
The
Connection Machine
System

C* Programming Guide

Version 6.0.2
June 1991

Thinking Machines Corporation
Cambridge, Massachusetts

_m

First printing, November 1990
Second printing, with corrections, June 1991

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to
make changes to any products described herein to improve functioning or design. Although the
information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation does not assume responsibility or liability for any errors that may appear in this document.
Thinking Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

C* ® is a registered trademark of Thinking Machines Corporation.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM-2, CM, Paris, and DataVault are trademarks of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.
Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents
iiij iiiiiiiiiiijiljijjiiiiiii liiii~. ii'::..ijiiiii

About This Manual ...

Customer Support ..

Part I Getting Started

Chapter 1 What Is C*? ...

1.1 Data Parallel Computing ..

1.2 The Connection Machine System

1.2.1 Virtual Processors

1.2.2 Communication.

1.2.3 /O ...

1.3 C* and C ...

1.3.1 Program Development Facilities

1.4 C* and the CM ..

Chapter 2 Using C*

2.1 Step 1: Declaring Shapes and Parallel Variables

2.1.1 Shapes ..

2.1.2 Parallel Variables

2.1.3 Scalar Variables

2.2 Step 2: Selecting a Shape ..

2.3 Step 3: Assigning Values to Parallel Variables

2.4 Step 4: Performing Computations Using Parallel Variables

2.5 Step 5: Choosing an Individual Element of a Parallel Variable

2.6 Step 6: Performing a Reduction Assignment of a Parallel Variable

2.7 Compiling and Executing the Program

2.7.1 Compiling ...
2.7.2 Executing ..

iii

gml -1

xiii

xvi

1

1

2

3

3

3

4

4

5

7

9

9

10

11

11

11

12

13

14

15

15

16

C* Programming Guide
: ·"

Part II Programming in C*

Chapter 3 Using Shapes and Parallel Variables 19

3.1 What Is a Shape? .. 19

3.2 Choosing a Shape 20

3.3 Declaring a Shape 21

3.3.1 Declaring More Than One Shape 22

3.3.2 The Scope of a Shape 23

3.4 Obtaining Information about a Shape 23

3.5 More about Shapes 24

3.6 What Is a Parallel Variable? 25

3.6.1 Parallel and Scalar Variables 25

3.7 Declaring a Parallel Variable 26

3.7.1 Declaring More Than One Parallel Variable 27

A Shortcut for Declaring More Than One Parallel Variable 27

3.7.2 Positions and Elements 28

3.7.3 The Scope of Parallel Variables 29

3.8 Declaring a Parallel Structure 29

3.9 Declaring a Parallel Array 31

3.10 Initializing Parallel Variables 32
3.10.1

3.11 Obtaining

Initializing Parallel Structures and Parallel Arrays

Information about Parallel Variables

3.11.1 The positionsof, rankof, and dimof Intrinsic Functions

3.11.2

3.12 Choosing

The shapeof Intrinsic Function

an Individual Element of a Parallel Variable

Chapter 4 Choosing a Shape ..

4.1 The with Statement ...

4.1.1 Default Shape ..

4.1.2 Using a Shape-Valued Expression

4.2 Nesting with Statements

4.3 Initializing a Variable at Block Scope

4.4 Parallel Variables Not of the Current Shape

33

33

34

34

35

37

37

39
39

40

41

42

iv

Contents v

Using C* Operators and Data Types

Standard C Operators

5.1.1 With Scalar Operands

5.1.2 With a Scalar Operand and a Parallel Operand

Assignment with a Parallel LHS and a Scalar RHS

Assignment with a Scalar LHS and a Parallel RHS

43

43

43

44

44

46

5.1.3 With Two Parallel Operands 47

5.1.4 Unary Operators for Parallel Variables 48

5.1.5 The Conditional Expression 49

5.2 New C* Operators ... 50

5.2.1 The <? and >? Operators 50

5.2.2 The %% Operator 51

5.3 Reduction Operators .. 52

5.3.1 Unary Reduction 54

5.3.2 Parallel-to-Parallel Reduction Assignment 54

5.3.3 List of Reduction Operators 54

5.3.4 The -= Reduction Operator 55

5.3.5 Minimum and Maximum Reduction Operators 56

5.3.6 Bitwise Reduction Operators 56

Bitwise OR ... 56

Bitwise AND 57

Bitwise Exclusive OR 57

5.3.7 Reduction Assignment Operators with a Parallel LHS 57

5.4 The bool Data Type ... 58

5.4.1 The boolsizeof Operator 59
With a Parallel Variable or Data Type 59

With a Scalar Variable or Data Type 59

5.5 Parallel Unions ..

5.5.1 Limitations ...

Setting the Context

6.1 The where Statement ..

6.1.1 The else Clause

6.1.2 The where Statement and positionsof
6.1.3 The where Statement and Parallel-to-Scalar Assignment

6.2 The where Statement and Scalar Code

6.3 Nesting where and with Statements
6.3.1 Nesting where Statements

60

60

63

63

65

66

67

67

68

68

Chapter 5

5.1

Chapter 6

vi C* Programming Guide

6.3.2 Nesting with Statements 69

6.3.3 The break, goto, continue, and return Statements 70

6.4 The everywhere Statement 71

6.5 When There Are No Active Positions 72

6.5.1 When There Is a Reduction Assignment Operator 73

Unary Reduction Operators 73

Binary Reduction Assignment Operators 74

6.5.2 Preventing Code from Executing 74

6.6 Looping through All Positions 75

6.7 Context and the I I, &&, and ?: Operators 77

6.7.1 1 I1 and && ... 77

6.7.2 The ?: Operator 80

Chapter 7 Pointers .. 81

7.1 Scalar-to-Scalar Pointers ... 81

7.2 Scalar Pointers to Shapes 82

7.3 Scalar Pointers to Parallel Variables 82

7.3.1 Alternative Declaration Syntax Not Allowed 84

7.3.2 Arrays 84
7.3.3 Pointer Arithmetic 85

7.3.4 Parallel Indexes into Parallel Arrays 86

Adding a Parallel Variable to a Pointer to a Parallel Variable 87

Limitations .. 88

Chapter 8 Functions 89

8.1 Using Parallel Variables with Functions 89

8.1.1 Passing a Parallel Variable as an Argument 89

If the Parallel Variable Is Not of the Current Shape 90

8.1.2 Returning a Parallel Variable 91
In a Nested Context 91

8.2 Passing by Value and Passing by Reference 92

8.3 Using Shapes with Functions 94
8.3.1 Passing a Shape as an Argument 94

8.3.2 Returning a Shape 95

8.4 When You Don't Know What the Shape Will Be 95

8.4.1 The current Predeclared Shape Name 95
8.4.2 The void Predeclared Shape Name 96

Contents vii

Using shapeof with the void Shape 97

Using void when Returning a Pointer 98

8.5 Overloading Functions 99

Chapter 9 More on Shapes and Parallel Variables 101

9.1 Partially Specifying a Shape 101

9.1.1 Partially Specifying an Array of Shapes 102

Arrays and Pointers 103

9.1.2 Limitations ... 103

9.2 Creating Copies of Shapes 104

9.2.1 Assigning a Local Shape to a Global Shape 105

9.3 Dynamically Allocating a Shape 106

9.4 Deallocating a Shape ... 107

9.5 Dynamically Allocating a Parallel Variable 109

9.6 Casting with Shapes and Parallel Variables 110

9.6.1 Scalar-to-Parallel Casts 110

9.6.2 Parallel-to-Parallel Casts 111

Casts to a Different Type 111

Casts to a Different Shape 111

9.6.3 With a Shape-Valued Expression 112

9.6.4 Parallel-to-Scalar Casts 112

9.7 Declaring a Parallel Variable with a Shape-Valued Expression 112

9.8 The physical Shape .. 114

Chapter 10 Communication

10.1 Using a Parallel Left Index for a Parallel Variable

10.1.1 A Get Operation

10.1.2 A Send Operation

10.1.3 Use of the Index Variable

10.1.4 If the Shape Has More Than One Dimension ..

10.1.5 When There Are Potential Collisions

For a Get Operation

For a Send Operation
10.1.6 When There Are Inactive Positions

For a Get Operation

For a Send Operation

Send and Get Operations in Function Calls

115

116

116

118

119

120

121

121

122

124

124

125

127

..........................

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

viii C* Programming Guide

10.1.7 Mapping a Parallel Variable to Another Shape 128

10.1.8 Limitation of Using Parallel Variables with a Parallel Left Index 130

10.1.9 What Can Be Left-Indexed 130

10.1.10 An Example: Adding Diagonals in a Matrix 131

10.2 Using the pcoord Function 133

10.2.1 An Example 136

10.3 The pcoord Function and Grid Communication 138

10.3.1 Grid Communication without Wrapping 139

10.3.2 Grid Communication with Wrapping 140

Part Ill C* Communication Functions

Chapter 11 Introduction to the C* Communication Library 145

11.1 Two Kinds of Communication 146

11.1.1 Grid Communication 146

11.1.2 General Communication 147

11.2 Communication and Computation 147

Chapter 12 Grid Communication 149

12.1 Aspects of Grid Communication 149
12.1.1 Axis .. 150

12.1.2 Direction .. 150

12.1.3 Distance ... 151

12.1.4 Border Behavior 151

12.1.5 Behavior of Inactive Positions 151

12.2 The from_grid dim Function 152

12.2.1 With Arithmetic Types 152

Examples ... 153
When Positions Are Inactive 156

12.2.2 With Parallel Data of Any Length 157

12.3 The from_grid Function 158

12.3.1 With Arithmetic Types 159

12.3.2 With Parallel Data of Any Length 160

12.4 The to_grid and to_grid dim Functions 161

12.4.1 With Arithmetic Types .16.............. 161

Contents ix

When Positions Are Inactive 162

Examples ... 163

12.4.2 With Parallel Data of Any Length 165

12.5 The from torus and from torus dim Functions 166
12.5.1 With Arithmetic Types 166

12.5.2 With Parallel Data of Any Length 168

12.6 The to torus and to torus dim Functions 169
12.6.1 With Arithmetic Types 169

Examples ... 170

12.6.2 With Parallel Data of Any Length 173

Chapter 13 Communication with Computation 175

13.1 What Kinds of Computation? 175

13.2 Choosing Elements ... 176

13.2.1 The Scan Class 176

The Scan Subclass 179

13.2.2 The Scan Set ... 179

Inclusive and Exclusive Operations 181

13.2.3 Segment Bits and Start Bits 1.......... 82

If smode Is CMCsegment_bit 182
If smode Is CMC start bit 182
Inactive Positions 182

The Direction of the Operation 184
Data from Another Scan Set 1....... 85

13.3 The scan Function .. 186

13.3.1 Examples .. 187

13.4 The reduce and copy_reduce Functions 190

13.4.1 The reduce Function 190

An Example 191

13.4.2 The copy_reduce Function 192

An Example 192

13.5 The spread and copy_spread Functions 193

13.5.1 The spread Function 193

An Example 194

13.5.2 The copy_spread Function 195

An Example 196

13.6 The enumerate Function 196

13.6.1 Examples .. 197

13.7 The rank Function 199

x C* Programming Guide

13.7.1 Examples .. 200

13.8 The multispread Function 202

13.8.1 The copy_multispread Function 206

13.9 The global Function .. 206

Chapter 14 General Communication 209

14.1 The make send address Function 209

14.1.1 Obtaining a Single Send Address 210

An Example 211

14.1.2 Obtaining Multiple Send Addresses 211
When Positions Are Inactive 212

An Example 212

14.2 Getting Parallel Data: The get Function 213

14.2.1 Getting Parallel Variables 214

Collisions in Get Operations 215

14.2.2 Getting Parallel Data of Any Length 216

14.3 Sending Parallel Data: The send Function 218

14.3.1 Sending Parallel Variables 218
Inactive Positions 220

An Example 220

14.3.2 Sending Parallel Data of Any Length 221

14.3.3 Sorting Elements by Their Ranks 223

14.4 Communicating with the Front End 226

14.4.1 From the CM to the Front End 226

The read_from position Function 226

The read from pvar Function 227
14.4.2 From the Front End to the CM 228

The write_ toposition Function 228

The write topvar Function 230

14.5 The make_multi_coord and copy_multispread Functions 231

14.5.1 An Example .. 233

Contents xi

Appendixes

Appendix A Improving Performance 237

A.1 Declarations 237

A.1.1 Use Scalar Data Types 237

A.1.2 Use the Smallest Data Type Possible 237

A.1.3 Declare float constants as floats 238

A.2 Functions

A.2.1

A 2

.

Prototype Functions
TIeP llr nctpa int nf a hnnP N amP

L.z.. .,~ .. V -,_. . -

A.2.3 Use everywhere when All Positions Are Active

A.2.4 Pass Parallel Variables by Reference

A.3 Operators ..

A.3.1 Avoid Parallel &&, I I, and ?: Operators Where

Contextualization Is Not Necessary

A.3.2 Avoid Promotion to ints by Assigning
to a Smaller Data Type

A.3.3 Assign a "where" Test to a bool

A.4 Communication. ..

A.4.1 Use Grid Communication Functions instead of

General Communication Functions

A.4.2 Use Send Operations instead of Get Operations

A.4.3 The allocate detailed shape Function

A.5 Parallel Right Indexing ...

A.6 Paris ..

.. 245

Index .. 251

238

238

238

238

239

239

239

240

240

240

241

241

241

244

244

Glossary

y9rr

lli-

�48BP

rCL%

dax�;

ipua;

i)r(z-�

aeo�

·s�

rW·

iFAI:

.8�

�9�t�·

About This Manual
:/i.: :i:if i i! i iiiil : i:i:~il! ~i .?~i~i!i:: : ./! ~~:i~?~!i! ~:.~i~ ?:~:! .~~~~.

~.
!i.~~~~!i~i.:~iii:

.
ii.i:~i:ii.::. :.::':~~? ~!i? iii:i::::::i.:~::!i.:i.:!i::::i:..ii.:i.:.:::::::::::::::::::::::::: .i:i::i:::i:?i:.1?:i:!i~11...i,,:i:i.: i/, .~~~.: . .:.:!:11!.i:1i:

Objectives of This Manual

This manual is intended to help you learn how to program in the C* data parallel programming
language.

Intended Audience

Readers are assumed to have a working knowledge of C programming and a general understanding of
the components of the Connection Machine system.

Revision Information

This is a new manual.

Organization of This Manual

Part I Getting Started

These two chapters introduce C* and data parallel programming on the Connection
Machine system and provide a step-by-step explanation of a simple program.

Part II Programming in C*

These eight chapters describe how to write programs in C*.

Part II C* Communication Functions

Data parallel programming lets you operate on large multi-dimensional sets of data
at the same time. These four chapters describe C* library functions that you can use
to transfer values among items in the data set and to perform cumulative operations
along any of the dimensions of the data set.

Appendix A Improving Performance

This appendix suggests ways of increasing the performance of a C* program.

There is also a glossary that defines technical terms used in the manual.

xiii

xiv C* Programming Guide

Associated Documents

The following document about C* appears in the same volume as this programming guide:

* C* User Guide

In addition, a technical report is available that provides a reference description of the C* language.

Information about related aspects of programming the Connection Machine system is contained in the

following volumes of the Connection Machine documentation set:

* Connection Machine Users Guide

* Connection Machine I/O Programming

* Connection Machine Graphics Programming

* Connection Machine Parallel Instruction Set

* Connection Machine Programming in C/Paris

C* is based on the standard version of the C programming language proposed by the X3J11 committee

of the American National Standards Institute; this version is referred to as standard C in this manual.
The standard is available from:

X3 Secretariat

Computer and Business Equipment Manufacturers Association
311 First Street, N.W.

Suite 500
Washington, DC 20001-2178

Related books about standard C include the following:

* Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd edition

(Englewood Cliffs, New Jersey: Prentice-Hall, 1988)

* Samuel P. Harbison and Guy L. Steele Jr., C: A Reference Manual, third edition

(Englewood Cliffs, New Jersey: Prentice-Hall, 1991)

About This Manual xvi::::'i:::1 .::://::://:b.':~ ' ::::'.; :5:1'.::.: : :.:.:.:::.:: .: .: ::.::' : : : . : :: ::::..: : :! : , : : : ..:.: ::
...: .. :,-,,,: -i:

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

bold typewriter

italics

C* and C language elements, such as keywords, operators, and
function names, when they appear embedded in text. Also UNIX
and CM System Software commands, command options, and file
names.

Parameternames andplaceholders in function and command for-
mats.

typewriter

% bold typewriter
typewriter

Code examples and code fragments.

In interactive examples, user input is shown in bold type-
writer and system output is shown in regular typewriter
font.

Customer Support
..- -- -- .- --::: : '

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail: customer-support~think.com

Usenet

Electronic Mail: ames!think!customer-support

Telephone: (617) 234-4000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer-supportgthink.com

Please supplement the automatic report with any further pertinent information.

xvi

Part I

Getting Started
.. ·-····

r0ii·

*qa

xuc

CI·j'

"F�Fi

�bJ-

)r-v*

ILVlr

rSJ�F:.so�-.

cw;

g*a�

rOP·;

· BII-

ias�;

"Brr-

rr.

Chapter 1

What Is C*?

C* (pronounced "sea-star") is an extension of the C programming language designed for
the Connection Machine data parallel computing system. This chapter introduces C* and
data parallel computing on the Connection Machine system.

1.1 Data Parallel Computing

In the data parallel computing model, there are many small processors, each with some
associated memory, and all acting under the direction of a serial computer called the front
end. Each processor stores the information for one data point in its local memory; all proc-
essors can then perform the same operation on all the data points at the same time.

Here are some examples of how data parallel computing can be used:

* A graphics program might store pixels one-per-processor and then have each proc-
essor calculate the color value for its pixel, all at the same time.

* A text retrieval program might store articles one-per-processor and then have each
processor search its article for a keyword.

* A modeling program (for example, one that simulates fluid flow) might create a
large number of individual cells, stored one-per-processor. Each cell might have
a small number of possible states, which are simultaneously updated at each "tick"
of a clock according to a set of rules that are applied to each cell.

Data parallel programming also has the following features:

1

2 C* Programming Guide

* A programmer can specify that only a particular subset of the processors is to carry
out an operation. In the text retrieval program, for example, the processors that find
the initial keyword might be instructed to search further for another keyword,
while those that did not find the initial keyword remain idle.

* Processors can pass messages to each other. For example, color shading in a graph-
ic image requires that each processor obtain surface information from surrounding
processors to calculate the result for its pixel.

1.2 The Connection Machine System

In the Connection Machine system, the front end is a standard serial computer, such as a
Sun-4 or certain models of VAX. A bus interface connects the front end to the CM itself.
Programs for the CM reside on and run from the front end. Serial code within a program
is executed on the front end in the usual manner; parallel code is executed by the CM proc-
essors.

Figure 1. Interactions between front end and CM

Instructions
and data

results

CM Processors

M M M M M Processor
Memory

Chapter 1: What Is C*? 3

1.2.1 Virtual Processors

Different CM models have different numbers of processors. This does not limit the size of

the data set that a program can use, however, since the CM system supports virtual proces-

sors. The CM can divide up the memory associated with each physical processor to create

power-of-2 multiples of the entire set of processors. A CM with 16K physical processors,

for example, can operate as if it has 32K processors, 64K processors, and so on. The time

required to do each operation increases as the number of virtual processors increases.

1.2.2 Communication

CM processors are interconnected by a high-speed communication device called a router.

The router allows each processor to send a message to any other processor, all at the same

time. In addition, the CM system has a faster form of communication called grid communi-

cation, which allows processors to communicate with their neighbors.

1.2.3 11/O0

Different devices can be used to perform I/O to and from CM memory:

* A mass storage system called the DataVault can be attached to the CM via a 64-bit

I/O bus. The DataVault provides permanent disk storage for CM data.

* Other I/O devices can be connected to the CM via this same I/0 bus or through an

interface to a computer with aVMEbus.

* The graphic display system and associated software provides I/0 from the CM to

a display monitor.

Various user commands and system calls are available to perform Connection Machine I/O.

For more information, see the volume Connection Machine I/O Programming. In addition,

data can be moved between the CM and the front end using C* and calls to Paris, the CM's

parallel instruction set. For more information, see the C* User s Guide.

4 C* Programming Guide

1.3 C* and C

C* implements the ANSI standard C language; programs written in standard C compile and
run correctly under C* (except when they use one of the words that are newly reserved in
C*). In addition, C* provides new features that make possible the kind of data parallel com-
puting described in Section 1.1. These features include the following:

* A method for describing the size and shape of parallel data and for creating parallel
variables. Shapes and parallel variables are discussed in Chapters 3, 4, and 9.

* New operators and expressions for parallel data, and new meanings for standard
operators that allow them to work with parallel data. Operators are discussed in
Chapter 5.

* Methods for choosing the parallel variables, and the specific data points within
parallel variables, upon which C* code is to act. These features are discussed in
Chapters 4 and 6.

* New kinds of pointers that point to parallel data and to shapes. C* pointers are
discussed in Chapter 7.

* Changes to the way functions work so that, for example, a parallel variable can be
used as an argument. Chapter 8 describes C* functions.

* Methods for communication among parallel variables. See Chapter 10.

* Library functions that also allow communication among parallel variables. Chap-
ters 11-14 describe these functions.

1.3.1 Program Development Facilities

C* uses its own compiler, run-time libraries, and header files. The compiler translates a C*
program into a serial C program made up of standard serial C code and calls to Paris. This

code is then passed to the front end's C compiler, which handles it in the normal way to
produce an executable load module. The serial C code is executed on the front end; the
Paris instructions are executed on the CM.

C* can use standard UNIX programming tools such as dbx, gprof, and make. The C* com-
piler and related program development facilities are described more fully in the C* User s
Guide.

Chapter 1: What s C*? 5

1.4 C* and the CM

Although C* is designed for the CM system, it is not necessary to understand the details
of the CM hardware in order to use the language. For example, when the size of the data
set requires it, C* automatically takes advantage of the virtual processor mechanism de-
scribed above; the programmer need not be aware of the details. If you do understand the
CM hardware, however, the relationship between the language and the system may some-
times be clear: for example, "positions" in C* are implemented in the CM on physical
processors or on virtual processors.

If you are familiar with Paris, the CM's parallel instruction set, you will probably find it
helpful to consult Chapter 2 of the C* User i Guide. A section in this chapter describes the
relationship between C* concepts such as shapes and parallel variables and Paris concepts
such as VP sets and field IDs.

-i:

3#+r

A 4* _

.e-.

Chapter 2

Using C*

This chapter presents a simple C* program that illustrates some basic features of the lan-

guage. At this point we are not going to describe these features in detail; the purpose is

simply to give a feel for what C* is like. After the program has been presented, we describe
how to compile and execute it.

The program sets up three parallel variables, each of which consists of 65,536 individual

data points called elements. (This is, by the way, a typical use of the CM, with parallel

variables having tens of thousands of elements.) It then assigns integer constants to each

element of these parallel variables and performs simple arithmetic on them.

Example 1. A simple C* program: add. cs

#include <stdio.h>

/*

* 1. Declare the shape and the variables

*/

shape [2][32768]ShapeA;

int:ShapeA pl, p2, p3 ;

int sum = 0;

main()

{

/*

* 2. Select the shape

7

� �R14

C* Programming Guide

*/
with (ShapeA){

/*

* 3. Assign values to the parallel variables

*/
pl = 1;

p2 = 2;

/*

* 4. Add them

*/

p3 = pl + p2;

/*

* 5. Print the sum in one element of p3

*/

printf ("The sum in one element is %d.\n", [0][1]p3);

/*

* 6. Calculate and print the sum in all elements of p3

*/

sum += p3;

printf ("The sum in all elements is %d.\n", sum);

Example 1. Output

The sum in one element is 3.

The sum in all elements is 196608.

8

Chapter 2: Using C* 9

Before we go through the program, notice the file extension, .cs, in the program's name.
C* source files must have this . cs extension.

2.1 Step 1: Declaring Shapes and Parallel Variables

2.1.1 Shapes

The initial step in dealing with parallel data in a C* program is to declare its shape-that

is, the way the data is to be organized. In Step 1 of add. cs, the line

shape [2] [32768]ShapeA;

declares a

Figure 2.

shape called ShapeA ShapeA consists of 65,536 positions, as shown in

Figure 2. The shape ShapeA

ShapeA has two dimensions; you can also declare shapes with other numbers of dimen-

sions. The choice of two dimensions here is arbitrary. The appropriate shape depends on
the data with which your program will be dealing.

ShapeA

32767

.. .

0

1

Position

LI.

_ _

0 1 2

A

IS

10 C* Programming Guide
: .-.. - :.I : ': C .:: ' : Z :-.5:: :::. --..- ..:-. .. . --- -.....'::.':.,......... -i..._...,?. ':.: -. -

2.1.2 Parallel Variables

Once you have declared a shape, you can declare parallel variables of that shape. In
add. cs, the line

int:ShapeA p, p2, p3;

declares three parallel variables: p1, p2, and p3. They are of type int and of shape
ShapeA. This declaration means that each parallel variable is laid out using ShapeA as a
template, with memory allocated for one element of the variable in each of the 65,536 posi-
tions specified by ShapeA. Figure 3 shows the three parallel variables of shape ShapeA.

Figure 3. Three parallel variables of shape ShapeA

With C*, you can perform operations on all elements of a parallel variable at the same time,
on a subset of these elements, or on an individual element.

0

32767

*f R
*d C

. ___
_

0 1 2

p 1

p2

p3

Elements

Chapter 2: Using C* 11

2.1.3 Scalar Variables

In Step 1, the line

int sum = 0;

is standard C code that declares and initializes a standard C variable. These C variables are
called scalar in this guide to distinguish them from C* parallel variables. Memory for stan-
dard C variables is allocated on the front end rather than on the CM.

2.2 Step 2: Selecting a Shape

In add. cs, the line

with (ShapeA) /* Step 2 */

tells C* to use ShapeA in executing the code that follows. In other words, the with state-
ment specifies that only the 65,536 positions defined by ShapeA are active. In C*
terminology, this makes ShapeA the current shape. With some exceptions, the code fol-
lowing the with statement can operate only on parallel variables that are of the current
shape, and a program can execute most parallel code only within the body of a with state-
ment.

2.3 Step 3: Assigning Values to Parallel Variables

Once a shape has been selected to be the current shape, the program can include statements

that perform operations on parallel variables of that shape. Step 3 in add. cs is a simple
example of this:

pl = 1;

p2 = 2;

/* Step 3 */

12 C* Programming Guide
. : " .: ..':::' . :-. :..'.'.. .: :' ' -.:". ' .. :.: .:.. i'i': > .. ,: .. ::-": !' - .- . , : . -" . .:. "'."..

The first statement assigns the constant 1 to each element of pl; the second statement as-
signs 2 to each element of p2. After these two statements have been executed, p1 and p2
are initialized as shown in Figure 4.

Figure 4. Initialized parallel variables

Note that the statements in Step 3 look like simple C assignment statements, but the results
are different (although probably what you would expect) because pi and p2 are parallel
variables. Instead of one constant being assigned to one scalar variable, one constant is
assigned simultaneously to each element of a parallel variable.

2.4 Step 4: Performing Computations Using
Parallel Variables

Step 4 in add. cs is a simple addition of parallel variables:

p3 = p + p2;

In this statement, each element of pl is added to the element of p2 that is in the same posi-
tion, and the result is placed in the element of p3 that is also in the same position. Figure 5
shows the result of this statement.

p = 1;
p2 = 2; 0 1 2 32767

0 1 1 1 1
p1 0

1 1 1 1

2 2 2 2

2 2 2

Chapter 2: Using C* 13
:" . .. ' ..' ' " ' '. :: : :: -: ...: .: i:

Figure 5. Addition of parallel variables

Like C* assignment statements, C* parallel arithmetic operators look the same as the stan-

dard C arithmetic operators, but work differently because they use parallel variables.

2.5 Step 5: Choosing an Individual Element of a
Parallel Variable

In Step 5 of add. cs we print the sum in one element of p3. Step 5 looks like a standard

C printf statement, except for the variable whose value is to be printed:

[0] [1]p3

[0] [1] specifies an individual element of the parallel variable p3. Elements are numbered

starting with 0, and you must include subscripts for each dimension of the parallel variable.

Thus, [0] [l] p3 specifies the element in row 0, column 1 of p3, and the printf statement

prints the value contained in this element.

p3 = pl + p2;
0 1 2

0 i 1

P 1 1 1

2 2 2

p2

2 2 2

3 3 3

p3

3 3 3

32767

1- +

2

..

14
. -.

Figure 6. Element [0][1] of p3

Note that the following printf statement would be incorrect:

printf ("The sum in one element is %d.\n", p3); /* wrong */

Different elements of p3 could have different values (even though they are all the same in

the sample program), so printf would not know which one to print.

2.6 Step 6: Performing a Reduction Assignment of a
Parallel Variable

So far, add. cs has demonstrated assignments to parallel variables and addition of parallel

variables. The following line in the program:

sum += p3; /* Step 6 */

is an example of a reduction assignment of a parallel variable. In a reduction assignment,

the variable on the right-hand side must be parallel, and the variable on the left-hand side
must be scalar. The += reduction assignment operator sums the values in all elements of
the parallel variable (in this case, p3) and adds this sum to the value in the scalar variable
(in this case, sum); see Figure 7. (Note that the value of the scalar variable on the left-hand
side is included in the addition; that is why add. cs initializes sum to 0 in Step 1.)

0 1 2 32767

p3 ...

C* Programming Guide

Chapter 2: Using C* 15

Figure 7. The reduction assignment of parallel variable p3

The final statement of the program simply prints in standard C fashion the value contained
in sum.

Note the first closing brace, on the line after the final printf statement. This brace ends
the block of statements within the scope of the with statement in Step 2.

2.7 Compiling and Executing the Program

2.7.1 Compiling

You compile a C* program using the compiler command cs on the front end. To compile
the program add. Cs, type the following:

% cs add.cs

As with the C compiler command cc, this command produces an executable load module,
placed by default in the file a. out.

sum + p3;

Front End

sum 196608

0 1 2 32767

3 3 3 3

! 3 3 3

16 C* Programming Guide

2.7.2 Executing

To execute the resulting load module, you can use the CM System Software command
cmattach, as in the following example:

% cmattach a.out

Issuing this command for the executable version of add. cs produces a response from the
system like the following (provided that CM resources are available):

Attaching the Connection Machine system [name] ...
cold booting... done.

Attached to 8192 physical processors on sequencer 0, microcode
version 6002

Paris safety is off.

The sum in one element is 3.

The sum in all elements is 196608.

Detaching... done.

For more information on how to compile and execute a C* program, see the C* User
Guide.

Part II
Programming in C*

_

g,{,V.,

Chapter 3

Using Shapes and Parallel Variables

The sample C* program in Chapter 2 began by declaring a shape and several parallel
variables. Shapes and parallel variables are the two most important additions of C* to
standard C. This chapter introduces these topics; Chapter 9 discusses them in more detail.

3.1 What Is a Shape?

A shape is a template for parallel data, a way of logically configuring data. In C*, you must
define the shape of the data before you can operate on it. A shape is defined by the
following:

* The number of its dimensions. This is referred to as the shape's rank. For example,
a shape of rank 2 has two dimensions. A shape can have from 1 to 31 dimensions.
A dimension is also referred to as an axis.

* The number of positions in each of its dimensions. A position is an area that can
contain individual values of parallel data.

The total number of positions in a shape is the product of the number of positions in each
of its dimensions. Thus, a 2-dimensional shape with 4 positions in axis 0 (the first dimen-
sion) and 8 positions in axis 1 (the second dimension) has 32 total positions, organized as

shown in Figure 8. (By convention in this guide, axis 0 denotes the row number, and axis
1 denotes the column number.)

19

C* Programming Guide
I "..... - . -. : - - :.. :: .I

Axes 1

0 0 1 2 3 4 5 6 7

I
0

1

2

3

Figure 8. A 4-by-8 shape

The CM system currently imposes the following restrictions on shapes in C*:

* The number of positions in each dimension of a shape must be a power of two.

* The total number of positions in the shape must be some multiple of the number
of physical processors in the section of the CM that the C* program is using.

For example, if the program is running in a CM section with 8192 physical processors, it
can have shapes with 8192 positions, 16384 positions, and so on. You can arrange them 2
by 4096, 4 by 4 by 512, and so on.

3.2 Choosing a Shape

The choice of a shape depends on the data that the C* program is going to be using. The
shape typically reflects the natural organization of the data. For example:

* A database program for the employee records of a large company might use a 1-
dimensional shape, with the number of positions equaling the number of
employees.

* A graphics program might use a shape representing the 2-dimensional images that
the program is to process. If the images have 256 pixels in the vertical dimension
and 256 pixels in the horizontal dimension, a shape of rank 2 with 256 positions

- . - -
-

_ _

20

7
IIL

II

Chapter 3: Using Shapes and Parallel Variables 21

in each dimension would be appropriate. This would let each position represent a

pixel in an image.

A program to analyze stress in a solid object might use a 3-dimensional shape, with

each axis representing a dimension of the object, and each position representing
some portion of the volume of the object.

3.3 Declaring a Shape

Here is a declaration of a shape in C*:

shape [16384]employees;

This statement declares a shape called employees. It has one dimension (a rank of 1) and

16384 positions.

Let's take a closer look at the components of the statement:

* shape is a new keyword that C* adds to standard C.

* [16384] specifies the number of positions in the shape. If the shape is declared
at file scope, or as an extern or static at block scope, the value in brackets must

be a constant expression. Otherwise, it can be any expression that can be evaluated
to an integer. This follows the ANSI C standard.

* employees is the name of the shape. Shape names follow standard C naming
rules. They are in the same name space as variables, functions, typedef names,

and enumeration constants.

Figure 9 shows this shape.

C* Programming Guide
- : . :

Figure 9. The shape employees

A 2-dimensional shape adds another number, in brackets, to the
brackets. This number represents the number of positions in the
example:

right of the first set of
second dimension. For

shape [256] [512]image;

This shape has 256 positions along axis 0 and 512 positions along axis 1. Each additional
dimension is represented by another number in brackets, to the right of the previous dimen-
sions.

Individual positions within a shape can be identified using bracketed numbers as coordi-
nates. For example, position [4] of shape employees is the fifth position in the shape
(numbering starts with 0, as in C). Position [47][112] of shape image is the position at
coordinate 47 along axis 0 and 112 along axis 1.

3.3.1 Declaring More Than One Shape

A program can include many shapes. You can use a single shape statement to declare more
than one shape. For example:

shape [16384]employees, [256][512]image;

shape employees

0 1 2 3 16383

22

Chapter 3: Using Shapes and Parallel Variables 23

3.3.2 The Scope of a Shape

A shape's scope is the same as that of any identifier in standard C. For example, a shape
declared within a function or block is local to that function or block. A shape declared at
global scope can be referenced anywhere in the source file after its declaration.

NOTE: If a block contains a shape declaration, you should not branch into it (for example,
with a switch or goto statement); the behavior is undefined.

3.4 Obtaining Information about a Shape

You can obtain information about a shape by using the C* intrinsic functions
positionsof, rankof, and dimof. (Intrinsic functions are new in C*; they have
function-like syntax, but they must be known to the compiler-for example, because they
don't follow all ANSI C rules for functions.)

* positionsof takes a shape as an argument and returns the total number of posi-
tions in the shape.

* rankof takes a shape as an argument and returns the shape's rank.

* dimof takes two arguments: a shape and an axis number. It returns the number of
positions along that axis.

The simple C* program in Example 2 displays information about a shape.

I-

24 C* Programming Guide

Example 2. Obtaining information about a shape: shape. cs

#include <stdio.h>

shape [16384]employees, [256][512]image;

main ()

printf ("Shape 'employees' has rank %d and %d positions.\n",

rankof(employees), positionsof(employees));

printf ("Shape 'image' has rank %d and %d positions.\n",
rankof(image), positionsof(image));

printf ("Axis 0 has %d positions; axis 1 has %d positions.\n",

dimof(image,0), dimof(image, 1));

}

Example 2. Output

Shape 'employees' has rank 1 and 16384 positions.

Shape 'image' has rank 2 and 131072 positions.

Axis 0 has 256 positions; axis 1 has 512 positions.

These intrinsic functions can be used in other, more interesting contexts, as we discuss
later.

3.5 More about Shapes

So far, we have covered the basics about shapes in C*. Chapter 9 discusses more advanced
aspects of shapes. For example:

_ _

Chapter 3: Using Shapes and Parallel Variables 25

* Partially specifying a shape

* Copying shapes

* Dynamically allocating a shape

3.6 What Is a Parallel Variable?

Once a program has declared a shape, it can declare variables of that shape. These variables
are called parallel variables.

3.6.1 Parallel and Scalar Variables

A good way to understand parallel variables is to compare them with standard C variables.
As we mentioned in Chapter 2, standard C variables are referred to in this guide as scalar
to distinguish them from parallel variables. A scalar variable contains only one
"item"--one number, one character, and so on. A parallel variable contains many items.
(Note that ANSI C uses the term scalar in a slightly different way, to refer collectively to
arithmetic and pointer types. We consider a standard C array or structure, for example, to
be scalar because it contains only one array or structure.)

A scalar variable has the following associated with it:

* A type, along with its modifiers and qualifiers, (for example, char, unsigned
int, long double) that defines how much memory is to be allocated for the vari-
able and how operators deal with it

* A storage class (for example, auto, static) that defines the manner in which the
memory is to be allocated

Like a scalar variable, a parallel variable has a type and a storage class, but in addition it
has a shape. The shape defines how many elements of a parallel variable exist, and how
they are organized. Each element exists in a position in the shape and contains a single
value for the parallel variable. If a shape has 16384 positions, a parallel variable of that
shape has 16384 elements, one for each position.

Each element of a parallel variable can be thought of as a single scalar variable. But the
advantage of a parallel variable is that C* allows a program to carry out operations on all

26 C* Programming Guide

elements (or any subset of elements) of a parallel variable at the same time. As the sample
program in Chapter 2 demonstrated, you can:

* Assign a constant to all elements of a parallel variable at the same time.

* Declare multiple parallel variables of the same shape.

* Perform an arithmetic operation on all elements of a parallel variable at the same
time.

* Do reduction assignments of data in all elements of a parallel variable.

As we explain later in this manual, parallel variables that have different shapes can interact,
but interactions between parallel variables are more efficient if the parallel variables are of
the same shape.

3.7 Declaring a Parallel Variable

Before declaring a parallel variable, you must define the shape that the parallel variable is
to take. For example, assume that the following shape has been defined:

shape [16384]employees;

You can then declare parallel variables of this shape. For example:

unsigned int employee_id:employees;

Interpret the colon in this syntax to mean "of shape shapename." Thus, this statement
declares a parallel variable called employeeid that is of shape employees. unsigned
int specifies the type of the parallel variable employeeid. Parallel variable names, like
shape names, follow standard C naming rules.

Figure 10 shows this parallel variable.

Chapter 3: Using Shapes and Parallel Variables 27
".::::? &;' :..... ..;': ;i:5J .; ;:':;.!!:::.:: I. :: ::::::::::::::::::: ' -;'¢ . :i/ ~:;;; '. ;:~~.:: .:; ';~~~~z:::.~::/ 5 :ii: '

'..... :::::::::::::::::::::::::::..::::::::::::::....:::::::::::::::::

Figure 10. A parallel variable of shape employees

3.7.1 Declaring More Than One Parallel Variable

You can declare more than one parallel variable in the same statement, if they are of the
same type. For example:

unsigned int employee_id:employees, age:employees;

The parallel variables need not be of the same shape. For example:

unsigned int employee_id:employees, fieldl:image;

A Shortcut for Declaring More Than One Parallel Variable

If parallel variables have the same type and same shape, C* provides a more concise
method for declaring them. Put the ": shapename" after the type rather than after each par-
allel variable. For example:

unsigned int:employees employee_id, age, salary;

The parallel variables employeeid, age, and salary are all unsigned ints of shape
employees. This syntax is generally used except when parallel variables of different
shapes are being declared.

Figure 11 shows the three parallel variables that this statement creates.

shape employees

o 1 2 3 16383

28 C* Programming Guide
-:' --- , -. - -I.~ . 11 . , I - -. :. . .. I -- - .:. - : - . .

shape employees

employeeid

age

salary

± 1 2 3

I I I I

I I I I I

I I I I I

16383

. L Z} int

* C
*C

Figure 11. Three parallel variables of shape employees

3.7.2 Positions and Elements

As we have mentioned, a shape is a template for the creation of parallel variables. It is

important to keep in mind the distinction between positions of a shape and elements of

parallel variables that have been declared to be of that shape. As shown in Figure 12,

elements with the same coordinates can be considered to occupy the same position in the

shape. For example, the third elements of employee-id, age, and salary are all at posi-

tion [2] of shape employees. These elements are referred to as corresponding elements.

Corresponding elements are an important concept in C*.

Chapter 3: Using Shapes and Parallel Variables 29
i::.: II.::.-.I ::: ..:.: i: .I:.: :I:: .I ...)2: : i:.:. ?.:::: : :. ::: :.:.:.r... ..:::?'%:::::::... ::.: ..: .:?:::...:: .::::-/: : :;:;:l.::.: -:::I.::.I.: ::::.:.:?.::i:.:I :i: ::~::.:?:::::::.:?:::. .:' ..:... ..:'..

employee_id

age

salary

shape employees

position

0 1 .2 3

I -I I 1\

I I 1. xi \1

16383

,00

corresponding elements

Figure 12. Corresponding elements

3.7.3 The Scope of Parallel Variables

Parallel variables follow the same scoping rules as standard scalar variables (and shapes).
For example, a parallel variable declared within a function or block is local to that function
or block.

NOTE: As with shape declarations, if a block contains a parallel variable declaration, you
should not branch into it (for example, with a switch or goto statement); the behavior is
undefined.

3.8 Declaring a Parallel Structure

You can declare an entire structure as a parallel variable. For example:

shape [16384]employees;
struct date {

\ ... L

30 C* Programming Guide

int month;

int day;

int year;

struct date:employees birthday;

The final line of code defines a parallel variable called birthday. It is of shape
employees and of type struct date. This parallel structure is shown in Figure 13.

Figure 13. A parallel structure of shape employees

Each element of the parallel structure contains a scalar structure, which in turn will contain
the birthday of an employee.

As with non-structured variables, you can declare more than one parallel structure in a
single statement. For example:

struct date:employees birthday, dateof_hire;

You can declare parallel structures of different shapes. For example:

struct date birthday:employees, date_of_purchase:equipment;

Note the different syntax, with ":shapename" coming after each parallel variable.

You can also use the following syntax for declaring a parallel structure:

shape employees

0 1 2 3 16383

month
structure

birthday day
year ICI . ·

i
I

Chapter 3: Using Shapes and Parallel Variables 31

struct date {

int month;

int day;

int year;

}:employees birthday;

Accessing a member of a parallel structure is the same as accessing a member of a scalar

structure. For example, birthday. day specifies all elements of structure member day in
the parallel structure birthday.

Some additional points about structures:

* Only scalar (that is, non-parallel) variables are allowed within parallel or scalar
structures.

* Shapes are not allowed within parallel or scalar structures; a pointer to a shape is
allowed within a scalar structure. (Pointers to shapes are discussed in Chapter 7.)

* You can include a scalar array within a parallel structure; you cannot include
pointers of any kind.

* C*, like standard C, allows structures to be nested.

3.9 Declaring a Parallel Array

You can declare an array of parallel variables. For example,

shape [16384]employees;
int:employees ratings[3];

declares an array of three parallel ints of shape employees, as shown in Figure 14.
ratings [0] specifies the first of these parallel variables, ratings [1] the second, and
ratings [2] the third.

32 C* Programming Guide
.~ ~ ~ ~ ~ ~ ~ ~ ~~' .: . --, .:'':: . , .. - - - .. .- .- -~~ ·. :: -.. , .

0 1 2 3

shape employees

16383

ratings [0]

array 2ratings [1]
ratings

ratings [2]

Figure 14. A parallel array of shape employees

Please note the difference between an element of a parallel array and an element of a par-
allel variable:

* An element of a parallel array, like ratings [O] in Figure 14, is a parallel vari-
able. It has values for each position of its shape.

* An element of a parallel variable is scalar, and exists in only one position.
ratings [0] consists of 16384 separate parallel variable elements.

You can also use the alternative syntax for declaring a parallel array. For example:

int ratings [3]:employees;

We discuss parallel arrays further in Chapter 7, where we explain their relationship to
pointers.

3.10 Initializing Parallel Variables

You can initialize a parallel variable when you declare it. The initializer must be a single
scalar value. Each element of the parallel variable is set to that value. For example,

Chapter 3: Using Shapes and Parallel Variables 33
.: :..shape [6 553 hapeA::::: ..:::::::: ::: .:::.::::::::::::::: :. .::::::: :.:..

shape [65536]ShapeA;

int:ShapeA pl = 6;

sets each element of parallel variable p1 to 6.

If the variable is an automatic, the initializer can be an expression that can be evaluated at

the variable's scope. For example:

main ()

int i = 12;

shape [65536]ShapeA;

int:ShapeA pl = (6+i);

sets each element of pl to 18.

If there is no initializer in a parallel variable declaration, and the variable has static storage
duration, each element of the parallel variable is set to 0; this follows the ANSI C standard.

- -

3.10.1 Initializing Parallel Structures and Parallel Arrays

Members of parallel structures and elements of parallel arrays can be initialized only to
scalar constants; this too follows the ANSI standard.

3.11 Obtaining Information about Parallel Variables

Once you have declared a parallel variable in a program, you can obtain information about
it, just as you can for a shape.

34 C* Programming Guide
*~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~~·:· -. ": .:·: -· . . -":' ·i.: -' -: -' . . ' :' -· .- .- -·': .:·:: - ..

3.11.1 The positionsof, rankof, and dimof Intrinsic Functions

The positionsof, rankof, and dimof intrinsic functions described in Section 3.4 can
be applied to parallel variables as well as to shapes. For example, if age is a parallel vari-
able of shape employees:

* rankof (age) returns the rank of employees.

* positionsof (age) returns the total number of elements of age (and any other
parallel variable of shape employees). Note that the number of elements of a par-
allel variable is the same as the number of positions in the parallel variable's shape.

* dimof (age, 0) returns the number of instances in axis 0 of age (and any other
parallel variable of shape employees).

3.11.2 The shapeof Intrinsic Function

C* includes another intrinsic function that applies only to a parallel variable. The shapeof
intrinsic function takes a parallel variable as an argument and returns the shape of the paral-
lel variable. For example, if a program contains the following declarations:

shape [16384]employees;

unsigned int:employees age;

shapeof (age) returns the shape employees.

shapeof (age) is a shape-valued expression; it can be used anywhere the shape name
employees is used. For example, once age is declared, a subsequent declaration of a par-
allel variable:

unsigned int:employees salary;

could also be written:

unsigned int:shapeof(age) salary;

Similarly, a parallel structure like the one shown in Section 3.8 could be declared as
follows:

Chapter 3: Using Shapes and Parallel Variables 35

struct date:shapeof(age) birthday;

3.12 Choosing an Individual Element of a Parallel Variable

As we described earlier, an individual position can be described by its coordinates along
the axes of the shape. These coordinates are also used in specifying an individual element
of a parallel variable. As with a shape declaration, the coordinates appear in brackets to the
left of the variable name, starting with the coordinate for axis 0. These coordinates are also
referred to as a left index.

Thus, if age is a parallel variable of a 1-dimensional shape named employees, [0] age
specifies the first element of age, and [4] age specifies the fifth element of age.

For a 2-dimensional parallel variable called pvar,

* 0] [0]pvar specifies the element in row 0, column 0.

* 1] [0] pvar specifies the element in row 1, column 0.

*01 [] pvar specifies the element in row 0, column 1.

and so on. Recall that axis 0 refers to the rows, and axis 1 refers to the columns.

A left index must be 0 or greater. The behavior of an operation that includes a negative left
index is undefined.

You can use a left index with an element of a parallel array. For example:

[77]A1[4]

specifies the seventy-eighth parallel variable element of Al [4], which is the fifth array
element of the parallel array Al.

You can use scalar variables or expressions in place of numbers in the left index. For
example, if a program contains the following declaration:

int j = 4;

the expression [j] age specifies the fifth instance of age.

It is also possible to use parallel variables or expressions in the left index. We leave that
topic, however, for Chapter 10.

Ir"·

Bri.

.ut·.

�i*I·

rCn·

inp-iA�··

a�i

�wa�

aihi-

�Y1

�2rxi

gC�·

aOi)·

gZITr·

Chapter 4

Choosing a Shape

In Chapter 3 we described how to declare a shape, which is used as a way of organizing

parallel data. You can declare more than one shape in a C* program. However, a program
can in general operate on parallel data from only one shape at a time. That shape is known
as the current shape. You designate a shape to be the current shape by using the with state-
ment, which C* has added to standard C.

4.1 The with Statement

Assume a program contains the following declarations for a shape and three parallel vari-
ables of that shape:

shape [16384]employees;

unsigned int:employees employee_id, age, salary;

Before operations can be performed on these parallel variables, employees must become
the current shape.

To make employees the current shape, use the with statement as follows:

with (employees)

Any statement (or block of declarations and statements) following with (employees)
can operate on parallel variables of shape employees. For example,

with (employees)

age = 0;

37

II

38 C* Programming Guide

initializes all elements of the parallel variable age to 0. (We discuss parallel assignment
statements in the next chapter.) If each element of salary has been initialized to each em-
ployee's current salary, the following code:

unsigned int:employees new_salary;

with (employees)

new_salary = salary*2;

stores twice each employee's salary in the elements of new_salary. (Once again, we
cover arithmetic with parallel variables in the next chapter.)

You can also include operations on scalar variables inside a with statement. For example,
you can declare a scalar variable called samplesalary and assign one of the values of
salary to it:

with (employees) {

unsigned int sample_salary;
sample_salary = [O]salary;

H

Here is what you can do inside a with statement:

shape [16384]employees, [8192]equipment;

unsigned int employee_id:employees, date_of _purchase:equipment;

main ()

with (employees)

date_of_purchase = 0; /* This is wrong */

}

The program cannot perform this operation on date ofpurchase, since this parallel
variable is not of the current shape. However, the following is legal:

shape [16384]employees, [8192]equipment;
unsigned int employee_id:employees, date_of_purchase:equipment;

main ()

{

with (employees)

[6]date_of_purchase = 0; /* This is legal */

}

Chapter 4: Choosing a Shape 39

In this case, [6] date of.purchase is scalar, since it refers to a single element. Scalar
operations are allowed on parallel variables that are not of the current shape.

See Section 4.4 for a list of the situations in which a program can operate on parallel vari-
ables that are not of the current shape.

4.1.1 Default Shape

Note that the sample program in Chapter 2 included a with statement, even though only
one shape was declared. You must include a with statement to perform parallel operations
on parallel data, even if only one shape has been declared.

NOTE: There is no default shape in C*. However, an implementation can define a default

shape. See the C* User i Guide for more information on default shapes.

4.1.2 Using a Shape-Valued Expression

You can use a shape-valued expression instead of a shape name to specify the current

shape. For example:

shape [16384lemployees;

unsigned int:employees age, salary;

main ()

{

with (shapeof(age))

salary = 200;

}

The current shape is employees, because shapeof (age) returns the shape of the parallel
variable age.

U.

_e _1

40 C* Programming Guide

4.2 Nesting with Statements

Consider the following with statement:

with (employees)

addsalaries();

where add_salaries is a function defined elsewhere in the program. Clearly,
employees remains the current shape while executing the code within addsalaries.
But what if add salaries contains its own with statement? The new with statement
then takes effect, and the shape it specifies becomes current. When the with statement's
scope is completed, employees once again becomes the current shape.

You can therefore nest with statements. The current shape is determined by following the
chain of function calls to the innermost with statement. Returning to an outer level resets
the current shape to what it was at that outer level. For example:

shape [16384]ShapeA, [32768]ShapeB;
int:ShapeA pl, p2;

int:ShapeB ql;

main()

with (ShapeA) {

pl = 6;

with (ShapeB)

ql = 12;

p2 = 18;

Once the code in this example leaves the scope of the nested with statement, ShapeA once
again becomes the current shape. The assignment to p2 is therefore legal.

The break, goto, continue, and return statements also reset the current shape when
they branch to an outer level. For example, the following code is legal:

with (ShapeA) {
loop:

/* C* code in ShapeA . . . */
with (ShapeB) {

/* C* code in ShapeB . . . */
goto loop;

Chapter 4: Choosing a Shape 41

When the .oto statement is executed and the program returns to loop, Shap.A once again

becomen the goto statement is executed and the program returns to loop,ShapeA once again
becomes the current shape.

C* does not define the behavior when a program branches into the body of a nested with
statement, however. For example, the following code results in undefined behavior:

goto loop;

with (ShapeA) {

loop: /* This is wrong */

4.3 Initializing a Variable at Block Scope

Section 3.10 described how to initialize parallel variables; it stated that you can initialize
an automatic variable with an expression that can be evaluated at the variable's scope. Note
that if the expression contains a parallel variable, the parallel variable must therefore be of
the current shape. In the following code, p2 is initialized to the values of pl; pl must there-
fore be of the current shape.

shape [16384]ShapeA;
int:ShapeA pl = 6;

main ()

{

with (ShapeA) {

int:ShapeA p2 = pl;

/* ... */

_ m

42 C* Programming Guide

4.4 Parallel Variables Not of the Current Shape

As we mentioned above, there are certain situations in which a program can operate on a

parallel variable that is not of the current shape. They are as follows:

* You can declare a parallel variable of a shape that is not the current shape. You

cannot initialize the parallel variable using another parallel variable, however (be-

cause that involves performing an operation on the parallel variable being

declared).

* As we discussed in Section 4.1, a parallel variable that is not of the current shape

can be operated on if it is left-indexed by a scalar or scalars, because it is treated
as a scalar variable.

* You can left-index any valid C* expression with a parallel variable of the current

shape, in order to produce an lvalue or rvalue of the current shape. This topic is

discussed in detail in Chapter 10.

* You can apply an intrinsic function like dimof and shapeof to a parallel variable

that is not of the current shape.

u You can use the & operator to take the address of a parallel variable that is not of

the current shape. See Chapter 7.

* You can right-index a parallel array that is not of the current shape with a scalar

expression.

* You can use the "dot" operator to select a field of a parallel structure or union that

is not of the current shape-provided that the field is not an aggregate type (for

example, another structure or union).

You can also perform these operations (except for left-indexing by a parallel variable) even

if there is no current shape-that is, outside the scope of any with statement.

Chapter 5

Using C* Operators and Data Types

C* uses all the standard C operators, plus a few new operators of its own. In addition, C*
provides new meanings for the standard C operators when they are used with parallel vari-
ables. Sections 5.1-5.3 of this chapter describe C* operators and how to use them.

C* also provides a new data type, bool, which it adds to the standard C data types. Section
5.4 describes bools.

Section 5.5 discusses parallel unions.

Throughout the chapter, variables beginning with s (for example, sl, s2) are scalar; vari-
ables beginning with p (pl, p2) are parallel.

5.1 Standard C Operators

5.1.1 With Scalar Operands

If all the operands in an operation are scalar, C* code performs exactly like standard C

code. Recall that scalar variables are allocated on the front end, not on the CM. Therefore,
code like this:

int sl=O, s2;
s2 = sl << 2;
sl++;
sl += s2;

allocates scalar variables on the front end and carries out the specified operations on them,
just as in standard C.

43

44

The more interesting situations occur when a parallel operand is involved in an operation.
The rest of this section considers these situations.

5.1.2 With a Scalar Operand and a Parallel Operand

You can use standard C binary operators when one of the operands is parallel and one is
scalar.

Assignment with a Parallel LHS and a Scalar RHS

We have already shown examples of a parallel left-hand side (LHS) and a scalar right-hand
side (RHS) with simple assignment statements, where a scalar constant is assigned to a par-
allel variable. For example:

pl = 6;

In this statement, 6 is assigned to every element of the parallel variable p1. Technically, the
scalar value is first promoted to a parallel value of the shape of the parallel operand, and
this parallel value is what is assigned to the elements on the left-hand side.

Similarly,

pl = sl;

causes the scalar variable si to be promoted to a parallel variable, and its value is assigned
to every element of parallel variable pi. Thus, a scalar-to-parallel assignment produces a
parallel result; see Figure 15.

C* Programming Guide

Chapter 5: Using C* Operators and Data Types 45
.....-- :

Figure 15. Promotion of a scalar variable to a parallel variable

Other binary operators work in the same way. For example,

p + sl

adds the value of sl to each element of pl.

pl == sl

tests each element of pi for equality to the value of sl. For each element, it returns 1 if
the values are equal, 0 if they are not equal.

pl << sl

shifts the value of each element of p to the left by the number of bits given by the value
of sl.

(pl > 2) && (sl == 4)

for each element of pi, returns 1 if pi is greater than 2 and sl equals 4; otherwise the
expression returns 0 for that element. See Chapter 6 for a further discussion of the && oper-
ator when one or both of its operands is parallel.

I*

46 C* Programming Guide

Assignment with a Scalar LHS and a Parallel RHS

In an assignment statement, promotion occurs only when the scalar variable is on the right-
hand side and the parallel variable is on the left-hand side. A scalar variable on the
left-hand side is not promoted, and the following statement generates a compile-time error:

sl = p; /* This is wrong */

You can, however, explicitly demote the parallel variable to a scalar variable, by casting the
parallel variable to the type of the scalar variable. For example:

int sl;
int:ShapeA p;

sl = (int)pl; /* This works */

(Parallel-to-scalar casts are discussed in more detail in Chapter 9.) But what value does C*
assign, when the parallel variable could have thousands of different values?

In the case of a simple parallel-to-scalar assignment, with the parallel variable cast to the
type of the scalar, C* simply chooses one value of the parallel variable and assigns that
value to the scalar variable; see Figure 16. The value that is chosen is defined by the imple-
mentation.

Figure 16. Selection of a value in a parallel-to-scalar assignment

What is the point of obtaining the value of an element of a parallel variable, if the language
doesn't specify which value it will be? One use of demoting a parallel variable to a scalar

sl = (int)pl;

Front End

sl

n

] .- .p1

Chapter 5: Using C* Operators and Data Types 47

is to cycle through all elements of a parallel variable and operate on each in turn individual-
ly; Chapter 6 has an example of this.

Note that the issues discussed here do not affect a statement like the following:

sl = [2]pl;

This is a scalar operation. In it, an individual element of pl has been selected by using the
left index [2]. Since only one element is selected, there is no possibility of a collision, and
the value of the element can be assigned to sl without a problem.

Figure 17. Assignment of a single element of a parallel variable to a scalar variable

The C compound assignment operators (for example, += and -=) have a special use with
a parallel RHS and a scalar LHS; they are discussed in Section 5.3.

5.1.3 With Two Parallel Operands

Standard binary C operators can work with two parallel operands, if both are of the current
shape. For example,

p2 = p;

assigns the value in each element of pl to the element of p2 that is at the same position-
that is, to the corresponding element of p2; see Figure 18.

sl = [2]pl;

Front End

S1I 12 I

0 1 2 3 n

pi 18 47 112 95 L.

C* Programming Guide.'' ' ' : ' :': -.': .-? - '' :: .'::' : . : .': '. :- - : .

Figure 18. Assignment of a parallel variable to a parallel variable

pl * p2

multiplies each element of p1 by the corresponding element of p2.

p1 >= p2

returns, for each element of pl, 1 if it is greater than or equal to the corresponding element
of p2, and 0 if it is not.

(pl > 2) II (p2 < 4)

returns, for each element, 1 if pl is greater than 2 or p2 is less than 4, and 0 otherwise. Both
operands are evaluated if either is parallel. See Chapter 6, however, for a further discussion
of this operator and the && operator.

5.1.4 Unary Operators for Parallel Variables

Standard C unary operators can be applied to parallel variables. For example:

pl++

increments the value in every element of the parallel variable p1.

!pl

p2 = pl;
0 1 2 3 n

pi 18 47 12 95 ... 64

p 2 18 47 12 95 ...

48

Chapter 5: Using C* Operators and Data Types 49

provides the logical negation of each element of pi. If the value of the element is 0, the
expression returns 1; if the value of the element is nonzero, the expression returns 0.

5.1.5 The Conditional Expression

The ternary conditional expression ?: operates in slightly different ways depending on the
mix of parallel and scalar variables in the expression.

For example, in the following statement:

pl = (sl < 5) ? p2 : p3;

the first operand is scalar, and the other two operands are parallel. The interpretation of this
statement is relatively straightforward: if the scalar variable 81 is less than 5, the value in
each element of the parallel variable p2 is assigned to the corresponding element of p1; if
81 is 5 or greater, the value in each element of p3 is assigned to pi. All the parallel vari-
ables must be of the current shape.

In the following statement:

pl = (sl < 5) ? p 2 : s2;

the first operand and one of the other operands are scalar. In this case, s2 is promoted to
a parallel variable of the current shape, and the expression is evaluated in the same way as
the previous example.

What happens if the first operand is parallel? For example:

pl = (p2 < 5) ? p3 : p4;

In this case, each element of p2 is evaluated separately. If the value in p2 is less than 5 in
a particular element, the value of p3 is assigned to pi for the corresponding element.
Otherwise, the value of p4 is assigned to pi. Figure 19 gives an example of this; the arrows
in the figure show examples of the data movement, based on the value of p2.

50 C* Programming Guide
-:'::v'. r: ::::: i:(: '"' -.- -:.': · ¥' '.'%'.:':'.: :::- : : . : : ..,. :.,::':... ..: :i:':.:.: .:. .:::,.:' ' : ..:: . -" :

pl = (p2<5)?p3 :p4;
0 1 2 3 n

p2 3 4 i 6 i.

...E

.ee]---225*-

p3

p4

pl

Figure 19. Use of the conditional operator with parallel variables

If either or both of the operands (other than the first) were scalar in this example, they
would be promoted to parallel in the current shape, and the expression would be evaluated
in the same way.

Both operands are evaluated if the condition is parallel.

See Chapter 6 for a further discussion of this operator.

5.2 New C* Operators

C* adds several new operators to standard C.

5.2.1 The <? and >? Operators

The <? and >? operators provide, respectively, the minimum and maximum of two vari-
ables. These operators are typically expressed as macros in standard C. For example, the
C macro

Chapter 5: Using C* Operators and Data Types 51

(((a) < (b)) ? (a) :(b)

is similar to

a <? b;

in C*, except that C* evaluates the operands only once.

There are also assignment operator versions of <? and >?. For example,

sl >?= s2;

assigns the value of s2 to sl if the value is greater than the value of sl; otherwise s is
unchanged.

The minimum and maximum operators follow standard C rules for type conversions and
compatibility. For example, if one operand is a float and the other is an int, the int is
promoted to a float.

These operators can be used with parallel as well as scalar variables. For example,

pl <?= p2 ;

assigns the lesser of pi and p2 to p!, for every pair of corresponding elements of these
parallel variables.

The minimum and maximum operators are discussed further in Section 5.3.

5.2.2 The %% Operator

The new %% operator provides the modulus of its operands. It is patterned after the standard
C % operator; for example, it has the same precedence and associativity, accepts and returns
the same types, and performs the same conversions. It also gives the same answer when
both of its operands are positive-the answer is the remainder when the first operand (the
numerator) is divided by the second operand (the denominator). For example, the follow-
ing statements are both true:

(8 % 6) == 2
(8 %% 6) == 2

52 C* Programming Guide

The difference between the two occurs when one or both of the operands is negative. In that
case, different implementations of % can give different answers. For example, the sign of
the answer can be either positive or negative.

%% does the following when one or both of the operands is negative:

* It divides the first operand by the second operand. If the result is not an integer, it
converts this result to the next lower integer. For example, the result of dividing
17 by -4 is -4.25, so %% converts this to -5, because -5 is smaller than -4.

* It multiplies the second operand by this result. In the above example, -5 * -4 is 20.

* It subtracts that result from the first operand. The answer is the result of the opera-
tion. In our example, 17 minus 20 is -3. Therefore:

(17 %% -4) == -3

A consequence of this procedure is that the result always has the same sign as that of the
second operand. For example:

(-17 %% 4) == 3
(17 %% 4) == 1
(-17 %% -4) == -1

The %% operator is discussed further in Section 10.3.2.

5.3 Reduction Operators

Standard C has several compound assignment operators, such as +=, that perform a binary
operation and assign the result to the LHS. Many of these operators can be used with paral-
lel variables in C* to perform reductions-that is, they reduce the values of all elements
of a parallel variable to a single scalar value. C* reduction operators provide a quick way
of performing operations on all elements of a parallel variable.

The following code presents a parallel-to-scalar reduction assignment.

Chapter 5: Using C* Operators and Data Types 53

#include <stdio.h>

shape [16384]employees;

unsigned int:employees salary;

main ()

unsigned int payroll=O;

/* Initialization of salary omitted */

with (employees)

payroll += salary;

printf ("Total payroll is $%d.\n", payroll);

}

In this code, the += operator sums the value in each element of salary and adds this sum
to the scalar variable payroll, as shown in Figure 20. Note that the scalar variable on the
left-hand side is included in the operation; that is why payroll must be initialized to 0.

Figure 20. A reduction assignment

payroll += salary;

Front End

sum of all
salaries

0 1 2 3 4 5 16383

salary 396 942 516 1642 212 660 ... 5

C* Programming Guide
.'". :"..'..: ' '. .. ''"'Z : ' -... '

5.3.1 Unary Reduction

As the sample code shows, binary reduction assignment operators include the left-hand
side as one of their operands, so you must initialize the variable on the left-hand side appro-

priately. You can also use any of these operators as a unary operator with a parallel operand.

We can therefore simplify the sample code by eliminating the scalar variable and revising
the printf statement as follows:

printf ("Total weekly payroll is $%d.\n", +=salary);

5.3.2 Parallel-to-Parallel Reduction Assignment

The left-hand side of a reduction assignment can be an individual element of a parallel
variable, instead of a front-end scalar variable. For example,

shape [16384]employees;

unsigned int:employees salary, payroll=O;

main ()

/* Initialization of salary omitted */

with (employees)

[O]payroll += salary;

declares payroll to be a parallel variable, and puts the total of the salary values into
element [O] ofpayroll.

5.3.3 List of Reduction Operators

Table 1 lists the C* reduction operators. All can be used for parallel-to-scalar reduction
assignment, parallel-to-parallel reduction assignment, and unary reduction.

54

Chapter 5: Using C* Operators and Data Types 55

Table 1. Reduction assignment operators

Meaning

+= Sum of values of parallel variable elements
--- Negative of the sum of values
&= Bitwise AND of values
A-= Bitwise XOR of values
I = Bitwise OR of values

<?= Minimum of values
>?= Maximum of values

Note that simple parallel-to-scalar assignment using a cast is also a form of reduction as-
signment; see page 46.

Note also that the C compound operators *=, /, %=, =<, and >>= cannot be used as C*
reduction assignment operators.

We have already discussed the += operator; now let's look at the other reduction operators.

5.3.4 The-= Reduction Operator

When used as a binary operator, -= subtracts the sum of the parallel RHS's values from the
scalar LHS, and assigns the result to the LHS. Therefore,

sl -= pl;

is equivalent to the following:

sl = (sl - (+=pl));

Initialize the scalar LHS to 0 to obtain the negative of the sum of the parallel variable's
values.

Operator

56 C* Programming Guide

5.3.5 Minimum and Maximum Reduction Operators

The <?= and >?= operators can be used as unary operators to obtain the minimum and
maximum values in all elements of a parallel variable. To find out the lowest and highest
salaries in the parallel variable salary, for example, add the following printf statements
to the code example shown on page 53:

printf ("The lowest salary is $%d.\n", <?=salary);

printf ("The highest salary is $%d.\n", >?=salary);

Note once again that, when used as binary operators, <?= and >?= include the left-hand
side as an operator. To assign the lowest value of a parallel variable to a scalar variable,
therefore,

sl <?= pl;

might not work, since sl might be the lowest value. Instead, use <?= as a unary operator,
and use = to assign the result to the scalar variable. For example:

sl = <?=pl;

5.3.6 Bitwise Reduction Operators

The bitwise reduction assignment operators mask all elements of a parallel variable, as de-
scribed in the subsections below.

Bitwise OR

The I = operator performs a bitwise OR of all elements of a parallel variable. For example,
in this statement:

sl = pl;

all elements of p1 are first bitwise OR'd; if a particular bit is a 1 in any element, that bit
is a I in the result. This result is then bitwise OR'd with s, and the result is assigned to
sl.

Bitwise OR is particularly useful in testing if any elements of a parallel variable meet a
condition. The if statement in C* works in the same way as the if statement in standard

Chapter 5: Using C* Operators and Data Types 57
.:: .. ; .:.:: ; ...::::5 .: :; ..:::::.:::.::::':':.: :!

:: ...:X":::::: ::! .::.:....:.:.:.:.:..:.: ~ ;~:i }: : i..: i:{:1'r" ::::::::::::::::::::.~!i.. :..'X i'.i :;:.: .: : :':C .- S ::;:i i:.:..:::. ~./:' :;.:: ::/:i~::::::

C: if the condition expression evaluates to 0, then the statement following is not executed;
if the condition expression is non-zero, the statement is executed. In the following code,

if (=(pl > 5))

p2 = 10;

if there are any elements of pl greater than 5, the condition expression is non-zero, and 10
is assigned to each element of p2. If there are no elements of pl greater than 5, the bitwise
OR evaluates to 0, and the following statement is not executed.

Bitwise AND

In a bitwise AND, if a particular bit is a 0 in any element of the specified parallel variable,
that bit is a 0 in the result. Bitwise AND provides a way to test whether all elements of a

parallel variable meet a condition. In the following code:

if (&=(pl > 5))

p2 = 10;

each element of p2 is set to 10 only if all elements of pl have values greater than 5.

Bitwise Exclusive OR

You can view the bitwise exclusive OR operator as operating pair-wise on elements of a

parallel variable. For example, if three parallel bit-fields each contain a 1, bitwise exclusive

OR first operates on two of them: the two 1 bits yield a 0 bit. This 0 bit is then exclusive

OR'd with the remaining 1 bit, and the result is a 1 bit. In general, the result of a bitwise

exclusive OR operation is 1 if the corresponding bit is 1 in an odd number of elements; it
is 0 if the corresponding bit is 1 in an even number of elements. Note that in a reduction
assignment the scalar LHS is included in this calculation.

5.3.7 Reduction Assignment Operators with a Parallel LHS

Reduction assignment operators can be used with a parallel LHS when the parallel variable
is left-indexed with a parallel subscript. This topic is discussed in Section 10.1.5.

58 C* Programming Guide

5.4 The bool Data Type

In addition to parallelism, the CM has one other major difference from other computers:
it aligns data on bit, rather than byte, boundaries. C* introduces a new data type, bool, that
allows you to take advantage of this in allocating CM memory. Typically, bools are used
as parallel variables to store flags.

The bool is an unsigned single-bit integral data type. The actual size and alignment of a
bool are implementation-dependent: on the CM-2 it occupies one bit of memory and is

aligned on a bit boundary; on the front end it is stored as a char. It behaves as a single-bit
quantity, however, no matter what its actual size is.

When you cast a variable of a larger data type to a bool, the expression has logical (rather
than arithmetic) behavior. That is, if the value of the larger data type is 0, 0 is the result;

if the value is non-zero, 1 is the result. Thus:

int i=O, j=4;

printf("%d\n", (bool)i); /* prints "0" */

printf("%d\n", (bool)j); /* prints "1" */

Also note the following behavior:

int i, j=1, k=1;

bool:current b;

i = j + k; /* i=2 */

b = j + k; /* b=1 */

All elements of b are assigned the value 1 because the value of the expression (j + k)
is non-zero.

A bool, like a char, is promoted to an int when used as an operand of most operators.
Thus, performing operations on bools could be slower than performing the same opera-
tions on larger data types. The compiler in some cases avoids this promotion, however, by
following this rule: An expression is evaulated at the precision of the variable to which it
is assigned, as long as the results are the same as if standard ANSI promotion rules had been
followed. For example, if a, b, and c are all bools, this statement:

a = b I c;

is evaluated at bool precision, because the expression is assigned to a bool. However, in
the following code:

Chapter 5: Using C* Operators and Data Types 59

where (b I c == 0) {
/* ... */

the expression is evaluated at int precision, because it is not explicitly stored anywhere.

5.4.1 The boolsizeof Operator

To obtain the exact size of a variable or data type in units ofbools, use the new C* operator

boolsizeof.

With a Parallel Variable or Data Type

When a parallel variable is used as the operand, boolsizeof returns the number of paral-

lel bools a single element of the variable occupies in CM memory. For a parallel data type,

boolsizeof returns the number of parallel bools that must be allocated for a single in-

stance of the data type. For example,

boolsizeof(int:ShapeA); /* Size in parallel bools of a parallel

int */

In this implementation, a parallel bool is implemented as a bit; therefore it returns 32 in

the current implementation.

With a Scalar Variable or Data Type

When a scalar variable is used as the operand, boolsizeof returns the number of scalar

bools that the variable occupies in front-end memory (In this implementation it is a byte

because a bool is stored as a char on the front end). It therefore gives the same result as

the sizeof operator when applied to a scalar operand. For example,

boolsizeof(int); /* Size in scalar bools of a front-end int */

returns 4 in the current implementation.

60 C* Programming Guide

Note the difference in result between boolsizeof when applied to a parallel operand and
boolsizeof when applied to a scalar operand.

5.5 Parallel Unions

You can create parallel unions. Like parallel structures, they can only contain scalar vari-
ables. For example, the following code:

union ptype {

int i;

float f;

union ptype:ShapeA pl;

defines a parallel variable pl of shape ShapeA and of the union type ptype. The following
initializes p1 as an integer:

pl.i = 50;

Each element of pi is an int containing the value 50.

The following initializes p1 as a float containing the value 89.7:

pl.f = 89.7;

Unions can also appear within structures, as in standard C.

5.5.1 Limitations

The current implementation of parallel unions has the following limitations:

* You cannot use an initializer to initialize a parallel union or any object containing
a parallel union.

• You cannot assign a scalar union to a parallel union.

Chapter 5: Using C* Operators and Data Types 61

* You cannot promote a scalar union to be parallel (for example, by a scalar-to-paral-
lel cast; see Chapter 9).

* You cannot demote a parallel union to be scalar.

b U

pm

*P"

.U:

?iI:

iibr

Ili-

�k"i--

EP*:I

C"·

-�r �xci·:

ilB�i-

CK

a�-·

WP'

·BtY*·

·*i·

arus

Chapter 6

Setting the Context

In Chapter 4, we discussed how to use the with statement to select a current shape. Once
there is a current shape, a program can perform operations on parallel variables that have
been declared to be of that shape.

But what if you want an operation to be performed only on certain elements of a parallel
variable? For example, you have a database containing the physical characteristics of a
population, and you want to know the average height of people who weigh over 150
pounds. To do this, specify which positions are active by using a where statement, which
C* has added to standard C. Code in the body of a where statement operates only on
elements in active positions. Using where to specify active positions is known as setting
the context.

6.1 The where Statement

When a with statement first selects a shape, all positions of that shape are active; code in
the body of the with statement operates on every element of a parallel variable. A where
statement selects a subset of these positions to remain active. For example, the following
code:

with (population)

where (weight > 150.0) {
/* ... */

selects only those positions of shape population in which the value of parallel variable
weight is greater than 150. (This assumes that the elements of weight have previously

63

64 C* Programming Guide

been initialized to some values.) Parallel code in the body of the where statement applies
only to those positions. Figure 21 shows the effect of the where statement.

Figure 21. Using where to restrict the context

In the figure, positions 0, 1, and 4 become inactive in the body of the where statement;
positions 2, 3, 5, and 32767, all of which have weights over 150, remain active.

The controlling expression that where evaluates to set the context must operate on a paral-
lel operand of the current shape. (Other controlling expressions-for example, for the
while and if statements-operate only on scalar variables.) Like other controlling
expressions, it evaluates to 0 or non-zero, but it does so separately for each parallel variable
element that is currently active.

The following code calculates the average height of people weighing over 150 pounds
(assuming that the values of height and weight have been initialized):

shape [32768]population;

float:population weight, height;

unsigned int:population count;
float avg_height;

main ()
{

/* Code to initialize height and weight omitted. */

with (population) {

count = 1;

where (weight > 150.0)
avg_height = (+=height / +=count);

}

where (weight > 150.0)] active
~ mactive

inactive

0 1 2 3 4 5 32767

weight 148 9 170 212 116 222 ... 51

I

Chapter 6: Setting the Context 65

NOTE: There is a slightly easier way of obtaining the number of active positions than the
one shown in in this code fragment; it involves a scalar-to-parallel cast. For example:

(int: population) 1

promotes 1 to a parallel variable of shape population. Using the += operator on this vari-
able produces the number of active positions. Scalar-to-parallel casts are discussed in
Section 9.6.1.

Like the with statement, a where statement can include scalar as well as parallel code
within its body, and there are the same restrictions on operating on parallel variables that
are not of the current shape; see Section 6.5 for a discussion of what happens to scalar and
parallel code when a where statement causes no positions to remain active.

The context set by the where statement remains in effect for any procedures called within
its body. Once the body of the where statement has been exited, however, the context is
reset to what it was before the where statement. For example, if we add two statements to
the code fragment above:

with (population) {

float avg_weight;
count = 1;

where (weight > 150.0)

avg_height = (+=height / +=count);
avg_weight = (+=weight / +=count);

avg_weight is assigned the average weight for all positions of shape population, not
just for the positions where weight is greater than 150.

6.1.1 The else Clause

Like if statements in standard C, where statements can include an else clause. The else
following an if says: Perform the following operations if the if condition is not met. The
else following a where says: Perform the following operations on positions that were
made inactive by the where condition. It "turns on" all of the positions that were "turned
off' by the where condition, and turns off all the positions that the where condition left
on. Figure 22 shows the effect of an else clause on the set of active positions in Figure 21.

C* Programming Guide
,,,, , ,, , - -- . . - . . -:

Figure 22. The effect of else on the context shown in Figure 21

The following code calculates separate average heights for those weighing more than 150
pounds, and for those weighing 150 pounds or less:

shape [32768]population;

float:population weight, height;

unsigned int:population count;

float avg_height_heavy, avg_height_light;

main ()

{

with (population) {

count = 1;
where (weight > 150.0)

avg_height_heavy = (+=height / +=count);
else

avg_height_light = (+=height / +=count);

6.1.2 The where Statement and positionsof

Using where to restrict the context does not affect the value returned by the positionsof
intrinsic function. positionsof returns the total number of positions in a shape, not the
number of active positions.

[I active

7-] inactive

0 1 2 3 4 5 32767

weight 148 109 1701212 116 222 -.

66

Chapter 6: Setting the Context 67

6.1.3 The where Statement and Parallel-to-Scalar Assignment

In Chapter 5 we discussed assigning a parallel variable to a scalar variable: you must cast
the parallel variable to the type of the scalar variable. The operation then chooses (in an
implementation-defined way) one value of the parallel variable and assigns it to the scalar
variable. If a where statement restricts the context, however, the value chosen is from one
of the active positions.

6.2 The where Statement and Scalar Code

As we noted above, you can include scalar code within the scope of a where statement. So,

for example, the following is legal:

shape [32768]population;

float:population weight;

float avg_height;

main ()

with (population) {

where (weight > 150.0)

avg_height = 0;

Recall that an element of a parallel variable is considered to be scalar. That means you can
perform operations on an element even if its position is inactive. For example, if position
0 becomes inactive when we choose positions where weight is over 150, we can still do
the following:

shape [32768]population;

float:population weight;

unsigned int:population count;

main()

with (population) {

count = 1;

where (weight > 150.0) {

68 C* Programming Guide

[O]weight = 225; /* These are all legal. */

[O]weight = [1]weight;

[O]count += count;

}

Note the final statement in this code fragment. In it, the values of the active elements of
count are summed; this sum does not include the value of [0] count, because position
[0] became inactive as a result of the where statement. However, the result of the sum can

be placed in [0] count, because [0] count is scalar. Thus:

* You can read from or write to an individual parallel variable element in an inactive
position.

* An element in an inactive position is not included in operations on the parallel vari-
able as a whole.

6.3 Nesting where and with Statements

6.3.1 Nesting where Statements

You can nest where statements. The effect is to continually shrink the set of active posi-
tions. For example, we might want to calculate average heights separately for males and

females weighing over 150 pounds in the population data base. Let's add a parallel vari-
able called sex, therefore, and assume that it has been initialized: 0 for females and 1 for

males. The following code would then produce the desired results.

shape [32768]population;

float:population weight, height;

unsigned int:population count, sex;

float avg_male_height, avg_female_height;

main ()

{

with (population) {
count = 1;

where (weight > 150.0)

where (sex)

Chapter 6: Setting the Context 69

avg_male_height = (+=height / +=count);

else

avg_female_height = (+=height / +=count);

6.3.2 Nesting with Statements

It is also possible to choose another shape within the body of a where statement. For
example:

shape [32768]population, [16384]employees;
int:employees salary;

int payroll;

float:population weight, height;

unsigned int:population count, sex;
float avg_male_height, avg_female_height;

main()

with (population) {

count = 1;

where (weight > 150.0)

where (sex)

avg_male_height = (+=height / +=count);
with (employees)

payroll += salary;

Since each shape has a different set of positions, the context established by a where state-
ment for one shape has no effect on the context of expressions in another shape. Therefore,
the statement

payroll += salary;

in the code example above uses the entire set of positions of shape employees. Of course,
we could add another where statement to set the context for the nested with statement.

70 C* Programming Guide

Once control leaves the body of the nested with statement, the context returns to whatever
it was before the with statement was executed. For example:

with (population) {

count = 1;

where (weight > 150.0)

where (sex) {

avg_male_height = (+=height / +=count);
with (employees)

payroll += salary;

else

avg_female_height = (+=height / +=count);

When population becomes the current shape for the second time, the context is once
again the positions where weight is greater than 150 and sex is 0.

With nesting, it is therefore possible to switch back and forth between shapes and maintain
separate contexts for each.

6.3.3 The break, goto, continue, and return Statements

Section 4.2 described the behavior of break, goto, continue, and return statements
in nested with statements. They behave similarly for nested where statements. Specifi-
cally:

* Branching to an outer-level where statement resets the context to what it was at
that level.

* The behavior of branching into a nested where statement is not defined. Don't do
it.

The behavior of functions that contain nested where statements is discussed in Section
8.1.2.

Chapter 6: Setting the Context 71

6.4 The everywhere Statement

A where statement can never increase the number of active positions for a given shape;
nesting where statements has the effect of creating smaller and smaller subsets of the origi-
nal set of active positions. C* does, however, provide an everywhere statement that
allows operations on all positions of the current shape, no matter what context has been set
by previous where statements.

For example, in the following code:

shape [32768]population;

float:population weight, height;

unsigned int:population count, sex;

float avg_male_height, avg_female height, avg_height;

main ()

{

with (population) {

count = 1;

where (weight > 150.0) {

where (sex)

avg_male_height = (+=height / +=count);
else

avg_female_height = (+=height / +=count);

everywhere

avg_height = (+=height / +=count);

the scalar variable avg_height is assigned the average height for all positions of shape
population, even though this average is calculated within the body of a where statement
that deactivates some positions of population.

After the everywhere statement, the context returns to what it was before everywhere
was called. In this case, once again only positions where weight is greater than 150 are
active.

Note that if avg_.height had been calculated after the body of the where statement, the
everywhere statement would not have been needed, since the context reverts to what it
was before the where statement. In this case, all positions of shape population become
active once again.

72 C* Programming Guide

As with the where statement, branching from an everywhere statement to an outer level
via a break, goto, continue, or return statement resets the context to what it was at
the outer level. The behavior of branching into an everywhere statement is not defined.

6.5 When There Are No Active Positions

What happens when the controlling expression of the where statement leaves no positions

active? Consider the situation shown in Figure 23.

Figure 23. A shape where all weights are less than 150

If population is initialized entirely with values of 150 and below, the following code
makes all positions inactive, since no position has weight greater than 150:

with (population)

where (weight > 150.0) {

/* ... */

Code is still executed in this situation, but an operation on a parallel variable of the current
shape has no result. For example,

weight++;

does not increment any of the values of weight, because no elements of weight are
active.

0 1 2 3 4 5 32767

weight 148 109 100 98 116 122 ...

Chapter 6: Setting the Context 73

But note that operations on individual elements do have results, since they are scalar. For
example,

[O]weight = 225;

assigns 225 to element [0] of weight, even though no positions are active.

The result of a parallel-to-scalar assignment using = is undefined when no positions are
active.

The results of reduction assignment operations are discussed below.

6.5.1 When There Is a Reduction Assignment Operator

Unary Reduction Operators

Consider the following code fragment, where maximum is a
is a parallel variable:

scalar variable, and weight

where (weight > 150.0)
maximum = (>?=weight);

If there are no active positions, what gets assigned to maximum?

C* provides default values for unary reduction operators when there are no active posi-
tions. These values are listed in Table 2.

The values in Table 2 are basically identities for the operations. For example, the result of
a += operation (when no positions are active) added to the result of another += operation
gives the result of the other operation.

74 C* Programming Guide

Table 2. Values of unary reduction operators when there are
no active positions

Unary Reduction
Operator Value

+= 0

-= 0
&= -0 (all one bits)
^A.= 0

1= 0

< ?= maximum value representable
>?= minimum value representable

Binary Reduction Assignment Operators

Recall that the left-hand side is included in binary reduction assignments. When there are
no active positions, and a binary reduction assignment operator is used, the LHS remains
unchanged.

6.5.2 Preventing Code from Executing

Of course, you might not want scalar code, or code in another shape, to execute if there are
no positions active. To keep the code from executing, use an if statement with a bitwise
OR reduction operator to conditionalize the entire where statement. For example:

if (I=(weight > 150.0))

where (weight > 150.0) {

float avg_height = 0;
/* ... */

}

In this code fragment, the scalar variable avg_height is declared and initialized only if
there are any positions with weight greater than 150. See Section 5.3.6 for a discussion
of using the bitwise OR reduction operator in an if condition.

Chapter 6: Setting the Context 75

If the condition in the if statement has side effects, more code is required to ensure that

the condition is evaluated only once. Do the following:

1. Create a temporary parallel variable of the current shape.

2. In the if condition, assign to this temporary variable the results of the parallel
expression you would otherwise have evaluated in the where statement, and per-
form a bitwise OR reduction of the temporary variable.

3. Have where evaluate the temporary variable.

For example:

with (population) {

unsigned int:population temporary = 0;

if (=(temporary = (++weight > 150.0)))

where (temporary) {

-~~~ ~~float avg_height = 0;

/* ... */

}

6.6 Looping through All Positions

Some of the C* features we have discussed so far can be used to loop through all positions

~- ~ of a shape, allowing operations to be performed on each position separately.

For example, consider a database initialized as shown in Figure 24. Note that each position

has a unique identifier, case no.

C* Programming Guide
-; , :'..: i;:' - ' . '" -' .:.:..': .' ': .. :' :'.::::...... .":':', ' .',- .: --:

Figure 24. A database

The following code picks a case of shape population, prints the weight and height of its

corresponding elements, then picks another case, until all cases have been chosen.

#include <stdio.h>

shape [32768]population;

unsigned int:population case_no, weight, height;

unsigned int index;

/* Code to initialize parallel variables omitted. */

main ()

with (population) {

bool:population active;
active = 1;

while (I= active) {

where (active) {

index = (unsigned int)case_no;
where (index == case no) {

printf ("Height is %d; weight is %d.\n",

[index]height, [index]weight);

active = 0;

shape population

0 1 2 3 4 5 32767

case no 0 1 2 3 4 5 ...

weight 148 109 100 212 200 122 ...

height 62 58 60 72 75 68 ...

76

Chapter 6: Setting the Context 77

In this program, a while loop with a bitwise OR reduction controls the selection of posi-

In this program, a while loop with a bitwise OR reduction controls the selection of posi-
tions. The = operator chooses a value of case_no and stores it in index (note the use of
the cast to explicitly demote the parallel variable to a scalar variable). The inner where
expression then selects the position that contains this value for case_no. (There will only
be one, because each value of case_no is unique.) Since each value of case_no corre-
sponds to the coordinate of its position, we can use that value (now assigned to index) as
a left index for the other parallel variables in order to choose an element of them for
printing.

At the end of the where statement, active is set to 0 for the active position, turning it off
for the next iteration of the loop. When all the positions have been selected, all the positions
will have been turned off. At this point the controlling expression of the while loop evalu-
ates to false, and the program completes.

NOTE: A more efficient way of doing this is to use the pcoord function, which is described
in Section 10.2.

6.7 Context and the 1I, &&, and ?: Operators

6.7.1 11 and &&

The I I and && operators perform implicit contextualization when one or both of their oper-
ands are parallel. (Recall that if one operand is parallel and the other is scalar, the scalar
operand is promoted to parallel.)

Consider the following statement, in which all variables are parallel:

p3 = (pl > 5) && (p2++);

Since at least one of the && operands is parallel, we get the parallel version of the operator.
This statement does two things:

First, in each position, it assigns a 1 to the corresponding element of p3 if both
operands evaluate to non-zero ("TRUE"), and assigns a 0 otherwise.

C* Programming Guide
. . .-. . -. . : ~ ~ ·~ · ·.- -':' .. - . ,.· .· ,, ':- . : .- .: , ·- : .

* Second, it increments p2 in each position where pl is greater than 5-that is,
where the left operand evaluates to TRUE. In positions where the left operand eval-
uates to 0, p2 is unchanged.

Figure 25 shows how the statement works with some sample values.

Figure 25. An example of the && operator with parallel operands

Note that the left operand of the && operator in this example effectively sets the context for
the right operand. This is the "implicit contextualization" mentioned at the beginning of the
section. That is, the operation above is equivalent to

where (pl > 5)
p2++;

except that the operation additionally returns the result (O or 1) of the logical AND in each
position.

After the operation, the context returns to what it was before the operator was called.

The I I operator works similarly when one or both of its operands are parallel-except that
the context for the right operand consists of those positions that evaluate to 0 for the left

p3 = (p > 5) && (p2++);

0 1 2 3 4 32767

pi 1 7 -2 1 3 6 ...

Before
p2 1 2 0 4 5 J ... l

p3 0 1 0 1 1 ...

After
p2 1 3 0 5 6 ...

--

78

Chapter 6: Setting the Context 79
--. -i. .i'.:. ·::i ··i~i:il.-: .~. : -. -:.'- - :. .: .i .i.. --.-

operand. In addition, the operator returns a 1 if either operand evaluates to TRUE, and 0
otherwise. For example,

p 3 = (pl > 5) 11 (p2++);

gives the results shown in Figure 26.

Figure 26. An example of the I I operator with parallel operands

Notice the difference in the results between Figure 25 and Figure 26:

* With the I I operator, p2 is incremented only in the positions where pl is not great-
er than 5.

* With I I, the corresponding element of p3 receives the logical OR of the operands
for each position.

p3 = (pl > 5) II (p2++);

0 1 2 3 4 32767

piB 1 7 -2 13 6 ...

Before
p2 1 2 0 4 5 ...

p3 1 1 0 1 1 ... 3
After

p2 2 2 1 4 5 ... [

_ _l~A

80 C* Programming Guide

6.7.2 The ?: Operator

The ?: operator provides implicit contextualization of its second and third operands when
its first operand is parallel. For example, when pi is parallel,

(pl > 5) ? p2++ : p3++;

is equivalent to:

where (pl > 5)
p2++;

else
p3++;

See Section 5.1.5 for an example and for further discussion of this operator.

Appendix A discusses some efficiency considerations regarding C* operators that perform
implicit contextualization.

Chapter 7

Pointers

C* has three kinds of pointers:

* The standard C pointer

* A scalar pointer to a shape

* A scalar pointer to a parallel variable

As in C, C* pointers are fast and powerful.

7.1 Scalar-to-Scalar Pointers

C* supports the standard C pointer. For example,

int *ptr;

declares ptr to be a pointer to an int; ptr is allocated on the front end. If s is a scalar
variable,

ptr = &sl;

puts the address of sl (on the front end) in ptr, and

s2 = *ptr;

puts the value of s into s2. The CM is not involved in any of these operations.

81

A-

C* Programming Guide

7.2 Scalar Pointers to Shapes

C* introduces a new kind of scalar pointer that points to a shape. For example,

shape *ptr;

declares the scalar variable ptr to be a pointer to a shape, and

ptr = &ShapeA;

makes ptr point to Shapek ptr is allocated on the front end.

A dereferenced pointer to a shape can be used as a shape-valued expression. For example,

if ptr points to ShapeA,

with (*ptr)

makes ShapeA the current shape.

Scalar pointers to shapes are discussed in more detail in Section 9.1.1, when we introduce
arrays of shapes.

7.3 Scalar Pointers to Parallel Variables

C* introduces a new kind of scalar pointer that points to a parallel variable. For example,

int:ShapeA *ptr;

declares a scalar pointer ptr that points to a parallel int of shape ShapeA ptr is allocated
on the front end.

How can a scalar pointer point to a parallel variable? Clearly the mechanism must be differ-
ent from that used in standard C pointers, which store the memory address of the object to
which it points; each element of a parallel variable would have a different address on the
CM. In fact, a pointer to a parallel variable in C* does not store a physical address on the
CM, but a value that uniquely identifies the entire set of elements of the parallel variable.

If pl is a parallel variable of shape ShapeA,

82
.

Chapter 7: Pointers 83
::' :.::: :: p tr = & pl;�::::I ':

ptr = pl; need not be of the current shape.

stores this value for pi in the scalar pointer ptr. p need not be of the current shape.

Figure 27. A scalar-to-parallel pointer

Once the above statement has been executed, a program can reference the parallel variable
pi via the pointer stored in ptr. For example,

(*ptr) ++;

increments the value in each active element of pl, as shown in Figure 28.

(*ptr) ++; I-] active

E] inactiveFront End

ptr I &pl l

0

pi 19 1 46 56 16

Figure 28. Dereferencing the scalar-to-parallel pointer shown in Figure 27

1 2 3

ptr = &pl; active

E inactiveFront End

ptr I &pl |

% O 1 2 3 npi 118 ,,1 4 { ; 55 1 15 .. i

n

... ·-

C* Programming Guide
* - I - , : - - -. .. --.- ,: . :

If Si is a scalar variable,

sl += *ptr;

sums the values of the active elements of p1, and adds the result to sl.

The constraints that apply to dealing directly with a parallel variable also apply to dealing
with it via a scalar pointer. For example, ShapeA must be the current shape for the above
statement to be executed.

7.3.1 Alternative Declaration Syntax Not Allowed

Recall from Chapter 3 that there are two ways of declaring a parallel variable:

int:ShapeA pl;

and

int pl:ShapeA;

C* does not allow the latter syntax for declaring scalar-to-parallel pointers, however:

int *ptr:ShapeA; /* This is wrong */

In this case, the compiler interprets the shape name as applying to the pointer, and parallel-
to-scalar pointers do not exist in the language.

7.3.2 Arrays

The close relationship between arrays and pointers is maintained in C*. For example,

int:ShapeA A1[40];

declares a parallel array of 40 ints of shape ShapeA, and Al points to the first element of
the array. (Recall that an element of a parallel array is a parallel variable.)

84

Chapter 7: Pointers 85

7.3.3 Pointer Arithmetic

C* allows arithmetic on scalar pointers to parallel variables; it is similar to the standard C
arithmetic on pointers to scalar variables. For example, given the following declarations,

shape [65536]ShapeA;
int:ShapeA A1[40], *ptrl, *ptr2;

we can do the following:

ptrl = &A1[7];

ptr2 = ptrl + 2;

printf("%d\n", ptr2 - ptrl);

* The first statement sets ptrl equal to the address of the eighth element of the par-
allel array.

* The second statement puts the address of the tenth element of the array into ptr2.

* The printf statement prints 2, the result of subtracting ptrl from ptr2.

Note that these statements do not have to be within the body of a with statement, since the
pointers are scalar variables.

As described above, we don't need to declare separate pointers into the array. We can also
do the following:

shape [65536]ShapeA;

int:ShapeA A1[40], p 2 , p3;

main()

{

with (ShapeA) {

p2 = *(Al + 9);

p3 = Al[9]; /* These two statements are equivalent. */

}

}

Each parallel variable element of both p2 and p3 is assigned the value of the corresponding
parallel variable element of the tenth array element of Al.

Here is something we can 't do:

86 C* Programming Guide

shape [65536]ShapeA;

int:ShapeA A1[40], p2, p3, *ptrl, *ptr2;

ptrl = &A1[7];

ptr2 = ptrl + p2;

p3 = *(ptrl / p2);

/* This is wrong */

/* This is wrong too */

It is illegal to perform arithmetic operations with a parallel variable and a scalar-to-parallel

pointer as operands--except as discussed below.

7.3.4 Parallel Indexes into Parallel Arrays

C* lets you use a parallel index into a parallel array. The result is essentially a new parallel
variable that contains elements from the existing parallel variables that make up the array.
This is referred to as parallel right indexing.

Consider the data shown in Figure 29. A parallel array, x, and a parallel variable, i, have
been allocated in a 1-dimensional shape, s.

Figure 29. A parallel array and an index parallel variable

shape S

0 1 2 3 4 n

A[O] I

array A Al .
A[2] ...

A[3] I I ...
I

i 13 12 10 1 .

Chapter 7: Pointers 87

C* allows the expression A i]. The expression says: In each position, use the value of i
as an index for choosing a parallel variable element. For example, in position [0] the value
of i is 3; therefore, the element of parallel variable A [3] in that position is chosen. In posi-
tion [1], the value of i is 2; therefore, the element of A[2] in that position is chosen. The
result is a "jagged" parallel variable consisting of parallel variable elements taken from the
different parallel variables that make up the parallel array. Figure 30 shows the results.

selected

not selected

....... :...

·2'.. ', .. .'...

.:: :::h::::::i :

: ...: : : ...:: .:: .: ,......

?izi:!?;:?117;~~~~~...

A[O]

A[1]
array A

A[2]

A[3]

i 3 2 3

A[i]

Figure 30. Indexing a parallel array by a parallel variable

The values of the index parallel variable should be less than the number of parallel vari-
ables in the parallel array; otherwise, the index chooses an element outside the array, and
the result is undefined. For example, if an element of i had a value of 17, the result would
be undefined, because i is indexing an array of four parallel variables.

Adding a Parallel Variable to a Pointer to a Parallel Variable

The equivalence between arrays and pointers holds for parallel right indexing as well. In
other words, A [i] is equivalent to * (A+i) . Note that * (A+i) is a legal example of an
arithmetic operation involving a parallel variable and a scalar pointer to a parallel variable.

You can also subtract a parallel variable from a pointer to a parallel variable. For example,
you might have a pointer point to the end of an array rather than the beginning. You could
then subtract a parallel index from that pointer to choose parallel variable elements within

-M

shape S El
0 1 2 3 4

· · ·

· · ·

· · · ::

· ·

· · · O

88 C* Programming Guide

the array. Once again, such an index must cause elements to be chosen from within an

array; otherwise, the result is undefined.

Limitations

C* limits what you can do with parallel right indexing. You can dereference these expres-

sions, but you cannot take their address. You can add a parallel variable to a pointer to a

parallel variable, or subtract it from the pointer, but in each case the expression is legal only
if it is immediately dereferenced. (The problem is that otherwise the expression would rep-
resent a parallel pointer to a parallel variable, and this kind of pointer does not exist in the

language.) Thus, given the following declarations:

shape [8192]S;

int:S A[4], i, pl, p2, *ptr;

int sl;

the following statements are legal:

pl = A[i]; /* In all cases, i should index parallel

variable elements within the array */

A[i]++;

pl = *(A+i);

pl = *(ptr - i); /* Pointer should point into an array */

and the following statements are illegal:

sl = &(A[i]);

sl = &(A+i);

pl = ptr + p2;

pl = *(ptr / i);

/* Can't take the address */

/* Can't take the address */

/* Can't perform an operation without

dereferencing */
/* Can only add or subtract */

Chapter 8

Functions

C* adds support for parallel variables and shapes to standard C functions. Specifically:

* C* functions can take parallel variables and shapes as arguments.

* C* functions can return parallel variables and shapes.

* C* adds a new keyword current, which you can use to specify that a variable is
of the current shape.

* C* includes a void predeclared shape name so that you can declare an argument
to be a pointer to a parallel variable of any shape.

* C* supports overloading of functions, so that (for example) functions operating on
scalar and on parallel data can have the same name.

8.1 Using Parallel Variables with Functions

8.1.1 Passing a Parallel Variable as an Argument

C* functions accept parallel variables as arguments only if they are of the current shape.
As in standard C, variables are passed by value; but see Section 8.2 for a discussion of
passing by value versus passing by reference.

The following simple function takes a parallel variable of type int and shape ShapeA as
an argument:

89

90 C* Programming Guide

void print_sum(int:ShapeA x)

printf ("The sum of the parallel variable is %d.\n", +=x);

(Note that C* supports the new ANSI C function prototyping, in addition to the older
method. The ANSI method is preferred.) There is actually a better way of writing this func-
tion; we describe it in Section 8.4.1.

If p1 is a parallel variable of type int and shape ShapeA, you could call print sum as
follows:

print_sum(pl);

provided that ShapeA is the current shape. If ShapeA were not the current shape, passing
pl to the function would violate the rule that a program can operate only on parallel vari-
ables of the current shape.

NOTE: If a function expects a scalar variable and you pass it a parallel variable instead, you
receive a compile-time error.

If the Parallel Variable Is Not of the Current Shape

If you want to pass a parallel variable that is not of the current shape to a function, use a
pointer to the parallel variable. Note, though, that if the function is to operate on the parallel
variable, the function must include its own nested with statement, and the parallel variable
that is passed must be of that shape. For example:

void print sum(int:ShapeA *x)

{

with (ShapeA)

printf ("The sum of the parallel variable is %d.\n", +=*x);

If p1 is a parallel variable of type int and shape ShapeA, you could call print sum as
follows, no matter what the current shape is:

print_sum(&pl);

Section 8.4.2 discusses a more general way of passing parallel variables that are not of the
current shape.

Chapter 8: Functions 91

8.1.2 Returning a Parallel Variable

C* functions can return parallel values. For example, the following function:

float:ShapeA increment(float:ShapeA x)

{

return (x + 1.);

}

takes as an argument a parallel variable of type float and shape ShapeA, and returns, for
each active element of the variable, the value of the element plus 1. Assuming that pl and
p2 are parallel floats of shape ShapeA, and ShapeA is the current shape, you could call
increment as follows:

p2 = increment(pl);

Note that when a function is to return a parallel variable, you must specify both the type
and the shape of the variable. The header of the function increment could also have been
written with the shape after the parameter list:

float increment(float:ShapeA x):ShapeA

You could also use a shape-valued expression. For example:

float increment(float:ShapeA x):shapeof(x)

See Chapter 3 for a discussion of the intrinsic function shapeof.

In a Nested Context

Consider a slightly different version of increment:

float:ShapeA increment_ifover_5(float:ShapeA x,
float:ShapeA y)

{

where (y > 5.)

return (x + 1.);

}

Figure 31 shows some sample results of a call to this new function.

C* Programming Guide

with (ShapeA)

p3 = increment_if_over_5(pl, p2);

p3 = increment if over5 (pl, p2);

shape ShapeA

n

*-- .

LE.E

Figure 31. Three parallel variables after a function call

Here is the way things are upon return from increment ifover_5:

* All positions have once again become active, as we discussed in Chapter 6.

* In every position where p2 is greater than 5, the corresponding element of p3 has
been assigned the value of the corresponding element of pi plus 1.

* The values of all other elements of p3 are undefined.

8.2 Passing by Value and Passing by Reference

You can pass parallel variables by value or by reference, just as you can scalar variables.
However, in deciding whether to pass by value or pass by reference, you must take into
account the effect of inactive positions.

When you pass a variable by value, the compiler makes a copy of it for use in the function.
If the variable is parallel, and positions are inactive, elements in those positions have unde-
fined values in the copy. This is not a problem if the function does not operate on the

p1

p2

p3

92

Chapter 8: Functions 93

inactive positions; if it does, however, passing by value can produce unexpected results.
The function can operate on the inactive positions in the following situations:

* If the function contains an everywhere statement to widen the context, and then
operates on the parallel variable you pass.

* If it operates on an individual element of a parallel variable; see Section 6.2.

* If it performs send or get operations involving the parallel variable you pass; send
and get operations are described in Chapter 10.

As an example of the first situation, consider the following function:

float:ShapeA f(float:ShapeA x)

everywhere

return (8. / x);

What happens if we pass in a parallel variable with an inactive element? Figure 32 gives
an example.

4

am

Figure 32. Passing by value when the function contains an everywhere statement

The copy made of pl contains an undefined value, rather than 4.0, in the inactive position;
therefore, the value in [1] p2 is also undefined. Note also that you would want to avoid
dividing by an undefined value.

where (p1 != 1.0) 0 active
p2 = f(pl); inactive

inactive
shape ShapeA

0 1 2 3 4 5 n

pi 2.0 i.0 4.0 8.0 8.0 8.0 ...

p2 4.0 1 2.0 1.0 1.0 1.0 ...

94 C* Programming Guide
' '-" ,:i .. :':. ': :'-. , , /:.':':' ." 4':. '. '."{' '. :" '". ... --: i i. -' . . :-:. ' :' :.' : .J:: '.. - ' i.: ' .- '. : , ,: , "... ." ' ' :. Z...: .: '.: r {: ~-- . x..

To avoid this situation, define the function so that it passes by reference rather than by
value.

8.3 Using Shapes with Functions

8.3.1 Passing a Shape as an Argument

C* functions accept shapes as arguments. The following function takes a shape as an argu-
ment and allocates a local variable of that shape.

int number_of_active_positions(shape x)

with (x) {

int:x local = 1;

return (+= local);

}

The shape that you pass need not be the current shape.

If the function also returns a parallel variable that is of the shape specified in the parameter
list, its shape must be declared after the parameter list, to avoid a forward reference. For
example:

float raise(shape employees, float:employees salary):employees

return (1.1 * salary);

This format is not especially useful in this case, since employees must be the current
shape. The format becomes more useful when you pass more than one shape, and data is
passing between the shapes. For information on communicating between shapes, see the
discussion of parallel left indexing in Chapter 10 and the discussion of general communica-
tion in Chapter 14.

Chapter 8: Functions 95

8.3.2 Returning a Shape

C* functions can also return a shape. For example:

shape choose_shape(shape ShapeA, shape ShapeB, int n)

if (n)

return ShapeA;

else

return ShapeB;

This function returns ShapeA or ShapeB, depending on the value of n.

A function that returns a shape can be used as a shape-valued expression-that is, you can
use it in place of a shape name. For example:

with (choose_shape(shapel, shape2, sl))

/* ... */

See Section 9.7, however, for limitations on the use of a function as a shape-valued expres-
sion when you are declaring a parallel variable.

8.4 When You Don't Know What the Shape Will Be

Some functions you write may be general enough that they can accept a parallel variable
of any shape as an argument. For example, the printsum function used as an example
in Section 8.1 could work with any parallel variable. To allow this, C* introduces two new
"predeclared" shape names: current and void. A predeclared shape name is provided as
part of the language; you do not declare it in your program.

8.4.1 The current Predeclared Shape Name

The predeclared shape name current always equates to the current shape; current is a
new keyword that C* adds to standard C. You can use current to declare a parallel vari-
able as follows:

__

96 C* Programming Guide

int:current variablel;

If employees is the current shape when this statement is executed, variablel is of shape
employees; if image is the current shape, variablel is of shape image.

NOTE: Since current is dynamic, you cannot use it with a parallel variable of static stor-
age duration.

Thus, we can generalize print sum as follows to let it take any parallel int of whatever
shape is current when the function is called:

void print_sum(int:current x)

{

printf ("The sum of the parallel variable is %d.\n", +=x);

}

In fact, this version of the function is more efficient than the version that specifies a particu-
lar shape name in the parameter list. If the function specifies a shape name (and you have
turned safety on), the compiler has to first make sure that the shape is current, and that the
parallel variable is of the current shape. If the function uses current, the compiler has to
make sure only that the parallel variable is in fact of the current shape.

8.4.2 The void Predeclared Shape Name

C* extends the use of the ANSI C keyword void. In addition to the standard use, it can be
used as the shape modifier for a scalar-to-parallel pointer; it specifies a shape without indi-
cating what the shape's name is. C* does no type checking of a void shape.

Use void instead of a shape name in a function's parameter list to specify that any shape
is acceptable as an argument to the function. If you are specifying a parallel variable that
can be of any shape, a type specifier (for example, int, float) is still required. Since you
cannot pass a parallel variable that is not of the current shape, void must be the shape
modifier of a scalar-to-parallel pointer. For example, the following function sums the val-
ues of the active elements of a parallel int of any shape:

int sum(int:void *x)
{

with (shapeof(*x))
return (+= *x);

}

Chapter 8: Functions 97

You can also use void outside a parameter list to declare a scalar pointer to a parallel vari-
able. For example:

int:void *ptr;

This declares ptr to be a pointer to a parallel int of an undetermined shape. The shape
is determined by the parallel variable whose address is ultimately assigned to the pointer.
For example, if ptr points to pi:

ptr = &pl;

then ptr is a pointer to an int of shape shapeof (p) . But note that a parallel variable
of another shape could subsequently be assigned to ptr, and the C* compiler would not
complain; ptr would then simply point to the new parallel variable.

Using shapeof with the void Shape

While convenient, using the void shape slows down a program if run-time safety is en-
abled. It is therefore preferable to use void only for the first parameter of a function. For
subsequent parameters of the same shape, use the shapeof intrinsic function; shapeof
provides more information to the compiler, thereby allowing the compiler to generate
better code. Also use shapeof in the controlling expression of the with statement to
choose the current shape.

For example:

int sum oftwo vars(int:void *x, int:shapeof(*x) *y)

{

with (shapeof(*x))

return (+= (*x + *y));

)

For parameters declared locally within the function, use current:

98 C* Programming Guide
. . . I I . I I. . . - : I , I I . . I .. I . - . . - - : . , : - . -I . -. -7 . - . - ,

float average(int:void *x)

with (shapeof(*x)) {

int:current y = 1;

return (+=*x / +=y);

}

Using void when Returning a Pointer

Consider the following function, which is passed a shape and returns a pointer to a parallel
variable of that shape:

int *f(shape ShapeA):ShapeA

/* ... */

}

/* This is wrong */

The shape of the return value must come after the parameter list, to avoid a forward refer-
ence. However, C* doesn't allow this alternative syntax for a function returning a pointer.
The problem is the same as that discussed in Section 7.3.1; the compiler interprets the re-
turn value incorrectly as "a parallel pointer of shape ShapeA to a scalar int," and
parallel-to-scalar pointers do not exist in C*.

Use void instead of the shape name for the return value in this situation. For example:

int:void *f(shape ShapeA)

/* ... */

I

Note that this causes an unavoidable loss of some type-checking, since the compiler cannot
check for the correct use of the shape of the variable pointed to.

Chapter 8: Functions 99

8.5 Overloading Functions

It may be convenient for you to have more than one version of a function with the same
name-for example, one version for scalar data and another for parallel data. This is known
as overloading. C* allows overloading of functions, provided that the functions differ in
the type of at least one of their arguments or in the total number of arguments. For example,
the following versions of function f can be overloaded:

void f(int x);

void f(int x, int y);

void f(int:current x);

Use the overload statement to specify the names of the functions to be overloaded. For
example, the following statement specifies that there may be more than one version of the
increment function:

overload increment;

Put the overload statement at the beginning of the file that contains the declarations of
the functions. The statement must appear before the declaration of the second version of
the function, and it must appear in the same relative order with respect to the function dec-
larations in all compilation units. Thus, if it appears first in one compilation unit, it must
appear first in all compilation units. If you use a header file for your function declarations,
this happens by default.

If you have different versions of more than one function, separate the function names by
commas in the overload statement. For example:

overload increment, average;

NOTE: The current implementation of C* restricts the shapes you can specify in parameters
to an overloaded function. Only current and void can be used in overloaded functions.

0--

,'Sb -

iWf.,V*

.101",

P.i

Chapter 9

More on Shapes
and Parallel Variables

Chapter 3 introduced C* shapes and parallel variables. This chapter discusses more aspects
of these important topics. Specifically:

* Partially specifying a shape; see Section 9.1.

* Creating copies of shapes; see Section 9.2.

* Dynamically allocating and deallocating a shape; see Sections 9.3 and 9.4.

* Using the C* library function palloc to explicitly allocate storage for a parallel
variable; see Section 9.5.

* Casting to a shape, and casting to or from a parallel data type; see Section 9.6.

9.1 Partially Specifying a Shape

It is possible to declare a shape without fully specifying its rank and dimensions. You might
do this, for example, if the number of positions in the shape is to be determined from user
input. For example,

shape ShapeA;

declares a shape ShapeA but does not specify its rank or dimensions. Such a shape is fully
unspecified.

shape []ShapeB;

101

102 C* Programming Guide

specifies that ShapeB has a rank of 1, but does not specify the number of positions. Such
a shape is partially specified.

You must fully specify a shape before using it (for example, before allocating parallel vari-
ables of that shape). Sections 9.2 and 9.3 describe ways of fully specifying a partially
specified or fully unspecified shape.

The rankof intrinsic function returns 0 for a fully unspecified shape. For a partially speci-
fied shape, it returns the rank. For example, given the following shapes:

shape s, [] [t, [8092]u;

The following statements are true:

rankof(s) == 0;
rankof(t) == 2;
rankof(u) == 1;

This information can be used if you don't know whether or not a shape is fully specified-
for example, in a function, where the function can fully specify a shape only if necessary.

9.1.1 Partially Specifying an Array of Shapes

You can also create an array of shapes that is partially specified. For example,

shape ShapeC[10];

declares that ShapeC is an array of 10 shapes, but does not specify the rank or dimensions
of any of them.

shape [][]ShapeD[10];

declares that ShapeD is an array of 10 shapes, each of rank 2, but does not specify the
number of positions in any of them.

A shape within such an array is specified with a right index in the standard manner. For
example,

with (ShapeD[O])

Chapter 9: More on Shapes and Parallel Variables 103

makes the first shape in the array the current shape. Note that the shape must become fully
specified before you can use it in this way.

You cannot use a parallel variable as an index into an array of shapes.

Arrays and Pointers

The standard C equivalence of arrays and pointers is maintained in C* with arrays of
shapes and pointers to shapes. For example, if we declare a scalar pointer to Sarray:

shape *ptr;

ptr = Sarray;

then *ptr is equivalent to Sarray [0] and to *Sarray. Similarly,

Sarray[3]

is equivalent to

*(ptr + 3)

and to

*(Sarray + 3)

9.1.2 Limitations

You cannot partially specify the dimensions of a shape. The following is incorrect:

shape [] [4]ShapeE; /* This is wrong */

Also, you cannot partially specify the rank of a shape. The following is incorrect, if you
later want to specify the shape as having a rank of 2:

shape []ShapeF;

104 C* Programming Guide

A program cannot call the positionsof or dimof intrinsic functions if the information
they require has not yet been specified. If it is known when the program is being compiled
that an error will result from such a call, the compiler reports an error. Otherwise, a run-
time error is reported.

A shape must be fully specified before you can declare a parallel variable to be of that
shape. You generally receive a compiler error if you try to declare a parallel variable to be
of a shape that is not fully specified. A couple of exceptions:

· If the parallel variable is declared as an automatic in a nested scope. For example:

shape ShapeA;

main ()

int:ShapeA pl;

In this case, the compiler assumes that ShapeA is fully specified elsewhere in the
program. If it is not, a run-time error may be generated, depending on the safety
level you choose.

* If the shape has a storage class of extern. For example:

extern shape ShapeB;

int:ShapeB p2 ;

In this case, the compiler assumes that ShapeB is fully specified in some other
compilation unit, and a run-time error may be generated if it is not.

The next section describes how to, in effect, create copies of shapes. The section after that
describes how to fully specify a partially specified or fully unspecified shape using the C*
intrinsic function allocate_shape.

9.2 Creating Copies of Shapes

One way to fully specify a shape is by using the assignment operator to copy a fully speci-
fied shape to a partially specified one. For example:

Chapter 9: More on Shapes and Parallel Variables 105

shape ShapeA;

shape [256][256]ShapeB;

ShapeA = ShapeB;

In this case, both ShapeA and ShapeB refer to the same shape. You can use either one in

a with statement to make this shape the current shape. This is different from what would

happen if both were declared separately, but with the same dimensions. For example:

shape [256] [256]ShapeA;

shape [256][256]ShapeB;

In this case, ShapeA and ShapeB refer to two separate physical shapes that happen to have

the same rank and dimensions.

You can also fully specify a shape by using a shape-valued expression as the RHS of the

assignment. For example:

ShapeA = shapeof(pl);

ShapeB = (new_shape());

ShapeC = *ptr;

/* pl is a parallel variable of some

other shape */

/* new_shape returns a shape */

/* ptr is a pointer to a shape */

9.2.1 Assigning a Local Shape to a Global Shape

Be careful when assigning a fully specified shape in local scope to a partially specified

shape in file scope. The following code illustrates the problem:

shape ShapeA;

void f(void)

shape [1024][512]ShapeB;

ShapeA = ShapeB;

main()

f();

{

/* Unspecified shape ShapeA */

/* Fully specified shape ShapeB

in local scope */

/* ShapeB assigned to ShapeA */

106 C* Programming Guide

int:ShapeA pl; /* This allocation fails because

ShapeA's shape was deallocated
when function f exited. */

In this case, the actual physical shape that ShapeA refers to is allocated in local scope.

When function f exits in the sample code, this shape is deallocated. When the code subse-

quently tries to declare a parallel variable of shape ShapeA, it gets an error, because the
shape no longer exists.

The situation is analogous to what happens when a local pointer is assigned to a global
pointer in standard C.

9.3 Dynamically Allocating a Shape

Another way to fully specify a partially specified or fully unspecified shape is to use the
C* intrinsic function allocateshape. allocateshape's first argument is a pointer
to a shape; its second argument is the rank of this shape; subsequent arguments are the

number of positions in each rank. The function returns the shape it points to. For example,

shape []ShapeB;

ShapeB = allocate_shape(&ShapeB, 1, 65536);

complete the specification of the partially specified one-dimensional shape ShapeB.

You needn't partially specify a shape before calling allocateshape. For example,

allocate shape(&new_shape, 3, 2, 2, 4096);

returns a three-dimensional shape called new_shape.

allocate_shape can also fully specify elements of an array of shapes. For example:

ShapeD[O] = allocate_shape(&ShapeD[0O], 2, 4, 16384);

Alternatively, you can use an array to specify the number of positions in each rank. This

format is useful if the program will not know the rank until run time, and therefore can't
use the variable number of arguments required by the previous syntax. The following ex-

I

I

Chapter 9: More on Shapes and Parallel Variables 107

ample reads the rank and dimensions in from a file named shapeinfo and uses these
values as arguments to allocate_shape.

#define MAX AXES 31
#include <stdio.h>

main()

{

FILE *f;

int axes[MAX_AXES], i, rank;

shape ShapeA;

f = fopen("shape_info", "r");

fscanf(f, "%d", &rank);

if (rank > MAXAXES) {

fprintf (stderr, "Rank bigger

exit(1);

for (i = 0; i < rank; i++)

fscanf(f, "%d", &axes[i]);

than maximum allowed.\n");

ShapeA = allocate_shape(&ShapeA, rank, axes);

Note that axes is initialized as an array of 31 elements, since the CM restricts shapes to

a maximum of 31 dimensions. Of course, the file shape-info could contain fewer than
the maximum number of dimensions.

NOTE: For certain programs you may be able to improve performance by using the intrin-
sic function allocate_detailed_shape instead of allocate_shape; see
Appendix A.

9.4 Deallocating a Shape

Use the C* library function deallocate_shape to deallocate a shape that was allocated
using the allocate_shape function. Its argument is a pointer to a shape. Include the
header file <stdlib. h> if you call deallocate_shape. Note that this is not required for
allocate_shape, which is an intrinsic function.

_tc1

}

-

108 C* Programming Guide

There are two reasons you might deallocate a shape:

* If you have reached the limit on the number of shapes imposed by your CM system

* If you want to reuse a partially specified shape

As an example of the latter, consider the following code:

#include <stdlib.h>

shape [S;

int positions = 4096;

main ()

{

while (positions<=65536)

S = allocate_shape(&S, 1, positions);

{

int:S pl, p2, p3;

/* Parallel code omitted ... */

}

deallocate_shape(&S);

positions *= 2;

In this code, shape s is allocated every time it goes through the while loop, and deallo-
cated at the end of the loop. This lets it have a different number of positions each time
through the loop.

The results of deallocating a shape that was fully specified at compile time are undefined;
the compiler generates an error when it notices a program doing this, but it doesn't guaran-
tee that it will catch all cases.

You should not deallocate a shape that contains parallel variables; if you do, the behavior
of these parallel variables is undefined. Note that in the code fragment above, the parallel
variables declared to be of shape s go away when you leave the block.

As discussed in Section 9.2, you can create copies of shapes by assigning one shape to
another. If you have created copies of shapes in this way and you deallocate one, the effect
on the others is undefined.

Chapter 9: More on Shapes and Parallel Variables 109

9.5 Dynamically Allocating a Parallel Variable

The C* library routine palloc is the parallel equivalent of C library routines like malloc
and calloc. Use it to explicitly allocate storage for a parallel variable. It can be called
whether or not the parallel variable's shape is dynamically allocated. Include the file
<stdlib. h> if you call palloc or its companion function pfree.

palloc takes two arguments: a shape, and a size (in bools). It allocates space of that size

and shape, and returns a scalar pointer to the beginning of the allocated space. The shape
passed as an argument must be fully specified before palloc is called.

palloc returns 0 if it cannot allocate the memory.

To allocate space for a parallel variable of shape ShapeA, for example, you could do the
following:

#include <stdlib.h>

shape [16384]ShapeA;

int:ShapeA *ptr;

main()

(
ptr = palloc(ShapeA, boolsizeof(int:ShapeA));

}

The scalar variable ptr now contains a pointer to an int-sized parallel variable of shape
ShapeA. You can reference this parallel variable by using *ptr. The contents of the paral-
lel variable are undefined.

Use pfree to deallocate storage you allocated with palloc. pfree takes as its argument
the pointer returned by palloc. For example, to deallocate the storage allocated by the call
to palloc above, call pfree as follows:

pfree(ptr);

The palloc and pfree calls can also be used with a dynamically allocated shape, as in
the following example:

#include <stdlib.h>

shape S;

double:S *p;

110 C* Programming Guide

main ()

{

S = allocate_shape(&S, 2, 4, 8192);

p = palloc(S, boolsizeof(double:S));

/* ... */
pfree (p);

deallocate_shape(&S);

}

Note that you can declare a scalar pointer to a parallel variable of shape that is not fully
specified, even though you cannot declare a parallel variable of that shape.

9.6 Casting with Shapes and Parallel Variables

Use the C* cast operator to cast an expression to a particular shape and type. For example,

(char: employees)

specifies that the expression following it is to be formed into a char of shape employees.
A data type is required as well as a shape in a parallel cast.

9.6.1 Scalar-to-Parallel Casts

Using a parallel cast is a quick way to promote a scalar value. The following code stores
in scalar variable s1 the number of active positions of the current shape:

sl = +=(int:current)1;

In the statement, 1 is cast to a parallel int of the current shape. The += reduction operator
sums the resulting parallel variable for all active positions, and the result is assigned to the
scalar variable sl.

Chapter 9: More on Shapes and Parallel Variables 111

9.6.2 Parallel-to-Parallel Casts

Parallel-to-parallel casts are also permitted.

Casts to a Different Type

You can cast a parallel variable so that it has a different type. For example:

int:ShapeA pl;

sqrt((double:ShapeA)pl);

The parallel version of sqrt requires a float or a double; therefore, we must cast the
parallel int pi before we can pass it to this function.

Casts to a Different Shape

Casting of a parallel variable to a different shape is limited to the situation in which the
same shape can be referenced by more than one name. In this case, a cast may sometimes
be necessary to ensure that the compiler recognizes that two parallel variables are supposed
to be of the same shape. For example:

shape [256][256]ShapeB, ShapeA;

main()

{

ShapeA = ShapeB;

int a:ShapeA, b:ShapeB;

with(ShapeB) {

b = a;

b = (int:ShapeB)a;

}

}

/* This gets a compile-time error */

/* This works */

The cast is required so that the compiler is made aware that ShapeA and ShapeB refer to
the same shape.

No movement of data is implied in a parallel-to-parallel cast.

I

A- ,

0-I

112 C* Programming Guide
-. . - . .: --i . - -- . . . - . . : . :-. -. : .-I - . : .:

The effects of casting an expression between two shapes that are different (for example,
with a different rank or number of positions) are undefined.

9.6.3 With a Shape-Valued Expression

You can use a shape-valued expression with a scalar-to-parallel or parallel-to-parallel cast.
The expression must be enclosed in parentheses unless it is an intrinsic function. For
example,

sl = +=(int:(shape_array[3]))1;

casts 1 to be an int of the fourth shape in the array shape_array.

9.6.4 Parallel-to-Scalar Casts

You can cast a parallel variable to a scalar type. The result is similar to a demotion of a
parallel variable when assigning it to a scalar (see Chapter 5); the operation picks one of
the active values of the parallel variable and returns that as the result. If no positions are
active, the result of the cast is undefined. If you choose the appropriate safety level, you
receive a run-time error if no positions are active.

9.7 Declaring a Parallel Variable with a
Shape-Valued Expression

A shape-valued expression, as we have described earlier, is an expression that can be used
in place of a shape name. You can therefore use a shape-valued expression in declaring a
parallel variable. The expression must be enclosed in parentheses unless it is the shapeof
intrinsic function. For example:

shape [256][256]matrix;
int:matrix pl;

int:shapeof (pl) p2;

int:(geta _shape()) p3;
/* p2 is of shape matrix */
/* get_a_shape returns a shape */

Chapter 9: More on Shapes and Parallel Variables 113

However, if the declaration appears at file scope, or is static or extern, the shape-val-
ued expression must be a constant. This means that the expression must be one of the
following:

* A simple shape that is fully specified at compile time, or that has a storage class
of extern. For example, shapeof in the example above refers to a fully speci-
fied shape.

* An array of shapes that is fully specified at compile time and whose right index is
a constant expression. For example:

shape [256][512]Sarray[40];

int:(Sarray[17]) pl;

int:(Sarray[4-3]) p2;

* An indirection of an array of shapes that is fully specified at compile time, with a
constant expression added to it. For example:

shape [512][256]Sarray[40];

int:(*(Sarray + 17)) pl;

int:(*(Sarray + 4 - 3)) p2;

The following are illegal:

shape Sarrayl[40];

int:(Sarrayl[17]) pl; /* This is wrong */

Sarrayl is not fully specified; therefore, you can't declare p1 to be a parallel variable of
any of the elements of it.

shape [512][256]Sarray[40];

int:(Sarray[f(x)]) pl; /* This is wrong */

In this case, Sarray is fully specified, but f (x) is not a constant expression, since it
invokes a function whose result is not known until run time.

shape *ptr;

int:(*ptr) pl; /* This is wrong */

In this case, ptr does not point to a fully specified shape.

114 C* Programming Guide

9.8 The physical Shape

C* contains the predeclared shape name physical; physical is a new keyword that C*

adds to standard C. The shape physical is always of rank 1; its number of positions is the

number of physical processors to which the program is attached when it runs on a Connec-

tion Machine system. Note, therefore, that the number of positions in the shape is not

known until run time. You can use physical as you would any other shape.

For example,

positionsof(physical);

returns the number of positions in shape physical, which is equal to the number of physi-

cal processors on which the program is running.

(int:physical)pl

casts p1 to be an int of shape physical.

Chapter 10

Communication

This chapter describes methods you can use to perform communication among parallel

data. For example:

* Sending values of parallel variable elements to other elements of the same or a
different shape.

* Getting values of parallel variable elements that are of the same or a different
shape.

C* provides two methods of communication:

* General communication, in which the value of any element of a parallel variable
can be sent to any other element, whether or not the parallel variables are of the
same shape. You can use parallel left indexing to perform general communication.

Parallel left indexing is described in Section 10.1.

* Grid communication, in which parallel variables of the same shape can communi-
cate in regular patterns by using their coordinates. We use the term "grid
communication" since the coordinates can be thought of as locating positions on
an n-dimensional grid. Grid communication is faster than general communication.
You can use the pcoord function, combined with parallel left indexing, to perform

grid communication. The pcoord function is described in Sections 10.2 and 10.3.

In addition to the methods described in this chapter, C* includes a library of functions that
provide an alternative way of performing grid and general communication; these functions
are discussed in Part III of this manual. There are some differences in what you can accom-
plish using the different methods. but for most purposes the choice between the methods
depends on individual preference.

115

C* Programming Guide
.. - - - - , , -I-. ... , - , I -

10.1 Using a Parallel Left Index for a Parallel Variable

By now you should be familiar with the left indexing of a parallel variable to specify an
individual element. For example, [0] p specifies the first element of the 1 -dimensional
parallel variable p1. Similarly, if sl and s2 are scalar variables, their values determine
which element is specified by the 2-dimensional parallel variable [s] [s2] dl. But we
have not yet covered the case in which a parallel variable is used as a left index for another
parallel variable. If pO and pl are both 1-dimensional parallel variables, what does [p0] p1
mean? If dO, dl, and d2 are all 2-dimensional parallel variables, what does [dO] [dl] d2
mean?

Basically, a parallel left index rearranges the elements of the parallel variable, based on the
values stored in the elements of the index; the index must be of the current shape. The
example discussed below will help show how this works. (Note that this and other
examples in this chapter do not represent valid shapes, because there are too few positions;
we use these small shapes to make it easier to visualize what happens when you use a
parallel left index.)

Figure 33. Three parallel variables

10.1.1 A Get Operation

Given the situation shown in Figure 33, what is the result of the following statement?

0 1 2 3 4

source 0 10 20 30 40

index 1 3 0 4 2

dest

--

116

Chapter 10: Communication 117

dest = [index]source;

Let's look first at what goes into element 0 of dest. The value in element [0] of index is
1. This value is used as an index into the elements of source. The value in element 1 of
source is 10. Therefore, element 0 of dest gets assigned the value 10. The way to think
of this is that the LHS variable gets a value of the RHS variable, based on the value of the
corresponding element of the index variable; we refer to this as a get operation. In C* code,
what happens is this:

[O]dest = [1]source;

For element 1 of dest, the value of the index variable is 3. Therefore, element 1 of dest
gets the value of element 3 of source, which is 30. In C* code:

[1]dest = [3]source;

And for the remaining elements:

[2]dest = [O]source;

[3]dest = [4]source;

[4]dest = [2]source;

It's important to note the difference between parallel left indexing and these serial state-
ments. Parallel left indexing causes these assignments to occur at the same time, in parallel.
In the serial statements, the result of an earlier statement could affect the result of a later
one; this does not happen when all the statements are executed at the same time.

Figure 34 shows the results of the assignment statement for all elements of dest; the
arrows show the process by which a value is assigned to [0] dest. The value of [0] index
is 1, which causes [O]dest to get the value in [1] source.

118 C* Programming Guide

Figure 34. Parallel left indexing of a parallel variable-a get operation

10.1.2 A Send Operation

Here is another assignment statement that uses the data in Figure 33:

[index]dest = source;

In this case, index is being used as an index for dest. In statements of this form, the RHS
variable sends a value to the LHS variable, based on the value of the corresponding element
of the index variable; we refer to this as a send operation.

Let's look at element 0 of source. The value in element 0 of the index variable index is
1; this value is used as an index into dest. The value in element 0 of source, 0, is sent
to element 1 of dest. In C* code:

[1]dest = [O]source;

For element 1 of source, in the corresponding element, the value of index is 3; therefore,
the value in element 1 of source, 10, is sent to element 3 of dest. In C* code:

[3]dest = [1]source;

The serial C* statements for the rest of the elements are:

dest = [index]source;
0 1 2 3 4

source

index

dest

Chapter 10: Communication 119

[O]dest = [2]source;

[4]dest = [3]source;

[2]dest = [4]source;

Note once again, however, that parallel left indexing causes all these statements to be exe-
cuted at the same time. The results are shown in Figure 35; the arrows show the process
by which the value in [01 source is assigned to an element of dest. The value in
[0] index is 1; therefore, [0] source sends its value to [1] dest.

Figure 35. Parallel left indexing of a parallel variable-a send operation

10.1.3 Use of the Index Variable

The index variable would typically contain values that cause a meaningful rearrangement
of the parallel variable it indexes. For example, if we use the values shown in Figure 36,

dest = [index]source;

causes dest to contain the source values in reverse order; the arrows show the process
by which [0] dest gets its value, based on the index in index.

The index variable cannot reference nonexistent elements of a parallel variable. For exam-
ple, an index value of 5 in Figure 36 creates an error. If you choose the appropriate level

[index]dest = source;

0 1 2 3 4

source

index

dest

120 C* Programming Guide
-.,,, . :."..: . :': :::: ':: .. .' '..' .: , : ' : I......:' -::: . ..', .- : .:':: :.. : ...::, ' -:- .:: .-"': "

of safety, you get a run-time error when you program tries to do this. Otherwise, the results
are unpredictable.

Figure 36. An index that reverses the order of a parallel variable

10.1.4 If the Shape Has More Than One Dimension

Parallel left indexing can be used if the parallel variable is of a shape with more than one
dimension. In this case, however, you need to specify a left index for each axis of the shape.
For example:

shape [128][512]ShapeA;

int:ShapeA dest, indexO, indexl, source;

main ()

with (ShapeA)

dest = [indexO][indexl]source;

}

In this case, source is of the 2-dimensional shape ShapeA Therefore, it requires two left
indexes to specify the values to be assigned to dest. indexO is used as the index for axis
0 of source, and indexi is used as the index for axis 1 of source.

[index]dest = source;

0 1 2 3 4

source

index

dest

Chapter 10: Communication 121

If one of the indexes is parallel and one or more are scalar, the scalar indexes are promoted
to parallel in the current shape.

10.1.5 When There Are Potential Collisions

In the examples of parallel left indexing shown so far, the index variable, index, has had
different variables in each element. Let's consider a situation, shown in Figure 37, where
this is not true.

Figure 37. An index with the same value in each element

For a Get Operation

Using the data in Figure 37, the result of the following get operation is straightforward:

dest = [index]source;

For each element of dest, the index index into source is 1. This means that the value
in element 1 of source, 10, is assigned to each element of dest, as shown in Figure 38.

0 1 2 3 4

0 10 20 30 40

1 1 1 1 1

l l ll l

source

index

dest

C* Programming Guide
: . .' ..

r
.: :.!: ".. ':..........'. ~ ~ ~ ~ ~ ~ ~ -/ -. : - '.:. . :.... ... : :.. :.... -' "..

Figure 38. A get operation where the index has the same value in each element

It is equivalent to the following C* code:

[1]source;

[1] source;

[1] source; /* ... and so on */

except that all operations are carried out at the same time, in parallel. There are no potential
collisions in get operations.

For a Send Operation

If we try the following, however:

[index]dest = source;

we have a problem. For each element of source, the index into dest is 1. This means that
all the values of all the elements of source attempt to write into element 1 of dest. In
serial C* code:

[1]dest = [O]source;

[1]dest = [1]source;

[1]dest = [2]source; /* ... and so on */

dest = [index]source;

0 1 2 3 4

Source 0 10 20 30 40

index 1 1 1 1 1

dest 10 10 10 10 10

[0] dest

[l] dest

[2] dest

122

Chapter 10: Communication 123

This is an example of potential collisions, which could occur when more than one element
tries to write into the same element at the same time. To avoid the collisions, C* chooses
one of the source elements to assign to [1] dest. How it chooses the element is defined
by the implementation.

You can use any C* reduction assignment operator in this situation. For example, we could
specify the following:

[index]dest += source;

This statement says: If there is going to be a collision of source values assigned to any
of the elements of dest, add the values of the source elements that would otherwise
collide, then add this result to the value of the dest element.

In cases where there are no collisions, the value of the source element is simply added to
the value of the dest element. In the example, all the values of source are summed, and
the result is assigned to element 1 of dest, as shown in Figure 39. (Note that if you knew
all the index values were the same, it would be more efficient to use a simple unary
reduction operator instead of doing parallel left indexing.)

Figure 39. A reduction assignment when the parallel left index is on the LHS

The kind of reduction assignment operator you use specifies the way the colliding elements
are combined. For example, the >?= operator selects the maximum value of the elements.

U-

[index]dest += source;

0 1 2 3 4

source 0 10 20 30 40

index 1 1 1 1 1

dest I 100 I_

124 C* Programming Guide
.... . -. --i: ... ~... :

Note that the reduction occurs only for elements that would otherwise collide. Given the
examples shown in the previous section, for example, the type of reduction assignment you
use would not matter, because there are no possible collisions. This is consistent with the
way parallel-to-scalar reduction operators work, because all values of the parallel variable
will collide when they are assigned to a scalar variable; therefore, all must be included in
the specified reduction operation.

To sum up:

* In a get operation, you don't have to consider using a reduction assignment opera-
tor, because there are no potential collisions.

* In a send operation, there may be potential collisions. If you simply use = instead
of a reduction assignment operator, and there is a potential collision, C* picks one
of the colliding values and assigns it to the element.

10.1.6 When There Are Inactive Positions

The examples of parallel left indexing shown so far have assumed that all positions are
active. What happens when a where statement makes some positions inactive?

For a Get Operation

Consider the following get operation:

where (source < 30)

dest = [index]source;

In this situation, the where statement deselects positions [3] and [4], using the data shown
in Figure 40, but it deselects them only for getting purposes. Parallel variable elements in
these positions cannot get values; however, elements in active positions can obtain values
from them. The serial C* code would therefore be:

[O]dest = [l]source;
[1]dest = [3]source;
[2]dest = [O]source;

Chapter 10: Communication 125

except that all operations occur at the same time. Figure 40 shows the results; the arrows

show how [1] dest gets its value.

--

Figure 40. A get operation with inactive positions

Note these results:

[1] dest gets a value from [3] source, even though position [3] is inactive.

* [4] dest does not get a value from [2] source, because position [4] is inactive.

For a Send Operation

Send operations work similarly:

where (source < 30)

[index]dest = source;

The where statement "turns off" positions 3 and 4, as shown in Figure 41. But it turns them

off only for sending purposes. Elements in inactive positions cannot send values, but they
can receive values from elements in active positions. Thus, the serial C* version of this
statement would be:

where (source < 30)

dest= [index] source;
D active

inactive

0 1 2 3 4

source

index

dest

126

[1]dest =

[3]dest =

[O]dest =

[0] source;
[1] source;
[2] source;

The results are shown in Figure 41; the arrows show how the value in [1] source is sent
to [3]dest.

where (source < 30)

[index]dest=source; D inactiveO acive~

o 1 2 3 4

o o10\ 20 30 :40

1 3 XI \ 1 4 ' 1 2

20 0 10 .1201 ° I 10" i..-.

Figure 41. A send operation with inactive positions

Note these results:

* [1] source sends its value to [3] dest, even though position [3] is inactive, be-
cause position [1] is still active.

* [4] source does not send its value to [2] dest because position [4] is inactive.

One way to look at the concept of inactive positions in these situations is that the parallel
variable without the parallel left index is the one doing the work (sending or getting). When
a position is made inactive, it can't do work, but it can have work done to it. Thus:

* In a send operation, the inactive position can't send, but other positions can send
to it.

* In a get operation, the inactive position can't get, but other positions can get
from it.

source

index

dest

C* Programming Guide

Chapter 10: Communication 127

Send and Get Operations in Function Calls

As we mentioned in Section 8.2, you should be careful about passing a parallel variable by
value to a function that involves the parallel variable in a send or get operation. If there are
inactive positions when the function is called, the results may not be what you expected.

For example, suppose we define the following function:

int:current get_op(int:current source, int:current index)

{

return ([index]source);

}

If we use the data and the context from Figure 40, we get the results shown in Figure 42.

Figure 42. A function that includes a get operation

Note the difference in results between Figure 40 and Figure 42: In Figure 40, [1] dest got
its value from [3] source, even though position [3] was inactive. In Figure 42, [1] dest
receives an undefined value. This happens because the compiler makes a copy of a parallel
variable when it is passed by value, and elements at inactive positions receive undefined
values.

-P c

where (source < 30) active
dest get_op(source, index); inactive

0 1 2 3 4

source 0 10 20 30 40

index 1 3 0 4 2

dest 10 0

128 C* Programming Guide

The solution is to pass source by reference. In that case, the compiler does not make a
copy of the parallel variable, and the function can gain access to values at inactive posi-
tions.

Note that in send operations it is the dest parallel variable that should be passed by refer-
ence, since positions can send to an inactive destination.

10.1.7 Mapping a Parallel Variable to Another Shape

One use of the parallel left index is to map a parallel variable into another shape. Consider
the situation shown in Figure 43.

Figure 43. Two shapes

The statement:

dest = [index]source;

has the same interpretation as before: Elements of dest get values of source, based on
the value in the corresponding element of index. But in this situation, we are essentially
mapping source into shape ShapeD, based on index. ShapeD must be the current shape.

shape ShapeD

0 1 2

0 i0 1 2 shape ShapeP
index

1 3 4 15 0 1 2 3 4 5

source 10 11 12 13 14 15

dest

Chapter 10: Communication 129

Since the values in index are the same as the coordinates for ShapeP, the assignment is

straightforward: the value of index for position [0][0] is 0; this value is used as an index

into the elements of source. The value of element [0] of source is 10; therefore, 10 is

assigned to element [0][0] of dest.

The mapping occurs only for the specified operation; it does not permanently affect the

parallel variable being mapped. For example, source remains of shape ShapeP after the

operation above.

shape ShapeD

0 1 2

0 1 2

3 4 5

10 11 12

13 14 15

\
shape ShapeP

o 1 2 3 4 5~~......
source 10 I11 12 113 1 14 1 15 1

Figure 44. Mapping a parallel variable to another shape

If a parallel variable is not of the current shape, you can use a parallel left index to map it

to the current shape and then operate on it. For example:

shape [64][64]ShapeD;

int:ShapeD index, dest;

shape [16384]ShapeP;

int:ShapeP source;

/* Code to initialize variables omitted. */

main()

{

with (ShapeD)
[0][O]dest += source; /* This doesn't work--source

is the wrong shape. */

[0][1]dest += [index]source; /* This does work. */

0

index
1

dest

[I I I I

_lrl

C* Programming Guide
:" ." . .. - . - .::" .'. :.

}

Only active elements of a parallel left index participate in the indexing. If we add a where
statement to the code example above and assume the data shown in Figure 43:

/* ... */
with (ShapeD) {

where (index != 0)
[0][O]dest += [index]source;

the value of element [0] of source is not included in the summation.

10.1.8 Limitation of Using Parallel Variables with a
Parallel Left Index

A parallel variable with a parallel left index is a modifiable lvalue; therefore, it can appear
as the left operand of assignment operators, as the operand of prefix or postfix ++ or -- ,
and in all cases where an rvalue is needed. You cannot, however, take the address of it using
the operator. (In general, this would require a parallel pointer handle, which isn't sup-
ported in C*.)

10.1.9 What Can Be Left-Indexed

Parallel left indexing follows the general rules about performing parallel operations within
the current shape; see Section 4.4. Specifically:

* If an expression is of the current shape, you can always left-index it.

* If an expression is not of the current shape, you can left-index it if it is any of the
following:

* A simple identifier.

* A per-processor array that is not of the current shape, if it is right-indexed
by a scalar value. (You cannot left-index an array that is not of the current

130

}

Chapter 10: Communication 131
.. I··:II· , ·.::·:··:- I·· .i: ···:i~i: . .: -· , ::: i:.: .:: :..:: :.::::, ,: ..:

shape if it has a parallel right index, because that would require a parallel
operation on a variable not of the current shape.)

* A parallel variable with the & operator applied to it to take its address.

* A member of a parallel structure or union that is not of the current shape
(so long as the member is not an aggregate type, such as another structure

or union).

10.1.10 An Example: Adding Diagonals in a Matrix

The example in this section uses a parallel left index and the += reduction assignment

operator to add diagonals in a matrix. It uses the data shown in Figure 45.

Figure 45. Two 4-by-4 parallel variables

The task is to add the values of source in the diagonals of the matrix. The following code
accomplishes this.

shape ShapeA

o0 1 2 3

00 1 2 3

1 4 5 6 7
source

2 8 9 10 11

3 12 13 14 15

3 4 5 6

2 3 4 5
index

1 2 3 4

0 1 2 3

132 C* Programming Guide

shape [4] [4]ShapeA;

shape [7]ShapeB; /* Not legal shapes-for example purposes

only */

int:ShapeA source, index;

int:ShapeB dest = 0;

/* Code to initialize the parallel variables omitted */

main()

with (ShapeA)

[index]dest += source;

}

As you can see, the actual computation is quite simple, once the data has been set up prop-

erly. Let's look in detail at the statement:

[index]dest += source;

First, note that the statement is legal, even though dest is not of shape ShapeA, since dest
is left-indexed by a parallel variable that is of that shape. The statement says: Use index
as an index into dest for sending values of source; if there are potential collisions, add
the values of source. So, for example, element [0][0] of parallel variable source is as-
signed to element [3] of dest, because the value of the corresponding element of index
is 3. Element [1][1], element [2][2], and element [3][3] are also assigned to element [3]

of dest. They are all added, thus avoiding collisions.

The other elements of source are also assigned to dest, based on the value of the corre-
sponding elements of index. The result is the addition of the diagonals. Figure 46 shows
the results, highlighting the values that go into [3] dest.

Chapter 10: Communication 133
.::: :.::: ;~ :;: ?:.':jl~: ·?: z::?:lj ::·::: :i::::i;ii: :: : ?:/:j~jj l::l::-::?::: ~!~;/.) :i :: ::::: :i::::·:::i: ::::::i? ?:'::::!:i: ~:

'
i

:
! : ::. , : :~:::/+: · i·: i.t:./ .:I. ;: L::: :I.' ::::-.........

Figure 46. Using parallel left indexing to add the diagonals of a matrix

10.2 Using the pcoord Function

C* includes a new library function called pcoord, which is especially useful when
combined with parallel left indexing. Use pcoord to create a parallel variable in the
current shape; each element in this variable is initialized to its coordinate along the axis you
specify. For example,

shape [65536]ShapeA;
int:ShapeA p;

main ()

{

with (ShapeA)
[index]dest +=source;

shape ShapeA

o 1 2 3

0 -0: 0 1 2 3

4 56 7
source

2 8 9 1 :11 shape ShapeP

3 12 13145 0 1 2 3 4 5 6

dest 12 21 27 I-3oI18 9 3

2 3 4 5
index

1 2 3 4

0 123- ,.

134 C* Programming Guide

with (ShapeA)

pl = pcoord(O);

initializes pi as shown in Figure 47.

Figure 47. The use of pcoord with a 1-dimensional shape

Likewise, for a 2-dimensional shape,

shape [4] [4096]ShapeB;

int:ShapeB p2 ;

main()

with (ShapeB)

p2 = pcoord(l);

}

initializes p2 as shown in Figure 48.

p = pcoord(0O);

shape ShapeA

0 1 2 3 4 5 6 7 8 65535

pi 0 1 2 3 4 5 6 7 8 ...3~ . . . 1~~~~~655351

Chapter 10: Communication 135

p2 = pcoord(l);

0 1 2 3 4095

0 0 1 2 3 ...

1 0 1 2 3 ...
p2

2 0 1 2 3

3 0 1 2 3 ...

4095

4095

4095

4095

Figure 48. The use of pcoord with axis 1 of a 2-dimensional shape

Similarly,

with (ShapeB)

p2 = pcoord(0);

initializes p2 as shown in Figure 49.

Figure 49. The use of pcoord with axis 0 of a 2-dimensional shape

The pcoord function provides a quick way of creating a parallel left index for mapping
a parallel variable into another shape. For example:

p2 = pcoord(O);

0 1 2 3 4095

0 0 0 0 0 ... 0

1 1 1 1 1 ... 1
p2

2 2 2 2 2 ... 2

3 3 3 3 3 ... 3

136 C* Programming Guide

shape [16384]ShapeA, [16384][4]ShapeB;

int:ShapeA source;

/* Code to initialize source omitted. */

main()

with (ShapeB) {

int:ShapeB index, dest;

index = pcoord(O);

dest = [index]source;

}

Rather than assign the results of pcoord to a parallel variable, you can simply use it as the
parallel left index itself:

dest = [pcoord(O)]source;

The index of the specified axis of the current shape is generated by pcoord. This index is
used as an index for selecting elements of a parallel variable of another shape. The values
of these elements are assigned to elements of a parallel variable of the current shape.

10.2.1 An Example

This example uses pcoord to transpose a matrix-in other words, to turn its rows into
columns and its columns into rows. For example, consider the simple 3-by-3 parallel vari-
able called matrix shown on the left in Figure 50. (Note that this is an illegal parallel
variable; we use it simply because it's easy to visualize.) The task is to turn it into the new
matrix shown on the right.

Chapter 10: Communication 137
::?:i: : ' .:.-:�::.:: :: ':" ':: i: !:::.!:.:' ·!: :'{' . . I. I:..': !::.::. : ::::::{.::: :.Ii. . '~-}

Figure 50. Transposing a 3-by-3 matrix

This can be done by reversing the axes for the parallel variable matrix. For example,
0] [ll matrix (which contains the value 1) becomes element [1] [0] of a new parallel

variable. To do this for a 256-by-256 matrix, use pcoord as follows:

Shape [256][256]ShapeA;

int:ShapeA matrix, newmatrix;

main ()

with (ShapeA)

[pcoord(l)][pcoord(0)]new_matrix = matrix;

The statement

[pcoord(l)] [pcoord(O)]new_matrix = matrix;

says: Assign each element of matrix to new_matrix, but reverse the axis numbering.

Thus, in serial C* code:

[0][O]newmatrix = [0] [0]matrix;

[0][1]newmatrix = [1] [O]matrix;

[0][2]new matrix = [2] [0]matrix;

[1][O]new_matrix = [0] [l]matrix; /* And so on */

except that all operations take place at the same time. This algorithm can be generalized

for use in a function with any 2-dimensional parallel variable:

0 1 2

0 0 1 2 0 3 6

matrix 1 3 4 5 0- new matrix 1 4 7

2 6 7 8 2 5 8

138 C* Programming Guide

void transpose(float:current *matrixp,

float:void *new_matrixp)

[pcoord(l)][pcoord(O)]*new_matrixp = *matrixp;

Note these points about transpose:

* It passes two pointers to parallel variables. matrixp is a pointer to a parallel vari-

able of the current shape; we pass a pointer rather than the parallel variable itself
to avoid having to make a copy of the variable. new matrixp is a pointer to a

parallel variable of a new shape; we must pass a pointer in this case because we will

be modifying the variable-therefore, it can't be passed by value.

* We use a second shape so that the function can work with a matrix that isn't square.

For example, if the current shape is 256 by 512, make newmatrixp a pointer to
a parallel variable of a shape that is 512 by 256.

* The variable pointed to by matrixp is assigned to the variable pointed to by
new_ matrixp, and this variable has its coordinates reversed.

10.3 The pcoord Function and Grid Communication

When used with parallel left indexing, pcoord provides the grid communication capa-

bilities we discussed at the beginning of this chapter.

Consider the following statement where both dest and source are of the current shape:

dest = [pcoord(O) + 1]source;

This statement says: Each active element ofdest is to get the value of source that is in

the position one coordinate higher along axis 0. You can either add a value to or subtract
a scalar value from pcoord in the left index. Which operation you choose determines the
direction of the communication; the value added or subtracted specifies how many posi-
tions along the axis the values are to travel. Note, however, that the values must stay within
the border of the grid; the behavior is undefined if dest tries to get a nonexistent element
of source.

Chapter 10: Communication 139

You can use pcoord for a send operation as well as for a get operation; send and get opera-

tions are discussed in Section 10.1. For example:

[pcoord(O) + l]dest = source;

This statement says: Send the value of the source element to the dest element that is one

position higher along axis 0.

You can use pcoord to specify movement along more than one dimension. For example:

dest = [pcoord(O) - 2][pcoord(1) + l]source;

Note that specifying the axes in this kind of statement provides redundant information. By

definition, the first pair of brackets contains the value for axis 0, the next pair of brackets
contains the value for axis 1, and so on. C* therefore lets you simplify the expression by

substituting a period for pcoord(axis-number). Thus, the following is equivalent to the
above statement:

dest = [. - 2][. + l]source;

10.3.1 Grid Communication without Wrapping

As we noted above, behavior is undefined when elements try to get or send beyond the

border of the grid. This means that the statements shown so far are not especially useful,

because they do not solve this problem. What happens to the elements of dest in row 0

when they try to get from [pcoord (O0) -1] -that is, from beyond the border of the grid?

For this kind of statement to work, you must first use a where statement to turn off posi-

tions that would otherwise get or send beyond the border of the grid. For example, if you
want elements to get from elements two coordinates lower along axis 0 (that is, position

2 gets from position 0, position 3 gets from position 1, and so on), you must turn off posi-

tions 0 and 1, because elements in these positions would otherwise attempt to get

nonexistent values. The following code accomplishes this:

where (pcoord(O) > 1)

dest = [. - 2]source;

140 C* Programming Guide

If you want to get from a parallel variable two coordinates higher along axis 0 (position 0
gets from position 2, and so on), you can use the dimof intrinsic function to determine the
number of positions along the axis. For example:

where (pcoord(O) < (dimof(ShapeA, 0) - 2))

dest = [. + 2]source;

Note that you must subtract 2 from the result returned by dimof to turn off the correct
number of positions. If dimof returns 1024, the positions are numbered 0 through 1023.
To turn off positions 1022 and 1023, you must subtract 2 from 1024 and specify that the
result of calling pcoord is to be less than this.

10.3.2 Grid Communication with Wrapping

To perform grid communication in which the values "wrap" back to the other side of the
grid, we once again need to use the dimof intrinsic function. Consider the following state-
ment:

dest = [(. + 2) %% dimof(ShapeA, 0)]source;

The expression in brackets does the following:

1. It adds 2 to the coordinate index returned by pcoord.

2. For each value returned, it returns the modulus of this number and the number of
positions along the axis.

Step 2 does not affect the results as long as step 1 returns a value that is less than the num-
ber of coordinates along the axis. For example, if (. + 2) is 502 in a 1024-position axis,
the result of (502 %% 1024) is 502. When step 1 returns a value equal to or greater than
the number of coordinates along the axis, step 2 achieves the desired wrapping. For exam-
ple, element [1022] of dest attempts to get from element [1024] of source, which is
beyond the border of the grid. But (1024 %% 1024) is O, so instead [1022]dest gets
from [] source. Thus, the %% operator provides the wrapping back to the low end of the
axis.

Similarly,

dest = [(. - 2) %% dimof(ShapeA, 0)]source;

Chapter 10: Communication 141
: .:: : .i- -:.~ :i :. ..: :.-.::::: .-:,:::::: :,, .. , :'".:". :'-.;'.:.:..:i::. ::. :.':;'~:{i: : ;::--::;

provides wrapping to the high end of the axis. For this statement, let's look at the case
where [0] dest tries to get a value from the element of source that is two lower along
axis 0. If there are 1024 coordinates along the axis, this produces the expression (-2 %%
1024) for the left index of source. Following the procedure for %% shown on page 52,
we find that the result of this expression is 1022. This is the element of source from which
[0] dest gets its value.

Note that you cannot use the standard C operator % to perform these operations, because
different implementations of % can give different answers when one or both of its operands
is negative. The %% operator guarantees that the sign of the answer is the same as the sign
of the denominator, which is what is required.

A-..J·

**F

Part III
C* Communication Functions

ii: .;l.- iiii:;:i;:. :- :i:;ii: ..i:;::.Q'.: ::; .i~i~i: ... ; :;.:..;.: ...

A-

*iWn,

Chapter 11

Introduction to the
C* Communication Library

Part m of this guide describes a set of C* library functions that provide different kinds of
communication. For example, these functions allow you to:

* Send values of parallel variable elements to other elements of the same shape.

* Send values of parallel variable elements of one shape to elements of another
shape.

* Perform different kinds of computation on values while sending them to elements
of the same or a different shape.

* Send data from parallel variable elements to a front-end variable, and from a front-
end variable to a parallel variable element.

* Send data from a parallel variable to a front-end array, or from a front-end array
to a parallel variable.

Of course, you can perform similar kinds of communication using features of C* itself; see
Chapter 10. These library functions supplement, and in many cases overlap, the communi-
cation features contained in the language itself. Several of them are particularly useful
when the rank of a shape is not known until run time; in that situation, you cannot use left
indexing to specify a parallel variable element, because you cannot specify values for all
the axes when you write the program. The functions, however, provide a way to manipulate
such data.

This chapter introduces the methods of communication available using C* library func-
tions, and gives an overview of these functions.

145

146 C* Programming Guide

Include the header file <cscomm. h> in programs that call any of the functions discussed
in Part Ill. The functions are part of the C* run-time system, and are linked in to your pro-
gram by default.

11.1 Two Kinds of Communication

There are two different kinds of communication in C*: grid and general.

11.1.1 Grid Communication

In grid communication, elements of parallel variables in the same shape communicate in
regular patterns by using their coordinates. In other words, values of all elements in a paral-
lel variable move the same number of positions in the same direction-for example, each
element sends its value to the element of another parallel variable that is two coordinates
higher along axis 0.

The following functions implement grid communication:

* from_grid

* from_grid dim

* from torus

· from torus dim

* to_grid

* to_grid dim

· to torus

to torus dim

In addition, the pcoord function, which we discussed in Chapter 10, can be used in certain

kinds of grid communication.

Grid communication is discussed in Chapter 12.

Chapter 11: Introduction to Communication 147

11.1.2 General Communication

General communication allows any parallel variable element to send its value to any other
element, whether or not they are of the same shape, and whether or not the pattern of com-
munication is regular. It also allows the front end to read values from and write values to
parallel variables. This kind of communication uses a position's send address rather than
its coordinates. The send address is a combination of a position's shape and coordinates
that uniquely identifies the position among all positions in all shapes. General communica-
tion is more versatile than grid communication, but it is also slower. It achieves the same
result as parallel left-indexing a parallel variable; see Chapter 10.

General communication is implemented by the following C* functions:

· make send address

* send

· get

· read_from_position

· read_frompvar

* write to_position

* write_to_pvar

* make multi coord

These functions are discussed in Chapter 14.

11.2 Communication and Computation

Many C* functions perform computations or combining operations on the parallel values
they transmit. Most of these functions involve grid communication. For example, the
scan function lets you combine values of specified elements of a parallel variable along
an axis of a shape. You can add these values, for example, multiply them, or take the mini-
mum or maximum. The following C* library functions provide communication and
computation:

scan

* spread

* copy_spread

148 C* Programming Guide

* multispread

* copy_multispread

· enumerate

· rank

* reduce

· copy_reduce

· global

These functions are discussed in Chapter 13.

Chapter 12

Grid Communication

As we mentioned in the previous chapter, there are two ways for data to be communicated

from one position to another within a shape: by using the absolute address (called the send

address) of the position, or by using the position's coordinates within the shape. Within-

shape communication in regular patterns that uses positions' coordinates is referred to as

grid communication, since the coordinates can be thought of as locating positions on an

n-dimensional grid.

This chapter describes C* library functions that provide grid communication. These func-

tions are faster than the general communication functions described in Chapter 14. If you

use any of the functions discussed in this chapter, include the file <cscomm. h> in your

program. You can also achieve grid communication by using the pcoord function, as de-

scribed in Chapter 10.

All grid communication functions are overloaded so that they can be used with any arith-

metic or aggregate data type.

12.1 Aspects of Grid Communication

There are several aspects to grid communication to consider before using these functions:

Axis

* Direction

* Distance

* Border Behavior

* Behavior of Inactive Positions

149

150 C* Programming Guide

12.1.1 Axis

Grid communication functions let parallel variable elements communicate along any axis
of a shape. In a two-dimensional shape like Figure 51, for example, you can specify that
elements communicate along axis 0 or along axis 1.

Figure 51. A two-dimensional shape

The functions from_grid, to_grid, from_torus, and to_torus allow communica-
tion along more than one axis-for example, an element could transmit a value to another
element by sending it down axis 0, then across axis 1.

12.1.2 Direction

Parallel variable elements can also communicate in either direction along an axis using grid
communication. In Figure 51, for example, parallel variable elements at position [0][2] can
communicate along axis 1 with elements to the right (position [0][3]) or to the left (position
[o0][1).

Axes 1

°0 0 1 2 3

V 0

1

2

3

- - -

I I�

16383

. . .

. . .

. . .

. . .

Chapter 12: Grid Communication 151

12.1.3 Distance

Parallel variables can communicate at any distance along an axis. For example, parallel
variable elements at position [0][0] in Figure 51 can communicate with elements at posi-
tion [0][16383].

12.1.4 Border Behavior

What happens when a parallel variable element at position [0][16383] in Figure 51 tries to
get a value from the right--off the border of the grid? The behavior of grid communication
at the border is handled in different ways by different functions. Specifically:

* In the functions from grid, from_grid_dim, to_grid, and to_grid_dim,
you can specify a value that the element is to receive when it tries to get a value
from beyond the border. This value is referred to as the fill value.

* In the functions from torus, from torus dim, to torus, and
to_torus_dim, the element receives the value from the opposite border of the
grid-in this case, the element at position [0][16383] gets its value from position
[0][0]. This is known as wrapping.

12.1.5 Behavior of Inactive Positions

What happens when positions in the grid are inactive? For example, a parallel variable
element at position [0][0] tries to get the value of an element at position [0][1], but position

[0][1] is inactive.

Different functions handle inactive positions in different ways, depending on whether
parallel variables are seen as sending their values to other positions, or getting values from
other positions. The distinction is the same one made for parallel left indexing; see Section
10.1.6. Specifically:

In a get operation, a parallel variable element in an active position can get a value

from an element in an inactive position, but an element in an inactive position can-
not get a value from any position. The functions from_grid, from_grid_dim,
from torus, and fromtorusdim use get operations.

C* Programming Guide

* In a send operation, a parallel variable element in an active position can send a
value to an element in an inactive position, but an element in an inactive position
cannot send its value. The functions to_grid, to _grid _dim, to-torus, and
totorus_dim use send operations.

Note that the issue of getting from or sending to inactive positions requires passing
some parallel variables in the grid communication functions by reference, rather
than by value. See Chapter 10 for a discussion of this issue.

Table 3 summarizes the features of the grid communication functions.

Table 3. Features of grid communication functions

Function Multiple Axes? Wrapping? Get or Send?

from_grid Yes No Get

from_grid dim No No Get
from torus Yes Yes Get
from torus dim No Yes Get
to_grid Yes No Send
to_grid dim No No Send
to torus Yes Yes Send
to torus dim No Yes Send

12.2 The fromgrid_dim Function

Use the from_grid_dim function to communicate along one axis of a grid, without wrap-
ping. from_grid_dim is a get operation, as described in Chapter 10.

12.2.1 With Arithmetic Types

Like all grid communication functions, from_grid dim can be used with arithmetic data
types, as well as with parallel structures and parallel arrays. The version of
from_grid dim for arithmetic data types has the following definition:

152

Chapter 12: Grid Communication 153

type:current from_grid_dim (

type: current *sourcep,

type: current value,

int axis,

int distance);

where:

sourcep is a scalar pointer to the parallel variable from which values are to be
obtained. The parallel variable can be of any arithmetic type; it must
be of the current shape.

value is a parallel variable of the current shape whose values are to be used
when elements try to get values from beyond the border of the grid.
The parallel variable must be of the same arithmetic type as the paral-
lel variable pointed to by sourcep.

axis specifies the axis along which the communication is to take place.

distance specifies how many positions along the axis the values are to travel.
For example, if distance is 2, each parallel variable element gets a
value from an element whose position is two greater along the speci-
fied axis. distance can be a negative number, which reverses the
direction in which the data is to travel.

from_grid dim returns the source values in their new positions. You can assign these
values to a parallel variable of the current shape and of the same arithmetic type as the
source parallel variable; this parallel variable can be viewed as the parallel variable that is
doing the "getting."

Note the difference between from_grid_dim and the corresponding use of pcoord de-
scribed in Chapter 10: pcoord does not provide a fill value when an element tries to get
from beyond the border.

Examples

Figure 52 shows three parallel variables of the same shape (their shape, like others shown
in the chapter, is smaller than would be legal in C*, so that it's easier to visualize what is

happening).

154 C* Programming Guide
. . . . ,,, . .. -... . .. , -

Figure 52. Three parallel variables of shape ShapeA

The goal is for dest to get values of the parallel variable pointed to by sourcep that are

one position lower along axis 0. This is equivalent to scalar C* statements like the follow-
ing (except that all operations happen at the same time):

[1] [O]dest =

[2][0]dest =

[3][0]dest =
[1][1]dest =

[0] [0]source;

[l] [O]source;

[2] [0]source;

[0] [1]source; /* . . . and so on */

In the case where dest tries to get a value of source from beyond the border (for
example, the dest element at position [0][0]), it is to use the value from the corresponding
element of fill.

The following code accomplishes this (for a shape of legal size):

#include <cscomm.h>

shape [256] [256]ShapeA;
int:ShapeA source, dest, fill;

/* Code to initialize parallel variables omitted. */

main ()

with (ShapeA)

0 1 2 3

0 10 11 12 13 11 2 3 4

1 20 21 22 23 1 2 3 4

2 30 31 32 33 1 2 3 4

3 40 41 42 43 1 2 3 4

source dest fill

Chapter 12: Grid Communication 155

dest = from_griddim(&source, fill, O, -1);

Figure 53 shows the results.

Note that we use -1 for the distance argument, even though the values move to higher-
numbered positions along the axis. As mentioned above, from_grid_dim is a get
operation; in this case, the element in the higher-numbered position is viewed as getting the
data from the lower-numbered position, and that is why a negative distance is used.

Note also the values of fill that are used when dest attempts to get from beyond the
border of the grid.

dest = from_grid dim(&source, fill, 0, -1);

0 1 2 3

11 2 1 3 1 4 -- 1 2 3

3 40 41 42143

source dest fill

4

4

4

41 2 3

Figure 53. An example of the from_grid_dim function

Now let's take the data in Figure 53 and move the values in dest two positions lower along
axis 1, but leaving them in dest. In scalar C* code:

1 2 3

1 2 3
r

[0] [O]dest =

[0][1]dest =

[1] [Oldest =

[0][2]dest;

[0][3]dest;

[1][2]dest; /* . . . and so on */

In this case, the source parallel variable is the same as the destination parallel variable. This

is legal. The following statement does the job:

0

1

2

-u

C* Programming Guide

dest = from_grid_dim(&dest, fill, 1, 2);

A positive integer is used for the distance, because the elements in the lower-numbered
positions along the axis are getting data from the elements in the higher-numbered posi-
tions.

Figure 54 shows the results.

Note that the elements of dest at positions [n][2] and [n][3] (where n is any axis 0 coordi-
nate) are assigned the values from the corresponding elements of fill, because they
attempt to get values from beyond the border of the grid.

0

1

2

3

dest = from_grid_dim(&dest, fill, 1, 2);

0 1 2 3
I

3 4 1 2 3

3 4 1 2 3

3 4 1 2 3

3 4 1 2 3

dest (before) dest (after) fill

Figure 54. Another example of the from_grid_dim function

When Positions Are Inactive

Finally, let's see what happens when positions in a shape are inactive. The following code
fragment makes position [2] inactive, using the simple data in Figure 55, and then calls
from_grid_dim:

where (source != 7)
dest = from_griddim(&source, fill, 0, -1);

Figure 55 shows the results.

1

10

20

30

2

11

21

31

4

4

4

4

156

'-

Chapter 12: Grid Communication 157
:(-:.::i:';'::-..:':::::;.:.; :..::':::: : : : ;.:::":": .:.' !::''.:::::::::i.... /'7. .::: :::::::: ...-.:.:...:.::::.:::::: :: :..':..:....:. .I:.: :

Figure 55. An example of from _grid dim when a position is inactive

Since from_grid dim is a get operation, the following rules apply:

* Elements at active positions can get values from elements at inactive positions.

* Elements at inactive positions cannot perform any gets at all.

Note how these rules are applied in Figure 55:

* Position [2] is inactive, so it doesn't get a value from position [1]. (It keeps the

value it had before the operation.)

* Position [3] gets a value from position [2], even though position [2] is inactive.

12.2.2 With Parallel Data of Any Length

The definition of from_grid dim for parallel data of any length is as follows:

void from_griddim (
void:current *destp,
void:current *sourcep,
void:current *valuep,

int length,
int axis,

int distance);

where (source != 7) - active

dest = from_grid_dim(&source, fill, 0, -1); inactive

0 1 2 3

source 3 5 7 9

dest 1 3 7

fill 1 1 1

158 C* Programming Guide

In this version, the location pointed to by destp gets values from the location pointed to
by sourcep, using the axis and distance arguments to determine the axis for the com-
munication and how many positions along the axis the values are to travel. If destp tries
to get from beyond the border of the grid, it gets values from the corresponding location
pointed to by valuep instead. The locations pointed to by destp, sourcep, and valuep
are all length bits long.

You can use this version of from_grid dim to transfer data that is larger than the standard
data types-typically, this data would be in a parallel array or parallel structure. Note that
there is no return value, and the destination is specified as the first argument to the function.

For example, in the following code, deststruct gets the values of sourcestruct
that are four coordinates higher along axis 0. When this takes dest_struct beyond the
border of the grid, it gets the corresponding values of value_struct.

#include <cscomm.h>

shape [65536]ShapeA;

struct S {

int a;

int b;

struct S:ShapeA source struct, dest struct, valuestruct;

main ()

{

with (ShapeA)

from_griddim(&deststruct, &source_struct,

&value_struct,boolsizeof(source struct), 0, 4);

12.3 The from _grid Function

The from_grid lets data travel along more than one axis of the grid. Like
from_grid dim, it is a get operation.

Chapter 12: Grid Communication 159

12.3.1 With Arithmetic Types

The definition of from_grid (for the version that takes arithmetic types) is:

type:current from_grid (

type: current *sourcep,

type: current value,

int distance along_axis_0,);

where sourcep, value, and the return value are defined as they were for
from_grid_dim.

The argument distance_along_axisO specifies how many positions along this axis
the data is to travel. As with from_grid_dim, the sign of the integer (positive or negative)
indicates the direction of travel along the axis. The ellipsis (...) indicates a variable num-
ber of arguments. Each argument is an int that represents the distance along succeeding
axes that the data is to travel. You must include as many arguments as there are axes in the
current shape. If the data is not to move along an axis, specify the distance for that axis as

0.

from_grid lets you combine movement along different axes. For example, in the previous
section we used two calls to from_grid dim so that each dest element got the value
from the source element that was one position lower along axis 0 and two positions higher
along axis 1. The following call to from_grid accomplishes the same thing:

dest = from_grid(&source, fill, -1, 2);

The -1 argument specifies the direction and distance of the communication along axis 0;
the 2 argument specifies the direction and distance of the communication along axis 1. The
movement along axis 1 takes place after the movement along axis 0. That is, the dest
elements first get the source elements one position lower along axis 0; the dest elements
that are two positions lower along axis 1 then gets these values from these other dest
elements.

Note an important difference between the single from_grid call and the two
from_grid_dim calls, however. With from_grid, the fill value is inserted only after all
data movement is completed. No fill values are inserted when elements try to get from
beyond the border in intermediate steps. This ensures that elements of the destination paral-
lel variable receive fill values from corresponding elements of the fill parallel variable. But
it yields a different result from consecutive from_grid dim calls, where the fill value is
inserted for each call.

C* Programming Guide
* ":. . : : . : . : - - '

Figure 56 shows the results of the from grid call shown above on the data in Figure 52.
Compare these results with those for the two from_griddim calls shown in Figure 54
(the arrow on the left shows that [0] [2] source ends up at [1] [0] dest).

dest = fromgrid(&source, fill, -1, 2);

0 1 2 3

1 2 1 3 1 4 1 2 1

3 1 401411 421431

source dest fill

1 2 _

1 2

4

4

4

3 4I 1 2

Figure 56. An example of the from _grid function

from_grid handles inactive positions in the same way that from_grid dim does.

12.3.2 With Parallel Data of Any Length

Like from_grid_dim, from_grid has an overloaded version that can be used with
parallel data of any length. Its definition is:

void from_grid (
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int distance_along_axis_0, ...);

Once again, destp, sourcep, and valuep are pointers to parallel locations that are
length bits long. Specify the data movement for each axis in the arguments

0

1

2

160

Chapter 12: Grid Communication 161

distancealong_axis_n. destp gets the value of sourcep based on these arguments,
unless this brings it beyond the border of the grid, in which case it gets a value from the
corresponding location pointed to by valuep.

12.4 The to_grid and to_grid_dim Functions

The to_grid and to_grid dim functions are similar to from_grid and
from_grid_dim, except that they are send operations instead of get operations. Both pairs
of functions provide grid communication, with substitution of a fill value when the com-
munication would otherwise go beyond the boundary of the grid. Both provide
overloadings for arithmetic and aggregate types. The differences between the get opera-
tions and the send operations are:

• In the way the distance argument is interpreted

* In the way inactive positions behave

These differences are described in more detail below.

12.4.1 With Arithmetic Types

The definitions of to_grid and to_grid dim (for the versions that take arithmetic
types) are as follows:

void to_grid (

type:current *destp,

type: current source,

type: current *valuep,
int distance_along_axis_0, ...);

void to_grid_dim (

type:current *destp
type:current source,

type:current *valuep,
int axis,
int distance);

162 C* Programming Guide

where:

destp is a scalar pointer to the parallel variable to which values are to be sent.
This parallel variable can be of any arithmetic type; it must be of the
current shape.

source is the parallel variable that is to send its values. It can be of any arith-
metic type; it must be of the current shape and of the same type as the
parallel variable pointed to by destp.

valuep is a scalar pointer to a fill parallel variable whose values are to be used
when elements of source try to send values to destinations beyond
the border of the grid. It must be of the current shape and have the
same type as source.

distance_along_axisO
(for to_grid) specifies how many positions along axis 0 the values
are to travel. For example, if distance along_axis_0 is 2, each
parallel variable element of source sends a value to an element of the
parallel variable pointed to by destp whose position is two greater
along axis 0. Include a distance argument for each dimension in the
current shape. If the data is not to move along an axis, specify the dis-
tance for that axis as 0. The distance can be a negative number, which
reverses the direction in which the data is to travel.

axis (for to_grid_dim) specifies the axis for the communication.

distance (for to _grid dim) specifies how many positions along axis the
values are to travel, as discussed in the description of
distance_along_axis_O.

There is no return value.

Note the way that the distance argument is interpreted in send operations like to grid
and to_griddim. Specifying a positive integer for the distance sends values to higher-
numbered positions. This is different from the behavior for get operations like from_grid
and from grid_dim, where specifying a positive integer for the distance gets values from
higher-numbered positions.

When Positions Are Inactive

Since togrid and to_grid dim are send operations, the following rules apply when
positions are inactive:

Chapter 12: Grid Communication 163

* Elements at active positions can send values to elements at inactive positions.

* Elements at inactive positions cannot send their values.

* Elements at border positions receive fill values even if they are inactive. This fol-
lows the general behavior of send operations, in which elements at inactive
positions can be sent values.

Examples

The first example uses to_grid_dim to achieve the same result as the use of
from_grid dim shown in Figure 53. The goal is for source to send values to elements
of dest that are one position higher along axis 0. When the sending goes beyond the bor-
der of the grid, values of the corresponding elements of fill are used instead. The
following code accomplishes this:

to_grid_dim(&dest, source, &fill, O, 1);

The results are shown in Figure 57.

to_grid_dim(&dest, source, &fill, O, 1);

0 1 2 3

1 2 3 1 4 1 2

3 140 41 42 432

source dest fill

1 2 3

1 2 3
2 I

4

4

4

41 2 3

Figure 57. An example of the to_grid_dim function

Similarly, to obtain the same results as those shown in Figure 54 for forgrid dim, use
the following code:

0

1

2

C* Programming Guide

to_grid_dim(&dest, dest, &fill, 1, -2);

These two calls to to_grid dim are similar to the following call to to_grid:

to_grid(&dest, source, &fill, 1, -2);

Note, however, that, as with from_grid, the fill values for to_grid are inserted only
after all data movement has occurred. In this case, this produces a slightly different result
for the single to_grid call; see Figure 56.

In all cases, note that the difference from the corresponding from_grid or
from_griddim call is that the sign of each distance argument is reversed.

The final example makes positions [0] and [2] inactive and then calls to_grid_dim:

where (source != 7)

togriddim(&dest, source, &fill, O, 1);

Figure 58 shows the results.

where (source != 7)

to_grid dim (&dest, source, &fill, O,

D active

1) ; [inactive

0 1 2 3

source 7 5 7 9 1

dest

fill I 1 1 I"I':1 1

Figure 58. An example of to_grid dim when position are inactive

Note how the rules for inactive positions and send operations are applied in Figure 58:

I : I 1 I I:

164

Chapter 12: Grid Communication 165

[0] source and [2] source are at inactive positions, so they don't send their val-

ues to [1]dest and [3]dest.

[1] source sends its value to 2] dest, even though position [2] is inactive.

* [O] fill sends its value to [0] dest, even though position [0] is inactive.

12.4.2 With Parallel Data of Any Length

The definitions of to_grid and to_grid dim for parallel data of any length are as fol-
lows:

void to_grid

void:current *destp,

void:current *sourcep,

void:current *valuep,

int length,

int distance_along_axis_0, ...);

void to_griddim (
void:current *destp,

void:current *sourcep,

void:current *valuep,

int length,

int axis,

int distance);

These versions are useful if you want to transfer data in a parallel array or parallel structure.

As with the corresponding versions of from_grid and from_grid_dim, the length ar-

gument specifies the length of the locations pointed to by destp, sourcep, and valuep.
There is no return value, and the destination is specified as the first argument to the func-

tion.

166 C* Programming Guide

12.5 The fromtorus and fromtorusdim Functions

A torus is a doughnut-shaped surface. The C* "torus" functions (two more are discussed
in the next section) use the grid as if it were wrapped into a torus, with the opposite borders
of the grid connected. If a value is required from beyond the border, it comes from the other
side of the grid. Thus, these functions don't need the fill value used in the "grid" functions,
since there is never a case where an element will not be able to obtain a value because it
is beyond the border.

Except for this difference, from_torus and from_torus_dim are equivalent to
from_grid and from_grid_dim. As with the other grid functions, there are overloaded
versions for use with all arithmetic and aggregate types.

12.5.1 With Arithmetic Types

The definitions of from_torus and from torus_dim (for the versions that take arith-
metic types) are as follows:

type:current from_torus (
type: current *sourcep,

int distance_along_axis_0, ...);

type:current from_torus_dim

type: current *sourcep,

int axis,

int distance);

Let's look at how the results change when we use these functions on data from previous
sections.

For example, let's take the data from Figure 52 and use from torus dim instead of
from_grid _dim. The goal is the same: dest elements are to get the values of source
elements that are one position lower along axis 0:

dest = fromtorusdim(&source, 0, -1);

Note that from_torus dim does not require a valuep argument, since values wrap from
the other side of the grid. The results of this statement are shown in Figure 59. The arrows

Chapter 12: Grid Communication 167

in the figure show the movement for two elements of source: [0] [0] dest wraps around
to get the value of [3] [0] source, and [2] [3]dest gets the value of [1] [3] source.

dest = from torus dim(&source, 0, -1);

0 1 2 3

1o 1I

ii 20 21 22 23 10 II 12 13

2

3

destsource

Figure 59. An example of the from_torus dim function

Compare the results shown in Figure 59 with those for the equivalent from_grid dim
call, shown in Figure 53. The differences are only in the dest elements that are at position

[0][n]. from_grid dim puts the value of the corresponding element of fill into the
dest element. fromtorus dim wraps around to the other side of the grid and has the
dest elements get the values of the source elements at position [3][n].

Similarly, using the same source data, the following from torus call:

dest = fromtorus(&source, -1, 2);

produces the results shown in Figure 60. Compare these results with those shown in
Figure 54, which are the results for the two from_grid_dim calls. Once again, dest ele-

ments that previously were assigned values of fill now get values of source elements
from the other side of the grid. In Figure 60, the arrows show where the value of
[0] [3] source ends up: after the movement along axis 0 [1] [3] dest gets it, and after
the movement along axis 1 it ends up wrapping around to [1] 1] dest.

0 12 13

21

':i.3 .
.:%'. ii.: .. i.... l

200

::32.::''' '::

'2

.'''"

1 120 21
/

22 23 10 11 12 13

C* Programming Guide
...

30. .3...1.. :32:::33
dest

10 11 12 '13

21

; . .I20 22 23-30 32 3

dest = from torus(&source, -1, 2);

0 1 2 3

0

Step 1:
Movement
along axis 0

Step 2:
Movement
along axis 1

42

12

22

32

43

13

23

33

dest
(after)

42

12

22

32

43

13

23

33

Figure 60. An example of the fromtorus function

from_torus and from_torusdim are both get operations, so their handling of inactive
positions is the same as that of from_grid and from_grid dim.

12.5.2 With Parallel Data of Any Length

The from torus and from torus dim functions also have overloaded versions that can
be used with parallel data of any length. Their definitions are:

void fromtorus(
void:current *destp,

void:current *sourcep,
int length,
int distancealongaxis_0, ...);

11

21
... ::,-_:

I

source
2

3

dest
(before)

10

20

12

22

13-

23

20 22 23

131:3

168

Chapter 12: Grid Communication 169

void fromtorusdim (
void:current *destp,

void:current *sourcep,

int length,

int axis,

int distance);

Note that these definitions are the same as those for from_grid and from_grid_dim,
except that a valuep argument is not required, since values wrap when they go beyond the
border of the grid.

12.6 The totorus and totorusdim Functions

The to_torus and to_torus_dim functions are send operations that provide grid com-
munication with wrapping to the other side of the grid. As with the other grid
communication functions, the dim version provides communication along one axis only,
while the more general version provides communication along all axes. Both functions
have overloaded versions for all arithmetic and aggregate types.

12.6.1 With Arithmetic Types

The to_torus and to_torus_dim functions have the following definitions when used
with an arithmetic type:

void totorus (
type: current *destp,

type: current source,
int distance_along_axis_0, ...);

void totorusdim (
type:current *destp,
type: current source,
int axis,
int distance);

where:

0-

170 C* Programming Guide

destp is a scalar pointer to the parallel variable to which values are to be sent.
This parallel variable can be of any arithmetic type; it must be of the
current shape.

source is a parallel variable from which values are to be sent; it must be of the
current shape and have the same arithmetic type as the parallel vari-
able pointed to by destp.

distance_along_axis O

(for to torus) specifies how many positions along axis 0 the values
of source are to travel. If the distance is 2, for example, source
sends its value to the destination element whose position is two greater
along axis 0. Include a distance argument for each dimension in the

current shape. If the data is not to move along an axis, specify the dis-
tance for that axis as 0. The distance can be a negative number, which
reverses the direction in which the data is to travel.

axis (for to_torus_dim) specifies the number of the axis along which the
values of source are to be sent.

distance (for to torus dim) specifies how many positions along the axis the
values of source are to be sent, as discussed in the description of
distance_along_axis_0.

The behavior of inactive positions for to_torus and to_torus_dim is the same as it is

for to _grid and to_grid_dim: elements of source at inactive positions cannot send
values, but source can send values to elements at inactive positions.

Examples

The following code uses the source data also used in previous figures; it sends values of
source to dest elements that are one position lower along axis 0:

totorusdim(&dest, source, 0, -1);

The results are shown in Figure 61. Compare these results to those for the comparable call
to from_torus_dim, shown in Figure 59. The arrows in the figure show the movement
of two elements of source: [0] [3] source wraps around and sends its value to
[3] [3]dest; [3] [O]source sends its value to [2] [0]dest.

Chapter 12: Grid Communication 171
.. : ·i~l~rI::.: : :- -i:i :,.:.: -:::::: . . :::::"::: .. : : :

Figure 61. An example of the to_torus dim function

to-torus is similar to totorus_dim, except that you must specify the data movement
for each axis, as you do for fromtorus and from_grid. The following code uses the

same source data used in previous figures:

to torus(&dest, source, -1, 2);

The results are shown in Figure 62. Compare these results to those for the comparable call

to from_ torus, shown in Figure 60. The arrows in the figure show where
[0] [3] source ends up after the movement along axis 0 and axis 1.

to torus dim(&dest, source, 0, -1);

0 1 2 3

0 o10 I1112113- 1 201 21 2223

" 'n 1 1 I) I [~ a

2

3 1 1011 12 13

destsource

/
�

/

m _'-

I f-V 4.L I eLe 1 I

C* Programming Guide
? Z " 'L... . L

to torus(&dest, source, -1, 2);

0 1 2 3

0

1

source
2

3

Step 1:
Movement
along axis 0

23
_

33

43

k1312

dest
(before)

22

32

42

13

Figure 62. An example of the to torus function

In the following example, we make a position inactive and call to_torus dim:

where (source != 7)

totorus dim(&dest, source, 0, 1);

Figure 63 shows the results for some sample data.

dest
(after)

22

32

42
"~

23

33

43

Step 2:
Movement
along axis 1

172

12

Chapter 12: Grid Communication 173
................ -- -... -... I . - . .I. - . .: : ,,I,,,,,, ,,. I .. .-.,: .,., , : . , - - .

Figure 63. An example of to torusdim when a position is inactive

Note how the rules for send operations with inactive positions are applied in Figure 63:

* [1] source sends a value to [2] dest, even though position [2] is inactive.

Position [2] is inactive, so 2] source doesn't send a value to [3] dest, which
keeps its original value from before the call.

12.6.2 With Parallel Data of Any Length

The to torus and to torus dim functions also have overloaded versions that can be

used with parallel arrays or parallel structures. Their definitions are:

void totorus(

void:current *destp,

void:current *sourcep,

int length,

int distance_along_axis_O, ..);

void totorus dim (
void:current *destp,
void:current *sourcep,
int length,

int axis,

int distance);

where (source != 7) active

to torusdim(&dest, source, 0, 1); inactive

0 1 2 3

source 3 5 1 7 9

dest 9 3 5

174
.. . . ., ,,,, . . . , , . I, . . , .. . I -,. . , .

C* Programming Guide

Note that these definitions are the same as those for from torus and from torus dim.
But, as with the versions that use arithmetic types, the distance arguments are interpreted

differently, and the behavior of inactive positions is different.

Chapter 13

Communication with Computation

This chapter discusses C* library functions that let you perform computations on parallel
values that are being transmitted. Most of these functions use grid communication. The
functions differ in the following ways:

* The kinds of computation that are available for each function. See Section 13.1.

* The way in which parallel variable elements are selected. For example, some func-
tions let you divide the parallel variable elements into groups called scan classes.
You can then operate on each scan class independently. See Section 13.2.

* The way in which thefunction reports the results of the computation. For example,
scan provides a running total of its computations; spread provides only the final
result.

Include the file <cscomm. h> when calling any of the functions discussed in this chapter.

13.1 What Kinds of Computation?

The scan, reduce, spread, multispread, and global functions let you specify a com-
biner type that indicates the kind of computation or combining you want carried out on the
parallel data. Each of these functions is overloaded for some subset of the following com-
biner types:

175

C* Programming Guide
Table 4. .. Combin er types. - :

Table 4. Combiner types

Meaning

CMC combiner max

CMC combiner min

CMC combiner add

CMCcombinercopy
CMCcombiner_multiply
CMCcombinerlogior

CMCcombiner_logxor

CMCcombiner_logand

Take the largest value among the specified
parallel variable elements.
Take the smallest value among the specified
elements.
Add the values of the specified elements.
Copy the values of the specified elements.
Multiply the values of the specified elements.
Perform a bitwise logical inclusive OR on
the specified elements.
Perform a bitwise logical exclusive OR on
the specified elements.
Perform a bitwise logical AND on the
specified elements.

These combiner types are also used by the send function, which is described in the next
chapter.

13.2 Choosing Elements

Several of the C* functions discussed in this chapter provide methods for choosing the
subsets of parallel variable elements on which they are to operate. The terminology we use
in referring to these subsets of elements comes from scan, which is the most general of
the functions that use these methods.

13.2.1 The Scan Class

Two positions belong to the same scan class if their coordinates differ only along a speci-
fied axis. The following functions use the concept of a scan class: scan, reduce,
copy_reduce, spread, copy_spread, enumerate, rank, and multispread.

176

Combiner

Chapter 13: Communication with Computation 177

To see how scan classes work, consider the 2-dimensional shape shown in Figure 64. (This
and other shapes in this chapter are smaller than legal size in C*, so that they are easy to

visualize.)

Figure 64. A 4-by-4 shape

If you specify axis 0 as an argument to one of the functions listed above, you get the scan

classes shown in Figure 65. Positions [0][0], [1][0], [2][0], and [3][0] differ only in their

coordinates for axis 0; therefore, they belong to the same scan class. Position [0][1] does

not belong to this scan class, because it has a different axis 1 coordinate; it belongs to a scan

class with positions [1][1], [2][1], and [3][1].

Thus, specifying axis 0 for this shape creates four separate scan classes, each of which is

a column of positions through axis 0 in the shape. Functions like scan operate on each of
these scan classes independently.

Figure 65. Scan classes for axis 0 of a 2-dimensional shape

Axes

°1e r 0 1 2 3
V

0

1

2

3

scan class

7-

C* Programming Guide
* -. - . , ". . . - ' : : I ' I. : I I: , .

Specifying axis 1, on the other hand, creates four different scan classes, each one consisting

of a row of positions through axis 1 in the shape, as shown in Figure 66.

Figure 66. Scan classes for axis 1 of a 2-dimensional shape

If you have a 1-dimensional shape, there is, of course, only one axis you can specify, and

only one scan class for the shape. You can, however, subdivide a scan class, as we discuss

below.

If you have a 3-dimensional shape, specifying an axis once again gives you a set of scan

classes consisting of the rows of positions that cross this axis. For example, in a
2-by-2-by-2 shape, specifying axis 0 creates the following four scan classes:

[0][0][0] and [1][0][0]

[0][1][0] and [1][1][0]

[0][0][1] and [1][0][1]

[0[[1][1] and [1][1]]

To operate on more than one dimension in a multi-dimensional shape (for example, on

planes of positions instead of rows of positions), you must use the multispread or

copymultispread function; these functions are discussed in Section 13.8.

:.·: ;::·::: :: ·- · -I:: .- ·

scan class

178

Chapter 13: Communication with Computation 179

The Scan Subclass

Only active positions participate in computations within a scan class. The active positions
within a scan class are referred to as the scan subclass.

13.2.2 The Scan Set

There may be times when you want a function to operate independently on different parts
of a scan subclass. The scan, enumerate, and rank functions let you do this by subdivid-
ing a scan subclass into scan sets.

To create scan sets, declare a bool-sized parallel variable of the shape on which the func-
tion is to operate, and initialize it to 0. This parallel variable is referred to as the sbit; it is
used as the sbit argument to the functions listed above. Assign a 1 to an element of this
parallel variable to mark the beginning of a scan set at that element's position. In the sim-
plest case, the scan set for each position starts either at the beginning of the scan subclass,
or at the nearest position below it in the scan subclass that has its sbit set to 1.

Figure 67 shows a 1-dimensional shape divided into scan sets. In the figure, the scan set

for position 1, for example, consists of positions 0 and 1 (the scan subclass starts at position
0, so the scan set starts there also, even if the sbit for that position isn't set to 1). The scan
set for position 7 consists of positions 5, 6, and 7, since [5] sbit is set to 1, thus starting
a new scan set.

Figure 67. Scan sets in a 1-dimensional shape

C* Programming Guide

Note than scan sets include only active positions; see Section 13.2.3, however, for a more
in-depth discussion of inactive positions and scan sets.

To show how scan sets work, let's use an example in which we keep a running total of the
values in the parallel variable data (this is a scan operation, as discussed in Section 13.3).
The results are shown in Figure 68.

sbit

data

running_total

0 1 2 3 4 5 6 7

O 0 01 0 O 1 O O

0 1 2 3 4 5 6 7

o 1 3 3 7 5 11 18

Figure 68. An operation that provides a running total, using scan sets

In the example, [1] running_total contains the sum of [0] data and [1 data, since

0 and 1 are the positions in its scan set. [3] running_total contains only the value in

[3] data, since [3] sbit is set to 1, thus starting a new scan set in this position.

You actually have more flexibility than this in how you can divide up scan subclasses:

* Whether an operation is inclusive or exclusive affects the way scan sets are inter-

preted; see "Inclusive and Exclusive Operations," below. The example in

Figure 68 shows an inclusive operation.

* There are two ways of interpreting the sbit; see Section 13.2.3. In particular, this
affects the way scan classes are divided when there are inactive positions, and
when an operation proceeds in a downward direction. The example in Figure 68

shows an operation that proceeds in an upward direction.

180

Chapter 13: Communication with Computation 181

Inclusive and Exclusive Operations

The way in which scan sets work when you are performing a particular operation depends
on whether the operation is inclusive or exclusive. (NOTE: In this section, we are ignoring
the effect of segment bits and start bits; these are discussed in the next section.)

In an inclusive operation (specified by CMC_inclusive), an element participates in the
operation for its position-in other words, the scan set for a position contains that position.
As we mentioned, Figure 68 shows the results of an inclusive operation.

In an exclusive operation (specified by CMC_exclusive), the scan set for an element does
not contain the element itself-in other words, it does not participate in the operation for
its position. Figure 69 shows the results of an exclusive operation, using the same data as
that shown in Figure 68.

sbit

data

running_total

0 1 2 3 4 5 6 7

O O O 1 O 1 0o O

o 1 2 3 4 5 6 7

0 0 1 0 3 0 5 11

Figure 69. An exclusive operation on scan sets

Note the difference between the two results. In the inclusive operation, for example,
[2] running_total receives the running total for [0] data, [1 data, and [2] data; in

the exclusive operation, [2] running_total receives the running total only for [0] data
and [1] data. When there are no preceding elements in the scan set (for example, in

[3] running_total), the element receives the identity for the operation.

182 C* Programming Guide

13.2.3 Segment Bits and Start Bits

There are two different kinds of sbits: segment bits and start bits. Use the smode argument
to the scan, enumerate, or rank function to specify which kind of sbit you want, as dis-
cussed below.

If smode Is CMC_segment_bit

If the value of the smode argument is CMCsegment_ bit, the sbit is considered a segment
bit, and it divides a scan subclass into segments, as follows:

* An sbit element set to 1 starts a new segment, whether or not the element appears
in an active position.

* The way in which the segment bit divides the scan subclass is not affected by the
direction of the operation.

* Operations in one segment never affect values of elements in another segment.

If smode Is CMC startbit

If the value of the smode argument is CMC start bit, the sbit is considered a start bit,
and scan classes are divided as follows:

* An sbit element set to 1 divides a scan subclass only if its position is active.

* The division is affected by the direction of the operation. When the direction is
downward, the division occurs from the higher coordinate to the lower coordinate.

* When an operation is exclusive, the position whose sbit element is set to 1 will
receive a value from the preceding scan set.

These differences between segment bits and start bits are discussed below.

Inactive Positions

When the sbit is a segment bit, a new scan set is created, even though the position where
it starts is inactive. Figure 70 shows an example (the scan sets displayed are for positions
[2], [4], and [7]).

Chapter 13: Communication with Computation 183
!': i::.::':. '' ·::.! ?.:i:; I:. ..:::::;:::':::%::X:' .' ::': i::':::::':' ~' ~:.: SJii ::'::.:.: ' :. :': : :::'�i:i: :i,:l:: :.:i. ";.::Y~: ':~ '-i'~:..;: :~'::~: ;.;:.~::i': '::-;::::.:llli'l::.":: .iI:I :':..:: ..:/ . . - .

Figure 70. An inclusive operation in an upward direction
on segment-bit scan sets, with an inactive position

Note that position [3] does not participate in the operation, even though it starts a new scan
set.

A start bit does not start a scan set if its position is inactive. Figure 71 is an example. Note
that the scan set for position [4] begins at position [0], not at position [3], as in Figure 70.

Figure 71. An inclusive operation in an upward direction
on start-bit scan sets, with an inactive position

D active

O 1 2 3 4 5 6 7 active

segment bit 0 O 1 0 1 0 0

scan sets

data 0 1 2 3 j 4 5 6 7

running total 0 1 3 4 5 11 18

[- active

D inactive

0 1 2 3 4 5 6 7

start bit O O O:. |.:1 0 1 0 0

scan sets

data 0 1 2 3 4 5 6 7

runningtotal 0 1 3 7 5 11 18

184 C* Programming Guide

The Direction of the Operation

When the direction of the operation is upward, it proceeds from lower-numbered positions
to higher-numbered positions along the scan subclass. Both kinds of sbits divide the scan
subclass in the same way when the direction is upward (provided that all positions are ac-
tive); see Figure 67 for an example. You specify an upward direction with the argument
CMC_upward.

When the direction of the operation is downward (specified by the argument
CMC_downward), the operation proceeds from higher-numbered positions to lower-num-
bered positions along the scan subclass. In this case, segment bits divide the scan subclass
in the same way as the sbits shown in Figure 67; however, since the operation proceeds in
a downward direction, this means that a segment bit ends a scan set, and the operation be-
gins again in the position with the next lowest coordinate. Figure 72 is an example; it shows
the scan sets for positions [0], [3], and [5].

Figure 72. An inclusive operation in a downward direction
on segment-bit scan sets

Start-bit scan sets, however, follow the downward direction; in other words, start bits start
scan sets, rather than ending them. Figure 73 is an example; it shows the scan sets for posi-

tions [0], [4], and [6].

0 1 2 3 4 5 6 7

segment bit O O 1 O 0

' .0 <-- -, scan sets

data 0 1 2 3 4 5 6 7

running_total 3 3 2 7 4 18 13 7

Chapter 13: Communication with Computation 185
- :- - . :.: : ::: :....:: --:: ::: :.: . . . ::::::I..:...:....

Figure 73. An inclusive operation in a downward direction
on start-bit scan sets

Data from Another Scan Set

In exclusive operations on start-bit scan sets, the first position in a scan set receives the
result of the operation for the preceding scan set, if there is one. Figure 74 is an example.

0 1 2 3 4 5 6 7

startbit 0

data 0 1 2 3 4 5 6 7

running total 0 0 o ll 33 [3 7 1 5 ,1

Figure 74. An exclusive operation in an upward direction
with start bits

0 1 2 3 4 5 6 7

start bit I 0l

scan sets

data 0 1 2 3 4 5 6 7

1 6 5 1 3 1 9 1 5 113 1 7

-

[I [. . I I I I

I

runningtotal 1 6

I I I i I I i I I I

I I I i I I i I I I

186 C* Programming Guide

Compare these results with those shown in Figure 69, which assumes that the sbit is a seg-
ment bit. [3] running_total and [5] running_total receive the results from the
preceding scan set, rather than 0. [0] running_total still receives 0 (the identity for the
operation) because there is no preceding scan set.

What constitutes a "preceding" scan set depends on the direction of the operation, of
course. In a downward direction, scan sets with higher-numbered coordinates along the
axis precede scan sets with lower-numbered coordinates.

13.3 The scan Function

Use the scan function to provide running results for operations on the scan sets you
specify.

The definition of scan is as follows:

type:current scan (

type: current source,
int axis,

CMCcombinert combiner,
CMCcommunication direction t direction,
CMC_segment_mode_t smode,
bool:current *sbitp,

CMCscan inclusion t inclusion);

where:

source is the parallel variable whose values are to be used in the operation. It
must be of the current shape, and it can have any arithmetic type.

axis specifies the axis along which the scan class or classes are to be cre-
ated; see Section 13.2.

combiner specifies the type of operation that scan is to carry out. Possible val-
ues are listed in Section 13.1.

direction specifies the direction of the operation. Possible values are
CMC_upward and CMC_downward.

Chapter 13: Communication with Computation 187

smode specifies whether the sbit is a segment bit or a start bit; see Section
13.2.3. Possible values are CMCstart bit, CMCsegmentbit,
and CMCnone. Specify CMC_none if there is no sbit.

sbitp is a scalar pointer to a bool-sized parallel variable of the current
shape. This parallel variable is the sbit, which creates scan sets for the
operation. Specify CMC_nofield if there is no sbit.

inclusion specifies whether the operation is exclusive or inclusive; see "Inclu-
sive and Exclusive Operations," above. Possible values are
CMC exclusive and CMC inclusive.

The function returns the result of the scan in a parallel variable of the current shape and
with the same type as source.

The types CMC combiner_t, CMC_communication directiont, CMC_seg-
ment mode_t, and CMC_scaninclusiont are defined by the compiler.

The scan function provides a running result of the operation you specify on the parallel
variable you specify. If you assign this result to a parallel variable of the current shape, each
element of the parallel variable receives the running result for its position. The operation
is carried out independently for each scan set.

13.3.1 Examples

The following example adds the values of data in an upward direction and assigns the
running result to running_total; there is no sbit, and the operation is inclusive. The
results are shown in Figure 75.

running_total = scan(data, 0, CMC_combiner_add,
CMC_upward, CMC_none, CMC_no_field, CMC_inclusive);

188 C* Programming Guide
.. .- ii-.::4 . : """- / . :'' / : '.::-- . . :.:... .:... .: ''':.. . . " : :.::,-i!;i: :: :" i :.:: i. : :~-' .

Figure 75. An example of the scan function with no sbit

The following example assigns the minimum value of data in the scan set to
running_min. The direction is downward, the operation is inclusive, and the sbit is a start
bit. The results are shown in Figure 76.

running_min = scan(data, 0, CMC combinermin, CMC downward,
CMCstartbit, &start bit, CMC inclusive);

Figure 76. An example of the scan function with a start bit and a downward direction

running_total = scan(data, 0, CMC_combiner_add,
CMC_upward, CMCnone, CMC_nofield, CMC_inclusive);

0 1 2 3 4 5 6 7

data 4 7 9 5 3 5 9 6

runningtotal 4 11 20 25 28 33 42 48

running_in = scan(data, 0, CMC_combiner_min,
CMC downward, CMC start bit, &start bit,
CMC inclusive);

0 1 2 3 4 5 6 7

start bit 0 0 0 0 1 0 0 0

data 4 7 9 5 3 5 9 6

runningmin 3 3 3 3 3 5 6 6

Chapter 13: Communication with Computation 189
,, .:......:..:.:..-: , - -.:

Note that you would get a different result in this example if the sbit were a segment bit,
since segment bits and start bits behave differently when the direction is downward.

The following example multiplies the values of data in the scan set and assigns the prod-
uct to runningproduct. The direction is upward, the operation is exclusive, and the sbit
is a segment bit. The results are shown in Figure 77.

running_product = scan(data, 0, CMC_combiner_multiply,

CMC_upward, CMC_segment_bit, &segment_bit, CMC_exclusive);

running_product = scan(data, 0,

CMC_combiner_multiply, CMC_upward,

&segment_bit, CMC_exclusive);

CMC segment bit,

0 1 2 3 4 5 6 7

segment bit 0 0 0 0 1 0 0 0

data 4 7 9 5 3 5 9 6

9 . . .

running_product I 1 4 128 252 1 13 115 135

Figure 77. An example of the scan function using a segment bit and an exclusive operation

These examples are of a 1-dimensional shape, which by definition has only one scan class.
If a shape has more than one dimension, more than one scan class is created, and scan

carries out the operation on all scan subclasses (or scan sets, if the sbit is used) at the same
time.

The destination parallel variable can be the same as the source parallel variable. In other
words, a statement like the following is legal:

data = scan(data, 0, CMC_combiner_add, CMC_upward, CMCnone,

CMC no field, CMC inclusive);

In this case, the elements of data are overwritten with the results of the operation.

190 C* Programming Guide

13.4 The reduce and copy_reduce Functions

13.4.1 The reduce Function

Use the reduce function to put the result of an operation into a single parallel variable
element in each scan subclass.

The reduce function has the following definition:

void reduce (

type: current *destp

type: current source,

int axis,

CMCcombinert combiner,
int tocoord);

where:

destp is a scalar pointer to a parallel variable, of the current shape and of any
arithmetic type. One element of each scan subclass of this parallel
variable receives the result of the operation.

source is a parallel variable (of the current shape) whose values are to be used
in the operation. It must be of the same type as the parallel variable
pointed to by destp.

axis specifies the axis along which the scan class or classes are to be
created; see Section 13.2.

combiner specifies the type of operation that reduce is to carry out. Possible
values are CMCcombiner max, CMC combiner min, CMC com-
biner_add, CMC_combiner_logior, CMC_combiner_logxor,

and CMC_combiner_logand.

to_coord specifies the coordinate of the parallel variable pointed to by destp
that is to receive the result of the operation.

Note the following differences between reduce and scan:

reduce puts the final result of the operation into a single parallel variable element
of the scan subclass; it does not produce a running result.

Chapter 13: Communication with Computation 191
·. : .:l·: : : .- .::.ii.::- . .i

* reduce does not use scan sets; therefore, it does not have the arguments smode
and sbit.

* Copying with reduction is handled as a separate function, which is discussed
below.

Elements of source that are at inactive positions do not participate in the operation. If a
position specified by to coord is inactive, that element of dest does not receive the
result.

dest can be the same parallel variable as source; the result simply overwrites the value(s)
in the specified element(s).

An Example

The following statement puts the maximum value of data into element 0 of max. The re-
sults are shown in Figure 78.

reduce(&max, data, 0, CMCcombiner max, 0);

Figure 78. An example of the reduce function

Incidentally, this statement is virtually equivalent to the following C* statement:

[O]max = >?= data;

reduce(&max, data, 0, CMCcombiner max, 0);

0 1 2 3 4 5 6 7

data 4 7 9 5 3 5 9 6

max 9

192 C* Programming Guide

But note the following:

• If position [0] were inactive, the assignment statement above would work; if you
used reduce, the reduction would not take place.

• The equivalence holds only for 1-dimensional shapes. In shapes with more dimen-
sions, reduce carries out its operation separately for each scan subclass, whereas
the reduction assignment carries out its operation once for all elements of the
parallel variable.

13.4.2 The copy_reduce Function

Use the copy_reduce function to copy a value from one parallel variable element of a
scan subclass to another parallel variable element.

The definition of copy_reduce is as follows:

void copy_reduce (
type: current *destp

type:current source,
int axis,

int to_coord,
int fromcoord);

The arguments are the same as for the reduce function, except that there is a from_coord

argument instead of a combiner. from_coord specify the element of source from which
the value is to be copied. It is copied into the to_coord element of the parallel variable
pointed to by destp for each scan subclass. If either from_coord or to coord specifies
an inactive position, the copying does not take place for that scan subclass.

An Example

The following example copies the values of elements in row 1 of data into elements of
row 0 of copy.

copy_reduce(©, data, 0, 0, 1);

The results for some sample values are shown in Figure 79.

Chapter 13: Communication with Computation 193

1210 11

Figure 79. An example of the copy_reduce function

If the example of copy_reduce shown in Figure 79 were applied to a 1-dimensional

shape, it would be equivalent to:

[O]copy = [1]data;

If position [0] were inactive, however, the results would be different. [0] copy would get

the result from [1] data if you used the assignment statement above; it would not get the

value if you used copy_reduce.

13.5 The spread and copy_spread Functions

13.5.1 The spread Function

Use the spread function to place the result of an operation into all the elements of a

specified parallel variable in a scan subclass.

The spread function has the following definition:

type:current spread (

type: current source,
int axis,
CMC combiner t combiner);

copy_reduce(©, data, 0, 0, 1);

0 1 2 3

0 0 1 2 3

data 1 10 11 12 13 copy

2 20 21 22 23
I I I I I

13

194 C* Programming Guide

where:

source is a parallel variable (of the current shape) whose values are to be used
in the operation. It can have any arithmetic type.

axis specifies the axis along which the scan class or classes are to be cre-
ated; see Section 13.2.

combiner specifies the type of operation that spread is to carry out. Possible
values are CMCcombiner max, CMC combiner min, CMC com-
biner_add, CMCcombiner_logior, CMC_combiner_logxor,

and CMC_combiner_logand. See Section 13.1.

spread returns its result in a parallel variable of the current shape; the parallel variable has
the same type as source. This destination parallel variable can be the same as the source
parallel variable, in which case the elements of the source parallel variable are overwritten
with the result.

The spread function "spreads" the result of an operation into all active elements of the
destination parallel variable in a scan subclass. Like reduce, spread does not use scan
sets, and it does not have a CMC combiner copy operation; copying is handled by the
copy_spread function, as discussed below.

Inactive positions do not participate in the operation.

An Example

The following code adds the values of the elements in data in the scan subclasses of axis
1, and assigns the result to total. The results for sample data are shown in Figure 80.

total = spread (data, 1, CMC_combiner add);

Chapter 13: Communication with Computation 195
~~~~~~~~~~~~~~~~I - . .... - . -. - .- I .. I ... ... -..- I ... - - . -1 I . . . . .... -. - - I...

Figure 80. An example of the spread function

13.5.2 The copy_spread Function

Use the copy_spread function to copy a value from an element of a parallel variable in
a scan subclass to all elements of a parallel variable in the scan subclass.

The copy_spread fiunction has the following definition:

type:current copy_spread (

type: current *sourcep,

int axis,

int coordinate);

where:

sourcep is a scalar pointer to a parallel variable, one value

copied.

axis specifies the axis along which the scan class or

created.

of which is to be

classes are to be

coordinate is the coordinate along axis that specifies the source parallel variable
element whose value is to be copied.

The function returns a parallel variable of the current shape and the same arithmetic type

as the parallel variable pointed to by sourcep, containing the results of the operation.

total = spread (data, 1, CMCcombineradd);

0 1 2 3

0 0 1 2 3 6 6

data 1 10 11 12 13 total 46 46 4

2 20 21 22 23 86 86 8
I I I I I

5 6
6 46

6 86
I I I



C* Programming Guide
-. . -' " :, .." .. -' :" : : ! . : - -' ' '' :,:':".."- . . ' -" , . .: .5 :-? :.. ,-' , ,:

If a specified element of the source parallel variable is inactive, its value is copied. Howev-
er, inactive positions of the destination parallel variable do not receive a result.

An Example

The following code copies the value from element [n][1] of data to elements of copy in
the same scan subclass along axis 1. The results are shown in Figure 81.

copy = copy_spread(&data, 1, 1);

Figure 81. An example of the copy_spread function

Note that, for a 1-dimensional shape, the above statement is equivalent to this statement:

copy = [l]data;

unless position [1] is inactive. In that case, the assignment statement works;
copy_spread, however, would not copy [ 1] data.

13.6 The enumerate Function

Use the enumerate function to place in each active element of a parallel variable the size
of its scan set. As we discuss in more detail below, enumerate is a generalized version of
the pcoord function.

copy = copy_spread(&data, 1, 1);

0 1 2 3

0 1 2 3 1 1 1 1

data 1 10 11 12 13 copy 11 11 11 11

2 20 21 22 23 21 21 21 21

196



Chapter 13: Communication with Computation 197

The enumerate function has the following definition:

unsigned int:current enumerate (
int axis,

CMCcommunication direction t direction,

CMCscan inclusion t inclusion,

CMC_segment_mode_t smode,
bool:current *sbitp);

All the parameters for enumerate have the same meanings and take the same values as
the corresponding parameters for the scan function; see Section 13.3. Like scan,
enumerate lets you specify a direction, an sbit, and whether the operation is to be exclu-
sive or inclusive. Note, however, that the return value is an unsigned int of the current
shape.

If you specify CM C_inclusive, enumerate includes each position in calculating the size
of the scan set for that position. If you specify CMC_exclusive, enumerate does not
include the position in calculating the size of its scan set.

An inactive position does not receive a value and is not included in the calculation of values
for other positions; see the third example, below.

13.6.1 Examples

The first example does an exclusive enumerate in an upward direction, ignoring the sbit,
and assigning the result to number. The results are shown in Figure 82.

number = enumerate(O, CMC_upward, CMC_exclusive, CMC_none,

CMCnofield);



C* Programming Guide

Figure 82. An example of the enumerate function without an sbit

This is exactly equivalent to the following use of pcoord when all positions are active:

number = pcoord(0);

Both functions initialize each parallel variable element to its coordinate along the axis. The

enumerate function, however, is more versatile than pcoord. In the next example,
enumerate uses the sbit as a start bit and proceeds in a downward direction, using the

inclusive mode:

number = enumerate(0, CMC_downward, CMC inclusive,

CMC start bit, &start bit);

The results are shown in Figure 83.

Figure 83. An example of the enumerate function with a start bit and a downward direction

CMC_upward, CMCexclusive, CMC_none,number = enumerate(0,
CMC no field);

0 1 2 3 4 5 6 7

number 0 1 2 3 4 5 6 7

number = enumerate(0O, CMCdownward,

CMC inclusive, CMCstartbit, &start_bit);

0 1 2 3 4 5 6 7

start bit O O O 0 1 0 0 0

number 5 4 3 2 1 3 2 1

198



Chapter 13: Communication with Computation 199

In the following example, the sbit is a segment bit, the enumerate is exclusive, the direction
is upward, and position 2 is inactive. The results are shown in Figure 84.

where (pl != 9)

number = enumerate(O, CMC_upward, CMC_exclusive,
CMC_segmentbit, &segment_bit);

where (pl != 9)

number = enumerate

CMCsegment_bit,
(0, CMC_upward, CMC_exclusive,

&segment bit);

0 1 2 3 4 5 6 7

segment_bit I

p1

0 Io .: l o I 1 o Io Io1

4 7 . 5 3 5 8 6

, , _ , , _ , _ , _ , , , n~ I I 

number 0 1 2 ] 1 2 3 

Figure 84. An example of the enumerate function using a segment bit
and an exclusive operation, with an inactive position

Note that the inactive position is not included in the enumeration.

13.7 The rank Function

Use the rank function to produce a numerical ranking of the values of parallel variable
elements in a scan set.

The definition of rank is as follows:

-I active

E:: inactive

. .



200 C* Programming Guide

unsigned int:current rank (

type:current source,

int axis,

CMCcommunicationdirectiont direction,
CMC_segment_mode_t smode,
bool:current *sbitp);

The parameters for rank have the same meanings and take the same values as the corre-
sponding parameters for the scan function; see Section 13.3. Like scan and enumerate,
rank lets you specify a direction and an sbit. It does not, however, let you specify that its
operation is exclusive; the operation is inclusive by default. Like the enumerate function,
rank returns an unsigned int of the current shape.

The rank function returns, for each active position, the rank of the value of the specified
parallel variable at that position in its scan set. Inactive positions are not included in the
determination of the rank for other positions, and they do not receive a rank themselves.
The ranking is from 0 to n-l, where n is the total number of positions in the scan set. The
ranks are assigned as follows:

* When the direction is upward, the lowest value is assigned rank 0.

* When the direction is downward, the highest value is assigned rank 0.

* If more than one element has the same value, their ranks are assigned arbitrarily
within the range of ranks they represent.

13.7.1 Examples

The first example has no sbit and ranks the values of data in a upward direction; it assigns
the ranks to datarank. The results are shown in Figure 85.

data_rank = rank(data, 0, CMC_upward, CMC_none, CMC_no_field);



Chapter 13: Communication with Computation 201

O, CMC_upward, CMC_none,data rank = rank(data,

CMC no field);

0 1 2 3 4 5 6 7

4 7 9 5 3 5 9 6

1 5 6 2 0 3 7 4

data

data rank

Figure 85. An example of the rank function with no sbit

In the next example, the sbit is a segment bit, the direction is downward, and position 1 is
inactive. The results are shown in Figure 86.

where (data != 7)

data_rank = rank(data, 0, CMC_downward, CMC_segment_bit,

&segment bit);

where (data != 7)

datarank = rank(data, 0, CMCdownward,

CMCsegment_bit, &segment_bit);

0 1 2 3 4 5 6 7

segment_bit I o 0

D active

[D inactive

0 oI o 1 lo l 

data 4 1:7 1 9 5 3 5 9 6

2 I -. 1 1 1 3 1 2 1 0 1 1 1

Figure 86. An example of the rank function using a segment bit
and a downward direction, with an inactive position

data rank 

. .



202 C* Programming Guide

The final example uses rank along with parallel left indexing to actually reorder parallel
variable elements according to their rank:

[rank(data, 0, CMC_upward, CMC_none, CMC_no_field)]sorted =
data;

In this example, data sends values to sorted, using the return values from rank as an
index. The key here is to have rank operate on the parallel variable that is doing the send-
ing. The results are shown in Figure 87.

Figure 87. Using rank as a parallel left index to reorder parallel
variable elements according to their ranks

Note how values move in the example: [ 0 ] data, for example, has a rank of
its value (4) is sent to [1] sorted.

1; therefore,

You can also achieve the same result using the make_send address and send functions
along with rank; see Section 14.3.3.

13.8 The multispread Function

The multispread function is like the spread function, except that you can use it to
spread the result of an operation along more than one axis at the same time. This is useful
in shapes that have more than two dimensions. For example, in a 3-dimensional shape, you

[rank(data, 0, CMC_upward, CMC_none,
CMCnofield)]sorted = data;

0 1 2 3 4 5 6 7

data 4 7 9 5 3 5 9 6

sorted 3 4 5 5 6 7 9 9



Chapter 13: Communication with Computation 203

can use spread to spread results along any one of the dimensions; multispread lets you
spread results through entire planes of positions instead of along a single dimension.

To see how this works, consider the simple 8-position 2-by-2-by-2 shape shown in
Figure 88.

Figure 88. A 3-dimensional shape

As we mentioned in Section 12.2, specifying axis 0 creates four scan classes for this shape:

[0][0][0] and [1][0][0]

[0][1][0] and [1][1][0]

[0][][1] and [1][0][1]

[0][1][1] and [1][1][1]

In each scan class, the positions differ only along axis 0. These scan classes are shown in
Figure 89.

Axes

I. ", .
I U i · , -

0

1

I
1

0

A I

I
w II I

I



204
. .. - . .''' . .·:: ......... .- 

Figure 89. Scan classes in a 3-dimensional shape

For the multispread function, you can specify more than one axis along which the posi-
tions can differ. In this case, let the positions differ along axes 0 and 1; axis 2 is fixed. This

results in two sets of positions:

[0] [0] [0]
[1] [0] [0]
[0] [1] [0]
[1] [1] [0]

and:

[0] [0] [1]
[1 [0] [1]
[0] Il[l [1]
[] I 1][1]

Figure 90 shows these two sets of positions. The sets of positions in which the positions are

allowed to differ along more than one axis are called hyperplanes. Scan classes are there-

fore a subset of hyperplanes; in this subset, the positions can differ along only one axis. The

multispread function operates on any kind of hyperplane.

2
Axes

0

scan
class

0

1

0o

C* Programming Guide



Chapter 13: Communication with Computation 205
- .' "' " " '' ... i.-.. ::.. .·.. ··: ··: ·... . .. ..1- ... .. ..... ..:i:.: I... .. ....:: ··: ...... ..·::::·. ···:: · .:... ... I. .. .. .. . - .. . .. .

2
AxesI

0

hyperplane

> hyperplane

0

Figure 90. Hyperplanes in a 3-dimensional shape

The multispread function has the following definition:

type:current multispread (

type:current source,

unsigned int axis_mask,
CMCcombinert combiner);

The only difference in this definition from that of spread is the axis_mask parameter.

The axis mask parameter is a bit mask that specifies the axes along which the positions

in a hyperplane are allowed to differ. For example, use a bit mask of 3 to specify axes 0

and 1; use 6 to specify axes 1 and 2.

The following example assumes a 3-dimensional shape like the one shown above. In it, the

values of source in the hyperplanes described by axes 0 and 1 are added, and the results

are spread to all elements of dest in the same hyperplane.

dest = multispread(source, 3, CMC_combiner_add);

0

1

_ 

I:: .,I.. ..... ....

'ii:

.j.:....jl:::,lll::I::::::':::,

Pa,



206 C* Programming Guide

13.8.1 The copy_multispread Function

There is also a copymultispread function, comparable to the copy_spread function,
but available for use on hyperplanes instead of scan classes. Using copy_multispread,
however, requires an understanding of send addresses, which are discussed in the next
chapter. We therefore defer discussion of this function until Section 14.5.

13.9 The global Function

Use the global function to perform reduction operations on a parallel variable and assign
the result to a variable on the front end.

The global function has the following definition:

type global (

type: current source,

CMCcombiner t combiner);

where:

source

combiner

is a parallel variable (of the current shape and any arithmetic type)
upon whose values the reduction operation is to be performed.

specifies the reduction operation. Possible values are
CMCcombinermax, CMC combiner min, CMCcombineradd,
CMC_combiner_logior, CMC_combiner_logxor, and CMC com-
binerlogand; see Section 13.1 for definitions of these values.

The function returns a scalar variable of the same type as source.

The global function provides an alternative method for performing certain reduction op-
erations. For example, the following two statements are equivalent (where sl is a scalar
variable and p1 is a parallel variable of the same type):

sl = = pl;

and:

sl = global(pl, CMC_combiner_logior);



Chapter 13: Communication with Computation 207

Both do a bitwise inclusive OR of pl and assign the result to sl.

Note that global does not have a combiner value for the reduction assignment operator

-= (negative of the sum of the parallel values).

The global function operates only on active positions.



*8--·

nyl.r

C;r"

hT-;?,

I&li

Bg··

It�·il

� JLFI

9ir,

4)e�.-

�k�·

·4L�



Chapter 14

General Communication

The C* communications functions we have discussed so far have required that the source

and destination parallel variables be of the current shape (except for global, where the

destination is a scalar variable), and that the communication be in regular patterns-that

is, all elements transfer their values the same number of positions in the same direction. In

this chapter, we introduce functions that allow communication in which:

* One of the parallel variables need not be of the current shape, and

* The communication need not be in a regular pattern.

The get and send functions described in this chapter provide communication comparable
to that offered by parallel left indexing; see Chapter 10.

The read from position function described in this chapter provide communication

comparable to that offered by assigning a scalar-indexed parallel variable to a front-end
variable; write_toposition is comparable to assigning a front-end variable to a sca-

lar-indexed parallel variable. The read frompvar function reads data from a parallel
variable into a front-end array; write_topvar writes data from a front-end array to a

parallel variable.

Include the header file <cscomm.h> when calling any of the functions discussed in this

chapter.

14.1 The make send address Function

Grid communication requires knowing the coordinates of parallel variable elements in the
shape. More information is required for general communication. Specifically, you need to
supply a send address for a parallel variable element's position. This send address, along

209



210 C* Programming Guide

with a position's shape, uniquely identifies a position among all positions in all shapes;
thus, you can use this address when an element of the current shape is communicating with
an element that is of a different shape.

Use the make send_address function to obtain a send address for one or more positions.
make_send_address is an overloaded function that has different versions depending on
the following:

* Whether you want to return a single address or multiple addresses. Multiple ad-
dresses are returned as a parallel variable of the current shape.

* Whether you specify axis coordinatesfor the position in a varargs list or in an ar-
ray. The choice is the same as that for the allocate_shape function, which we
discussed in Chapter 9. If you know the rank of the position's shape, it is easier to
use the varargs version. If the rank will not be known until run time, you must use
an array.

14.1.1 Obtaining a Single Send Address

To obtain a send address for a single position, use make_send_address with one of the
following formats:

CMCsendaddr t make send address (

shape s,

int axis_0 coord, ...);

or:

CMC sendaddr t make send address (

shape s,

int axes[]);

where:

a is the shape to which the position whose address you are obtaining
belongs.

axis O coord

(in the first version) specifies the position's coordinate along axis 0.
Specify as many coordinates as there are axes in the shape.



Chapter 14: General Communication 211
·''i-: i.:: · : ~:I: ·~.. .... - --. ::· i: . :: :: ....... : :. ::,,, .-,. -::::: · . -· ·· ··:·. ~::-:--- ~ ... ..... - .

axes[ ] (in the second version) is an array that contains the position's
coordinates.

The function returns a scalar value (of type CC_ sendaddr_t) that is the send address of
the position. This address is returned even if the position is inactive.

Note that the shape you specify in the parameter list need not be the current shape.

An Example

The following code calculates the send address of position [77][44] in shape image and
assigns this address to the variable addr on the front end:

CMCsendaddr t addr;

addr = make_sendaddress(image, 77, 44);

14.1.2 Obtaining Multiple Send Addresses

To obtain send addresses for more than one position, use make_send_address with one
of the following formats:

CMC sendaddr t:current make send address(

shape s,
int:current axis_0Ocoord, ...);

or:

CMCsendaddr t:current make send address

shape s,

int:current axes[]);

These formats are the same as the ones shown in Section 14.1.1, except that the
axis_n_coord arguments take parallel ints of the current shape, and the function returns
a parallel variable of the current shape.

The value in each element of the parallel variable you specify for an axis of shape s repre-
sents a coordinate along that axis. The corresponding elements of the parallel variables that
represent all the axes of the shape therefore fully specify a position in shape s. The func-



212 C* Programming Guide

tion returns the send address for each position specified in this way. These send addresses
are returned as the values of elements of a parallel variable that is of the current shape.

For example, if you specify pi as the axis argument for a 1-dimensional shape s, and
[ ] p! contains the value 4, then the send address of position [4] of shape s is returned in
element [0] of a parallel variable of the current shape.

You cannot mix scalar values and parallel values in the argument list. If you want to use
a scalar value (for example, because you only want the send addresses of positions whose
coordinate for axis 1 is 3), do one of the following:

* Use a separate assignment statement to assign 3 to a parallel variable; or

* Use a cast in the argument list to explicitly promote 3 to a parallel value.

When Positions Are Inactive

If a position in the current shape is inactive, that position does not participate in the opera-
tion. In other words, the function does not return the send address specified by that
position's parallel variable elements.

If elements specify a position in shape s that is inactive, the send address for that position

is returned.

An Example

Figure 91 shows an example of make_sendaddress, using parallel variables of the
1-dimensional shape t to map parallel variables of the 2-dimensional shape s.



Chapter 14: General Communication 213
.- . ....:::. ... ... : : .. . .. : " :...: .:.. :'..: :...:.:.:.' ::.: .. ... .. ....:. ....': :.:'.... ..::.....:.:.. ...-. ...... . ... - .:.: :: .: .. . . . - ., .. - I : ....... . ...... ... .' ....-.-. ..-.. ... . ... -

address = makesend address(s, axis 0, axis_l1);

shape t

0 1 2

1 0 1

3 16383

oI I l...

H7 *-- 11g.
X *-- 1011

1 2
_ I 

address I1] [0] [ 0 [1] ] [:::. : o
i . I .':: .:,:. I .. I

Figure 91. An example of the make_sendaddress function

Note the following in Figure 91:

* Two elements contain the same send address; this is legal.

* Position [2] is inactive; therefore, element [2] of address does not obtain the send

address specified by the values in [2] axis_0 and [2] axis_1.

The values of the elements that specify coordinates for an axis must be within the range of

these coordinates. If, for example, shape s has 256 positions along axis 0, a value of 256

or greater in an element of axis_0 would produce a run-time error, depending on the

safety level.

14.2 Getting Parallel Data: The get Function

Use the get function to get values from a parallel variable when grid communication is not

possible-that is, when communicating between shapes, or when the communication is not
in a regular pattern. The get function is overloaded for both arithmetic and aggregate
types.

D active
[] inactive

axis 0

/

axis 1



214 C* Programming Guide

14.2.1 Getting Parallel Variables

The get function has the following definition when used with arithmetic types:

type:current get (

CMCsendaddrt:current sendaddress,
type:void *sourcep,

CMC collision mode t collision mode);

where:

send address
is a parallel variable of the current shape. The parallel variable con-
tains send addresses for positions in a shape that need not be the
current shape; see Section 14.1. They must, however, be of the same
shape as the parallel variable pointed to by sourcep.

sourcep is a scalar pointer to a parallel variable (of any shape) from which val-
ues are to be returned. The parallel variable pointed to by
send address specifies which values are to be returned and where
they are to be assigned.

collision mode

specifies what to do if more than one destination parallel variable ele-
ment tries to get from the same element of the source parallel variable.
Possible values are CMC collisions, CMC nocollisions,
CMC fewcollisions, and CMC_manycollisions. See "Colli-

sions in Get Operations," below.

The get function returns a parallel variable of the current shape. It has the same arithmetic
type as the parallel variable pointed to by sourcep, and it contains the values of the paral-
lel variable pointed to by sourcep in the positions specified by send address.

The get function works like a get operation using a parallel left index; see Chapter 10. A
destination parallel variable obtains values of the source parallel variable, using the parallel
variable send address as an index. Thus, given the following:

#include <cscomm.h>

shape [65536]ShapeA;
shape [512][128]ShapeB;
int:ShapeA axis_0, axis 1, dest;
int:ShapeB source;



Chapter 14: General Communication 215

The following two code fragments have the same results:

with (ShapeA) {

CMCsendaddrt:ShapeA address;

address = make_send_address(ShapeB, axis_O, axis_1);
dest = get(address, &source, CMC collisions);

and:

with (ShapeA)

dest = [axis_O][axis_l]source;

The get function is more general, however:

* You can use get even if the rank of the shape from which you want to get values
is not known until run time. Parallel left indexing requires that you know the rank
of the shape when you write the program.

· The get function lets you control how collisions are handled; see below.

* The get function also lets you get parallel arrays. See Section 14.2.2, below.

If there are inactive positions in ShapeA in the first example above, elements of dest at
these positions do not get values from source. The status of the positions in ShapeB does
not matter; the active elements of dest get the values from the positions for which
address has send addresses, whether or not these positions are active. Once again, this
behavior is the same as that for get operations with parallel left indexing.

Collisions in Get Operations

The collisions we have talked about in previous chapters occur when two elements try to
send to the same element at the same time. Get operations also have collisions, however;
these occur when more than one parallel variable element tries to get a value from the same
element at the same time. Unlike send collisions, get collisions are permitted in C*; they
are handled automatically by get operations in the language. The get function and its
collision mode argument, however, gives you some control over how collisions are
handled.



216 C* Programming Guide

We recommend using the CMC collisions option of collision mode for most appli-
cations. This is the method used by get operations in the language itself. The other options
may be useful in special circumstances:

* If there is no possibility of collisions, you can specify CMCno collisions; cur-
rently, this option uses the same code as CMC_collisions. However, future
implementations of the get function may increase the performance of
CMC no collisions.

* CMC_many_collisions and CMC_few_collisions can be useful if your
application is memory-intensive and risks running out of storage (you can tell this
if, for example, your program doesn't run with 4K physical processors, but does
run, with 8K processors). CMC collisions requires memory for two aspects of
its operation: to store the paths it takes in doing gets for each position, and to store
colliding addresses. If it runs out of memory, it switches over and tries the algo-
rithm used by CMC_many_collisions, which is slower but requires less
memory. Under these circumstances, the operation would be faster if you specified
CMC_many_collisions to begin with, thus avoiding the time spent trying the
CMC_collisions algorithm.

If CMC_collisions takes a long time due to memory limitations and the get has
few collisions, CMC few collisions may be faster. In this case, the get opera-

tion iterates separately over each collision, saving the memory required to store the
colliding addresses.

14.2.2 Getting Parallel Data of Any Length

You can also use the get function to obtain values from parallel locations of any length-
typically, parallel structures or parallel arrays.

This version of the get function has the following definition:

void get (
void:current *destp,

CMC_sendaddrt:current *sendaddressp,
void:void *sourcep,
CMC_collisionmodet collisionmode,
int length);

where:



--. ~ Chapter 14: General Communication 217

destp is a scalar pointer to a parallel location of the current shape. This loca-
tion obtains values from sourcep, based on the index in the parallel
variable pointed to by send addressp.

sendaddressp
is a scalar pointer to a parallel variable of the current shape. The paral-
lel variable contains send addresses for positions in a shape that need
not be the current shape. See Section 14.1.

sourcep is a scalar pointer to a parallel location; it need not be of the current
shape. The parallel variable pointed to by send addressp specifies
positions of this location. Data is to be gotten from these positions.

collision mode

~~~~~~~- ~specifies what to do if more than one destination parallel variable ele-
ment tries to get from the same element of the source parallel variable.
Possible values are CMC collisions, CMC no collisions,
CMCfewcollisions, and CMCmany collisions. See "Colli-
sions in Get Operations," above.

~-_~~~ ~length specifies the length in bits of the parallel location pointed to by
sourcep.

This version of the get function lets you obtain data that is larger than the standard data
types; typically, this data would be in a parallel structure or parallel array. For example:

#include <cscomm.h>

shape [65536]ShapeA;

- ~shape [512][128]ShapeB;

struct S {

int a;

int b;

} ;

int:ShapeA axis_0, axis_1;
struct S:ShapeA deststruct;

struct S:ShapeB source struct;

main ()

with (ShapeA) {

CMC sendaddr t:ShapeA address;
address = make_send_address(ShapeB, axis_O, axis_1);
get(&dest struct, &address, &source struct,

C* Programming Guide
.: .- -. ::.: ' " :':' ': ' ':

CMCcollisions, boolsizeof(sourcestruct));

deststruct, of shape ShapeA, gets data from individual positions of the structure
source_struct, of shape ShapeB, based on the send addresses stored in address. Note
the use of the intrinsic function boolsizeof to obtain the length, in bits, of
source struct.

14.3 Sending Parallel Data: The send Function

Use the send function to send parallel data when grid communication is not possible-that
is, when communicating between shapes, or when the communication is not in a regular
pattern. The send function is overloaded for both arithmetic and aggregate types.

14.3.1 Sending Parallel Variables

The send function has the following definition when used with arithmetic types:

type:current send (

type:void *destp,

CMC sendaddr t:current send address,

type:current source,

CMCcombinert combiner,
bool:void *notifyp);

where:

destp is a scalar pointer to a parallel variable to which values are to be sent.
It can be of any arithmetic type and any shape.

send address

is a parallel variable of the current shape. The parallel variable con-
tains send addresses for positions in the shape of the parallel variable
pointed to by destp. This shape need not be the current shape; see
Section 14.1.

218

Chapter 14: General Communication 219
- . : .- - .: : :- -i·': ·:.'' · ·~i . j ·:i:l ·"l

source is a parallel variable from which values are to be sent. It must be of the
current shape, and it must have the same type as the parallel variable

pointed to by destp.

combiner specifies how send is to handle collisions. Possible values are
CMC combiner max, CMCcombiner min, CMC_combiner_add,
CMC_combinerlogior, CMC_combinerlogxor, CMC_com-

biner logand, and CMC_combiner overwrite. All of these are

defined in Section 13.1 except CMC_combineroverwrite. If you

specify CMC combiner_overwrite and more than one value is sent
to a parallel variable element, one of the values is chosen arbitrarily
and stored in the element, and the rest of the values are discarded.

notifyp is a scalar pointer to a bool-sized parallel variable of the same shape

as the parallel variable pointed to by destp. Initialize it to 0 before
using it. When an element of the destp parallel variable receives a
value, the corresponding element of the parallel variable pointed to by
notifyp is set to 1. If you do not want to use a notify bit, specify
CMC_no_field for this argument.

send returns the source.

Using the send function is roughly equivalent to performing a send operation with parallel

left indexing; see Chapter 10. The source parallel variable sends values to the destp par-

allel variable, using send address as an index. The combiners are equivalent to
reduction assignment operators. CMC_combiner_overwrite has the same effect as the

= operator, when the parallel right-hand side is cast to the type of the scalar left-hand side.

There are some differences, however, between the send function and send operations with

parallel left indexing:

* The send function can be used when the rank of the shape of the destination paral-
lel variable is not known until run time.

* The send function lets you include a notify bit, which provides notification that
a value has been received by an element of the destination parallel variable.

* There is not a complete correspondence between the combiners and the reduction

assignment operators. For example, there is no combiner that is equivalent to the
-= reduction assignment operator.

* The send function has an overloaded version that lets you send parallel arrays; see

Section 14.3.2, below.

220 C* Programming Guide

Inactive Positions

Inactive positions are treated in the same way they are treated by send operations with par-
allel left indexes:

* An element in an inactive position in the current shape does not send a value.

* Destination parallel variable elements receive values even if they are in inactive
positions.

In addition, the notify bit can be set even in an inactive position.

An Example

The following code sends values from elements of source to elements of dest.

#include <cscomm.h>

shape [16384]ShapeA;

shape [2][16384]ShapeB;
int:ShapeA axis_0, axis_1, source;

int:ShapeB dest;

bool:ShapeB notify_bit = 0;

/* Code to initialize parallel variables omitted. */

main()

{

with (ShapeA) {

CMC_sendaddr_t:ShapeA address;

address = make_sendaddress(ShapeB, axisO, axis 1);

where (source < 9)

send(&dest, address, source, CMC_combinermin,

¬ify_bit);

Some sample results are shown in Figure 92. The arrows show what happens to the value
at [3] source, based on the send address in [3] address.

Note the following points in these results:

Chapter 14: General Communication 221

* Position [2] of ShapeA is inactive; therefore, [2] source does not send its value.

* The CMC combiner min combiner causes the 3 from [0] source, rather than
the 5 from [1] source, to be sent to [1] [0] dest.

* The notify bit is set in the two positions that receive values.

where (source < 9)

send(&dest, address, source,

CMC combinermin, ¬ify_bit);

- active

E inactive

ShapeA

o 1 2 3

o ° 0 I,.2 I
O O~~~~~~~~ : 3

... 0
notify_bit

1
...

ShapeB

0 1 2

Figure 92. An example of the send function

14.3.2 Sending Parallel Data of Any Length

You can also use the send function to send parallel data of any length-typically a parallel
structure or parallel array.

This version of the send function has the following definition:

axis 0

axis 1

address

source

3

222 C* Programming Guide

void:current * send (
void:void *destp,

CMC_sendaddr t:current *send addressp,
void:current *sourcep,

int length,

bool:void *notifyp);

where:

destp is a scalar pointer to a parallel location to which data is to be sent.
void:void specifies that destp points to a location that can be of
any type and of any shape.

send_addressp
is a scalar pointer to a parallel variable of the current shape. The paral-

lel variable contains send addresses for positions in the shape of the
parallel variable pointed to by destp.

sourcep is a scalar pointer to a parallel location from which data is to be sent.
It must be of the current shape.

length specifies the length in bits of the location whose beginning is pointed
to by sourcep.

notifyp is a scalar pointer to a bool-sized parallel variable of the same shape
as the location pointed to by destp. When data is written to a position
pointed to by destp, the corresponding element of the parallel vari-
able pointed to by notifyp is set to 1. If you do not want to use a

notify bit, specify CMC_nofield for this argument.

send returns a pointer to the source.

This version of the send function lets you send data that is larger than the standard data
types; typically, this data would be in a parallel structure or parallel array. The data is sent
from the source location to the destination location, using the parallel variable pointed to
by send addressp as an index to determine the destination.

Note that this version of send does not include a combiner argument. This version uses
the CMC_combiner_overwrite option, and arbitrarily chooses a position of the array or
structure if there would otherwise be a collision.

For example:

Chapter 14: General Communication 223

#include <cscomm.h>

shape [65536]ShapeA;

shape [512][128]ShapeB;

struct S {

int a;

int b;

int:ShapeA axis_0, axis 1;

bool:ShapeB notify_bit = 0;

struct S source_struct:ShapeA, dest struct:Shape_B;

main()

{

with (ShapeA) {

CMC_sendaddr_t:ShapeA address;

address = make_send_address(ShapeB, axis_0, axis 1_l);
send(&dest_struct, &address, &source_struct,
boolsizeof(source_struct), ¬ify_bit);

The values of individual positions of the parallel structure source_struct, of shape
ShapeA, are sent to deststruct, of shape ShapeB, based on the send addresses stored

in address. Note the use of the intrinsic function boolsizeof to obtain the length, in
bits, of source struct.

14.3.3 Sorting Elements by Their Ranks

You can use send, along with the make_send address and rank functions, to reorder
elements of a parallel variable by the ranks of their values. Note that this is also possible
with parallel left indexing, as described in Section 13.7.1.

In the following example, we rearrange salary data for employees:

#include <cscomm.h>

shape [16384]employees;
struct employee {

int id;

int salary;

224 C* Programming Guide

struct employee:employees staff;

main()

{

/* Code to initialize salaries and ids omitted. */

with (employees) {

int:employees order;

CMC_sendaddr_t:employees address;

/* Determine ranks of salary values. */

order = rank(staff.salary, 0, CMC_upward, CMC_none,

CMCno field);

/* Create send addresses, using salary ranks as

the index. */

address = makesendaddress(employees, order);

/* Send employee data for each employee to new

positions, based on the salary ranks. */

send(&staff, &address, &staff, boolsizeof(staff),

CMCno field);

The code proceeds as follows:

1. It declares the shape, and declares and initializes the parallel structure. (The initial-

ization of staff. salary and staff. id is omitted.)

2. It calls rank to return the ranks of the elements of staff. salary. The results
(assuming only a 5-position shape) are shown in Figure 93.

3. It calls make send address to return send addresses, using the salary ranks as
the index. Upon return, [address contains the send address of position [1] of
shape employees, [1] address contains the send address of position [0] of
employees, and so on.

Chapter 14: General Communication 225

4. It then calls send to send the variables in the parallel structure to new positions,
based on the send addresses. The result is that the values are rearranged as shown
in Figure 94.

order = rank(staff.salary, 0,
CMCnofield);

shape employees
0 1 2 3

staff.id 50 51 52 53 54

530 230 616 614 800

1 0 3 2 4

Figure 93. Using the rank function to rank elements of a parallel variable

Figure 94. Using make_send_address and send to reorder
the elements of parallel variables by rank

order

4

address = make_send_address(employees, order);
send (&staff, &address, &staff, boolsizeof(staff),

CMC no field);

shape employees

0 1 2 3 4

staff.id 51 50 53 52 54

staff.salary 220 530 614 616 800

order 1 0 3 2 4

CMq_upward,~d CMC-none,

staff. salary

226 C* Programming Guide

14.4 Communicating with the Front End

This section discusses C* communication functions that provide general communication
between the front end and parallel variables on the CM.

14.4.1 From the CM to the Front End

The read_from_position Function

Use the read_from position function to read a value from a parallel variable element
(not necessarily of the current shape) and assign it to a front-end variable. This function is
overloaded for any arithmetic type.

The readfromposition function has the following definition:

type read_from_position (

CMCsendaddr t send address,

type:void *sourcep);

where:

send address

is the send address of a position from which a value is to be read.

sourcep is a scalar pointer to the parallel variable from which a value is to be
read; the parallel variable can be of any shape and any arithmetic type.

Before calling read_fromposition (or as part of the read fromposition call),
you must use the single-address version of makesend address to store a send address
on the front end; see Section 14.1. The read_from position function uses this send
address to specify the position, and it uses sourcep to specify the parallel variable. It re-
turns the value obtained from the parallel variable element at that position. The value is
returned even if the position is inactive.

Since readfromposition deals with a scalar value, it does not have to be called
within the scope of a with statement, and the source parallel variable does not have to be
of the current shape.

This function, in combination with make_send_address, produces the same result as as-
signing a scalar-indexed parallel variable to a front-end variable. For example:

Chapter 14: General Communication 227

scalar = [7]pl;

You can use read from position even when the rank of the shape is not known until
run time, however.

The following example reads the value from element [16][4] of parallel variable pi, which
is of shape image. It assigns the value to the scalar variable s.

#include <cscomm.h>

shape [256][256]image;

float:image pl;

CMCsendaddr t address;

float sl;

main ()

{

address = makesendaddress(image, 16, 4);

sl = read_from_position(address, &pl);

Note that the call to make send address can also be made from within
readfromposition's argument list:

sl = read_from_position(make_send_address(image, 16, 4), &pl);

The read_from_pvar Function

Use the read_frompvar function to read the values of active elements of a parallel vari-

able and assign them to a front-end array. This function is overloaded for any arithmetic

type. It has the following definition:

void read_from_pvar (

type *destp,

type: current source)

where:

destp is a pointer to the scalar array to which values are to be written.

228 C* Programming Guide

source is a parallel variable of the current shape from which values are to be
read. Both source and the array pointed to by destp must have the
same arithmetic type.

The values in source are written into the specified front-end array. Values in inactive ele-
ments are not copied; array elements that correspond to inactive positions receive
undefined values. Typically, the front-end array will have the same number of elements and
dimensions as the source parallel variable. It cannot have fewer elements than the source
parallel variable.

The following example copies the values in pl to the front-end array fe_array:

#include <cscomm.h>

shape [16384]ShapeA;
int:ShapeA pl;

int fe_array[16384];

main()

/* Initialization of pl omitted */

with (ShapeA)

read_from_pvar(fe_array, pl);

14.4.2 From the Front End to the CM

The writeto_position Function

Use the write_toposition function to write a value from the front end to a parallel
variable element (not necessarily of the current shape). The write to.position func-
tion has the following definition:

type write_to_position (
CMCsendaddr t send address,
type:void *destp,
type source);

where:

Chapter 14: General Communication 229

send address
is the send address of the position to which a value is to be written.

destp is a scalar pointer to the parallel variable to which a value is to be writ-

ten; the parallel variable can be of any shape and any arithmetic type.

source is the front-end variable whose value is to be sent to the destination
parallel variable element. Both source and the parallel variable
pointed to by destp must have the same arithmetic type.

The function returns the value of source.

As with read_from_position, you must use the single-address version of
make send address to store a send address on the front end; see Section 14.1.
write_toposition uses this send address to specify the position, and it uses destp to
specify the parallel variable. It sends the value in source to the element specified by these
arguments. The value is written into this element even if the element's position is inactive.

writeto_position does not have to be called within the scope of a with statement,
and the destination parallel variable does not have to be of the current shape.

This function, when used along with make_send_address, produces the same result as
assigning a front-end variable to a scalar-indexed parallel variable. For example:

[7]pl = scalar;

You can use write toposition even when the rank of the shape is not known until run
time, however.

The following example reverses the example for read_fromposition in the previous
section. It assigns the value of the scalar variable sl to element [16][4] of parallel variable
pi, which is of shape image.

#include <cscomm.h>

shape [256][256]image;
float:image pl;

CMCsendaddrt address;

float sl;

main ()

address = make sendaddress(image, 16, 4);

230 C* Programming Guide

write_to_position(address, &pl, sl);

The write_to_pvar Function

Use the write tovar function to write data from a front-end array to a parallel vari-
able of the current shape. The function is overloaded for any arithmetic type. It has the
following definition:

type:current write_to_pvar (

type *sourcep)

where sourcep is a pointer to a scalar array from which data is to be written.

The function returns a parallel variable of the current shape containing the values in the
front-end array. If there are inactive positions in the shape at the time the function is called,
the values in these inactive positions are not overwritten. The front-end array typically has
the same number of elements and dimensions as the current shape; it cannot have fewer
elements.

The following example reverses the example for read_from var shown in the previous
section. The front-end array fe array writes its values to the parallel variable pi:

#include <cscomm.h>

shape [16384]ShapeA;

int:ShapeA pl;

int fe_array[16384];

main()

/* Initialization of fe_array omitted */

with (ShapeA)
pl = write to_pvar(fe_array);

Chapter 14: General Communication 231

14.5 The make multi coord and
copy_multispread Functions

As we mentioned at the end of Chapter 13, the copy_multispread function is compara-
ble to the copy_spread function, except that you use it on hyperplanes instead of scan
classes.

copymultispread takes as one of its arguments a multicoordinate. The multicoordinate
specifies which element of the parallel variable is to be spread through each hyperplane.
For example, in the discussion of multispread in Chapter 13, we saw that, if we allowed
positions to differ along axes 0 and 1 while keeping axis 2 fixed, we created the following
two hyperplanes (for a 2-by-2-by-2 shape):

[0] [0] [0]
[1] [0] [0]
[0] [1] [0]
[1] [1] [0]

and:

[] [0] [1]
[1 [o] [1]
[0] [1] [1]
[1] [1] [1]

Choosing an individual element in these hyperplanes requires that you specify only two of
the three coordinates, since the third (the coordinate for axis 2) is fixed (it is [0] in the first
hyperplane, [1] in the second). The multicoordinate specifies what the coordinates are
along the axes that are not fixed. If the multicoordinate specifies [0] for axis 0 and [0] for
axis 1, for example, then position [0][0][0] is chosen for the first hyperplane, and [0][0][1]
is chosen for the second hyperplane.

To obtain this multicoordinate for a position, use the make_multi coord function. You
can then use the multicoordinate in the call to copy_multispread. The multicoordinate
specifies the desired position in each hyperplane.

make multicoord is an overloaded function. It provides three different ways of speci-
fying a position:

* By including the position's coordinates as arguments to the function.

C* Programming Guide

* By specifying an array that contains these coordinates. Use this version if the

shape's rank will not be known until run time.

* By specifying the position's send address.

The three versions of make multi coord have the following definitions:

CMCmulticoordt makemulticoord
shape s,

unsigned int axis_mask,

int axis 0 coord, ...);

or:

CMCmulticoord t make multi coord (

shape s,

unsigned int axis_mask,

int axes[]);

or:

CMCmulticoord t make multi coord (

shape s,

unsigned int axis_mask,

CMC sendaddrt send address);

where:

specifies the shape for which the multicoordinate is to be obtained.

axis mask is a bit mask that specifies the axis or axes along which positions in
a hyperplane are allowed to differ. Bit 1 corresponds to axis 0, bit 2 to

axis 1, and so on. For example, use a bit mask of 3 to specify axes 0

and 1; use 6 to specify axes 1 and 2; use 5 to specify axes 0 and 2.

axis O coord

(in the first version) specifies the coordinates of a position in shape s
along axis 0. Specify as many coordinates as there are axes in the
shape.

axes [] (in the second version) is an array that contains the position's coordi-
nates. Specify as many coordinates as there are axes in the shape.

s

232

(

Chapter 14: General Communication 233
:: ~ 1·i·:;···:·:·:·:·:: ·,·.- ~ ··: .::: . .- ..:II :.·.I I.. -::,: ::::::

send address
(in the third version) is the send address
Any position will do.

In all versions, the function returns the multicoordinate for the
specified axis mask.

for a position in shape s.

specified position with the

The definition of copy multispread is as follows:

type:current copy_multispread (
type: current *sourcep,

unsigned int axis mask,

CMC_multicoord t multi coord);

where:

sourcep is a scalar pointer to a parallel variable from which values are to be
copied. The parallel variable can be of any arithmetic type; it must be
of the current shape.

axismask is a bit mask that specifies the axis or axes along which positions in
a hyperplane are allowed to differ.

multi coord

specifies the coordinates that determine the elements of the source
parallel variable from which values are to be copied.

The function copies the value from each specified element to each active position in that
element's hyperplane. It returns a parallel variable containing these values; the parallel
variable is of the current shape and has the same arithmetic type as source. Values of
inactive elements are copied.

14.5.1 An Example

For example, given the following declarations:

#include <cscomm.h>

CMCsendaddrt address;
CMC multicoord t multi coord;

234 C* Programming Guide

shape [128][128][128]ShapeA;

int:ShapeA source, dest;

then:

address = makesendaddress(ShapeA, 0, 0, 1);

obtains the send address for position [0][0][1] in shape ShapeA and assigns it to the scalar

int address.

multicoord = make multi coord(ShapeA, 3, address);

obtains the multicoordinate for this position along axes 0 and 1 (specified by the value 3

for the axis mask argument) and assigns it to the multi coord.

with (ShapeA)

dest = copy_multispread(&source, 3, multi_coord);

takes each element of parallel variable source specified by the axis mask (3) and the mul-

ticoordinate (multi_coord) and copies its value into the elements of parallel variable

dest in the same hyperplane. In other words (for a 2-by-2-by-2 shape):

* The value in [0] [0] [0] source is assigned to [0] [0] [] dest,
[1] [0] [O]dest, [0] [1] [0]dest, and [1] [1] [0]dest.

* The value in [0] [0] [1] source is assigned to [0] [0] [1] dest,
[1] [0] [l]dest, [0[1] [1]dest, and [1] [1] [l]dest.

Appendixes

"KIF

pvli·

rm:

7"*1·

4x-·

aw�

�a�

·c.:

ss�

�4a,

·a�;

�r-

ab�r·

�i�

;a�Z

rra�

Cu*p

Appendix A

Improving Performance

This appendix describes ways to improve the performance of C* programs. In some cases,
it repeats information included in the body of this guide; in other cases (for example, the
discussion of allocate_detailed_shape), it presents information not discussed else-
where in the guide. Other performance information may be included in the release notes.

A.1 Declarations

A.1.1 Use Scalar Data Types

If data is scalar, declare it as a regular C variable, so that it is stored on the front end. In

other words, do not store constants in parallel variables.

A.1.2 Use the Smallest Data Type Possible

To save storage on the CM, use the smallest data types possible for parallel variables. For

example, if the parallel variable is a flag, declare it as a bool. If it is to have values only

from -4 to 17, declare it as a signed char.

237

C* Programming Guide

A.1.3 Declare float constants as floats

Declaring float constants as floats (that is, with the final) reduces the number of
conversions that the compiler must make, thereby speeding up the program. For example,

float:ShapeA pl, p2;

pl = p2 * 4.0f;

is better than writing the code with just "4.0".

A.2 Functions

A.2.1 Prototype Functions

Using ANSI function prototyping speeds up a program by reducing the number of conver-
sions. For example, a call to an unprototyped function with a char will promote the
argument to an int. The called function must then convert the int back to a char.

A.2.2 Use current instead of a Shape Name

If a program is to be run with safety on, it is more efficient to define a function to take a

parallel variable of the current shape as an argument, rather than a parallel variable of a
specified shape. In the latter case, the compiler must take the additional step of determining
that the specified shape is current.

A.2.3 Use everywhere when All Positions Are Active

If a function contains statements that are to operate on all positions, regardless of the con-
text in which they are called, you may be able to increase performance by enclosing the
function's statements in an everywhere statement. The explicit use of everywhere lets
the compiler use faster instructions that ignore the context.

NOTE: This technique can also work with a program's main function.

238

Appendix A: Improving Performance 239

A.2.4 Pass Parallel Variables by Reference

In function calls, pass a parallel variable by reference (that is, take its address and pass the
pointer) if passing the parallel variable by value is not required.

A.3 Operators

A.3.1 Avoid Parallel &&, II, and ?: Operators Where
Contextualization Is Not Necessary

As discussed in Chapter 5, the parallel versions of the a, I I, and ?: operators perform
implicit contextualization. If you do not require this aspect of the operators' behavior, your
code will run faster if you can avoid using them.

For example, if pi and f (pl) are known to be 0- or 1-valued, then

p2 = pl & f(pl);

is much more efficient than

p2 = pl && f(pl);

The former statement avoids contextualization, and it avoids doing a logical conversion of
its operands, because it assumes that the two operands have logical values.

Similarly,

where ((pl < p2) & (p2 < p3))

is more efficient than a version that uses the logical AND operator. The "less-than" relation-

al expressions have logical values; therefore, the use of the logical AND (and the resulting
contextualization) is not required.

*I

240 C* Programming Guide

A.3.2 Avoid Promotion to ints by Assigning
to a Smaller Data Type

As discussed in Chapter 5, the compiler evaluates an expression at the precision of the vari-
able to which the expression is assigned, provided that the results are the same as if
standard ANSI promotion rules were followed. Otherwise, smaller data types such as
bools and chars are promoted to ints when used in expressions. Therefore, explicitly
assigning the result of an expression involving these data types to a variable of the same
data type will increase performance.

A.3.3 Assign a "where" Test to a bool

When using the where statement, it is more efficient to first store the test in a bool, and
then use the bool in the where. This is a notable case of the situation discussed in Section
A.3.2. For example, the following code:

int:current x, y;

where ((x>l) && (y<2)) {

/* . .. */}

is more efficient when it is rewritten as follows:

int:current x,y;

bool:current b;

b = (x>l) && (y<2);

where (b)

/* . . .*/

A.4 Communication

To get the best performance in programs in which parallel variables send values to and
receive values from other parallel variables, do the following:

1. If possible, put parallel variables that are to communicate in the same shape.

Appendix A: Improving Performance 241

2. Use grid communication functions instead of general communication functions or
the language features (like parallel left indexing) that are the equivalent of general
communication functions.

3. Use send operations instead of get operations for general communication.

4. If the program has known, stable patterns of communication that use one axis
more than another, use allocate detailedshape to weight the axes.

Some of these points are covered in more detail below.

A.4.1 Use Grid Communication Functions instead of
General Communication Functions

As mentioned in Part III of this guide, grid communication is faster than general communi-
cation. Therefore, your program will run faster if parallel variables that are to communicate
are in the same shape, and you use the grid communication functions for send and get
operations.

A.4.2 Use Send Operations instead of Get Operations

For general communication, send operations are up to twice as fast as get operations, and
use less storage. If possible, use communication functions and C* code that perform send
operations rather than get operations.

In grid communication, send operations and get operations have the same cost.

A.4.3 The allocatedetailedshape Function

Typically, programs use the C* intrinsic function allocate shape to dynamically allo-
cate shapes. If, however, your program has known, stable patterns of communication, you
may be able to improve the performance of your program by using the intrinsic function
allocate _detailedshape instead; this function lets you weight the axes of the shape
according to the relative frequency of communication along the axes. C* can then lay out
the shape on the CM to optimize performance based on these weights.

242 C* Programming Guide

Like allocate_shape, allocatedetailedshape is overloaded. In one version,
you use a variable arguments list to specify each dimension of the shape. In the other, the
information about the dimensions is included in an array that is passed as an argument to
the function; this format is useful if the program will not know the rank until run time.

Include the header file <cm/cmtypes. h> when you call allocatedetailedshape.

The variable-arguments format of the function is as follows:

CMC_Shape_t allocate_detailed_shape

shape *shapep,

int rank,

unsigned long length,

unsigned long weight,
CMaxis order t ordering,

unsigned long on_chip_bits,

unsigned long off_chip_bits, ...

where:

shapep is a pointer to a shape. The remaining arguments specify this shape,
and the function returns this shape.

rank specifies the number of dimensions in the shape.

length is the number of positions along axis 0.

weight is a number that indicates the relative frequency of communication
along the axis. For example, weights of 1 for axis 0 and 2 for axis 1
specify that communication occurs about half as often along axis 0.
Only the relative values of the weight arguments for the different
axes matter; for example, weights of 5 for axis 0 and 10 for axis 1
specify the same communication as weights of 1 and 2, or 3 and 6.
Specifying the same values for different axes indicates that they have
the same level of communication.

ordering specifies how coordinates are mapped onto physical CM processors
for the axis. There are three possible values: CM news_order,
CM send order, and CM fb order.

The value CM_news_order specifies the usual mapping, in which po-
sitions with adjacent coordinates are in fact represented in neighboring
processors on the CM. Specifying any other order slows down grid

Appendix A: Improving Performance 243
.. .-: :. : ..- : :: :.:. . : - .,,, --.,ii I~i~ii:·:;l:. ··:l.::·····':': I.:.:'::'··~il :-·"':i ··: r..

communication considerably.

The value CM send order specifies that a position with a lower
coordinate than another position also has a smaller send address. This
ordering is rare, but it is used in certain applications.

Use the value CM_fb order only if your shape is an image buffer and
is to be moved to a framebuffer. For details, see Chapter 1 of the Ge-
neric Display Interface Reference Manual.

You can specify a different ordering for each axis.

on_chip_bits

off_chip_bits
can be used to specify the mapping of positions to physical processors
only if the values of the weight argument for all axes are the same.
Specify 0 for the value of each of these arguments if you use different
values for the weight argument. For information on how to specify
other values for on_chip_bits and off_chip_bits, consult the
description of the create-detailed-geometry instruction in the
Paris Reference Manual.

Include values for length, weight, ordering, onchip_bits, and off_chipbits
for as many axes as are specified by rank.

The array format of allocated detailed_shape is as follows:

CMC_Shape_t allocatedetailed_shape

shape *shape_ptr

int rank,

CM_axis_descriptor_t axes[]

where axes is an array that contains descriptors for each axis in the shape to be allocated.

You can fill in the information about each axis by calling the C* library function
fill axis_descriptor, which is defined as follows:

void fillaxisdescriptor (
CM_axis_descriptor t axis,

unsigned long length,
unsigned long weight,
CMaxisordert ordering,
unsigned long on_chip_bits,

C* Programming Guide
.

unsigned long off_chip_bits

where axis is an array element that corresponds to the axis being described, and the re-
maining arguments are defined as above.

As an intrinsic function, allocate_detailed shape can be used as an initializer at file
scope. Thus, you can do the following:

#include <cm/cmtypes.h>

shape s = allocate_detailedshape(&s, 2, 256, 2, CM_news_order,

0, 0, 512, 1, CMnewsorder, 0, 0);

This statement fully specifies a 256-by-512 shape s, for which you expect communication
to occur twice as often along axis 0 as along axis 1.

A.5 Parallel Right Indexing

Parallel right indexing, as described in Chapter 7, becomes less efficient as the range of the
array indexes increases.

For users familiar with Paris: The performance of parallel right indexing is comparable to
aref and aset calls, rather than aref32 and aset32 calls.

A.6 Paris

Although generally not necessary, it may be possible to improve performance by calling
Paris, the CM parallel instruction set, from within a C* program. For details on how to do
this, see Chapter 2 of the C* User s Guide.

244

Glossary

active Of elements and positions: Participating in parallel operations. Parallel
operations within a where statement are carried out only on parallel vari-
able elements left active by the where statement.

axis A dimension of a shape. Axes are numbered starting with 0 and are read
from left to right in a left index. For example, if a shape is declared as
"[256][512]ShapeA", shape ShapeA has 256 positions along axis 0 and

512 positions along axis 1.

bool An unsigned single-bit integer data type.

collision An attempt by more than one parallel variable element to send values to or
get a value from the same element at the same time. C* provides mecha-
nisms for avoiding collisions.

combiner type

context

coordinate

In communication functions: The type of operation to be carried out by the
function-for example, add values, multiply them, or perform a bitwise
logical AND.

The active positions of a shape as set by a where statement.

A number that identifies a position or an element along an axis. For ex-
ample, the coordinates of parallel variable element [6][14]pl are 6 for axis
0 and 14 for axis 1.

corresponding elements Elements of different parallel variables that are at the same position.
Corresponding elements have the same coordinates and the same shape.

current shape The shape on whose parallel variables parallel operations can be per-
formed. The with statement selects the current shape.

245

246 C* Programming Guide

current predeclared shape name A shape name that C* equates to the current shape. Vari-
ables declared to be of shape current (for example, in a function) are of
the shape that is current when the declaration is made.

direction In communication functions: The direction along an axis in which a
function is to perform its operation. An upward direction is from lower-
numbered coordinates to higher; a downward direction is from higher-
numbered coordinates to lower.

element An individual data point of a parallel variable. A parallel variable has one
element at each position in its shape.

exclusive operation In communication functions: An operation that excludes the first position
of a segment-bit scan set, and that includes the first position of a start-bit
scan set in the operation for the preceding scan set. Compare inclusive
operation.

general communication Communication in which any parallel variable element can send a
value to or get a value from any other element, whether or not their posi-
tions are in the same shape. Compare grid communication.

get operation

grid communication

hyperplane

inactive

inclusive operation

An operation in which a parallel variable gets values from another parallel
variable. For example: "dest = [index]source;".

Communication in which a parallel variable sends values to or gets values
from another parallel variable in the same shape, using the coordinates of
the parallel variable's elements. Compare general communication.

In communication functions: A set of positions whose coordinates are
allowed to differ along more than one axis. Compare scan class.

Of elements and positions: Not participating in parallel operations.

In communication functions: An operation that includes the first position
of the scan set. Compare exclusive operation.

Glossary 247
·..... ' ~' '.'" ~:~~.. :'.::::..:' . .. i ..:.. ' -S ..:.:.?::.{ ...':. '. ..i.. ":LJ:.:..'..". .:'.. '::. ' s:::& <..'~::: .. ~:/:. . .. :..:':I. ':' ... :: :'-:~:':- ... :::::::::::.::::::...:-':x ::p....:.':.:..:~ : I I.::.: ... I.' -:. - I .

intrinsic function

left indexing

multicoordinate

notify bit

A function that is defined as part of the language.

A method of specifying an element or elements of a parallel variable, or
the dimension(s) of a shape, using values in brackets to the left of the vari-
able or shape's name.

A value obtained by the make_multi_coordinate function that specifies
which element of a parallel variable is to be spread through each hyper-
plane for the copy_multispread function.

In the send function: a bool-sized parallel variable, each element of which
can be set when the corresponding element of the destination parallel vari-
able receives a value.

parallel operation

parallel variable

pcoord function

physical shape

position

An operation carried out on more than one element of a parallel variable at
the same time.

A variable consisting of multiple data points, called elements, arranged in a
specified shape. The declaration "int:ShapeA p1;" declares pl to be an
int-length parallel variable of shape ShapeA. Compare scalar variable.

An intrinsic function that returns a parallel variable whose elements are
initialized to their coordinates along a specified axis.

A shape predeclared by C*. It is a 1-dimensional shape, with the number
of positions equal to the number of physical processors allocated to the
program at run time.

An area of a shape that can contain parallel variable elements. A shape
declared as [8192]ShapeB contains 8192 positions, arranged along one

dimension. A parallel variable of a given shape has an element in each
position of that shape.

predeclared shape name A shape name provided as part of the language. The three predeclared
shape names are current, physical, and void.

C* Programming Guide

Changing a scalar variable into a parallel variable by replicating the value
of the scalar variable in each position of the shape.

The number of dimensions of a shape. A shape declared as
[512][256]ShapeA has rank 2. A shape can have up to 31 dimensions.

reduction operator

region

sbit

An operator that reduces a parallel variable to a single scalar value by per-
forming a combining operation. For example, the reduction operator +=
adds the values of active elements of a parallel variable.

In C* debugging: A specified subset of a shape's positions on which cer-
tain debugging functions are to operate.

In communication functions: A bool-sized parallel variable. An element of
an sbit, when set to 1, marks the beginning of a scan set at the element's
position. An sbit can be interpreted as a segment bit or as a start bit,
depending on the value of the smode argument to the function.

scalar variable

scan class

scan set

segment bit

send address

A standard C variable, having only one value. Compare parallel variable.

In communication functions: A set of positions whose coordinates differ
only along a specified axis. Compare hyperplane, scan set.

In communication functions: A subset of a scan class, the beginning of
which is marked by an sbit.

In communication functions: The interpretation of an sbit when the value
of the smode argument is CM_segmentbit. When an sbit is a segment
bit: 1) the sbit starts a scan set when the value of its element is 1, whether
or not it is in an active position; 2) scan sets are not affected by the direc-
tion of the operation; and 3) operations in one scan set never affect values
of elements in another scan set. Compare start bit.

An address that, along with a position's coordinates, uniquely identifies
that position among all positions in all shapes.

248

promotion

rank

Glossary 249
, ., ,, . - - -, -I -., ..:-. ,.- . , , : - , ,: - .. .

send operation

shape

An operation in which a parallel variable element sends a value to another
element. For example: "[index]dest = source;".

A template for parallel data. A shape is declared in a shape statement and
consists of a number of positions organized in up to 31 dimensions. All
parallel variables must have a shape, and no parallel operations can be
carried out unless a shape is made current by a with statement.

shape-valued expression An expression that can be resolved to a shape name, and can be used
anywhere a shape name is used. For example, "shapeof(pl)" returns the
name of the parallel variable p1's shape and can be used in place of that
shape's name.

start bit

torus

In communication functions: The interpretation of an sbit when the value
of the smode argument is CM_startbit. When an sbit is a start bit: 1) an
sbit starts a scan set only when the value of its element is and the ele-
ment's position is active; 2) when the direction is downward, scan sets are
created from the higher coordinate to the lower coordinate; and 3) in an
exclusive operation, the position whose sbit element is receives a value
from the preceding scan set, if there is one. Compare segment bit.

A doughnut-shaped surface. C* "torus" communication functions use a
grid as if it were wrapped into a torus, with the opposite borders of the
grid connected. An element that requires a value from beyond the border
gets it from the other side of the grid.

void predeclared

where statement

shape name An extension of the ANSI keyword void. It specifies a shape with-
out indicating what the shape's name is. The void predeclared shape name
can be used only as the target shape of a scalar-to-parallel pointer.

A statement that sets the context for parallel operations within its body. For
example, "where (p1 = 4)" causes parallel operations to be carried out only
on elements in positions where the parallel variable p1 is equal to 4.

C* Programming Guide

with statement

wrapping

A statement that chooses the current shape. Parallel operations within the
body of a with statement must (with some exceptions) be carried out on
parallel variables of the current shape.

In communication functions: Obtaining values from the other side of the
grid.

250

Index
..... ...::: :: ::.:...........:........ :'':.....�i::.:.?:. :.... :j.!';::':.::·:i:i:.::::i:.i:............::.::::......

Symbols
. (period), 139
. Cs, 9
!,48
?:,49-50, 77
&,42

not allowed with parallel-left-indexed
parallel variable, 130

&&, 45, 77

&=,57
%,51

%%, 51-52

++,48
-=, 55
^,57
1 , 48, 77
1= , 56, 74
<?, 50-51
<?=, 51, 56

>?, 50-51
>?=, 51, 56

>=, 48

A
active positions, 11, 63

See also positions
and scan sets, 182-183

obtaining the number of, 110
using cast to obtain number of, 110
when shape first selected, 63
when there are no, 72-75

allocatedetailed_shape, 241-243
allocateshape, 106-110, 210, 241
ANSI, 4
arrays

See also parallel arrays

and parallel structures, 31

and pointers, 84

arrays of shapes, 113
and pointers, 103

partially specifying, 102-103
axis, 19, 150

axis mask, 205, 232

B

bitwise AND, 57, 176
bitwise exclusive OR, 57, 176

bitwise OR, 56-57, 77, 176

used to prevent code from executing, 74
bitwise reduction operators, 56-57
block scope, branching into, 23, 29

bools, 58, 109

boolsizeof, 59, 223

border behavior, 151
and pcoord, 139

break, 40
and everywhere, 72
behavior in nested where statement, 70

C

C operators

with scalar and parallel operands, 44-47
with scalar LHS and parallel RHS, 46-47
with scalar operands, 43-44
with two parallel operands, 47-48

C*
and C, 4

and the CM, 5

program development facilities of, 4
C* program

compiling, 15-16
executing, 16

251

C* Programming Guide
. . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

casts, 110-112
parallel-to-scalar, 46, 112
scalar-to-parallel, 110

to a different shape, 111

<cm/cmtypes. h>, 242
cmattach, 16
CMC combiner add, 176
CMCcombiner_copy, 176
CMC_combiner_logand, 176
CMCcombinerlogior, 176
CMC_combinerlogxor, 176
CMC combiner max, 176

CMCcombinermin, 176
CMCcombiner_multiply, 176
CMCcombineroverwrite, 219, 222
CMC combiner t, 187
CMC communication direction t,

187

CMCdownward, 184

CMCexclusive, 181
CMC inclusive, 181

CMC_no field, 187, 222
CMC none, 187

CMC_scaninclusion_t, 187

CMC_segment_bit, 182-187

CMC_segmentmodet, 187

CMCsendaddrt, 211

CMC start bit, 182-187

CMC_upward, 184

collision mode, 215

collisions, 123

in get operations, 215-216
with parallel left indexing, 121-124

combiner, types of, 175-176
conditional expression, 49-50
conditional operator, 77
Connection Machine system, 2-3

communication in, 3
I/O in, 3

context, 63

See also where
effect on other contexts, 69
resetting, 65, 70

continue, 40
and everywhere, 72
behavior in nested where statement, 70

coordinates, 22, 77, 147, 149

copymultispread, 178, 206, 231-234
copy_reduce, 192-193
copy_spread, 195-196,231
<cscomm.h>, 146
current, 89, 95-96, 238
current shape, 11, 37, 63, 94

and pointers, 83, 84

D

data parallel computing, 1
DataVault, 3

dbx, 4
deallocateshape, 107-108
demotion, parallel-to-scalar, 46
dimensions, 101

maximum number of, 107
partially specifying, 103

dimof, 23, 34, 104, 140

and pcoord, 140-141
direction. See upward direction, downward

direction
downward direction, 186

and scan sets, 184

E

elements, 7, 10, 25, 116
and positions, 28-29
choosing, 176-186
corresponding, 28, 47
operations on, 67
sorting by rank, 223-225

else clause, 65-66
enumerate, 196-199
everywhere, 71-72, 238

in functions, 93

exclusive operation, 181
extern, and shapes, 104

252

Index 253
.... '...': -.. -. :, ':..:.:I I :: '.: "'.

F

fill_axis_descriptor, 243
float constants, 238
framebuffer, 243

from_grid, 158-161
from_grid dim, 152-158
from torus, 166-169
from torus dim, 166-169
front end, 1, 2

communicating with, 226-230
function prototyping, 90, 238
functions

and shapes, 94-95
as shape-valued expressions, 95

intrinsic, 23

overloading, 99

passing by reference, 92
use of everywhere in, 238

using parallel variables with, 89-92

G

general communication, 147, 241

use grid communication in preference to,
241

get function, 213-218
and parallel structures or parallel arrays,

216

and parallel variables, 218-221
collisions in, 215-216

get operation, 116-118, 214

and collisions, 121-122, 215-216
in functions, 93, 127
inactive positions in, 124-125
use send operation in preference to, 241

global, 206-207, 209
goto, 40

and everywhere, 72

behavior in nested where statement, 70
branching into block containing shape

declaration, 23

branching into block with parallel variable
declaration, 29

gprof, 4

am~

graphic display system, 3
grid communication, 3, 146, 147, 175, 241

and inactive positions, 151-152
and pcoord, 138-141
aspects of, 149-152
direction of, 150
distance of, 151
use in preference to general

communication, 241

H

hyperplane, 204,231

if, 56, 74
image buffer, 243
inactive positions, 68

See also positions
and parallel left indexing, 124-128
and scan sets, 182

and send operations, 220
behavior in grid communication, 151-152

index variable, use of, 119-120
initializing, using parallel variables, 41

L

left index, 35, 42
and scalar variables, 35
parallel, 116-133

and pcoord, 138

limitations of, 130

what can be indexed, 130
local shape, assigning to a global shape,

105-110

logical AND operator, 45, 77
logical OR operator, 77
looping through all positions, 75-77

M

main, 238
make, 4

C* Programming Guide

make multicoord,231-234

make_send_address, 209-213,223, 226,

229

matrix
multiplying diagonals in, 131-133
transposing, 136-139

maximum operator, 50-51
maximum reduction operator, 56
minimum operator, 50-51
minimum reduction operator, 56
modulus operator, 51-52
multicoordinate, 231

obtaining, 231-232
multispread, 178, 202-205

N

NEWS order, 242
notify bit, 219, 222

0
overload, 99
overloading, 89, 99

P
palloc, 101, 109-110
parallel arrays

declaring, 31-32
elements of, 32
getting, 216
initializing, 33

parallel indexes into, 86-88
sending, 221-223

parallel right indexing, 86
performance of, 244

parallel structures
declaring, 29-31
getting, 216
initializing, 33

sending, 221-223
parallel unions. See unions, parallel

parallel variables, 10
allocating storage for, 109-110
choosing an individual element of, 13-14,

35

compared with scalar, 25-26
declaring, 26-29
declaring multiple, 27-29
declaring with a shape-valued expression,

112-113

getting, 218-221
initializing, 32-33, 41, 42

mapping to another shape, 128-130
not of current shape, 42
obtaining information about, 33-35
passing as argument to function, 89-90
returning from function, 91-92
scope of, 29

unary operators for, 48-49
parallel-to-scalar assignment, 46-47

when no positions are active, 73
Paris, 3, 4, 244
passing by value, 92
pcoord, 77, 133-138

and enumerate, 196

and grid communication, 138-141
pfree, 109
physical, 114
pointer arithmetic, 85-86
pointers

scalar-to-parallel, 82-84

adding a parallel variable to, 87-88

and parallel structures, 31

as arguments to a function, 90
scalar-to-scalar, 81

to shapes, 82
positions, 5, 9

See also active positions, inactive positions
and elements, 28-29
definition of, 19
looping through all, 75

positionsof, 23, 34, 104

and where, 66

254

Index 255
: :.: - .:.: - : - ,. ,- - -.,, -. -

promotion, bool to int, 58
promotion, scalar to parallel, 44, 46, 110, 121

R

rank, 19, 101, 106, 145

sorting elements by, 223-225
rank function, 199-202,223
rankof, 23,34

and a partially specified shape, 102
and fully unspecified shape, 102

read_fromposition, 226-228
read_frompvar, 227
reduce, 190-192
reduction assignment, 14

and global, 206
parallel-to-parallel, 54
parallel-to-scalar, 52

when no positions are active, 73-74
with a parallel LHS, 57
with send operation, 123

reduction operators, 52-57
list of, 54-55
unary, 54

return, 40
and everywhere, 72
behavior in nested where statement, 70

router, 3

S
sbit, 179, 182, 189

scalar variables, 11, 43

contrasted with ANSI definition, 25
in left index, 35

promoted to parallel, 44
use in preference to parallel variables, 237

scan, 176, 186-189
difference from reduce, 190-191

scan class, 176-179, 189
subset of hyperplane, 204

scan set, 179-181
scan subclass, 179, 189

scan subset, 189

scope
of parallel variables, 29
of shapes, 23-25

segment bit, 182
send address, 147, 149, 209

obtaining a single, 210-211
obtaining more than one, 211-213

send function, 218, 223
and parallel arrays or parallel structures,

221-223
differences from send operation, 219

send operation, 118-119
and collisions, 122-124
and send function, 219
comparing parallel left indexing and send,

219
in functions, 93, 127

inactive positions in, 125-128
use in preference to get operation, 241
with parallel left indexing, 219

send order, 243
shape names, predeclared, 95, 114
shape selection, 11
shape-valued expression, 34, 39

declaring parallel variable with, 112-113
in casts, 112
in function header, 91

shapeof, 34-35
used with void shape, 97-98

shapes, 9

See also current shape
as arguments to functions, 94
choosing, 20-21
creating copies of, 104, 108
deallocating, 107-108
declaring, 21-23
declaring multiple, 22
default, 39

definition of, 19
dynamically allocating, 106-107
equivalence of, 104-105
fully unspecified, 101-102
maximum number of dimensions in, 19

C* Programming Guide

not allowed in structures, 31

obtaining information about, 23-24
partially specified, 101-104
restrictions on the size of, 20
returned by functions, 95
scope of, 23

switching between, 70
smode, 182

spread, 193-195,202
start bit, 182
<stdlib. h>, 107, 109

structures. See parallel structures
Sun-4, 2

switch

branching into block containing shape
declaration, 23

branching into block with parallel variable
declaration, 29

T

to-grid, 161
to-grid-dim, 161

to torus, 169-174
totorusdim, 169-174
torus, 166

upward direction, and scan sets, 184

V

variables. See parallel variables, scalar
variables

VAX, 2

virtual processors, 3, 5

VMEbus, 3

void predeclared shape name, 89, 96-98

used when returning a pointer, 98

W

where, 63-67, 139
and parallel-to-scalar assignment, 67
and positionsof, 66

and scalar code, 67-68
controlling expression of, 64
nesting, 68-69

while, 77

with, 11, 37-39, 63, 226, 229

nesting, 40-41, 69-70
using a shape-valued expression with, 39

wrapping, 151

write toposition, 228-230
write to_pvar, 230

U

unary operators and parallel variables, 48-49
unions, parallel, 60

256

