A Cellular Automata Simulation of

Two-Phase Flow on the CM-2

Connection Machine Computer

Bruce M. Boghosian Washington Taylor IV Thinking Machines Corporation

Daniel H. Rothman Ralph Santos Massachusetts Institute of Technology

Cellular Automata

- Dynamical Systems
- Discretized in
 - space
 - time
 - dependent variable
- Deterministic Update Rule

Lattice Gases

- Cellular Automata
- Regular Lattice
- "Advect-Collide" type rule
- Conserve Particles and Momentum
- Coarse-Grain Averaged behavior is that of an incompressible Navier-Stokes fluid
- Microscopic (CA) versus Macroscopic (hydrodynamic variables)

Suffers from lack of macroscopic isotropy

• Reference:

1) Hardy, J., de Pazzis, O., Pomeau, Y., Phys. Rev. A, 13, 5 (1976)

FHP Gas I

i) i.

- •Triangular Lattice
- Collision Rules:

FHP Gas II

- Extensive testing has verified macroscopic isotropy, and quantitative agreement with 2-D incompressible Navier-Stokes equations
- •References:
 - 1) Frisch, U. Hasslacher, B., Pomeau, Y. Phys. Rev. Lett., <u>56</u> (1986)
 - 2) Kadanoff, L.P., McNamara, G.R., Zanetti, G., Complex Systems, <u>1</u> (1987)

<u>Rothman-Keller Model for</u> <u>Two-Phase Flow I</u>

Goal: To simulate the flow of two incompressible, immiscible, viscous fluids in two dimensions

- Triangular Lattice (like FHP)
- Rest Particle

OUTGOING

- Two Colors (red and blue)
- Collisions Conserve
 - number of red particles
 - number of blue particles
 - total momentum

<u>Rothman-Keller Model for</u> <u>Two-Phase Flow II</u>

• Choose from among different possible outcomes to preferentially send particles toward particles of like color

Lattice Vectors

$$\mathbf{c}_{j} \equiv -\hat{\mathbf{x}}\sin\left(\frac{2\pi j}{6}\right) + \hat{\mathbf{y}}\cos\left(\frac{2\pi j}{6}\right),$$

Color Flux

$$\mathbf{q}[\mathbf{r}(\mathbf{x}), b(\mathbf{x})] \equiv \sum_{i} \mathbf{c}_{i}[\mathbf{r}_{i}(\mathbf{x}) - b_{i}(\mathbf{x})],$$

Color Field

$$\mathbf{f}(\mathbf{x}) \equiv \sum_{i} \mathbf{c}_{i} \sum_{j} [r_{j}(\mathbf{x} + \mathbf{c}_{i}) - b_{j}(\mathbf{x} + \mathbf{c}_{i})].$$

• Work...

 $W(r,b) = -\mathbf{f} \cdot \mathbf{q}(r,b).$

• ...must be minimized

$$W(r',b') = \min_{r'',b''} W(r'',b'')$$

<u>Rothman-Keller Model for</u> <u>Two-Phase Flow III</u>

INCOMING (Lower case letters denote particle color.):

Outcome	Color Flux	Work
I	2ŷ	-2
II	-2ŷ	2
III	$-\sqrt{3}\mathbf{\hat{x}} + \mathbf{\hat{y}}$	-1
IV	$\sqrt{3}\hat{\mathbf{x}} - \hat{\mathbf{y}}$	1
v	$\sqrt{3}\hat{\mathbf{x}} + \hat{\mathbf{y}}$	-1
VI	$-\sqrt{3}\hat{\mathbf{x}}-\hat{\mathbf{y}}$	1

OUTGOING:

(Lower case letters denote particle color. Upper case letters denote predominant color of surrounding site.):

<u>Rothman-Keller Model for</u> <u>Two-Phase Flow IV</u>

• Proof that model correctly simulates Navier-Stokes flow with interfacial surface tension:

- Reduces to FHP in regions of homogeneity
- Separation does occur
- Pressure differential between inside and outside of circular bubble of radius R is $\Delta P\,{\propto}\,R^{-1}$

Description of Algorithm I

• Mapping triangular grid to Cartesian grid:

• Column parity bit needed

Description of Algrithm II

• Encode configuration into 14 bit string:

STATE	BIT PAIR
Empty	00
Red	01
Blue	10

DIRECTIONS

Description of Algorithm III

 Every site uses indirect lookup to get color density Table is 2¹⁴ entries long Output is 4 bits

• Every site gets color density from its six neighbors, and uses unsigned addition and subtraction to get f_x and f_y (a total of 13 bits of information).

Description of Algorithm IV

- Dynamics are invariant under rotation by $\pi/6$
- Rotate by $\ln/6$ so that color field <u>f</u> points at angle $0 \le \theta_n < \pi/6$, get result for this "normal form," and rotate back by $-\ln/6$
- This reduces size of resultant lookup table by a factor of 6
- Get l and θ_n by lookup tables Tables are 2^{13} entries long

Outputs are 3 bits each

• Barrel shift last 12 bits of 14 bit configuration to "normal form configuration"

Description of Algorithm V

• Lookup normal form equivalence class Table is 2¹⁴ entries long

Output is 9 bit equivalence class of result

Lookup normal form result
Table is 2¹² entries long
Output is 14 bit normal form configuration

Barrel shift last 12 bits back to get final result

Storage of Lookup Tables

Performance of CM-2

- One fourth of memory is used for lookup tables
- Remaining memory can accomodate $\sim 9.5 \times 10^7$ sites
- 10⁸ site updates per second

Conclusions

• Rothman-Keller model for two incompressible, immiscible, viscous fluids

• Implementation on data-parallel CM-2 computer using six indirect lookup and numerous logical operations

Future work

- Saffman-Taylor fingering
 - Kelvin-Helmholtz instability

CA Simulation of Two-Phase Flow on the CM-2

Figure 9: Simulation Results

21

t = 20000

t = 60000

t = 80000

t = 100000

