE

& (TYPE, ELEMENT_COUNT, INITIALVALUES)

CALL CMFLOOKUPINTABLE

& (DEST, TABLEID, INDEX, MASK)

CALL CMF_DEALLOCATE_TABLE (TABLE_ID)

The function ClF_ALLOCATETABLE allocates and initia]izes a look-up table,
placing a copy in the memory of each processing element; it returns an integer
that serves as a pointer to the table. TYPE is the type of data to be stored in the
table; it is specified as one of:

CMF_LOGICAL, CMlF_S_INTEGER,

CMFFLOAT, C FDOUBLE,

CMF_COMPLEX, CMF_DOUBLECOMPLEX

The elements of INITIAL_VALUES must be of the appropriate type.

CeF_LOOKUP_IN_TABLE uses an array of (integer) indices to retrieve values
from the look-up table, and stores them in a destination array of the same type.
CMF_DEALTLOCATE_TABLE deallocates a look-up table. For example,

REAL DEST(8192), TABLE VALUES(100)
INTEGER TABLE

INTEGER INDEX(8192)

TABLE = CMF ALLOCATE TABLE

& (CMF_FLOAT, 100, TABLE_VALUES)

CALL CMF LOOKUP IN TABLE

& (DEST, TABLE, INDEX, .TRUE.)

CALL CMF DEALLOCATE TABLE(TABLE)

Version 2.0 Beta, January 1993
Copyright C 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library28

Refeenc Manual 29

9
3.5.1 Language Comparison

Under certain circumstances, the table look-up procedures are significantly faster
than assignments of conventionally allocated arrays. The circumstances are:

* The contents of the look-up table rarely or never change.

* The look-up table is relatively small, that is, it fits into the memory of a
single processing element. The size restriction by CM Fortran execution
model is:

* CM-5 VU model:

· CM-5 nodes model:

* CM-2/200 slicewise model:

* CM-2/200 Paris model:

Table size is limited by the amount
of memory on a vector unit.

Table size is limited by the amount
of memory on a SPARC node.

Table size is limited by the amount
of memory on a processing node
(which corresponds to a unit of the
64-bit floating-point accelerator).

Table size is limited by the amount
of memory on a processing node
(which corresponds to 32 bit-serial
processors).

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Reference Manual 29

30 CM Forran Utiliy Librai

3.6 Gathers/Scatters on Serial Axes

Two subroutines transfer array-indexed values between two CM arrays. Under
the conditions noted below, these procedures use the special indirect addressing
hardware for local transfers.

CALL CMF AREF_D (DEST, ARRAY, INDEX, MASK)

CALL CF_ASETID(ARRAY, SOURCE, INDEX, ASK)

The ARRAY argument can be multidimensional. The "D" in the procedure
names refers to the fact that the indirect addressing occurs only on a single axis.

CMF AREF_iD extracts array-indexed values from the serial axis of ARRAY.

INDEX is an INTEGER array of the same shape and layout as DEBST. Each element
of INDEX provides an index into ARRAY for the value to be stored in the corre-
sponding element of DEBST.

CF ASET_1D performs the opposite operation. INDEX is an INTEGER array of
the same shape and layout as SOURCE. In this operation, each element of INDEX

specifies the location in ARRAY at which to store the corresponding element of
SOURCE.

3.6.1 Conditions for Fast Performance

These subroutines use the fast indirect addressing hardware when the ARRAY

argument meets the following conditions:

* Its first dimension must be serially ordered (that is, local to a processing
element).

* It must have one more dimension than the INDEX, MASK, and DEBT arrays.

* Excluding its first axis, its remaining axes must have the same shape and
layout as the INDEX, MASx, and DEST arrays.

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

30 CM Fortran Utility Library

Rerence.'Manual,: 1..'....

In addition, these subroutines are substantially faster when

· the MASK argument is the scalar .TRUE..

* the product of the dimensions of the INDEX argument is an integer multi-
ple of the number of processing elements executing the program. (This
number is returned by the function CMF_NUMBER OFPROCESSORS.)

Two restrictions that affect the performance of these subroutines are:

* The subroutines do not use the indirect addressing hardware under the
Paris execution model on CM-2/200, even if the other constraints are met.
Their performance under the Paris model is therefore slower than under
the other CM Fortran execution models.

* The serial dimension of ARRAY must fit into the memory of a single pro-
cessing element. The size restriction by CM Fortran execution model is:

· CM-5 VU model:

* CM-5 nodes model:

* CM-2/200 slicewise model:

· CM-2/200 Paris model:

Serial dimension extent is limited by
the amount of memory on a vector
unit.

Serial dimension extent is limited by
the amount of memory on a SPARC
node.

Serial dimension extent is limited by
the amount of memory on a proces-
sing node (which corresponds to a
unit of the 64-bit floating-point accel-
erator).

Not applicable.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual 31

32 CM Fortran Utility Library

3.6.2 Gather/Scatter Examples

This call to CMF_AREF_ID is functionally equivalent to the DO loop shown:

INTEGER I
INTEGER DEST(8192), ARRAY(10,8192), INDEX(8192)

CMF$ LAYOUT ARRAY(:SERIAL, :NEWS)
LOGICAL MASK(8192)

DO I=1,8192

IF (MASK(I)) DEST(I) = ARRAY(INDEX(I),I)
END DO

CALL CMFAREF 1D(DEST, ARRAY, INDEX, MASK)

This call to CMF_ASET_1D is functionally equivalent to the DO loop shown:

INTEGER I
INTEGER SOURCE(8192), ARRAY(10,8192), INDEX(8192)

CMF$ LAYOUT ARRAY(:SERIAL, :NEWS)
LOGICAL MASK(8192)

DO I=1,8192
IF (MASK(I)) ARRAY(INDEX(I),I) = SOURCE(I)

END DO

CALL CMFASET_1D(ARRAY, SOURCE, INDEX, MASK)

3.6.3 Language Comparison

The FORALL statement expresses the operations shown in the examples above as
follows:

FORALL(I=1:8192, MASK(I)) DEST(I) = ARRAY(INDEX(I),I)

FORALL(I=1:8192, MASK(I)) ARRAY(INDEX(I),I) = SOURCE(I)

In Version 2.0, however, these statements generate send (scatter) or get (gather)
instructions rather than using the local indirect addressing hardware. As long as
the stated constraints are met, the utility procedures CMF_AREF_1D and
CMF_ASET_1D give better performance.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Chapter 4

Parallel I/O

The Utility Library procedures in this chapter support CM parallel I/O. Parallel
I/O refers to transferring data in multiple streams between the CM processing
elements and an external device. The procedures fall into two categories:

* Operations on files of the CM file system

* /O via sockets and devices (including CM-HIPPI)

Language Comparison

The CM Fortran RmAD and WRITE statements perform serial I/O only. A CM array
is first moved to the control processor and then transferred in a single stream to
a UNIX file on a storage device. For CM arrays, especially for large ones, the
Utility Library I/O procedures give better performance.

4.1 CM File Operations

The CM file system - the destination of parallel write operations - resides on
storage devices on the CMIO bus, such as the DataVault mass storage system.
Operations on these files are supported by the CM File System library, CMFS.
The utility procedures in this section provide a convenient interface to selected
procedures in this library.

For more information on the CM file system and library, see the CM I/O docu-
mentation for CM-5 or for CM-2/200. Note that support for the CM Scalable Disk
Array and its Scalable File System (SFS) begins with CM Fortran Version 2.1.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation 33

34 MI------------ CM Fortra- U

4.1.1 Opening, Closing, and Removing CM Files

The subroutines in this section open, close, or remove (unlink) CM files.

Opening a CM File

CXF_FILE_OPEN opens the CM file specified by PATH (a character string) and
associates the file with the integer argument mNIT. The value returned in IOSTAT

indicates whether the operation succeeded.

CALL CMF_FILE_OPEN(UNIT, PATH, IOSTAT)

File Units

The I/O procedures currently support 29 simultaneously open file units. For each
CM file to be opened, you choose a value in the range 1 through 29. The number
becomes associated with a file when it is used as the UNIT argument (variable,
parameter, or literal constant) to CMFJFILE_OPEN. You then supply the
appropriate unit number to other I/O procedures when you wish to operate on this
file.

These parallel I/O unit numbers have no relation to standard CM Fortran unit
numbers, as described in the CM Fortran Reference Manual for the RMD and
WRITE statements.

Error Status

All the parallel I/O procedures take an integer IOSTAT argument, into which the
error status of the operation is placed:

* A positive value in IOSTAT indicates success.

* A negative value in IOSTAT indicates failure.

* For the parallel read utilities only (see below), a zero value in IOSTAT

indicates an end-of-file condition.

Other than sign or zero, there is no significance to any of the particular values
returned.

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

34 CM Fortran Ulity Library

Reference Manual 3

Closing a CM File

CMFFILE _CLOSE closes the file associated with UNIT.

CALL CMF_FILE_CLOSE(UNIT, IOSTAT)

Removing a CM File

CIF_FILE_UNLINK removes the entry for the file specified by PATH from the
file's directory.

CALL CMF_FILE_UNLINK(PATH, IOSTAT)

If this entry is the last link to the file and no process has the file open, then the
file is deleted and all resources associated with it are reclaimed. If, however, the

file is open in any process, the resource reclamation is delayed until the file is
closed, even though the directory entry has disappeared.

4.1.2 Reading and Writing CM Files

The CM Fortran Utility Library provides procedures that read or write CM arrays
in parallel, that is, in multiple streams directly between the memory of CM pro-
cessors and a CM file on a storage device.

These procedures are available in three variants, reflecting different trade-offs
between speed and flexibility. The variants are distinguished by suffix (or lack
of): no-suffix or generic, FMS, or SO. They take the same arguments.

CALL CMF_CM ARRAY_TO_FILE (UNIT, ARRAY, IOSTAT)

CALL CMF_CM ARRAY_FROM_FILE (UNIT, ARRAY, IOSTAT)

CALL CMF_ CMARRAY_TOFILE_FMS ...
CALL CMF CM ARRAY FROM FILE_FMS ...

CALL CM CM ARRAY TO FILE SO
CALL CMF CM ARRAY FROM FILE SO

_

Always read a file with the same variant that was used to write it.

Version 2.0 Beta, January 1993
Copyright C. 1991-1993 Thinking Machines Corporation

Reference Manual 35

36 CM Fortran Utility Librar

Arguments

UNIT Integer variable, parameter, or literal constant in the range 1:29.
This is the unit number that became associated with a file by the
initial call to CMF_FILE_OPEN (see Section 4.1.1).

ARRAY CM array of any type and layout. This array is the source or destina-
tion of the 1O operation.

IOSTAT Integer variable. The value returned in this argument indicates the
error status of the operation:

· A positive value in IOSTAT indicates success.

* A negative value in IOsTAT indicates failure.

· For the parallel read utilities only, a zero value in IOSTAT
indicates an end-of-file condition.

NOTE

Like all procedures in the Utility Library, these 1/O procedures
cannot be used with any array that is aligned with another array
of higher rank or aligned with non-zero axis offset(s) with any
other array.

Unlike other Utility Library procedures, these I/0 procedures
do support arrays with lower bounds other than 1.

Behavior

The three sets of read/write procedures give different combinations of speed and
portability. The FMS ("fixed machine size") routines are the fastest but the least
flexible. The SO ("serial order") routines are slower but the most portable across
CM configurations and execution models. The generic (no-suffix) routines are a
compromise between the two for general-purpose use.

4-:; ;

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

36 CM Fortran Utility Library

R-eference- -Manul-3
The generic and FMS procedures treat file data in a parallel order, which we call
the geometry of the file. File geometry reflects the shape and layout of the first
array written to that file. In consequence:

* All subsequent writes to a parallel-ordered file must be of arrays of the
same shape and layout as the first, and any read operation from the file
must be to an array of the same shape and layout.

* Parallel-ordered files may contain extraneous data (padding) in scattered
locations. As long as you observe the restrictions on using the FMS and
generic routines (summarized in the table below), the padding is handled
transparently when the file is read.

In the interest of speed, the FMS procedures impose the further restriction that
write and read operations of a CM file must be from the same execution model,
and the same machine size (number of processing elements). Hence the term
"fixed machine size." These procedures are not portable from one CM model
(CM-2/200 versus CM-5) to the other.

The generic procedures, in contrast, are limited only by array shape, layout, and
CM model. They can write and then read from different execution models and
machine sizes, although the following restrictions do apply on CM-2/200 only:

* An array written under one CM-2/200 execution model (Paris or slicewise)
and read under the other execution model must have canonical layout. You
can work around this restriction by assigning a non-canonical array to a
canonical temporary before writing it to a file.

* An array written from one CM-2/200 machine size and read into a different
machine size must be at least the size of the larger machine. That is, the
array must have at least as many elements as the number of bit-serial pro-
cessors in the larger machine (even under the slicewise execution model).

The SO procedures treat file data in serial order. Serial ordering is the same as
array-element ordering and the same as the output of the Fortran WRITE state-
ment. For example, the SO utility stores the elements of array A (2,3) in the
following order:

A(1,1)
A(2,1)
A(1,2)
A(2,2)
A(1,3)
A(2,3)

Version 2.0 Beta, January 1993
Copyright 1991-1993 Thinking Machines Corporation

Reference Manual 37

38 CM Fortran Utility Librar

Unlike the generic and FMS variants, the SO procedures do not pad files. Because
they read and write only the array elements, not any extraneous data, these utili-
ties operate independently of array shape and layout, and are completely portable
across CM hardware models, execution models, and machine sizes. The SO utili-
ties are also compatible with parallel I/O via sockets and devices (Section 4.2).

The following table summarizes the behavior of the three variants of the parallel
read/write utility procedures. The "portability" entry refers to restrictions on sub-
sequent reads and writes of a CM file after the first array has been written to it.

Variants of CF CM ARRAY _TO/FROM FILE.

FMS Generic SO

CM-5

File order parallel parallel serial

Padding yes yes no

Portability CM-5 only CM-S only any CM or device
same partition size any partition size any partition

or machine size
same exec. model any exec. model any exec. model
same array shape same array shape any array shape
same array layout same array layout any array layout

CM-2/200

File order parallel parallel serial

Padding, if any yes yes no

Portability CM-2/200 only CM-2/200 only any CM or device
same machine size any machine size* any machine

or partition size
same exec. model any exec. model any exec. model
same array shape same array shape any array shape
same array layout same array layout** any array layout

* If written from one machine size and read into a different machine size, the array must
be at least the size of the larger machine.

** If written from one execution model and read into the other execution model, the
array must have canonical layout.

Version 2.0 Beta, January 1993
Copyright O 1991-1993 Thinking Machines Corporation

38 CM Fortran Utility Library

Reference Manual 3941181 1 --

4.1.3 Manipulating CM Files

The procedures in this section rewind, seek within, or truncate a CM file.

Determining File Geometry

All seek, rewind, and truncate operations on CM files must be preceded by a read
or write operation. It is necessary first to determine the geometry of a newly
opened file, even a serial-order file, by performing a read or write of the file.

For the CM-5 only, a further restriction is that the element size in any file manipu-
lation (rewind, seek, or truncate) must be the same as the element size in the read
or write operation that initially determined the file's geometry in that session.

Rewinding a File

CUg FILE _RwIND moves the file pointer to the beginning of a CM file.

CALL CMF_FILE_REWIND(UNIT, IOSTAT)

Seeking within a File

Three procedures serve to reposition the file pointer in a CM file:

CALL CfF_FILE_LSEEK(UNIT, OFFSET, IOSTAT)

CALL CMF_FILE_LSEEK_FM (UNIT, OFFSET, IOSTAT)

OFFSET - CF_SIZEOF_ARRAY_ELEMENT(ARRAY)

CMF_FILE _LSEE operates on files written with the generic and SO write proce-
dures; use CMF_FILE_LSEEKEFMS on files written with the FMS write
procedure.

Version 20 Beta, Januwy 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Reference Manual 39

The seek utilities operate slightly differently on serial-ordered files (those written
with the SO procedure), compared with parallel-ordered files (those written with
the generic or FMS procedure).

* In serial-ordered files, CMF_FILE LSEEK can move the file pointer either
to an array boundary or to an arbitrary element (though not to an arbitrary
bit or byte boundary). For the OFFSET argument, use the number of bytes
in the array's element type times the number of elements to traverse.

* In parallel-ordered files, CMF_FILE_LSEEK and CMF_FILE_LSEEK_FMS
move the file pointer only from one array to another within a file. You
cannot move it to an arbitrary element. To compute the offset, you need
not specify the size of the array(s), since this information is contained in
the file geometry. You need specify only the size of an array's elements,
using CMF_SIZEOF_ARRAY ELEMENT.

For example, suppose that a parallel-ordered file associated with unit 29 was
created with three successive writes, of array A, then array B, then array c. To
position the file pointer to the beginning of array B, use:

CALL CMFFILEREWIND(29, IOSTAT)
SIZEOF_A = CMF_SIZEOF_ARRAY_ELEMENT(A)
CALL CMF FILE LSEEK(29, SIZEOF A, IOSTAT)

To move the file pointer to the beginning of array c, add the return values of
CMF_SIZEOF_ARRAY_ELEMENT for the two arrays to be traversed:

CMF FILE REWIND(29, IOSTAT)
SIZEOFA = CMF SIZEOF ARRAY ELEMENT(A)
SIZEOFB = CMFSIZEOF ARRAYELEMENT(B)
CMF_FILE_LSEEK(29, SIZEOF_A + SIZEOF_B, IOSTAT)

To read arrays A and c:

CALL CMFFILE REWIND(29, IOSTAT)
CALL CMF_CM_ARRAY_FROM_FILE(29, DEST_A, IOSTAT)
CALL CMF_FILE_LSEEK(29, SIZEOF_B, IOSTAT)
CALL CMF_CM ARRAYFROM FILE(29, DESTC, IOSTAT)

If these arrays had been written with CMF_CM_ARRAY_TO_FILE_FMS, you
would have used the FMS variant of the seek and read procedures.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

40 CM Fortran Utility Library

Reference ManualI41

Changing the Size of a File

CMF_FILE TRUNCATE increases or decreases the size of a CM file:

CALL CF_FILE_TRUNCATE(UNIT, LENGTH, IOSTAT)

LENGTH - CMF_SIZEOF ARRAY ELEMENT (ARRAY)

This subroutine changes the size of the file specified by UNIT to LENGTH. If the
file is smaller than LENGTH, it is extended to LENGTH. If the file is larger than
LENGTH, it is truncated and the extra data is lost. The file must be open when
ClF_FILE TRUNCATE is called.

Like the seek procedures described above, CMF_FILE_TRUNCATz behaves
slightly differently with serial-ordered and parallel-ordered files, and you com-
pute the LENGTH argument differently for the two kinds of files.

* CEF FILE_TRUNCATE can extend or truncate a serial-ordered file either
by whole arrays or by an arbitrary number of array elements (though not
by an arbitrary number of bits or bytes). For the LENGTH argument, supply
the number of bytes in the array's element type times the number of ele-
ments desired.

* CIF_FILE_TRUNCATE can extend or truncate a parallel-ordered file only
by whole arrays, not by an arbitrary number of array elements. To com-
pute the LENGTH argument, you need not specify the size of the array(s),
since this information is contained in the file geometry. Specify only the
size of array elements, using CF_SXZEOFARRAY_ELEMENT.

You compute the LENGTH argument for parallel-ordered files in the same way as
the OFFSET argument for the seek procedures, shown above. And, as with the
seek procedures, you can extend or truncate a file by more than one array by
invoking CKF_IZEOF_ARRAY_ ELEMENT on several arrays in succession,
adding the returned values, and supplying the result as the LENGTH argument.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Carporation

Reference Manual 41

42 CM Fortran-U--l--y-Library

4.1.4 Example of CM File Operations

The following program writes five arrays into a file and then reads the third one:

PROGRAM READ RECORD

INTEGER FILE UNIT, IOSTAT, RECORD

REAL A(8192)

DOUBLE PRECISION B(8192)

COMPLEX C(8192), DEST(8192)

DOUBLE COMPLEX D(8192)

LOGICAL E(8192)

INCLUDE '/usr/include/cm/CMFdefs.h'

C Initialize variables

FILE UNIT = 13

IOSTAT = 0

A = [1:8192]

B = [1:8192]

C = CMPLX([1:8192],[1:8192])

D DCMPLX([1:81921, [1:81921)
E MOD([1:8192],2).EQ.0 ()
DEST 0.0

C Open a file and write to it; add failure tests to each

C operation if desired.

CALL CMF FILE OPEN(FILE UNIT,'my-file',IOSTAT)

IF (IOSTAT<0) PRINT *,"File open failed",IOSTAT

CALL CMF CM_ARRAY TO FILE(FILE UNIT,A,IOSTAT)

CALL CMF CM ARRAYTOFILE(FILE_ UNIT,B,IOSTAT)

CALL CMF CM ARRAY TOFILE(FILE UNIT,C,IOSTAT)

CALL CMF CM ARRAYTO FILE(FILE UNIT,D,IOSTAT)

CALL CMF CM ARRAYTOFILE(FILE UNIT,E,IOSTAT)

C Rewind the file

CALL CMF FILE REWIND(FILE UNIT,IOSTAT)

C Compute the offset to the third record

RECORD - CMF SIZEOF ARRAY ELEMENT(A) +

$ CMF SIZEOF ARRAY ELEMENT(B) (I
Version 2.0 Beta, January 1993

Copyright 0 1991-1993 Thinking Machincs Corporation

CM Fortran Utility Library42

ReferenceManual 43-

C Seek to the third record

CALL CMFFILE_LSEEK(FILE_UNIT,RECORD,IOSTAT)

C Read the third record into array DEST

CALL CMF CM ARRAY FROM FILE(FILE UNIT,DEST,IOSTAT)

STOP

END

4.2 Parallel I/O via Devices and Sockets

The serial-order read and write utilities described above for the CM file system
can also be used to transfer data via the CM-HIPPI or VME interfaces. In these
cases the "file" is either a CM-HIPPI device or a CM socket, respectively. Opera-
tions on these devices require you to access the lower-level CM 1/0 library CMFS,
as described in the CM 110 and CM-HIPPI documentation.

Translating between File Descriptors and Unit Numbers

The CMPS procedures use file or socket descriptors to specify the desired "file."
Two CM Fortran utility procedures translate between these descriptors and the
unit numbers required by the CM Fortran utility I/O procedures.

One subroutine associates a CMFS file or socket descriptor of a previously
opened "file" (or device) with a CM Fortran unit number.

CALL CF_FILE_FDOPEN(CMFS_FD, UNIT, IOSTAT)

Both caFs_FD and UNIT are input values; the procedure simply establishes an
association between them. You can then call the CM Fortran utility read/fwrite
procedures, CWCM _ARRAY_TO/FROM_FILE_SO.

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

Referewce Manual 43

44 M Frtan tillyLibar

The other subroutine determines the CMFS file or socket descriptor that is
already associated with a CM Fortran unit number:

CALL CF_FILE _GET_FD(CMFS _D, UNIT, IOSTAT)

UNIT is an input value; the value returned in cmaPsF is the CMFS descriptor
associated with it. This procedure is useful if you wish to use the descriptor in
calls to the CMFS routines.

11/0 via Devices

To write or read data via devices, use the serial-order ("SO") 1O procedures.

Although the serial-order 1/0 procedures do not pad CM files, they do sometimes
add extraneous data at the end of an array being written to a device. If you do
not wish to deal with padding explicitly in the program, you can avoid it by
observing certain restrictions on array size. These restrictions are reported in the
documentation for CM-HIPPI.

(S

Version 2.0 Beta January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library44

Appendix

Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation 45

CI

(:tI

Appendix

Dictionary of Utility Procedures

This appendix provides reference information about the individual procedures in
the CM Fortran Utility Library. The procedures are listed below by functional
category. The dictionary entries that follow are alphabetical by procedure name.

System Inquiry Functions

ARCH - CMF_ARCHITECTURE ()

NUM - CMFNUMBER_OFPROCESSORS ()

BYTES - CMFAVAILABLEMEMORY ()

Array Inquiry Subroutine

CMF_DESCRIBE_ARRAY (ARRAY)

Random Number Subroutines

CMF_RANDOM (DEST, UMIT)

CMFRANDOMIZE (SEED)

Dynamic Array Allocation Subroutines

CMF_ALLOCATE_ARRAY
(ARRAY, EXTENTS, RANK, TYPE)

CMF_ALLOCATE_LAYOUT_ARRAY

(ARRAY, EXTENTS, RANK, TYPE, ORDERS, WEIGHTS)

CM F_AALLOCATE_DETAILED_ARRAY

(ARRAY, EXTENTS, RANK, TYPE, ORDERS, SUBGRIDS, PMASKS)

CMF_DEALLOCATE_ARRAY (ARRAY)

Vrsion 2.0 Beta, January 1993
Copyright @ 1991-1993 Thinking Machines Corporation 47

48 CM Fortran Utility Library Reference Manual

Array Transfer Subroutines

CMF_FE_ARRAY_TO_CM (DEST, SOURCE)

CMF.FE_ARRAY_FROM_CM (DEST, SOURCE)

Array Address Construction Procedures

GEOMETRY - CMFGET_GEOMETRYID (ARRAY)

CMF_MAKE_SEND_ADDRESS (ARRAY)

CMF.MY_SEND_ADDRESS (ARRAY)

CM F_DEPOSITGRI DCOORDINATE
(GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

Scatter-with-Combining Subroutine

CMF_SENDJ OVERWRITE I ADD I MAX I MIN I IOR I IAND I IEOR
(DEST, SEND_ADDRESS, SOURCE, MASK)

Parallel Prefix Subroutine

CMF_SCANJ COPY I ADD I MAX I MIN I IOR I IAND I IEOR
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,

SEGMENT_MODE, MASK)

Sorting Subroutines

CMF.ORDER

(DEST, SOURCE, AXIS, MASK)

CMF.RANK
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION,

SEGMENT_MODE, MASK)

CMFSORT
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION,

SEGMENT_MODE, MASK)

Table Lookup Procedures

TABLE - CMFALLOCATETABLE
(TYPE, ELEMENT_COUNT, INITIAL_VALUES)

CMF..DEALLOCATETABLE (TABLE)

CMF..LOOKUPINTABLE (DEST, TABLE, INDEX, MASK)

Gathers/Scatters on Serial Axes (Subroutines)

CMF.AREFJ D (DEST, ARRAY, INDEX, MASK)

CMFASET_1 D (ARRAY, SOURCE, INDEX, MASK)

Version 2.0 Beta, January 1993
Copyright 0 1991-1993 Thinking Machines Corporation

48 CM Fortran Utility Library Reference Manual

Apendix: Dictionary of Utility Prcdue 49..

CM File Operations Procedures

CMF_FILE_OPEN (UNIT, PATH, IOSTAT)

CMF_FILE_CLOSE (UNIT, IOSTAT)

CMF_FILE_UNLINK (PATH, IOSTAT)

CMF_CMARRAYTOFILE (UNIT, SOURCE, IOSTAT)

CMF_CMARRAY_FROM_FILE (UNIT, DEST, IOSTAT)

CMF_CM_ARRAY_TO_FiLE_FMS (UNIT, SOURCE, IOSTAT)

CMF_CM_ARRAY_FROM_FILE_FMS (UNIT, DEST, IOSTAT)

CMFCMARRAY_TO_FILE_SO (UNIT, SOURCE, IOSTAT)

CMF_CM_ARRAY_FROM_FILE_SO (UNIT, DEST, IOSTAT)

CMF_FILE_LSEEK (UNIT, OFFSET, IOSTAT)

CMF_FILE_LSEEK_FMS (UNIT, OFFSET, IOSTAT)

CMF_FILE_REWIND (UNIT, IOSTAT)

CMF_FILE_TRUNCATE (UNIT, LENGTH, IOSTAT)

SIZEOF - CMF_SIZEOF_ARRAY_ELEMENT (ARRAY)

CM I/O via Sockets or Devices (Subroutines)

CMF_FILE_FDOPEN (CMFS_FD, UNIT, IOSTAT)

CMF_FILE_GET_FD (UNIT, CMFS_FD, IOSTAT)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Appendix: Dictionary of Utility Procedures 49

CMF_ALLOCATE_ARRAY (3CMF)

NAME

CMF_ALLOCATE_ARRAY - Allocates a CM array dynamically.

SYNTAX

INCLUDE '/usr/include/cm/CMF defs.h'

CALL CMF ALLOCATE ARRAY (ARRAY, EXTENS5, RANK, TYPE)

ARGUMENTS

ARRAY Front-end array of integers. This
CMF SIZEOF DESCRIPTOR elements
(CMF_SIZEOF_DESCRIPTOR is a predefined
modified to point to the allocated CM memory.

front-end array must have
of type INTEGER.

constant.) This argument will be

EXTENTS
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
second element specifies the length of the second axis, and so on. The axes will
default to CMF_NEWS_ORDER ordering.

RANK Integer. The rank of the array to be created.

TYPE Integer. The type of the array to be created. This is one of the following integer
values:

* CMF LOGICAL

* CMF S INTEGER
* CMF FLOAT
* CMF DOUBLE
* CMF COMPLEX
* CMF DOUBLE COMPLEX

RETURNED VALUE

None.

DESCRIPTION

The subroutine CMF_ALLOCATEARRAY allocates CM storage to hold an array of the
shape specified by RANK and EXTENTS, and of the type specified by TYPE. ARRAY is
modified to serve as a descriptor for the array.

Last change: December 1992

(
9

CMFELLOCTEARRAY (3CNF)

CM Fortran Version 2.0 50

t

CMF_ALLOCATE_ARRAY (3CMF) CMF_ALLOCATE_ARRAY (3CMF)

To use the elements of the CM array created by CMF ALLOCATE_ARRAY in CM Fortran
operations, you must pass ARRAY to a program unit that explicitly declares it as a CM
array. Since the program unit that calls CMF_ALLOCATE_ARRAY must declare ARRAY as a
front-end array, ARRAY cannot be used in that program unit except to be passed to other
program units. See the example given below.

NOTE

Do not use the compiler switches - safety=level or -argument_checking when com-
piling programs that use dynamically allocated arrays.

EXAMPLE

This example illustrates the standard method for using CMF_ALLOCATE_ARRAY. In the
ALLOCATE subroutine, NEW ARRAY is declared as a front-end array and modified by the
call to CMFALLOCATE_ARRAY to point to the CM memory allocated for the array.
NEWARRAY is then passed to the subroutine PRINT_DIMS3D which declares and uses it
as a CM array.

SUBROUTINE ALLOCATE()
IMPLICIT NONE
INCLUDE '/usr/include/cm/CMF_defs.h'
INTEGER NEW ARRAY(CMFSIZEOFDESCRIPTOR), EXTENTS(7), RANK, I
PARAMETER (RANK=3)

c
DO I=1, RANK

EXTENTS(I) = I * 10

END DO
c

CALL CMF_ALLOCATE ARRAY(NEWARRAY, EXTENTS, RANK, CMF_S_INTEGER)
c

CALL PRINT_DIMS3D(NEWARRAY)
c

CALL CMF DEALLOCATEARRAY(NEW ARRAY)
END SUBROUTINE ALLOCATE

c

c ---

c

SUBROUTINE PRINTDIMS3D(IN)
IMPLICIT NONE
INTEGER IN(:,:,:)

c
PRINT *,"Shape of DUMMY is (",DUBOUND(IN,1),

& It",",DUBOUND(IN,2),

& ",",DUBOUND(IN,3),")"
C

END SUBROUTINE PRINT DIMS3D

Last change: December 1992 51CM Fortran Version 2.0

CMF_ALLOCATE_ARRAY (3CMF)

SEE ALSO

CMFALLOCATE DETAILED ARRAY

CMFALLOCATE LAYOUT ARRAY

CMFDEALLOCATEARRAY

I

Last change: December 1992

CNT-ALLOCATEARRAY (3CN9)

CM Fortran Version 2.0 52

I

CMF_ALLOCATE_DETAE _ARRAY (3CMF) CMF_ALLOCATEDETAILEDARRAY (3CMF)

NAME

CMF_ALLOCATE_DETAILEDARRAY - Allocates a CM array dynamically with a
specified detailed layout.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs .h'

CALL CMFALLOCATEDETAILED ARRAY (ARRAY, EXTENTS, RANK, TYPE, ORDERS,

SUBGRIDS, PMASKS)

ARGUMENTS

ARRAY Front-end array of integers. This front-end array must have

CMF_SIZEOF_DESCRIPTOR elements of type INTEGER.

(CMF_SIZEOF_DESCRIPTOR is a predefined constant.) This argument will be
modified to point to allocated CM memory when the array is passed as an argu-

ment to a subprogram.

EXTENTS
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
second element specifies the length of axis 2, and so on.

RANK Integer. The rank of the array to be created.

TYPE Integer. The type of the array to be created. This is one of the following integer
values:

*CMF LOGICAL

* CMF S INTEGER

* CMF FLOAT

* CMF DOUBLE

· CMF COMPLEX
·CMF DOUBLE COMPLEX

ORDERS
Front-end array of integers. This array specifies the ordering of each axis of the

array to be created. Each element of this array must be one of the following inte-

ger values:

*CMF NEWS ORDER

*CMF SERIAL ORDER

The axes will default to CM_NEWS_ORDER ordering.

Use CMF NEWS ORDER for axes for which SUBGRIDS and PMASKS values are

specified. Anywhere CMF SERIAL ORDER is used for an axis, the correspoinding

PMASKS value must be 0, and the SUBGRIDS value must be the axis extent.

Last change: December 1992CM Fartran Version 2.0 53

CMF_ALLOCATE_DETAILED_ARRAY (3CMF) CMF_ALLOCATE_DETAILED_ARRAY (3CMF)

SUBGRIDS
Front-end array of integers. This array indicates the desired subgrid length for '
each axis.

PMASKS
Front-end array of integers. The integers in this array serve as bitmasks to indi-
cate the desired processors. If the ORDERS argument contains the value
CMF_SERIAL_ORDER for any axis, the PMASKS argument must contain 0 for that
axis.

RETURNED VALUE

None.

DESCRIPTION

The subroutine CMF_ALLOCATE_DETAILED_ARRAY allocates the CM storage to hold an
array of the shape specified by RANK and EXTENTS, the type specified by TYPE, and with
CMF_NEWS_ORDER ordering.

To use the elements of CM array created by CMF_ALLOCATE_DETAILED_ARRAY in CM
Fortran operations, you must pass ARRAY to a program unit that explicitly declares it as a
CM array. Since the program unit that calls CMF_ALLOCATE_DETAILED_ARRAY must
declare ARRAY as a front-end array, ARRAY cannot be used in that program unit except to ('
be passed to other program units. :

The SUBGRIDS and PMASKS arguments enable you to specify in detail how the CM array
is laid out on the parallel processing elements (CM-5 vector units, CM-5 nodes, or
CM-2/200 nodes, depending on the execution model). For each array axis, the value in the
SUBGRIDS argument specifies the number of elements in the subgrid in each processing
element. The value in PMASKS is a bit-mask that specifies which processing elements are
used.

NOTES

Do not use the compiler switch -safety=level or -argument_checking to compile
programs that contain dynamically allocated arrays.

CMF ALLOCATE DETAILED ARRAY cannot be used under the Paris execution model on
a CM-2/200 system.

CM Fortran Version 2.0 Last change: December 1992 54

CMF_ALL (F) OCATE_DETAEILEDARRAY (3CMF)

EXAMPLE

The following program illustrates CMF_ALLOCATE DETAILED ARRAY. Notice the use of
the assumed-layout directive when the new array is passed as an argument to a subpro-
gram.

IMPLICIT NONE
INCLUDE '/usr/include/cm/CMF_defs.h'
INTEGER NEWARRAY(CMFSIZEOFDESCRIPTOR)
INTEGER EXTENTS(7),ORDERS(7),SUBGRIDS(7),PMASKS(7)
INTEGER RANK,I
INTEGER NPN,NPN_FRAC,FRAC,SG1,SG2
*REAL A(200)

PARAMETER (RANK 2)
PARAMETER (FRAC = 4)

PARAMETER (SG1 = 5, SG2 40)

A 1.0 ! initialize if CM-2 running in auto-attach mode

NPN = CMF NUMBER OF PROCESSORS()
NPN FRAC = NPN/FRAC

PMASKS(1) = (NPN_FRAC - 1) * FRAC
PMASKS(2) = FRAC - 1

SUBGRIDS(1) SG1
SUBGRIDS(2) = SG2

EXTENTS(1) NPN FRAC * SG1
EXTENTS(2) = FRAC * SG2

DO I = 1,RANK

ORDERS(I) - CMF NEWS ORDER
END DO

CALL CMF ALLOCATE DETAILED ARRAY
(NEWARRAY,EXTENTS,RANK,CMFFLOAT,ORDERS,SUBGRIDS,PMASKS)

CALL USE NEWARRAY(NEWARRAY, EXTENTS)

CALL CMF DEALLOCATE ARRAY(NEWARRAY)

·STOP

END

SUBROUTINE USE NEWARRAY(A,EXT)
INTEGER EXT(2)
REAL A(EXT(1),EXT(2)), B(EXT(1),EXT(2))

CMF$ LAYOUT A(:,:)

Last change: December 1992 55CM Fortran Version 2.0

CMF_ALLOCATE_DETAILED_ARRAY (3CMFF))

CMF$ ALIGN B(I,J) WITH A(I,J)

B = CSHIFT(A,DIM=1,SHIFT=1)

C Other operations on arrays A and B

RETURN
END

SEE ALSO

CMFALLOCATE ARRAY
CMFDEALLOCATE ARRAY
CMF ALLOCATE LAYOUT ARRAY

Last change: December 1992

(2

(I i

OvIF-ALLOCATEDETAnEDDARRAY (3CNF)

56CM Fortran Version 2.0

CMF_ALLOCATIELAYOUTARRAY (3CMF)

NAME

CMf_ALLOCATE_LAYOUT_ARRAY - Allocates a CM array with a specified lay-

out.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF ALLOCATE LAYOUT ARRAY (ARRAY, EXTENS, RANK, TYPE, ORDERS, WEIGHS

ARGUMENTS

ARRAY Front-end array of integers. This front-end array must have
CMFSIZEOF_DESCRIPTOR elements of type INTEGER.

(CMF_SIZEOF_DESCRIPTOR is a predefined constant.) This argument will be

modified to point to the allocated CM memory.

EXTENTS
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
second element specifies the length of axis 2, and so on. The axes will have the
ordering specified by the ORDERS and WEIGHT arguments.

RANK Integer. The rank of the array to be created.

TYPE Integer. The type of the array to be created. This is one of the following integer
values:

* CMF LOGICAL

* CMF S INTEGER
·CMF FLOAT

* CMF DOUBLE

·CMF COMPLEX
* CMF DOUBLE COMPLEX

ORDERS
Front-end array of integers. This array specifies the ordering of each axis of the
array to be created. Each element of this array must be one of the following inte-
ger values:

*CMF NEWS ORDER
· CMF SERIAL ORDER

· CMF SEND ORDER

WEIGS
Front-end array of non-negative integers. This array specifies the weight, or
expected heaviness of use, of each axis of the array to be created. The WEIGHTS
array should be initialized to all ones if no special weighting of axes is required.

)

Last change: December 1992

CMF .,AUOCATE-LAYOUIT-ARRAY(3CMF)

57CM Fort=a Version 2.0

CMF_ALLOCAE_LAYOUT_ARRAY (3CMF)

RETURNED VALUE

None.

DESCRIPTION

The subroutine CMF_ALLOCATE_LAYOUT_ARRAY allocates the CM storage to hold an
array of the shape specified by RANK and EXTENTS, the type specified by TYPE, and with
ordering and weights specified for each axis by ORDERS and WEIGHTS.

To use the elements of CM array created by CMF_ALLOCATE_LAYOUT_ARRAY in CM For-
tran operations, you must pass ARRAY to a program unit that explicitly declares it as a CM
array. Since the program unit that calls CMF_ALLOCATE_LAYOUT_ ARRAY must declare
ARRAY as a front-end array, ARRAY cannot be used in that program unit except to be
passed to other program units.

NOTE

Do not use the compiler switch -safety=level or -argument_checking to compile
programs that contain dynamically allocated arrays.

SEE ALSO

CMFALLOCATE ARRAY
CMFALLOCATE DETAILED ARRAY

CMFDEALLOCATE ARRAY

Last change: December 1992

i:

III

c.

tI

CMFALOCAT-LAYOIJI_-ARRAY(30F)

58CM Fortran Version 2.0

CMF_ALLOCATE_TABLE (3CMF)

NAME

CMFALLOCAT ETABLE - Allocates a lookup table and returns a table identifier.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

TABLE D - CMF_ALLOCATE_TABLE (TYPE, ELEMENTCOUNT, INTULVALUES)

ARGUMENTS

TYPE Integer. TYPE describes the type of the elements to be allocated for the table.
Valid values are:

· CMF LOGICAL
· CMF S INTEGER
· CMF FLOAT
· CMF DOUBLE
· CMF COMPLEX
· CMF DOUBLE COMPLEX

ELEMENT COUNT
An INTEGER specifying the number of elements in the lookup table.

IN TIAL_VALUES

A front-end array of the same type as TYPE containing the values to be used to
initialize the table.

NOTE: This routine assumes that the front-end array INITAL_VALUES has a
lower bound of 1. All other lower bound values are ignored.

RETURNED VALUE

An INTEGER used as an identifier for the lookup table. This value must be passed to the
other CM Fortran utility routines, CMF_LOOKUPIN_TABLE and
CMF DEALLOCATE_TABLE, that operate on this table.

DESCRIPTION

CMF_ALLOCATE_TABLE allocates a table as specified by TYPE and ELEMEWTCOUNT,
initializes it to the values specified in INI AL_VALUES, and returns a table identifier. Val-
ues can be retrieved from this table using parallel array referencing by passing the table
identifier to CMF LOOKUP IN TABLE.

Last change: June 1992

CMF-AUOCCKATn-TABLE(3CMF)

59CMl Fortran Verdion 2.0

CMF_ALLOCAE_TABLE (3CMF)

Using CMF ALLOCATE_TABLE and CMF_LOOKUP_IN TABLE to perform indirect index-
ing is significantly faster than using a conventionally allocated table when: @

The content of the table never or rarely changes.

The table is relatively small. Specifically, it must use less memory than is avail-
able on a single processing element (vector unit, node, or processor, depending
on the execution model).

For more detail on using these tables, see the man page for CMF_LOOKUP_IN_TABLE.

SEE ALSO

CMFLOOKUPIN TABLE
CMFDEALLOCATE TABLE

CM Fortran Version 2.0

CWFALOCAT[~_TABLE (3CIff)

Last change: June 1992 60

CMWARHITECTURE (3CM)

NAME

CMF_ARCITECTURE - Identifies current CM model and execution model.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

ARCH - CMF ARCHITECTURE()

ARGUMENTS

None.

RETURNED VALUE

Retums an INTEGER constant Valid values are one of the following:
· CMF CM5 SPARC

*CMF CM5 VU

CMF CM200 SLICEWISE

*CMF CM2 SLICEWISE
*CMF CM200 PARIS

· CMF CM2 PARIS

* CMF SIM

DESCRIPTION

This function returns a constant that identifies the CM model (CM-2, CM-200, or CM-5)
and the execution model under which a program is running. On the CM-2/200 the execu-
tion model can be Paris or slicewise. On the CM-5 the execution model can be SPARC

indicating a CM-5 without vector unmits, or vu indicating a CM-5 that contains vector units
in addition to the Sparc processos. Finally, CMF_SIM indicates that the program is run-
ning on a Sun computer under the CM Fortran simulator.

SEE ALSO

CMF NUMBER OF PROCESSORS

Last change: June 1992

CN1F-ARC)ffrECTURE(3CM1F)

61CMi Fortran Version 2.0

CMF_AREF1D (3CMF)

NAME

CMFAREF_D - Extracts array-indexed values from the serial axis of a CM array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF AREF 1D (DEST, ARRAY, INDEX, MASK)

ARGUMENTS

DEST A CM array of the same type as ARRAY and conforming to INDEX and MASK. Val-
ues referenced from ARRAY are stored in DEST.

ARRAY The CM array to be referenced. ARRAY must be of the same type as DEST and
have one more dimension than DEST, INDEX, and MASK. The first axis must have
:SERIAL ordering and all axes after the first must have the same shape and lay-
out as the other arguments.

INDEX A CM INTEGER array conforming to DEST and MASK. These values are used as
indices into the :SERIAL axis of ARRAY.

MASK A CM LOGICAL array conforming to DEST and INDEX, or the scalar value
TRUE.. If MASK is the scalar value . TRUE ., all the elements of DEST are modi- (

fled. If MASK is a LOGICAL array, only the elements of DEST corresponding to
the elements of MASK that contain .TRUE. are modified.

RETURNED VALUE

None.

DESCRIPTION

This subroutine places into selected elements of DEST the value from the first axis of
ARRAY referenced by the corresponding elements of INDEX. The elements selected are
those that correspond to a .TRUE. element in MASK. Note that even though
CMFAREF_1D operates only on the first axis of ARRAY, ARRAY must have a rank greater
than one.

CMF_AREF_iD uses indirect addressing hardware to perform this reference significantly
faster than the equivalent CM Fortran code. (See the example provided below.)

NOTES

This subroutine is significantly faster when

MASKis the scalar value . TRUE. .

Last change: December 1992

OMWAREI~JD(3CW)

CM Fortran Version 2.0 62

CMF_AREF_D (3CMP)

The product of the dimensions of INDEX is an integer multiple of the number of
nodes or processors available to the program. (The number of processing elements
is returned by the function CMF_NUMBER_OF_PROCESSORS.)

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank that
have the individual axes offset.

This routine assumes that the arrays have a lower bound of 1. All other lower bound
values are ignored.

EXAMPLE

The DO loop, the FORALL statement, and the call to CMF AREF_iD given below are all
equivalent, but the call to CMF AREF_1D is significantly faster.

INTEGER I, DEST(8192), ARRAY(10,8192), INDEX(8192)
CMF$SLAYOUT ARRAY(:SERIAL, :NEWS)

LOGICAL MASK(8192)
C

DO I=1, 8192
IF (MASK(I)) DEST(I) = ARRAY(INDEX(I), I)

END DO
C

FORALL(I=1:8192, MASK(I)) DEST(I) = ARRAY(INDEX(I),I)
C C MF AREF 1D(DEST, ARRAY, INDEX, MASK)

CALL CMFAREF lD(DEST, ARRAY, INDEX, MASK)

Last change: December 1992

0dF_AREFj (3CMF)

63CM Fortran Version 2.0

CMF_ASET_ID (3CMF)

NAME

CMFASET_1D - Stores values into the serial axis of a CM array at array-indexed loca- 1 I
tions.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF ASET 1D (ARRAY, SOURCE, INDEX, MASK)

ARGUMENTS

ARRAY A CM array of the same type as SOURCE. ARRAY must have one more dimension
than SOURCE, INDEX, and MASK. The first axis must have :SERIAL ordering,
and all axes after the first must have the same shape and layout as the other argu-
ments. Values referenced from SOURCE are stored in ARRAY.

SOURCE
A CM array of the same type as ARRAY and the same shape and layout as INDEX
and MASK.

INDEX A CM INTEGER array of the same shape and layout as SOURCE and MASK. These
values are used as indices into the :SERIAL axis of ARRAY, specifying the loca-
tion at which to store the corresponding value of SOURCE.

MASK A CM LOGICAL array of the same shape and layout as SOURCE and INDEX, or
the scalar value .TRUE.. If MASK is the scalar value .TRUE., all the elements of
SOURCE are stored. If MASK is a LOGICAL array, only the elements of SOURCE
corresponding to the elements of MASK that contain .TRUE. are stored.

RETURNED VALUE

None.

DESCRIPTION

This subroutine stores selected elements of SOURCE into the first (serial) axis of ARRAY at
the locations specified by the corresponding elements of INDEX. The elements selected
are those that correspond to a .TRUE. element in MASK. Though CMF_ASET_iD operates
on only a single axis, ARRAY must have a rank greater than one.

CMF_ASETiD uses indirect addressing hardware to perform this reference significantly
faster than the equivalent CM Fortran code.

Last change: June 1992

OvffASET_ ID (3CNE)

64CM Fortran Version 2.0

CMF.ASET_1D (3CMF)

NOTES

This subroutine is significantly faster when

* MASKis the scalar value .TRUE..

* The product of the dimensions of INDEX is an integer multiple of the number of
nodes or processors available to the program. (The number of processing elements
is returned by the function CMF_NUMBEROFPROCESSORS.)

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound
values are ignored.

Last change: June 1992

CM[FASEITID 3CdF)

65CM Fortran Version 2.0

CMF_AVAILABLE_MEMORY (3CMF)

NAME

CMF_AVAILABLE_MEMORY - Returns the number of bytes available in each node
or processor.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

MEM = CMFAVAILABLEMEMORY()

RETURNED VALUE

An INTEGER specifying the number of bytes of memory available in each node or pro-
cessor.

DESCRIPTION

This function returns an integer reporting, in units of bytes, the amount of memory left in
each processing element: node for CM-5 sparc model, or CM-2/200 slicewise; vector unit
for CM-5 vu model; or processor for CM-2/200 Paris.

Note: This function returns incorrect results for the vector unit model in Version 2.0 Beta.

4

Last change: December 1992

CMF-AVA1ABL.EPIMEMMRY (3CMF)

66CM Foruma Version 2.0

f

CMFCM ARRAY_FROM_FILE (3CMF)

NAME

CMF_CM_ARRAYFROM_FILE - Reads an array from a CM file.

SYNTAX

INCLUDE '/usz/include/cm/CMF_defs .h'

CALL CMF CM ARRAY FROM FILE (UNT, DEST, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end I/O.

DEST A CM array of any type. The DEST array must be identical in shape and type to
the array that is to be transferred from the file.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, a value of 0 indicates an end-of-file condition,
and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine reads an array from the CM file specified by UNIT into the CM array
specified by DEST. The file must have been written by CMF CM ARRAYTOFILE.

CMF_CM ARRAYTO_FILE writes the array to the file in a parallel order that reflects the
geometry of the array. This allows CMFCM_ARRAY FROM_FILE to transfer the array
faster than CMF_CM_ARRAYFROM FILEE_SO. However, the files written by
CMFCM ARRAYTOFILE cannot be transferred outside the CM system and are subject
to the following restrictions when being read back into the CM system:

* The machine used to read the file must be the same model (CM-2/200 or CM-5)
that was used to write the file.

* The DEST array must be identical in shape and type to the array in the file.

* Files read by CMF CM ARRAY_FROM_FILE must have been written by
CMF CM_ARRAY_TO_FILE. The machine size, array layout, and execution model
can be different between the write and read operations, with the following excep-
tions:

Last change: October 1992

CW_CM- ARRAYFROMFnlE (3CW))

67CM Fortran Version 2.0

CMF_CM_ARRAY FROM_FILE (3CMF)

On CM-2/200 only, an array written from one execution model (Paris or
slicewise) and read into the other execution model must have canonical
layout.

A canonical array is one in which the axis ordering or weights have not
been changed from the defaults by the LAYOUT directive. Within a pro-
gram, a noncanonical array can be converted to a canonical array by an
array assignment.

* On CM-2/200 only, an array written from one machine size and read into a
different machine size must have at least as many elements as the number
of bit-serial processors in the larger machine.

More specialized parallel order files can be written with
CMF CM ARRAY TO FILE FMS and read with CMF CM ARRAY FROM FILE FMS.
These subroutines write and read arrays to CM files more quickly than
CMF CM ARRAY TO FILE and CMF_CM ARRAY_FROM_FILE, but they" are more
restricted in their use. In particular, a file must be read on the same size machine as it
was written from.

Serial order files are written with CMF CM ARRAY TO FILE SO and read with
CMF CM ARRAYFROMFILE SO. Such files can be transferred between CM-2/200
and CM-5 sytems, outside the CM file system, or directly to an I/O device such as a
HIPPI interface or a CM socket.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF CM ARRAY FROM FILE FMS

CMF CM ARRAY FROM FILE SO

CMF CM ARRAY TO FILE
CMF CM ARRAY TO FILE FMS

CMF CM ARRAY TO FILE SO

Last change: October 1992

CNJ1_CMARRAYjPR0KF1E(3CNT)

68CM Fortran Version 2.0

CMFCM ARRAYFROM.FILE FMS (3CMF)

NAME

CMFCM ARRAYEROMFILEEMS - Reads an array from a CM file to a CM
array for a fixed machine size.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CMF CM ARRAY FROM FILE FMS (UNIT, DEST, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILEOPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end I/O.

DEST A CM array of any type. The DEST array must be identical in shape, type, and
layout to the array that is to be transferred from the file.

IOSTAT An INTEGER variable into which the status of the 1/0 operation will be placed. A
positive value indicates success, a value of zero indicates an end-of-file condi-

) tion, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine reads the contents of an array from the file specified by UNIT and stores
it in the DEST CM array. The file must have been written by
CMF CM ARRAY TO FILE FMS. CMF CM ARRAY TO FILE FMS writes the file in a
parallel order that reflects the geometry of the array, the array layout, and the size of the
machine executing the program. This allows CMFCM ARRAY_FROM FILEFMS to trans-
fer the array substantially faster than CMF CM ARRAY FROM_FILE or
CMF CM ARRAY FROM_FILE_SO. However, parallel order files cannot be transferred
outside the CM file system, and FMS files are subject to the following restrictions when
being read back into the CM:

The array must be read by CMF CM_ARRAYFROM_FILEE_FMS into the same
machine model (CM-2/200 or CM-5) that was used to write the file. Files written
by CMF CM ARRAYTO FILE_FMS are not portable between CM-2/200 and CM-5
systems.

The machine used to read the array must be a CM-2/200 section or a CM-5

Last change: October 1992

Chff -CKARRAYJFROKFR.9-FMS (3W

69CM Fortran Version 2.0

CMFCMM_ARRAY_FROM_FILE_FMS (3CMF)

partition with the same physical size as the one that was used to write the file. In
addition, the same execution model (slicewise or Paris nodes or vector units) must
be used when writing and reading.

As mentioned in the description of the DEST argument above, the destination
array on the CM and the array that is to be transferred from the file must be identi-
cal in shape, type, and layout.

More general parallel order files that have some of the performance advantages of FMS
files but less severe restrictions can be written with CMF CM ARRAYTOFILE and read
with CMFCM ARRAY FROM FILE.

Serial order files that can be transferred, between CM-2 and CM-5 systems, outside the
CM file system, or directly to an I/O device such as a HIPPI interface or a CM socket, can
be written with CMFCM ARRAY TO FILE SO and read with
CMF CM ARRAY FROM FILE SO.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMFCMARRAY_FROM_FILE (,
CMF CM ARRAY FROM FILE SO

CMF CM ARRAY TO FILE

CMF CMARRAY TO FILE FMS

CMF CM ARRAY TO FILE SO

Last change: October 1992

CN1F_CM ARRAY FFOM FELE_FTN1(3CMF)

CM Fortran Version 2.0 70

CMF-CM..ARRAYFROM FnESO (3CMF)

NAME

CMF_CMARRAYFROMFILESO - Reads an array from a CM file to a CM array
in serial order.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF CM ARRAY FROM FILESO (UNIT, DEST, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end Y/O.

DEST A CM array of any type, shape, or layout.

IOSTAT An INTEGER variable into which the status of the 1/O operation will be placed. A
positive value indicates success and specifies the number of bytes read from the
file, a value of zero indicates an end-of-file condition, and a negative value indi-
cates failure.

RETURNED VALUE

None.

DESCRIPTION

CMF_CM ARRAY_FROM_FILE_SO reads an array from the CM file specified by UNIT into
the CM array DEST. CMF_CM_ARRAY_FROM_FILE_SO expects the array to be in normal
Fortran (or "serial") order, that is, an array written with CMFCM ARRAY TOFILESO or
with the Fortran 77 (and CM Fortran) WRITE statement.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

Last change: October 1992

ChflCM ARRAY FMOK-FILES0(KNFF

71CIM Forama Version 2.0

CMF_CM_)ARRAY_FROM_FILE_SO (3CMF)

SEE ALSO

CMFCMARRAYFROMFILE
CMF CM ARRAY FROM FILE FMS

CMFCM ARRAY TO FILE

CMFCM ARRAY TO FILE FMS

CMFCM ARRAY TO FILE SO

Last change: October 1992

CMF CM ARkAY FROM FLE S (3CMF)

i~i

72CM Fortran Version 2.0

CQFCMARRAYJTO_FIE (3CMF)

NAME

CMCM_CMARRAY_TO_FILE - Writes the contents of an array to a CM file.

SYNTAX

INCLUDE '/us/include/cm/CMF defs.h'

CALL CMF CM ARRAY TO FILE (UNIT, SOURCE, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
has no relation to the standard Fortran unit numbers used in front-end VO.

SOURCE
A CM array of any type.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine writes the contents of the CM array SOURCE to the CM file specified by
UNIT. The array is written to the file in a parallel order that reflects the geometry of the
array. This allows CMF_CM_ARRAY TO FILE to transfer the array substantially faster
than CMF CM ARRAY TO FILE SO. However, files written with
CMF_CM ARRAYTOFILE cannot be transferred outside the CM file system and are sub-
ject to the following restrictions when being used on the CM:

* All arrays written to the file must have the same shape as the first array written to
the file.

* The array must be read by MFCM_CMARRAYFROM_FILE into the same machine
model (CM-2/200 or CM-5) that was used to write the file. Files written by
CMF_CM_ARRAY_TO_FILE are not portable between CM-2/200 and CM-5 systems.

* Files written by CMF CM ARRAY TOFILE are, in most cases, portable across
machine sizes, array layouts, and execution models. The exceptions are:

Last change: October 1992

CAWCKARRAY 1PFELE (3CMff

CM Fortran Version 2.0 73

CMFCMARRAYTO_FILE (3CMF)

* On CM-2/200 only, an array written from one execution model (Paris or
slicewise) and read into the other execution model must have canonical
layout.

A canonical array is one in which the axis ordering or weights have not
been changed from the defaults by the LAYOUT directive. Within a pro-
gram, a noncanonical array can be converted to a canonical array by an
array assignment.

* On CM-2/200 only, an array written from one machine size and read into a
different machine size must have at least as many elements as the number
of bit-serial processors in the larger machine.

More specialized parallel order files can be written with
CMF CM ARRAY TO FILE FMS and read with CMF CM ARRAY FROM FILE FMS.
These subroutines write and read arrays to CM files more quickly than
CMF_CM_ARRAY_TOFILE and CMF_CM ARRAY FROM_FILE, but they are more sev-
erly restricted in their use. In particular, a file must be read on the same size machine
as it was written from.

Serial order files are written with CMF CM ARRAY TO FILE SO and read with
CMF CM ARRAY FROM FILE SO. Such files can be transferred between CM-2/200
and CM-5 sytems, outside the CM file system, or directly to an O device such as a
HIPPI interface or a CM socket.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF CM ARRAY FROM FILE

CMF CM ARRAY FROM FILE FMS

CMF CM ARRAY FROM FILE SO
CMF CM ARRAY TO FILE FMS

CMF CM ARRAY TO FILE SO

Last change: October 1992

CWFCKARRAY_ TOFELE(3CMF)

CM Fvrtran Version 2.0 74

CMFCMARRAYTOFLE_FMS (3CMP)

NAME

CMF_CM_ARRAY_TO_FIE_MS - Writes the contents of an array to a CM file for
a fixed machine size.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF CM ARRAY TO FILE FMS (UNIT, SOURCE, lOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end I/O.

SOURCE
A CM array of any type.

IOSTAT An INTEGER variable into which the status of the 1/0 operation will be placed. A
positive value indicates success, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine writes the contents of the CM array SOURCE to the CM file specified by
UNIT. The array is written to the file in a parallel order that reflects the geometry of the
array, the array layout, and the size of the machine executing the program. This allows
CMFCM ARRAYTOFILE_FMS to transfer the array substantially faster than
CMF_CM ARRAY TO FILE or CMF_CM ARRAY TOFILE_SO. However, parallel order
files cannot be transferred outside the CM file system, and FMS files are subject to the fol-
lowing restrictions when being used on the CM:

* All arrays written to the file must have the same shape and layout as the first array
written.

* The array must be read by CMFCM ARRAYFROM FILE_FMS into the 'same
machine model (CM-2/200 or CM-5) and the same execution model (slicewise or
Pans, nodes or vector units) that were used to write the file.

* The array must be read into a CM-2/200 section or a CM-5 partition with the same
physical size as the one that was used to write the file.

Last change: October 1992

CCff -CKARRAYJTO FKLE FMS (3CMF)

75DA Fortran Version 2.0

CFMARRAYjTOFILE FMS (3CMF)

* The array from the file must be read into an array on the CM with the same shape,
type, and layout.

More general parallel order files that have some of the performance advantages of FMS
files but less severe restrictions can be written with CMF CM ARRAY TO FILE and read
with CMF CM ARRAY FROM FILE.

Serial order files that can be transferred between CM-2/200 and CM-5 systems, outside the
CM file system, or directly to an /0 device such as a HIPPI interface or a CM socket, can
be written with CMF CM ARRAY TO FILE SO and read with
CMF CM ARRAY FROM FILE SO.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF CM ARRAY FROM FILE

CMF CM ARRAY FROM FILE FMS

CMF CM ARRAY FROM FILE SO
CMF CM ARRAY TO FILE

CMFCM ARRAYTO_FILESO

Last change: October 1992

CCff__CNARRAY_7PFIREEjMS (KNIF

I.

CM Fortran Version 2.0 76

CM_ YTARRAYjTO_rESO (3CMF)

NAME

CMF_CMARRAY_TO_FLE_SO - Writes the contents of an array to a CM file in
serial order.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF CM ARRAY TO FILE SO (UNT, SOURCE, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF FILE_OPEN that creates the file in the the CM file system. This UNIT num-
ber has no relation to standard Fortran unit numbers used in front-end I/0.

SOURCE
A CM array of any type, shape, or layout.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

CMF_ CM ARRAYTO FILESO writes the contents of the SOURCE array to a CM file spec-
ified by UNIT in normal Fortran (or "serial") order. These arrays must be read back into
the CM system with CMF_CM ARRAY FROM_FILEE_ SO.

The array elements are stored in a serial order file in the same order as those written with
the Fortran 77 (and CM Fortan) WRITE statement. For example, the array A(2,3) is
stored in the following order:

A(1,1)
A(2,1)
A(1,2)
A(2,2)
A(1,3)
A(2,3)

Last change: October 1992

CN[FCMARRAV jOFn~gS (3CMF)

77CM Fortran Version 2.0

CMF_CM_ARRAY_TO_FELE_SO (3CMF)

Files containing arrays in serial order are portable to any CM configuration and may also
be transferred outside the CM system to other file systems. However, arrays that are writ-
ten by CMF_CM_ARRAY_TO_FILE_SO directly to a device (a HIPPI interface or a CM
socket) may contain some "padding".

The padding consists of extra elements added to the array when it is allocated in CM
memory or when the 1/0 system writes it out. The padding is handled transparently by the
CM Fortran I/O utilties that read and write in parallel order
(CMF_CM_ARRAY_TO/FROM_FILE and CMFCM ARRAY_TO/FROM_FILE_FMS), and the
padding is stripped from the arrays when they are written to a file in serial order by
CMFCMARRAYTO_FILE SO. However, when CMF CM ARRAYTOFILESO is used
to write an array to a device, extraneous data may be added to the end of the array.
Padding is not present if the following restrictions are observed when writing to devices:

* From the CM-5:

Write from arrays whose size (number of elements) is a power of 2 and an integer
multiple of the size of the partition (number of nodes) executing the program.

* From the CM-2/200:

Write from arrays whose size (number of elements) is a power of 2 and an integer
mulitple of the size of the machine (number of bit-serial processors) executing the
program. The 1/0 system considers the number of bit-serial processors to be the
CM-2/200 machine size under either execution model, Paris or slicewise.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMFCMARRAYFROM FILE
CMF CM ARRAY FROM FILE FMS

CMFCM ARRAY FROM FILE SO

CMFCM ARRAY TO FILE

CMF_CM ARRAY TO FILE FMS

Last change: October 1992

CCl_CM_ARRAY_T_FSSQ (3CW))

78CM Fortran Version 2.0

CMF_DEALLOCATE_ARRAY (3CMF)

NAME

CMF_DEALLOCATE_ARRAY - Deallocates a dynamically allocated CM array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFDEALLOCATE ARRAY(ARRAY)

ARGUMENTS

ARRAY Front-end array. The ARRAY argument modified by CMF_ALLOCATE_ARRAY,
CMF_ALLOCATEDETAILEDARRAY, or CMFALLOCATELAYOUTARRAY as a
descriptor for a dynamically allocated CM array. The CM array represented by
this argument will be deallocated.

RETURNED VALUE

None.

DESCRIPTION

CMF_DEALLOCATE_ARRAY deallocates a CM array that has been allocated with
CMF_ALLOCATE_ARRAY, CMF_ALLOCATE_DETAILED_ARRAY, or
CMF_ALLOCATE_LAYOUT_ARRAY. Only ARRAY arguments modified by these three sub-
routines should be passed to this subroutine. The contents of the CM array represented by
ARRAY cannot be accessed after a call to this subroutine.

SEE ALSO

CMFALLOCATE ARRAY
CMFALLOCATE DETAILED ARRAY

CMFALLOCATELAYOUTARRAY

Last change: December 1992

CNE-DEALLOCATEARRAY (3CMF)

79CM Fortran Version 2.0

CMF_DEALLOCATE_TABLE (3CMF)

NAME

CMF_DEALLOCATE_TABLE - Deallocates all storage associated with a lookup table
allocated by CMF_ALLOCATE_TABLE.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFDEALLOCATETABLE(TABLE)

ARGUMENTS

TABLE An INTEGER. The identifier, as returned by CMF_ALLOCATETABLE, for the
table to be deallocated. Only tables allocated by the CMF_ALLOCATE_TABLE sub-
routine can be deallocated by this procedure.

RETURNED VALUE

None.

DESCRIPTION

CMF_DEALLOCATE_TABLE deallocates all storage associated with a lookup table allo-
cated by CMF_ALLOCATE_TABLE. Under some circumstances, these tables allow signifi-
cantly faster access for vector indirection on invariant arrays than conventionally allo-
cated arrays.

See the man page for CMF_LOOKUP_IN_TABLE for more details.

SEE ALSO

CMF ALLOCATE TABLE

CMFLOOKUPIN TABLE

Last change: June 1992

(.

CNIF-DEALLOCCATTABLE (3CW)

CM Fortran Version 2.0 80

CMF_DEPOSIT_GRID_COORDINATE (3CMF)

NAME

CMF DEPOSITGRID_COORDINATE - Modifies a send address to incorporate spe-
cific grid coordinates.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF DEPOSIT GRID COORDINATE
& (GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

ARGUMENTS

GEOMETRY
An INTEGER geometry ID as returned by CMF_GET_GEOMETRY_ID. The send
address is computed for the geometry specified by this argument.

SEND ADDRESS
A CM array in which the send addresses are stored.

On any CM platform, this array may be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION or REAL*8 to support 8-byte send
addresses. We recommend using DOUBLE PRECISION or REAL*8. See
DESCRIPTION below for details.

AXIS An INTEGER specifying the axis number of the coordinates being deposited into
the send address.

COORDINATE
A CM INTEGER array of the same shape and layout as SEND_ADDRESS and
MASK. This array contains the grid coordinates to be incorporated into
SEND_ADDRESS. These coordinates should be one based and not larger than the
length of the axis of the specified GEOMETRY.

MASK A CM LOGICAL array of the same shape and layout as SEND_ADDRESS and
COORDINATE, or the scalar value . TRUE.. If MASK is the scalar value .TRUE., all
the elements of SEND ADDRESS are modified. If MASK is a LOGICAL array, only
the elements of SEND_ADDRESS corresponding to the elements of MASK that
contain. TRUE. are modified.

RETURNED VALUE

None.

Last change: June 1992

CMF_MSITQRIDQ00RD1NATE (3CM3CMF

81CM Fortran Version 2.0

CMF_DEPOSIT_GRID_COORDINATE (3C1MF)

DESCRIPTION

This subroutine modifies send addresses stored in selected elements of SEND_ADDRESS,
along the axis specified by AXIS, to incorporate the grid coordinates stored in the corre-
sponding elements of COORDINATE. The MASK argument controls which elements are
selected for the computation. The SEND ADDRESS array should be initialized by calling
CMF_MAKE_SEND_ADDRESS before calling CMF_DEPOSIT_GRID_COORDINATE. YOU can
call CMF_DEPOSIT_GRID_COORDINATE repeatedly for each axis of the geometry with-
out disturbing coordinates already deposited in SENDADDRESS.

SEND ADDRESS can be declared as an INTEGER, or as a DOUBLE PRECISION or
REAL*8 CM array. The CM-2/200 computes send addresses as 4-byte values; the CM-5
uses 8-byte send addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte
(DOUBLE PRECISION or REAL*8) send address arrays. However, there may be a perfor-
mance penalty for using 4-byte addresses on the CM-5, as the system coerces the values
to 8-byte length. There is a minimal performance penalty for using 8-byte send-address
arrays on the CM-2 (one array copy). Therefore, for maximum portability, all CM Fortran
programs that compute send addresses should declare them as DOUBLE PRECISION or
REAL*8 values. INTEGER send address arrays should only be used in programs to be run
on the CM-2 in which the marginally greater memory use is an issue.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMFGETGEOMETRYID
CMFMAKESENDADDRESS
CMFMYSENDADDRESS
CMF SEND

Last change: June 1992

CW-DEPOSIT-GcRID-CORDIATE (3CMF)

CM Fortran Version 2.0 82

CMFDESCRIBE_ARRAY (3CMF)

NAME

CMF_DESCRIBE_ARRAY - Prints information about a CM array to stdout.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFDESCRIBEARRAY(ARRMY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine prints descriptive information about a CM array to stdout. This infor-
mation includes the shape and layout of the array.

SEE ALSO

CMFGET GEOMETRY ID

CMFSIZEOFARRAYELEMENT

Last change: June 1992

CNF-DESCRIBEARRAY (3CNIF)

83CM Forama Version 2.0

CMF_FE_ARRAY_FROM_CM (3CMF)

NAME

CMF_FE_ARRAYROM_CM - Transfers the contents of a CM array to a front-end
array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFFE ARRAY FROM CM (DEST, SOURCE)

ARGUMENTS

DEST A front-end array of the same type and shape as SOURCE. This array is the desti-
nation of the transfer.

SOURCE
A CM array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine transfers the contents of a CM array to a front-end array as quickly as
possible. The two arrays should be of the same shape and type.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMFFEARRAYTOCM

(

Last change: June 1992

(i:

CNE-FEARRAYROMCM (3CN1F

84CM Fortran Version 2.0

CMF_FE_ARRAYTO_CM (3CMF)

NAME

CMF_FE_ARRAY_TO_CM - Transfers the contents of a front-end array to a CM array.

SYNTAX

INCLUDE /usr/include/cm/CMF_defs.h'

CALL CMFFE ARRAY TO CM (DEST, SOURCE)

ARGUMENTS

DEST A CM array of the same type and shape as SOURCE. This array is the destination
of the transfer.

SOURCE
A front-end array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine transfers the contents of a front-end array to
possible. The two arrays should be of the same shape and type.

NOTES

a CM array as quickly as

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMF FE ARRAY FROM CM

CM Fortran Version 2.0

CNE FE ARRAY TO-CM (3CMF)

85Last change: June 1992

CMF_FLE_CLOSE (3CF)

NAME

CMF FILECLOSE - Closes a CM file.

SYNTAX

INCLUDE '/usr/include/cm/CMF defs.h'

CALL CMF FILE CLOSE (UNIT, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMFOPEN FILE and has no relation to standard Fortran unit num-
bers.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

,.-

Closes a file in the CM file system.

SEE ALSO

CMF FILE FDOPEN
CMF FILE LSEEK

CMF FILE LSEEK FMS

CMF FILE OPEN

CMF FILE REWIND

CMF FILE TRUNCATE

CMF FILE UNLINK

i

Last change: December 1992

CMF-FILECLOSE (3CNF)

86CM Fortran Version 2.0

CMF_FILEFDOPEN (3CMF)

NAME

CMF_FLE_FDOPEN - Associates CM file or socket descriptor with a CM Fortran unit
number. Both the descriptor and the unit number are input values.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF_FILEFDOPEN (CMFS_FD, UNIT, IOSTAT)

ARGUMENTS

CMFSFD
INTEGER. A CMFS (CM file system) file or socket descriptor.

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. This is the CM Fortran unit number to be associated with
CMFS_FD. This unit number has no relation to standard Fortran unit numbers.

IOSTAT INTEGER. An integer variable into which the status of the I/O operation will be
placed. A positive value indicates that the operation has succeeded; a negative
value indicates that the operation has failed.

RETURNED VALUE

None.

DESCRIPTION

This subroutine associates the descriptor, CMFS_FD, of an open CMFS file or a CM socket
with the CM Fortran unit number UNIT. You can then use UNIT as an argument to
CMF CM ARRAYTO_FILE or CMFCM ARRAYFROM FILE on the CM-5, or to
CMF_CM ARRAY TO FILE_SO or CMF_CM_ARRAYFROM_FILE_SO on the CM-2, to per-
form I/O to CM-HIPPI, VME, or CM sockets from within a CM Fortran program.

SEE ALSO

CMF FILE GET FD

For more information on using the CM file system, see your CM I/O system documenta-
tion.

For more information on using the CM-HIPPI interface, see your CM-HIPPI documenta-
tion.

CM Fortran Version 2.0

CM1F'-FnEFDPEN 3CN[F)

Last change: June 1992 87

CMF_FILE_GET_FD (3CMF)

NAME

CMF_FILE_GET_FD - Determines the CMFS file or socket descriptor previously asso-
ciated with a specified CM Fortran unit.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF FILE GET FD (UNIT, CMFS FD, IOSTAT)

ARGUMENTS

CMFSFD
An INTEGER output argument. The CMFS file or socket descriptor is returned in
this variable.

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMF OPEN FILE and has no relation to standard Fortran unit num-
bers.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine returns, in the argument CMFSFD, the CMFS (CM file system) file or
socket descriptor, associated with the CM Fortran unit, UNIT. This allows you to deter-
mine the file descriptor previously associated with UNIT, for example with
CMF_FILE_FDOPEN, SO that the file descriptor can be used in calls to the low-level rou-
tines of the CMFS (CM File System) library.

SEE ALSO

CMFFILE FDOPEN

For more information on using the CM file system, see your CM I/O system documenta-
tion.

it= I

Last change: December 1992

(

CNTFI1LEET_FD (KNE)

CM Fortran Version 2.0 88

CMF_FILE_LSEEK (3CMF)

NAME

CMF_FILE_LSEEK - Offsets the file pointer a specified distance within a CM file.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFFILELSEEK (UNIT, OFFSET, OSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit
number in the range 1 to 29. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT num-
ber has no relation to the standard Fortran unit number used in front-end I/O.

OFFSET INTEGER An offset from the current position in the specified file. This argu-
ment is specified differently for serial order and parallel order files. See the
DESCRIPTION and EXAMPLE sections below for more information.

IOSTAT An INTEGER variable into which the status of the I/O operation will be
placed. A positive value indicates success and a negative value indicates
failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer within a CM file. If you do not reset the file pointer
with CMF_FILE_REWIND, the offset is added to the current position of the file pointer.
Before performing a seek operation on any CM file, you must perform a read or write
operation on the file. This establishes the geometry of the file.

Seeking In Serial Order Fliles

For serial order files (those written with CMF_CM_ARRAY_TO_FILE_SO), the offset is
given in bytes. To calculate the offset, multiply the number of bytes in the array's element
type by the number of elements to traverse. This allows you to seek to an arbitrary ele-
ment in the file.

Seeking In Parallel Order Files

For parallel order files (those written with CMF_CM_ARRAY_TO_FILE), you can only seek
to the beginning of whole arrays. To compute the offset, you need not specify the size of
the array, since this information is contained in the file geometry. You need specify only

Last change: August 1992

CNT-FELE-SEEK (3CMY)

89CM Fortran Version 2.0

CMF_FILE_LSEEK (3CMF)

the size of an array's elements using the function CMF_SIZEOF_ARRAY_ELEMENT. To
seek over multiple arrays, call the utility function CMF_SIZEOF_ARRAY_ELEMENT on X

each array and add the results. (See the example given below.)

Note that on the CM-5 only the element size of any later file operation must be the same
as the element size of the read or write operation that established the geometry of the file
when it was first opened.

NOTE

If the file was written with CMF_CM_ARRAY_TO_FILE_FMS, you must use
CMF_FILE_LSEEK_FMS to perform a seek operation on it.

EXAMPLE

These examples illustrate the use of CMF_SIZEOF_ARRAY_ELEMENT to seek over parallel
order files. For these examples, assume that a file associated with unit 29 has had three
arrays written to it: A, B, and then C. Assume also that we have determined SIZEOF_A
and SIZEOF_B by calling CMF_SIZEOF_ARRAY_ELEMENT on each array. Then, to posi-
tion the file pointer to the beginning of array A, call

CALL CMF FILEREWIND(29, IOSTAT)

To position the file pointer to the beginning of array B, use:

CALL CMF_FILE_REWIND(29, IOSTAT) i

CALL CMF_FILE_LSEEK(29, SIZEOF_A, IOSTAT)

To position the file pointer to the beginning of array c, use:

CALL CMF FILE REWIND(29, IOSTAT)
CALL CMF_FILE_LSEEK(29, SIZEOF_A+SIZEOF_B, IOSTAT)

To read arrays A and C:

CALL CMF FILE REWIND(29, IOSTAT)
CALL CMF CM ARRAY FROM FILE(29, DEST ARRAY, IOSTAT)
CALL CMFFILELSEEK(29, SIZEOF_B, IOSTAT)
CALL CMFCM ARRAY FROM FILE(29, DEST ARRAY, IOSTAT)

SEE ALSO

CMFFILE CLOSE
CMFFILE LSEEK FMS

CMFFILEOPEN
CMFFILEREWIND
CMF SIZEOF ARRAY ELEMENT
CMFFILETRUNCATE
CMFFILEUNLINK

Last change: August 1992

CMFFInLLSEEK 3CMF)

CMf Frtran Version 2.0 90

CMF_FILE_LSEEKFMS (3CMF)

NAME

CMF_EIE_LSEEKFMS - Moves the file pointer a specified distance in a file writ-
ten by CMF CM ARRAYTO_FILEFMS.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF FILE LSEEK FMS (UNIT, OFFSET, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to the standard Fortran unit number used in front-end /O.

OFFSET
INTEGER An offset from the current position in the specified file. See the
DESCRIPTION and EXAMPLE sections below for information on how to specify
this argument.

OSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer to array boundaries within a CM file that has been
written by CMF_CM ARRAYTOFILE_FMS. See the man page for
CMFCMM ARRAYTOFILE_FMS for details on FMS procedures.

Before performing a seek operation on any CM file, you must perform a read or write
operation on the file. This establishes the geometry of the file. Note that on the CM-5 only
the element size of any later file operation must be the same as the element size of the
read or write operation that established the geometry of the file when it was first opened.

To compute the offset, you need not specify the size of the array, since this information is
contained in the file geometry. You need specify only the size of an array's elements
using the function CMF_SIZEOF_ARRAY_ELEMENT. To seek over multiple arrays, call the
utility function CMF_SIZEOFARRAYELEMENT on each array and add the results. (See
the example given below.) If you do not reset the file pointer with CMF_FILE_REWIND,
the offset is added to the current position of the file pointer.

Last change: August 1992

CNT-FHX-LSEEK,-FMS (3CMF)

CM Fortran Version 2.0 91

CMFFILE_LSEEK_FMS (3CMF) CMF_FILE_LSEEK_FMS (3CMF)

NOTE

If the file was written with CMF CMARRAYTO FILE or CMFCMARRAYTOFILE, use
CMF_FILE_LSEEK to perform a seek operation on it.

EXAMPLE

These examples illustrate the use of CMF_SIZEOF_ARRAY_ELEMENT to seek over
FMSparallel order files. For these examples, assume that CMF_CMARRAY TO FILEFMS has been
used to write three arrays (A, B, and then C) to the file associated with unit 29. Assume also that
we have determined SIZEOF_A and SIZEOF B by calling CMFSIZEOF_ARRAYELEMENT on

each array. Then, to position the file pointer to the beginning of array A, call

CALL CMF FILE REWIND(29, IOSTAT)

To position the file pointer to the beginning of array B, use:

CALL CMF FILEREWIND(29, IOSTAT)
CALL CMFFILE LSEEK FMS(29, SIZEOF A, IOSTAT)

To position the file pointer to the beginning of array c, use:

CALL CMF FILE REWIND(29, IOSTAT)
CALL CMF_FILELSEEK FMS(29, SIZEOF A+SIZEOFB, IOSTAT)

To read arrays A and c:

CALL CMF FILE REWIND(29, IOSTAT)
CALL CMF CM ARRAY FROM FILE FMS (29, DEST ARRAY, IOSTAT)
CALL CMF FILE LSEEK FMS(29, SIZEOF B, IOSTAT)
CALL CMF CM ARRAY FROM FILE FMS(29, DEST ARRAY, IOSTAT)

SEE ALSO

CMFFILE CLOSE
CMFFILELSEEKFMS
CMFFILE OPEN
CMF FILE REWIND

CMFSIZEOF ARRAY ELEMENT
CMFFILE TRUNCATE
CMFFILEUNLINK

Last change: August 1992CM Fortran Version 2.0 92

CMF_FILE_OPEN (3CMF)

NAME

CMF FILE OPEN - Opens a CM file and attaches the file to the UNIT.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFFILEOPEN (UNIT, PATH, OSTAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant.

PATH A CHARACTER string containing the pathname for the file to be opened.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine opens a CM file and attaches the file to the UNIT. You must supply this
unit number to other CM file system procedures when you wish to operate on this file.
Note that the CM file system unit numbers have no relation to standard Fortran unit num-
bers.

SEE ALSO

CMF FILE FDOPEN

CMFFILE CLOSE
CMFFILE LSEEK
CMFFILE LSEEK FMS
CMFFILEREWIND
CMFFILE TRUNCATE
CMFFILE UNLINK

Last change: June 1992

CMT-FELE-PEN (KNO)

93CM Fortran Version 2.0

CMF_FILE_REWIND (3CMF)

NAME

CMFFILEREWIND - Moves a file pointer to the beginning of a CM file.

SYNTAX

INCLUDE '/usr/include/cm/CMF defs.h'

CALL CMFFILEREWIND (UNIT, OSTAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMFOPEN FILE and has no relation to standard Fortran unit num-
bers.

IOSTA;4T An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer for the CM file associated with the UNIT number to
the beginning of that file. You can reset the file pointer before setting it to a specific loca-
tion in the file with CMF_FILE_LSEEK or CMF_FILE_LSEEK_FMS. See the man page for
CMF FILE LSEEK for more information.

NOTE

Before calling CMF_FILE_REWIND on a newly opened file, you must first perform a read
or write on the file.

SEE ALSO

CMFFILE CLOSE
CMFFILE LSEEK
CMFFILE LSEEK FMS
CMFFILE OPEN
CMFFILE TRUNCATE
CMFFILE UNLINK

41

CM Fortran Version 2.0

CW-FEILE RE;E9(3CW)

94Last change: June 1992

CMFFLE TRUNCATE (3CMF)

NAME

CMFFILE_TRUNCATE - Change the size of a CM file.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF FILE TRUNCATE (UNIT, LENGTH, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to the standard Fortran unit number used in front-end I/O.

LENGTH
An INTEGER specifying the new length of the file. This argument is specified dif-
ferently for serial order and parallel order files. See the DESCRIPTION section
below for more information.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine changes the size of the specified CM file to LENGTH. The file is extended
or shortened by the difference between the LENGTH argument and the file's current
length. If the file was previously larger than LENGTH, the extra data is lost. If the file was
previously smaller than LENGTH, the file is extended to LENGTH.

Deriving LENGTH for Serial Order Files

For serial order files (those written with CMF_CM_ARRAY TOFILE_SO), the length is
given in bytes. To calculate the length for the file, multiply the number of bytes in the
array's element type by the number of array elements to be contained in the file.

Deriving LENGTH for Parallel Order Fles

For parallel order files (those written with CMF_CM ARRAYTOFILE or
CMF_CM_ARRAY_TO_FILE_O), the file can only be reduced or enlarged by whole
arrays. To compute the length of the array, you need not specify the size of the array,
since this information is contained in the file geometry. You need specify only the size of

Last change: August 1992

CNUF FIL TRUNCT(30F)

95CM Fortran Version 2.0

CMFILE_TRUNCATE (3CMF)

an array's elements using the function CMF_SIZEOF_ARRAY_ELEMENT. You can increase
or decrease the size of the file by more than one array by calling
CMF_SIZEOF_ARRAY_ELEMENT on several arrays in succession, adding the returned val-
ues together, and supplying the cumulative result as the LENGTH argument.

NOTES

CMF FILE_TRUNCATE requires the file to be open for writing.

Before calling CMF_FILE_TRUNCATE on a newly opened file, you must first perform a
read or write on the file.

SEE ALSO

CMFFILE CLOSE
CMFFILE LSEEK
CMFFILE LSEEK FMS

CMFFILE OPEN
CMF FILE REWIND

CMFSIZEOFARRAYELEMENT
CMFFILE UNLINK

Last change: August 1992

CMW FELE TRUNCATE (3CMF)

CM Fortran Version 2.0 96

CMF_FILEUNLINK (3CMF)

NAME

CMF_FILE_UNLINK - Removes a file from a directory.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFFILEUNLINK (PATH, IOSTAT)

ARGUMENTS

PATH A CHARACTER string containing the pathname of the file to be removed.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

CMF FILE UNLINK removes the entry for the file PATH from the file's directory. If this
entry was the last link to the file and no process has the file open, then the file is deleted
and all resources associated with the file are reclaimed. If, however, the file was open in
any process, the actual resource reclamation is delayed until the file is closed, even
though the directory entry has disappeared.

SEE ALSO

CMFFILE CLOSE
CMFFILE LSEEK
CMFFILELSEEKFMS
CMFFILE OPEN
CMFFILEREWIND
CMFFILETRUNCATE

CM Fortran Version 2.0

I

(9

CW-FELEEUNLINK 3CN4F

97Last change: June 1992

CMF_GET GEOMETRY_D (3CMF)

NAME

CMF_GET_GEOMETRYID - Returns a geometry identifier for a CM array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

GEOM ID = CMFGETGEOMETRYID (ARRAY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

An INTEGER identifying the geometry of ARRAY. This identifier should only be passed to
other CM Fortran library procedures that accept geometry identifiers, such as
CMF DEPOSIT GRID COORDINATE.

DESCRIPTION

This function returns an identifier for a geometry object that defines the shape and layout
of ARRAY on the CM. This identifier is required by CMFDEPOSIT_GRID_COORDINATE.
Note that you cannot access the array information directly from this identifier. It can only
be passed to other procedures. Information about an array can be displayed by calling
CMF DESCRIBE ARRAY.

SEE ALSO

CMF DEPOSIT GRID COORDINATE.

CMFDESCRIBE ARRAY
CMFSIZEOFARRAYELEMENT

Last change: June 1992

CNT-GETGEOMETRY-DD (3CMT)

98CM Fortran Version 2.0

CMF_LOOKUP_N_TABLE (3CMF)

NAME

CMF_LOOKUPIN_ TABLE - Performs parallel array reference on a lookup table.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF LOOKUP IN TABLE (DEST, TABLE, INDEX, MASK)

ARGUMENTS

DEST A CM array. The destination array. The values retrieved from the table are stored
into this array.

TABLE Integer. The identifier for the lookup table to be referenced as returned by
CMF_ALLOCATE_TABLE. Only lookup tables allocated by the
CMF_ALLOCATE_TABLE subroutine can be referenced by this procedure.

INDEX An INTEGER CM array containing the indices to be used to reference TABLE. The
indices must have a lower bound of 1.

MASK A CM LOGICAL array or the scalar value .TRUE.. If MASK is the scalar value
.TRUE., all the elements of DEST are modified. If MASK is a LOGICAL array,
only the elements of DEST correspoding to the elements of MASK that contain
.TRUE. are modified.

RETURNED VALUE

None.

DESCRIPTION

CMF_LOOKUP_IN_TABLE performs a parallel array reference on TABLE.

DEST, INDEX, and MASK (if an array) must be conformable parallel arrays. Each element
of INDEX is used as an index into TABLE, and the value retrieved from that location in
TABLE is stored into the corresponding element of DEST.

Using CMF ALLOCATE_TABLE and CMF_LOOKUPINTABLE to perform indirect index-
ing is significantly faster that using a conventionally allocated table when:

* The content of the table never or rarely changes.

* The table is relatively small. Specifically, it must consume less memory than is
available on a processing element (vector unit, node, or processor, depending
on the execution model). The function CMF AVAILABLE MEMORY returns the
amount of memory left in each processing element in units of bytes.

Last change: December 1992

CNW-L0KUPjIN ABLE(3CF)

CM Fortrn Verdion 2.0 99

CMF_LOOKUP_INTABLE (3CMF) CMF_LOOKUP_IN_TABLE(3CMF)

When these constraints are met, CMF LOOKUP IN TABLE stores a copy of the table into
each processing element. This allows the subroutine to do local memory references into
the local copy of the table using indirect addressing hardware.

NOTES

CMF_LOOKUP_IN TABLE is substantially faster when

* the MASK argument has a value of . TRUE.

* the product of the dimensions of INDEX is an integer multiple of the number of
nodes or processors available to the program. The number of processing ele-
ments is returned by the function CMF_NUMBER_OF_PROCESSORS.

The CM Fortran Utility Library procedures will not operate on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank
but with offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower
bound values are ignored.

EXAMPLE

The code below using CMF_LOOKUP_IN_TABLE is significantly faster than the following
code when the constraints on TABLE are met.

C Conventional Array Referencing i
C

REAL DEST(8192), TABLE(100)
INTEGER INDEX(8192)
DEST = TABLE(INDEX)

C

C Faster Array Referencing Using CMFLOOKUPIN_TABLE
C

REAL DEST(8192), TABLE VALUES(100)
INTEGER TABLE
INTEGER INDEX(8192)

C

TABLE = CMF_ALLOCATE_TABLE(CMFFLOAT, 100, TABLEVALUES)
CALL CMF LOOKUP IN TABLE(DEST, TABLE, INDEX, .TRUE.)

C

CALL CMF DEALLOCATE TABLE(TABLE)

SEE ALSO

CMF ALLOCATE TABLE

CMF AVAILABLE MEMORY

CMF DEALLOCATE TABLE

t;

Last change: December 1992 100CM Fortran Version 2.0

CMF_MAKE_SNDADDRESS (3CMF)

NAME

CMw_.MAqE .SEND_ADDRESS - Initializes a send address.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF MAKESENDADDRESS (ARRAY)

ARGUMENTS

ARRAY A CM array. On any CM platform, this array may be declared as INTEGER to sup-
port 4-byte send addresses, or as DOUBLE PRECISION or REAL*8 to support
8-byte send addresses. We recommend using DOUBLE PRECISION or REAL*8.
See DESCRIPTION below for details.

RETURNED VALUE

None.

DESCRIPTION

This subroutine initializes ARRAY with NULL send addresses. This should be done before
calling CMF DEPOSIT_GRID_COORDINATE. ARRAY can be an INTEGER CM array, or a
DOUBLE PRECISION or REAL*8 CM array.

The CM-2/200 computes send addresses as 4-byte values; the CM-5 uses 8-byte send
addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte (DOUBLE PRE-
CISION or REAL*8) send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte
length There is a minimal performance penalty for using 8-byte send-address arrays on
the CM-2 (one array copy). Therefore, for maximum portability, all CM Fortran programs
that compute send addresses should declare them as DOUBLE PRECISION or REAL*8
values. INTEGER send address arrays should only be used in programs to be run on the
CM-2 in which the marginally greater memory use is an issue.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the array has a lower bound of 1. All other lower bound values
are ignored.

CM Fortran Version 2.0

ClFMAK9-SEND-ADDRESS (3OdF)

101Last change: June 1992

CMF_MAKE_SEND_ADDRESS (3CMF)

4-
SEE ALSO

CMFMYSENDADDRESS
CMFDEPOSITGRIDCOORDINATE
CMFSEND

4

CM Fortran Version 2.0

CMFAKE-SENDDDRESS (KNE)

102Last change: June 1992

CMF_MY_SEND_ADDRESS (3CMF)

NAME

NAE CMF_MYSEND_ADDRESS - Calculates the send address of each element in an
array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFMY SEND ADDRESS (ARRAY)

ARGUMENTS

ARRAY A CM array. Each element of this array is filled with its own send address.

On any CM platform, this array can be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION or REAL*8 to support 8-byte send
addresses. We recommend using DOUBLE PRECISION or REAL*8. See
DESCRIPTION below for details.

RETURNED VALUE

None.

DESCRIPTION

This subroutine calculates the send address for each element of ARRAY and fills each ele-
ment with its own send address.

The CM-2/200 computes send addresses as 4-byte values; the CM-5 uses 8-byte send
addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte (DOUBLE PRE-

CISION or REAL*8) send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte length.
There is a minimal performance penalty for using 8-byte send-address arrays on the CM-2
(one array copy). Therefore, for maximum portability, most CM Fortran programs that
compute send addresses should declare them as DOUBLE PRECISION or REAL*8 values.
INTEGER send address arrays should only be used in programs to be run on the CM-2 in
which the marginallly greater memory use is an issue.

NOTE

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

Last change: June 1992

CW-MYY-SENDDDRESS (3CMT)

103CM Fortran Version 2.0

CMF_MY_SEND_ADDRESS (3CMF)

4
SEE ALSO

CMF MAKESENDADDRESS
CMFDEPOSITGRIDCOORDINATE
CMFSEND

Last change: June 1992

CN9F_MY_SEND ADDRESS (3CMF)

CM Fortran Version 2.0 104

CMFNUMBEROFPROCESSORS (3CMF)

NAME

CMF ENUMrBEROF PROCESSORS - Returns the number of vector units, nodes, or
processors currently available to the program.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

NUM - CMF NUMBER OF PROCESSORS(

ARGUMENTS

None.

RETURNED VALUE

INTEGER

DESCRIPTION

The meaning of the value returned by CMF NUMBER_OF PROCESSORS varies with the
CM architecture and the exectution model under which the program is running. The
machine and execution model can be determined with the CM Forran utility
CMF_ARCHITECTURE. The following table summarizes the meaning of the return value
of CMF NUMBER_OFPROCESSORS for each value returned by CMF ARCHITECTURE:

CMF ARCHITECTURE
Return Values

CMF NUMBER OF PROCESSORS
Return Values

CMF CM5 SPARC

CMF CM5 VU

CMF CM200 SLICEWISE
CMF CM2 SLICEWISE

CMFCM200 PARIS
CMF CM2 PARIS

CMF_SIM (CM Fortan simulator)

number of processing nodes
number of vector units

number of processing nodes
number of processing nodes
number of bit-serial processors
number of bit-serial processors

CMF ARCHITECTURE

Last change: December 1992

I

SEE ALSO

0W-NUMBMER..0FJR0CESS0RS (3CW))

)

105CM Fortran Version 2.0

CMF_ORDER (3CF)

NAME 4
CMFORDER - places the numerical rank of each element of a source array in the cor-
responding element of the destination array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF ORDER (DEST, SOURCE, AXIS, MASK)

ARGUMENTS

DEST A CM INTEGER array.

SOURCE

A CM array of any type. The order of this array is stored in DEST.

AXIS Integer. The axis over which to do the ordering.

MASK A CM LOGICAL array conforming to DEST, or the scalar value .TRUE.. If MASK
is the scalar value .TRUE., all the elements of DEST are modified. If MASK is a
LOGICAL array, only the elements of DEST corresponding to the elements of
MASK that contain .TRUE. are modified. -

RETURNED VALUE

None.

DESCRIPTION

For each element of SOURCE with a MASK value of . TRUE., CMF _ORDER places the
numerical rank of that element in the corresponding element of DEST. Each row along the
specified AXIS is treated as a separate set of values to be ordered. The rank values com-
puted by this subroutine will always be 1 to N inclusive, where N is the number of items
in each set of values to be ordered. This is true regardless of the lower bound of SOURCE.

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

(

CM Fortran Version 2.0

OfflORDER(3CNT)

106Last change: June 1992

CMF RANDOM (3CMF)

NAME

*V CMF_RANDOM - Places a different pseudo random number in each element of an
array DEST.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF RANDOM (DEST, LIMIT)

ARGUMENTS

DEST A CM array of one of the following types:
* INTEGER
* REAL

*DOUBLE PRECISION

* COMPLEX
* DOUBLE COMPLEX

LIMIT An INTEGER (*4 only) specifying the exclusive upper bound for the range of
random numbers generated. For floating-point values this number should be 1.0.
For INTEGERS only, to specify no upper bound, LIMIT should be 0.

RETURNED VALUE

None.

DESCRIPTION

This subroutine places a pseudo random number in each element of the DEST array.

The random number generator algorithm used by this procedure is Wolfram's Rule 30
Cellular Automaton. For INTEGER data the random numbers are generated by simply
running the automaton for 32 generations. For REAL, DOUBLE PRECISION, COMPLEX,

and DOUBLE COMPLEX types, the random numbers are generated by running the automa-
ton for s generations (where s is the mantissa length), and setting the exponent bits and
sign bit so that the result is uniformly distributed between 2.0 and 1.0. Then 1.0 is sub-
tracted from the result to yield a number that is uniformly distributed between 0.0 and
1.0. This automaton is run on a finite string of bits, iO,...,N-1, with periodic boundary
conditions (so that site N is equivalent to site 0). In the CM implementation N - 59.

The primary reference for the Rule 30 Cellular Automaton is Stephen Wolfram, "Random
Sequence Generation by Cellular Automata," Advances in Applied Mathematics 7, pp.
123-69 (1986). This paper may be more readily available as a reprint in Stephen Wol-
fram, Theory and Application of Cellular Automata (including selected papers

1r 1983-1986), World Scientific (1986).

Last change: December 1992

0vTRAND0M(3CWF)

107CM Fortran Version 2.0

CMF_RANDOM (3CMF)

NOTE

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

SEE ALSO

CMF RANDOMIZE

.

4;

-.

Last change: December 1992

00-FRANDM(3CMF)

CM Fortran Version 2.0 108

CMF_RANDOMZE (3CMF)

NAME

CMF_RANDOMIZE - Initializes the random number generator with a seed.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF RANDOMIZE (SEED)

ARGUMENTS

SEED An INTEGER scalar specifying the seed value with which to initialize the random
number generator.

RETURNED VALUE

None.

DESCRIPTION

This subroutine uses SEED to initialize the random number generator used when
CMFRANDOM is called

The random number generator algorithm used by CMFRANDOM is Wolfram's Rule 30
Cellular Automaton. For more information see the man page for CMF_RANDOM.

SEE ALSO

CMF RANDOM

CM Fortran Version 2.0

ChflRANDOMMZ(306))

109Last change: Juw 1992

CMF_RANK (3CMF)

NAME

CMF RANK - Places the numerical rank of each selected element along an array axis,
or axis segment, into the corresponding element of the destination array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMF RANK (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, SEGMENTMODE,
& MASK)

'ARGUMENTS

DEST A CM INTEGER array. The destination array. The DEST and SOURCE arrays must
be of the same shape and layout.

SOURCE
A CM array of any type. The source array. The SOURCE and DEST arrays must be
of the same shape and layout.

SEGMENT
A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. . TRUE. values in the SEGMENT array are used as segment delimiters for t
the corresponding elements of the SOURCE array.

If SEGMENT MODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, each segment is ranked independently. The argu-
ments SEGMENT7MODE, DIRECTION, and MASK control the way the ranking
proceeds over the segments. See the DESCRIPTION section below for details.

AXIS An integer. The axis of SOURCE to be ranked.

DIRECTION
An integer. The value can be CMFUPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, the values are ranked from the smallest value to the largest; rank 1
is assigned to the smallest value. If the value is CMF DOWNWARD, the values are
ranked from largest value to the smallest; rank 1 is assigned to the largest value.

SEGMENTMODE
An INTEGER. One of the following integer values: CMF NONE,
CMF_SEGMENTBIT or CMF_START_BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted. See DESCRIP-
TION below for more information

MASK A CM LOGICAL array, or the scalar value .TRUE..

If the value of MASK is a scalar .TRUE., all the values of SOURCE will be
included in the ranking.

Last change: June 1992

CNF_RANK(3CF)

CM Frtran Version 2.0 110

CMF_RANK (3CMF)

If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of
.FALSE. in MASK are not included in the ranking.

RETURNED VALUE

None.

DESCRIPTION

This subroutine determines the numerical ranking of the values stored in the selected ele-
ments along the specified axis of the SOURCE array and places the rank of each element
in the corresponding element of the destination array DEST. Selected elements are those
that correspond to a .TRUE. element in the MASK array. The rankings computed by this
subroutine are always 1 to N inclusive, where N is the number of elements in the set of
values to be ordered. Array elements that correspond to a .FALSE. value in the MASK
argument are not included in the ranking and the corresponding element of DEST is not
changed.

The rank is always stable; for each pair of elements that contain equal values, the element
with the lower grid coordinate along the ranking axis is assigned the lower numbered
rank, regardless of the direction of the ranking.

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENTMODE arguments. Each seg-
ment along the specified AXIS is treated as a separate set of values to be ordered. Each
element of SEGMENT that contains .TRUE., marks the corresponding element of
SOURCE as a segment boundary (the start or end of a segment). Segments begin (or end)
with each element in which the value of SEGMENT is . TRUE., and continue up (or down)
the axis through all elements where the value of SEGMENT is .FALSE.. The effect of
these boundaries depends on the value of SEGMENTMODE.

If SEGMENTMODE is CMF_NONE, the elements are ranked along the entire length of the
array axis and the values in SEGMENT have no effect.

If SEGMENT MODE is CMF SEGMENT_BIT,then:

* The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing .TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is . FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

* A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward ranks.

If the value is CMF_START_BIT, then:

The MASK argument applies to the SEGMENT array as well as to the SOURCE
array. That is, elements containing .TRUE. in SEGMENT array create a segment

CM Fortan Version 2.0

CWFRANK(XNMF)

Last chainge: June 1992 111

CMF_RANK (3CMF) CMF_RANK (3CMF)

boundary only if the corresponding element of MASK is also .TRUE..

A SEGMENT value of .TRUE. indicates the start of a segment for upward ranks, 4
but the end of a segment for downward ranks. That is, the SOURCE element corre-
sponding to a .TRUE. SEGMENT element is the first element in a segment for an
upward rank, but the last element in a segment for a downward rank. In downward
ranks, the new segment begins with the first unmasked element following the seg-
ment boundary.

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

EXAMPLES

Upward Rank

IfSOURCE = [1.0, 7.0, 3.0, 2.0],
and SEGMENT = [T, F, F, F],
then DEST = [1, 4, 3, 2].

Downward Rank $
IfSOURCE = [1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, F, F],
then DEST = [4, 1, 2, 3].

Upward Rank With Mask

IfSOURCE = [1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, F, F],
and MASK = [T, T, F, T],
then DEST = [1, 3, X, 2].

Segmented Upward Rank

IfSOURCE = [1.0, 7.0, 3.0, 2.0]

and SEGMENT = [T, F, T, F],
and MASK = [T, T, T, T],
thenDEST = [1, 2, 4, 3].

Segmented Upward Rank With Context

IfSOURCE = [1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, T, F],
and MASK = [F, T, T, T],
thenDEST = [X, 1, 3, 2].

Last change: June 1992 112CM Fortran Version 2.0

CMFRANK (3CMF)

Note that, while the ranking is determined within each segment, the rank indices are num-
bered continuously across the entire axis. In this example, the ranking stored in DEST is
[X, 1, 3, 2] as illustrated,not [X, 1, 2, 1]. That is, the ranking starts

anew in each segment, but the numbering of the indices associated with each element is
not restarted. Each element receives a unique ranking index.

Last change: June 1992

CW-RANK(3CW))

CM Fortran Version 2.0 113

CMF_SCAN (3CMF)

NAME

CMF_SCAN_[ADD,MAX,_MIN,COPY,_IOR,_AND,_IEOR] - Performs a scan
along an axis on the selected elements of the source array, optionally within segments.

SYNTAX

INCLUDE '/usr/include/cm/CMFdefs.h'

CALL CMF SCAN ADD (DEST, SOURCE, SEGMENT,
& SEGMENT-MODE, MASK)

CALL CMF SCAN MAX (DEST, SOURCE, SEGMENT,
& SEGMENTMODE, MASK)

CALL CMF SCAN MIN (DEST, SOURCE, SEGMENT,
& SEGMENTMODE, MASK)

&

&

&

&

AXIS, DIRECTION, INCLUSION,

AXIS, DIRECTION, INCLUSION,

AXIS, DIRECTION, INCLUSION,

CALL CMF SCAN COPY (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,

SEGMENTMODE, MASK)

CALL CMF SCAN IOR (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
SEGMENTMODE, MASK)

CALL CMFSCAN IAND (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,

SEGMENTMODE, MASK)

CALL CMF SCAN IEOR (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
SEGMENTMODE, MASK)

ARGUMENTS

DEST A CM array. The destination array. The DEST and SOURCE arrays must be of the
same type, shape, and layout.

SOURCE

A CM array. The source array. The SOURCE and DEST arrays must be of the same
type, shape, and layout.

SEGMENT
A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. .TRUE. values in the SEGMENT array are used as segment delimiters for
the corresponding elements of the SOURCE array.

If SEGMENTMODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, the scan operation is performed independently for
each segment of SOURCE defined by SEGMENT. The arguments SEG-
MENT.MODE, DIRECTION, INCLUSION, and MASK control the way the scan pro-
ceeds over the segments. See the DESCRIPTION section below for details. .

Last change: June 1992

0

OvffSCAN (3CW))

~M Fortran Version 2.0 114

CMFSCAN (3CMF)

AXIS An integer. The axis of SOURCE along which the scan is performed.

DIRECTION
An integer. The value can be CMF_UPWARD or CMF_DOWNWARD. If the value is
CMF UPWARD, the values are combined from the lower numbered elements
toward the higher. If the value is CMF_DOWNWARD, the values are combined from
higher numbered elements toward the lower.

INCLUSION
An integer. The value can be CMF_EXCLUSIVE or CMF_INCLUSIVE. If the value
is CMF_EXCLUSIVE the first element in each SOURCE segment (as defined by the
.TRUE. elements of SEGMEN7) is not included in the computation. If the value is
CMF_INCLUSIVE, the first value in each segment is included.

SEGMENTMODE
An INTEGER. One of the following integer values: CMF_NONE,
CMF_SEGMENT BIT or CMF_START_BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted for the scan
operation. See DESCRIPTION below for more information

MASK A CM LOGICAL array, or the scalar value .TRUE..

If the value of MASK is a scalar .TRUE., all the values of SOURCE will be
included in the computation.

If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of
.FALSE. in MASK are not included in the computation.

RETURNED VALUE

None.

DESCRIPTION

Each subroutine in this group performs a scan operation along an axis of the source array
on the selected elements and puts the results in the destination array. Optionally, you may
specify scan segments for the source array so that the scan operation is performed inde-
pendently on distinct sections of the array axis.

Each of these subroutines cumulatively applies a binary operator over the selected ele-
ments of one axis of the source array SOURCE. Selected elements are those that corre-
spond to a .TRUE. element in the MASK array. The scan operation combines each
selected element of the array with the cumulative result from all the selected elements
that precede it. The result for each of these elements is stored in the corresponding ele-
ment of the destination array DEST. Array elements that correspond to a .FALSE. value
in the MASK argument are excluded from the computation and the corresponding element
of DESTis not changed.

CM Fortran Version 2.0

0v[F_SCAN (3CW))

Last change: June 1992 115

CMF_SCAN (3CMF)

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENTMODE arguments. Each ele- 4
ment of SEGMENT that contains .TRUE., marks the corresponding element of SOURCE as
a segment boundary (the start or end of segment). Segments begin (or end) with each ele-
ment in which the value of SEGMENT is .TRUE., and continue up (or down) the axis
through all elements where the value of SEGMENT is .FALSE.. The effect of these
boundaries depends on the value of SEGMENT MODE.

If SEGMENT MODE is CMF_NONE, the operation specified by the subroutine proceeds along the
entire length of the array axis and the values in SEGMENT have no effect.

If SEGMENT MODE is CMFSEGMENT BIT, then:

* The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing .TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is . FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

* A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward scans.

* When the INCLUSION argument is CMF_EXCLUSIVE, the first DEST element in
each segment, is set to zero. (There is no scan result value for this element
because in exclusive mode the first element of each segment of SOURCE is
excluded from the scan).

If SEGMENTMODE is CMF_START_BIT, then: I
* The MASK argument applies to the SEGMENT array as well as to the SOURCE

array. That is, elements containing .TRUE. in SEGMENT array create a segment
boundary only if the corresponding element of MASK is also .TRUE..

* A SEGMENT value of .TRUE. indicates the start of a segment for upward scans,
but the end of a segment for downward scans. That is, the SOURCE element corre-
sponding to a .TRUE. SEGMENT element is the first element in a segment for an
upward scan, but the last element in a segment for a downward scan. In downward
scans, the new segment begins with the first unmasked element following the seg-
ment boundary.

* When the INCLUSION argument is CMF_EXCLUSIVE, the first DEST element in
each segment (which is set to zero in CMF_SEGMENT_BIT scans) is used to store
the final scan result of the preceding segment. Note that this result value does not
contribute to the scan result for the segment in which it is stored.

See the example below for an illustration of how these arguments interact. Information
on each of the individual scan routines follows.

Last change: June 1992

CNT-SCAN KNE)

CM Fortran Version 2.0 116

CMFSCAN(3CMF)

CMFSCANADD

The subroutine CMFSCAN_ADD can operate on numbers of the following types:

* INTEGER
* REAL
* DOUBLE PRECISION (real)
* COMPLEX
* DOUBLE COMPLEX (double-precisioncomplex)

CMF_SCAN_MAX, CMF_SCAN_MIN

The subroutines CMFSCAN_MAX and CMF_SCAN_MAX can operate on numbers of the fol-
lowing types:

* INTEGER
* REAL
* DOUBLE PRECISION (real)

CMF_SCANJOR, CMF_SCAN_IAND, CMF_SCANJEOR

The subroutines CMF_SCAN_IOR, CMF_SCAN_IAND, and CMF_SCAN_IEOR, can operate
on the following types:

* LOGICAL
* INTEGER

The operations IOR, IAND, and IEOR, correspond to logical inclusive OR, logical AND,
and logical exclusive OR, respectively.

For INTEGERS, these subroutines do the operation on a bitwise basis.

CMF_SCAN_COPY

The subroutine CMF_SCAN_COPY operates on all types. The binary operator used by this
routine always returns its first argument This subroutine is usually used to copy the first
element in a segment to all the other elements of that segment.

Here is an example for CMF SCAN_COPY:

CMFSCAN COPYDEST, SOURCE, SEGMENT, 1, CMFUPWARD, CMFINCLUSIVE,
& CMF SEGMENT BIT, .TRUE.)

If SOURCE = [1,2,3,4,5,6,7,8,9],
and SEGMENT - [T,F,F,F,T,F,F,F,F],

then DEST - [1,1,1,1,5,5,5,5,5].

NOTE

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

CM Fortran Version 2.0

Ov9F-SCAN(3CMF)

Last change: June 1992 117

CMF_SCAN (3CMF)

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

EXAMPLE

The table below shows the results for a single row along the axis being "scanned" by the
subroutine CMF_SCAN_ADD. The SOURCE argument is an integer array filled with the
value 1. The MASK and SEGMENT arguments are logical arrays with the values indicated
at the top of the table (where T stands for .TRUE. and F stands for .FALSE.). The argu-
ment DIRECTION can be CMF_UPWARD or CMF_DOWNWARD. The argument INCLUSION
can be CMF_EXCLUSIVE or CMF_INCLUSIVE. The argument SEGMENTMODE can be
CMF_NONE, CMFSEGMENTBIT, or CMFSTARTBIT. DEST elements that are masked
(the elements marked with dots " . "in the table) are not changed by this operation.

MASK
SEGMENT
SOURCE

DIRECTION INCLUSION

upward
downward
upward
downward

exclusive
exclusive
inclusive
inclusive

TTTTFFFFT
FFTFFFTFF

SEGMENT-

MODE

none
none
none
none

TFFTTTF
FFFFTFF

DEST

0123
8765
1234
9876

.45. .678

.43 . 210

.56 ..789

.54. .321

.01. .201

.21. .010

.12. .312

.32. .121

.23. .451

.32. .110

.34. .512

.43. .211

4

Last change: June 1992

upward
downward
upward
downward

upward
downward
upward
downward

exclusive
exclusive
inclusive
inclusive

exclusive
exclusive
inclusive
inclusive

segment
segment
segment
segment

start
start
start
start

0101
1010
1212
2121

0121
2154
1212
3215

CNE-SCAN (3CMF)

1 1 1 1 11 11 1 1 1

118CM Fortran Version 2.0

CMF_SEND (3CMF)

NAME

CMF_SEND_[OVERWRITE,_MAX,_MIN,_ADD,_IOR,_AND, IEOR - Sends
elements from SOURCE to DEST according to the addresses in SENDADDRESS. Com-
bines multiple values sent to the same DEST element using the operation specified in the
name of the send function.

SYNTAX

INCLUDE '/usi/include/cm/CMF defs.h'

CALL CMFSEND OVERWRITE (DEST, SEND_ADDRESS, SOURCE, MASK)

CALL CMFSEND MAX (DEST, SEND ADDRESS, SOURCE, MASK)

CALL CMFSENDMIN (DEST, SEND_ADDRESS, SOURCE, MASK)

CALL CMF_SENDADD (DEST, SENDADDRESS, SOURCE, MASK)

CALL CMFSENDIOR (DEST, SEND_ADDRESS, SOURCE, MASK)

CALL CMF_SEND_IAND (DEST, SEND_ADDRESS, SOURCE, MASK)

CALL CMF_SEND_IEOR (DEST, SENDADDRESS, SOURCE, MASK)

ARGUMENTS

DEST A CM array. The destination array. The data types allowed for each type of com-
biner are listed below.

SEND_ADDRESS

CM array. The send addresses used to determine where in DEST each element of
SOURCE is sent. Send addresses are constructed using the CM Fortran Utility
Library procedures CMF_MAKESEND_ADDRESS, CMF MY SEND_ADDRESS, and
CMF DEPOSIT GRID COORDINATES.

On any CM platform, this array may be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION or REAL*8 to support 8-byte send
addresses. We recommend using DOUBLE PRECISION or REAL*8. See
DESCRIPTION below for details.

SOURCE

A CM array. The source array. This array must have same shape and layout as
SEND_ADDRESS. The data types allowed for each type of combiner are listed
below.

MASK A CM LOGICAL array or the scalar value . TRUE.. If MASK is a logical array, it
must have the same shape and layout as SEND_ADDRESS and only those elements
of SOURCE that correspond to .TRUE. values in MASK are sent to DEST. If MASK
is the scalar value . TRUE., all elements of SOURCE are sent.

CM Fortran Version 2.0

OVM-SEND (3CMF)

Last changre: June 1992 119

CMF_SEND (3CMF)

RETURNED VALUE :

None.

DESCRIPTION

Each selected element of SOURCE is sent to the element of DEST specified by the send-
address in the corresponding element of SEND_ADDRESS. If multiple elements of
SEN.D_ADDRESS have the same value, the corresponding elements of SOURCE are com-
bined together. The MASK argument controls which elements of SOURCE are selected for
the computation.

The SEND_ADDRESS array may be declared as INTEGER, or as DOUBLE PRECISION or
REAL*8. The CM-2/200 computes send addresses as 4-byte (INTEGER)values; the CM-5
uses 8-byte (DOUBLE PRECISION or REAL*8) send addresses. Each platform will accept
either 4-byte or 8-byte send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte length.
There is a minimal performance penalty for using 8-byte send-address arrays on the CM-2
(one array copy). Therefore, for maximum portability, most CM Fortran programs that
compute send addresses should declare them as DOUBLE PRECISION or REAL*8 values.
INTEGER send address arrays should only be used in programs to be run on the CM-2 in
which the marginally greater memory use is an issue.

CMF_SEND_ADD +

The subroutine CMF_SEND_ADD can operate on numbers of the following types:
* INTEGER

* REAL
*DOUBLE PRECISION
* COMPLEX
*DOUBLE COMPLEX

CMF_SEND_MAX, CMF_SENDMIN

The subroutines CMF_SEND_MAX and CMF_SEND_MIN can operate on numbers of the fol-
lowing types:

* INTEGER
· REAL

*DOUBLE PRECISION

CMF_SENDJOR, CMF.SENDJAND, CMF_SENDJEOR

The subroutines CMF_SENDIOR, CMF_SEND_IAND, and CMF_SEND_IEOR can operate
on numbers of the following types:

· INTEGER

· LOGICAL

These operations correspond to logical inclusive OR, logical AND, and logical exclusive
OR, respectively. For INTEGERS, these subroutines do the operation on a bitwise basis. a

Last change: June 1992

CNF-SEND (3CNT)

CM Fortran Version 2.0 120

CMF_SEND(3CMF)

CMFSEND_OVERWRITE

The subroutine CMF_SEND_OVERWRITE operates on all the element types. The combin-
ing function used by this subroutine arbitrarily chooses one of the values being combined
as the output. That is, if there are multiple elements of INDEX with the same index value,
one of the corresponding values of SOURCE is arbitrarily chosen and written into DEST.

SEE ALSO

CMFMAKE SEND ADDRESS

CMFMYSENDADDRESS
CMFDEPOSITGRIDCOORDINATE

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

Last change: June 1992

CW-SEND (3CMF)

121CM Fortran Version 2.0

CM F SIZEOFARRAYELEMENT (3CMF)

NAME

CMF_SIZEOFARRAYELEMENT - Returns the size of an array for use with
CMF_FILE_LSEEK, CMF_FILE_LSEEK_FMS, and CMFFILE_TRUNCATE.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

LENGTH - CMFSIZEOFARRAYELEMENT (ARRAY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

INTEGER

DESCRIPTION

This function returns the size of a single array element of ARRAY.

This return value can also be passed to CMF_FILELSEEK, CMFFILELSEEKFMS, and
CMF_FILE_TRUNCATE to specify the length of an array.CMF_SIZEOF_ARRAY_ELEMENT
can be called for multiple arrays stored in a file and the return values added together to
compute file positions for these routines.

See the man pages for CMF_FILE_LSEEK,

CMF FILE TRUNCATE for more information.
CMF_FILE_LSEEK_FMS,

CMFDESCRIBEARRAY

a
CM Fortran Version 2.0

4:

SEE ALSO

and

ChIF-SIZEOF ARRAY-ELEMENT(3CMF)

122Last chunge: June 1992

CMF_SORT (3CMF)

NAME

CMIF_SORT - Sorts the elements along an array axis (or axis segment) by numerical
ranking and places the values in order in the destination array.

SYNTAX

INCLUDE '/usr/include/cm/CMF_defs.h'

CALL CMFSORT (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, SEGMENT_MODE,
& MASK)

ARGUMENTS

DEST A CM array of the same type as SOURCE. The destination array. The DEST and
SOURCE arrays must be of the same shape and layout.

SOURCE
A CM array of any type. The SOURCE and DEST arrays must be of the same
shape and layout.

SEGMENT
A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. .TRUE. values in the SEGMENT array are used as segment delimiters for
the corresponding elements of the SOURCE array.

If SEGMENT MODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, each segment is sorted independently. The argu-
ments SEGMENTMODE, DIRECTION, and MASK control the way the sorting pro-
ceeds over the segments. See the DESCRIPTION section below for details.

AXIS An integer. The axis of SOURCE to be sorted.

DIRECTION

An integer. The value can be CMFUPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, the values are sorted from the smallest value to the largest; the
smallest value is assigned to the first element of the corresponding axis of DEST.
If the value is CMF_DOWNWARD, the values are sorted from the largest value to the
smallest; the largest value is assigned to the first element of the corresponding
axis of DEST.

SEGMENT MODE

An INTEGER. One of the following integer values: CMF_NONE,
CMF_SEGMENT BIT or CMF_START_BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted. See DESCRIP-
TION below for more information.

Last change: June 1992

CW-SORT KNIF

CM Fortran Version 2.0 123

CMF_SORT (3CMF)

MASK A CM LOGICAL array, or the scalar value . TRUE..

If the value of MASK is a scalar .TRUE., all the values of SOURCE are sorted. 4
If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of

FALSE. in MASK are not sorted.

RETURNED VALUE

None.

DESCRIPTION

This subroutine sorts the values stored in the selected elements along one axis of the
SOURCE array by numerical ranklng, and stores the values in order into the DEST array.
Selected elements are those that correspond to a .TRUE. element in the MASK array.
Array elements that correspond to a .FALSE. value in the MASK argument are not sorted
and the corresponding element of DESTis not changed.

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENT MODE arguments. Each seg-
ment along the specified AXIS is treated as a separate set of values to be sorted. Each ele-
ment of SEGMENT that contains .TRUE., marks the corresponding element of SOURCE as
a segment boundary (the start or end of a segment). Segments begin (or end) with each
element in which the value of SEGMENT is .TRUE., and continue up (or down) the axis
through all elements where the value of SEGMENT is .FALSE.. The effect of these
boundaries depends on the value of SEGMENT MODE.

If SEGMENT MODE is CMF_NONE, the elements are sorted along the entire length of the
array axis and the values in SEGMENThave no effect.

If SEGMENT MODE is CMF_SEGMENT_BIT, then:

* The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing . TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is . FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

* A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward sorts.

If the value is CMF_START_BIT, then:

* The MASK argument applies to the SEGMENT array as well as to the SOURCE
array. That is, elements containing .TRUE. in SEGMENT array create a segment
boundary only if the corresponding element of MASK is also . TRUE..

* A SEGMENT value of .TRUE. indicates the start of a segment for upward sorts,
but the end of a segment for downward sorts. That is, the SOURCE element I

Last change: June 1992

CMF-SORT (3CMF)

CM Fortran Version 2.0 124

CMFSORT (3CMF) CMFSORT (3CMF)

corresponding to a .TRUE. SEGMENT element is the first element in a segment
for an upward sort, but the last element in a segment for a downward sort. In
downward sorts, the new segment begins with the first unmasked element follow-
ing the segment boundary.

EXAMPLES

Upward Sort

If SOURCE - [1.0, 7.0, 3.0, 2.0],
and SEGMENT - [T, F, F, F],
thenDEST - [1.0, 2.0, 3.0, 7.0].

Downward Sort

IfSOURCE - [1.0, 7.0, 3.0, 2.0]
and SEGMENT - [T, F, F, F],
thenDEST = [7.0, 3.0, 2.0, 1.0]1.

Upward Sort With Mask

IfSOURCE - [1.0, 7.0, 3.0, 2.0]
and SEGMENT - [T, F, F, F],
and MASK - [T, T, F, T],
thenDEST - [1.0, 2.0, 7.0, X].

Segmented Upward Sort

IfSOURCE - [1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, T, F],

and MASK - [T, T, T, T],
thenDEST - [1.0, 7.0, 2.0, 3.0].

Segmented Upward Sort With Mask

If SOURCE = [1.0, 7.0, 3.0, 2.01

and SEGMENT - [T, F, T, F],
and MAsK = [F, T, T, T],
thenDEST - [7.0, 2.0, 3.0, X 1.

Note that, while each segment is sorted independently, the values are stored into the desti-
nation without regard to segments. As illustrated in this example, the selected values are
packed into DESTin sorted order without preserving the segment boundaries:
([7.0, 2.0, 3.0, X],not [7.0, , 2.0, 3.0]).

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

Irot ra b _10n hU T Lrs T.- I. 1e 125
%MiVJL O vson V Z,/.U AteL ISCl&r. JUUM 1Y7

CMF_SORT(3CMF)

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-

ues are ignored.

1 A

Last change: June 1992

CAUF-SORT(3CMF)

CM Fortran Version 2.0 126

