
Handout # 75
15 December 1988

NIASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.821 Programming Languages

*Lisp Reference Manual

Version 5.0
October 1988

Thinking Machines Corporation
Cambridge, Massachusetts

Contents

Preface 	
Customer Support 	

Chapter 1 Introduction 	1

Chapter 2 Overview of *Lisp 	3

2.1 *Lisp Terminology 	 4

2.2 'Lisp Concepts 	 5

2.2.1 Pvars 	 6

2.2.2 Predefined Pvars 	 7

2.2.3 Selection 	 7

2.2.4 •Defun 	 9

2.2.5 Communication 	 9

2.3 Configuration Constants 	 10

Chapter 3 The Pvar Data Structure 	 11

3.1 Creating New Pvars 	 11

3.2 Allocating I ncal Pvars 	 12

3.3 Setting the Values of Pvars 	 13

3.4 Reading and Writing Fields in Specific Processors 	 14

3.5 Declaring Pvar Types 	 15

3.5.1 Syntax of Declarations 	 15

3.5.2 Example Declarations 	 16

Chapter 4 Processor Selection 	 19

111

Contents
-:,, -MONSMSZSMiMMVONwl.We.M.Y/$0.41M:r,e.'"'S-r.40:VoN.ft..:WAVAW'MAIMA.: KVAMAX:xs 	

Appendix A. *Lisp Symbols 	 65

Preface

Objectives of This Manual

The *Lisp Reference Manual describes the essential constructs of the *Lisp language and ex-
plains the concepts used m programming the Connection Machine in *Lisp.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common
Lisp: The Language, and a general understanding of the Connection Machine system. The Con-
nection Machine Front-End Subsystems provides the necessary background information on the
Connection Machine system.

Revision Information

This manual is a revision of the *Lisp Reference Manual,Version 4.0, published October 1987.
This revision corrects information presented in that version and updates descriptions to ac-
count for the implementation of 'Lisp Version 5.0. It does not fully describe *Lisp Version
5.0: the Supplement to the *Lisp Reference Manual provides information on language features
new with Version 5.0.

Overview of Manual

Chapter 1. Introduction

Chapter 2. Overview of *Lisp
This chapter provides an overview of the Connection Machine computer and of •Lisp,
including:

• A description of the language's basic concepts, such as parallel variables and
the selection of particular processors

• The parts of a typical *Lisp program

• Code examples that illustrate using parallel variables and processor selection,
defining parallel functions, and performing interprocessor communication

Preface

Names that stand for pieces of code (metavariables) appear in italics. In function or macro de-
scriptions, the names of the arguments appear in italics.

Argument names can restrict the type of an argument; argument names that end in the suffix
pvar must be parallel variables. For example, the name integer-pvar restricts the argument to a
parallel variable whose fields in the currently selected set of processors must all contain inte-
gers.

Braces followed by a star (as in {symbol }°) are used as in Common Lisp: The Language to indicate
the symbol may appear zero or more times.

Related Documents

• *Lisp Release Notes, Version 5.0
The current release notes provide a succinct overview of the changes made to to 'Lisp
since the release of Version 4.3. These are essential reading.

• Supplement to the *Lisp Reference Manual, Version 5.0
This manual updates the *Lisp Reference Manual, adding descriptions of all features
new with the release of *Lisp Version 5.0.

• *Lisp Compiler Guide, Version 5.0
This manual describes the current implementation of the *Lisp compiler.

• Connection Machine Front-End Subsystems
The manuals in this volume should be read before the *Lisp Reference Manual. It ex-
plains the configuration of the Connection Machine system, and how to access the
Connection Machine from a front-end computer.

• Connection Machine Parallel Instruction Set
The *Lisp Reference Manual explains how to call Paris from 'Lisp. Users who wish to
do so should refer also to the Paris manual.

• Common Lisp: The Language by Guy L Steele Jr. Burlington, Mass.: Digital Press,
1984.
This book defines the de facto industry standard Common Lisp.

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

harvard!think!customer-support

Telephone: 	 (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc-

curs, simply press CTRL-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: bug-connection-machinegthink.com

Please supplement the automatic report with any further pertinent information.

xi

Chapter 1

Introduction
'vutogos, 40. zNAMIANKrff

	 -Aavomm,,,f,,fam

*Lisp (pronounced star lisp) is a data parallel language designed to program the Con-
nection Machine.

A Connection Machine (CM) data parallel computer consists of a large number of
simple processors. Each has some associated local memory and is integrated into a
highly connected communications network. A CM configuration can have up to 65,536
processors, each with 4K bits (in model CM-1) or 64K bits of memory (in model CM-2).
Typical applications use data types that have components spanning many Connection
Machine processors. *Lisp provides the means for creating and manipulating these
parallel types.

"Lisp is an extension of Common Lisp. *Lisp adds a new data structure and extensions
of many Common Lisp functions that execute in many Connection Machine proces-
sors in parallel.

"Lisp has several important features:

• Many "Lisp language features map directly onto Connection Machine instruc-
tions; therefore, users quickly develop an intuition for predicting program per-
formance.

• 'Lisp includes an interface that permits direct calls to Paris from within a
"Lisp program.

• A *Lisp compiler is provided (described in the *Lisp Compiler Guide).

• A *Lisp simulator is provided for preliminary program testing and debugging.
Executing entirely on a serial front end, it simulates the Connection Machine
operations.

1

Chapter 2

Overview of *Lisp
tU.V5MISEWORM

This chapter introduces the main concepts and terminology of *Lisp. It then provides
a brief overview, with code examples, of *Lisp operations. All operations appearing in
this chapter are described more fully in subsequent chapters.

The primary concepts of the *Lisp language follow:

• *Lisp programs execute on a front-end computer. typically a Symbolics Lisp
machine or a Digital Equipment Corporation VAX. As a side effect of running
the *Lisp program, the front-end computer generates Paris instructions for the
Connection Machine processors to execute. Every so often. the front-end com-
puter transfers data or results of computations to or from the Connection Ma-
chine.

• *Lisp programs refer to and manage memory in the Connection Machine
processors through Lisp objects called pvars (pronounced pee-vars, for parallel
variables). These objects contain information about memory locations in the
Connection Machine processors and the possible types of values stored at
those locations. A pvar looks like a large vector of Common Lisp values, with
each value stored in a different Connection Machine processor. These values
may be integers, floating-point numbers, booleans, or any other Lisp object
(for example: 0, 102, -5, 10.333, t, nil, hi-there). As with Common Lisp, the
*Lisp programmer need not be concerned with type coercion, since it is done
automatically.

• *Lisp programs control the set of Connection Machine processors that are
executing instructions. This set may range from all processors in the machine
to none of the processors.

Given these concepts, a *Lisp program typically consists of these parts:

• Permanent Connection Machine storage declarations.

• Code for creating static data structures in Connection Machine memory. This
often involves substantial transfers of data from the front-end computer to the
Connection Machine.

3

Chapter 2. Overview of Lisp
	

5
'' ...

Pvar Component A single instance among the collection of values represented
by a pvar. A pvar component may be any Lisp value; the set of
components represented by a pvar need not be all of the same data

type.

Field 	The memory occupied by all the components of a pvar. A field is a
string of contiguous bits in the same memory location in each proc-
essor. The components of a pvar all occupy the same amount of
memory (even if they are of different types), and they are all stored
at the same memory address in the respective processors.

Pvar Contents 	The set of values (components) represented by a pvar. These
values are stored in the field in the Connection Machine that is de-
scribed by the pvar.

Currently Selected Set 	Most *Lisp operations are only carried out in a subset
of the Connection Machine processors. This subset is called the
currently selected set and is specified by using *Lisp special forms,
such as *all, *when, 'cond, and *if.

!! 	 The names of functions and macros that return pvars as their val-
ues end with !!. This suffix, pronounced bang-bang, is meant to
look like two parallel lines. We recommend that user-defined func-
tions follow this convention (although nothing enforces it), because
it helps ensure that pvars are produced only in contexts where they
can be used. It is an error to produce pvars in contexts where they
cannot be used (see chapter 8).

There are a few *Lisp macros whose names do not end in !!, such as
'when, *all and 'let, that, nonetheless, may optionally return a
pvar.

All *Lisp functions that perform parallel computation and do not
end in!! begin with * (pronounced star); hence, the name *Lisp.

Parallel Equivalent of This phrase is used to describe a *Lisp function with refer-
ence to a Common Lisp function. For example, "mod!! is the paral-
lel equivalent of the Common Lisp mod." This means that mod!!
performs the same calculation as mod, only mod!! performs the
operation in parallel using each component of an argument pvar.

2.2 *Lisp Concepts

This section contains sample code that illustrates some common *Lisp expressions.
All the functions used are described fully in later sections of this manual.

Chapter 2. Overview of Lisp 	 7

The above sets the contents of pvar a to the sum of the contents of pvar b and pvar c.
Notice that because c contains floating-point values, the integers contained in b are
properly coerced to a floating-point value, and the result is a floating-point value as
well.

Expressions can be nested:

(*set a (-!! b (*!! a (!! 2))))

This sets a to the difference of b and 2 times a. This simple expression causes thou-
sands of operations to go on simultaneously.

2.2.2 Predefined Pvars

Two pvars are predefined in *Lisp. The pvar 	contains the Lisp symbol tin each
processor; the symbol ti! is equivalent to (!1 t). Similarly, the pvar nil!! contains the
Lisp symbol nit in each processor.

2.2.3 Selection

When the Connection Machine is initialized, every processor will be in a state to exe-
cute all *Lisp instructions in parallel. However, it may be necessary to execute instruc-
tions in some subset of the Connection Machine processors.

One way of temporarily selecting a subset is to wrap the *when macro around a body
of forms. For example, to select the set of all processors whose cube addresses (con-
tained in the pvar returned by the function self-addressl!) end in 1, one might use the
following:

Create a pvar that is True in all odd processors
(*defvar odd-address-p

(=!! (!! 1) (mod!! (self-address!!) (!! 2))))

Now select all processors with odd cube addresses

(*when odd-address-p ...)

In another case, it may be desirable to perform an operation in the processors in which
the cube address is even and the pvar • contains zero. Two natural ways to do this are
to (1) use the logic functions to select the correct set:

(*when (and!! (not!! odd-address-p)
(-!! a (!! 0)))

(*set a (+!! a b))))

Chapter 2. Overview of Lisp 	 9

2.2.4 *Defun

To define functions that can take pvars as arguments or return them as values, use
"defun instead of defun. For example, to define a function that takes two pvar argu-
ments and returns their sum, difference, product, or quotient (depending on whether
the processor's address has remainder 0, 1, 2, or 3 when divided by 4 in all processors
in the currently selected set), use the following:

(*defun four-function!! (pvar-a pvar-b)
(*let ((address-bits (mod!!

answer)
(*cond

((=!! address-bits
(*set answer (+!!
((=!! address-bits
(*set answer (-!!
((=!! address-bits
(*set answer (*!!
((=!! address-bits
(*set answer (/!!

answer))

(self-address!!) (!! 4)))

(!! 0))
pvar-a pvar-b)))
(!! I))
pvar-a pvar-b)))
(!! 2))
pvar-a pvar-b)))

(!! 	3))
pvar-a pvar-b))))

This may now be used like any other!! function, as in:

(*set a (four-function!! (+!! a (!! 4)) (-!! a b)))

To pass a *Lisp function as an argument, use *funcall. For example, the following:

(defun *compose (*f *g x)
(*funcall *f (*funcall *g x)))

(*set a (*compose 'sqrt!! 	(!! 8)))

acts like:

(*set a (sqrt!! (I+!! (!! 8))))

2.2.5 Communication

This section demonstrates how to cause the processors to communicate with one an-
other.

One connectivity pattern that can be specified upon initialization is a two-dimensional
grid in which each processor has a neighbor on the north, east, west, and south (or

Chapter 3

The Pvar Data Structure

The basic abstraction in *Lisp is the pvar. A pvar is a Lisp object that references a field
of memory in the Connection Machine system. It contains everything necessary to de-
scribe the field. In *Lisp, the contents of pvars may be any valid Lisp object. As in
Common Lisp, coercion between data types and allocation of memory is handled auto-
matically.

3.1 Creating New Pvars

To create a permanent, named pvar, use *clever (analogous to the Lisp clever). To
create a permanent, unnamed pvar, use allocate! I.

'defvar symbol &optional initial-value-pvar documentation-string 	[Macro]

This creates a new pvar that is permanently allocated. Symbol contains the allocated
pvar. The optional argument initial-value-pvar may be any pvar or pvar expression.
*defvar creates a new pvar, initializes it to the contents of initial-value-pvar , and sets
the symbol to that new pvar using setq. If no initial-value-pvar argument is given, the
symbol contains a pvar whose values are uninitialized. Note that *coid-boot resets the
values of all pvars allocated by *clever. This form returns symbol.

Some example uses of *defvar are:

(*defvar a)
(*defvar b 	5))

(*defvar c (+!! b (!! 6)))

(*defvar d t!!)

(*defvar e (self-address!!))

(*defvar f c)

11

Chapter 3. The Pvar Data Structure
	

13

expressions stems from its maintenance of this stack. While this automatic allocation
takes care of many situations, there are times when it is desirable to explicitly allocate a
temporary variable. The *Lisp macros for performing this operation are *let and *let*.

'let ({(symbol &optional pvar—expression)}') &rest body 	 [Macro]

The first expression following the 'let should be a list of lists, each specifying one tem-
porary pvar. The elements of each sublist should consist of a Lisp symbol whose value
will be the temporary pvar, followed by an optional pvar or pvar expression that will be
copied into the new one.

These pvars survive only for the extent of the form. It is an error to try to refer to these
pvars outside the body of the *let. In other words, the symbols have lexical scope (as in
Common Lisp), whereas the pvars themselves have dynamic extent that terminates
when the let form is exited.

• iet returns the value of the last form of the body, regardless of whether that value is a
pvar. It is legitimate to return a temporarily bound pvar. *let is not able to return multi-
ple values.

'let' ({(symbol &optional pvar—expression)}') &rest body 	 [Macro]

This macro behaves in the same manner as 'let except that, as in Common Lisp, the
defining expressions are evaluated in sequence, so that previous bindings affect the
evaluation of future initialization forms.

Some example expressions are:

(*let* 	(a
(b (!! 8))
(c (*!! b 	(!! 	528)))
(d (!! -2.715))
(e (self-address!!)))

(some-pvar-functionabcde) ;This may modify a,b,c,d,or e
(+!!abcde)) 	 ;This returns a pvar

take the global maximum of bits 16-31 of the self pointer
(*let ((a (load-byte!! (self-address!!) (!! 16) (!! 16))))

(*max a)) 	 ;This does not return a pvar

3.3 Setting the Values of Pvars

The *set macro allows the contents of one pvar to be set to the contents of another. The
destination field is set in those processors that are currently selected. A 'set expres-

Chapter 3. The Pvar Data Structure 	 15
•

This function returns, as a Lisp value, the component of the field specified by pvar in
the processor whose grid address is given by addresses. There must be as many address
values as there are dimensions in the processors' current configuration (as specified
previously with *coid-boot). *sett may be used with prof-grid to write a value into a
single processor of a pvar.

(pref-grid bar 4 7)

The above returns the component of pvar bar from processor (4,7) (on a two-dimen-
sionally configured machine).

(*setf (pref-grid bar 4 7 8) (* 19 89))

The above sets the component of pvar bar for processor (4,7,8) (on a three-dimension-
ally configured machine) to 1691.

3.5 Declaring Pvar Types

*Lisp does not require that the programmer declare the type of a pvar's contents, nor
does it require that all of a given pvar's values be of the same type. A pvar can have an
integer in one processor and a floating-point number in the next. This flexibility comes
at the cost of decreased efficiency.

Type declarations are a method to reduce runtime overhead for *Lisp code running
either interpreted or compiled. Using pvars of defined types results in faster inter-
preted code and allows the *Lisp compiler to translate *Lisp code into Lisp/Paris.

For more information on pvar types, see chapter 8 of the Supplement to the * Lisp Refer-
ence Manual. For more information on how the *Lisp Compiler uses pvar types see
the *LISP Compiler Guide.

3.5.1 Syntax of Declarations

The pvar types supported by *Lisp are signed and unsigned integers, floating-point
numbers of varying precision, complex numbers containing floating point data of vary-
ing precision, characters, string-chars, and booleans. Pvar type declarations presently
are processed only by *proclaim, •let, •let, •defun, *locally and the. These declara-
tions have the same syntax as declarations in Common Lisp. The type of a pvar is
specified in the following manner:

(pvar pvar-type-specifier)

Chapter 3. The Pvar Data Structure 	 17
. • ••,:',$X • 	•••••00:1IWOMIKAKMVA:KesMPW'sm'S,•:•1*:;:z:::!0:::::,$$:::::,;::::::::::•:::::::::::::-::::::::::•%•.-:$:*>'$,NW,;*i

(*proclaim '(type (pvar boolean) finished-p))
(*defvar finished-p nil!!)

(*let* ((templ (load-byte!! foo (!! 0) (!! 9)))
(temp2 (sqrt!! tempi)))

(declare (type (pvar (unsigned-byte 9)) tempi)
(type (pvar single-float) temp2))

tempi may contain values between 0 and 511.
temp2 may contain single-floats,

...)

(setq xx (allocate!! (!! 1.23) 'xx '(pvar double-float)))

*Lisp allows certain elements of declarations to be computed at run time as opposed
to compile time. All the length arguments to the type declarations may be either con-
stants or run-time expressions such as global configuration variables. Following is a
typical example using a global configuration variable:

(*let ((temp (self-address!!)))
(declare
(type (pvar (unsigned-byte *current-send-address-length*))

temp))

Chapter 4

Processor Selection
'":"TESSTIMAraigitraMeffirATINSTO

When the Connection Machine is initialized, every processor is in a state to execute all
*Lisp instructions in parallel. However, it may be necessary to execute instructions in
some subset of processors. In fact, most operations are executed in a subset of Connec-
tion Machine processors, which is known as the currently selected set.

Some of the macros in *Lisp that change the currently selected set are *all, *when,

*cond, and *If. These macros select processors based on the result of a pvar expres-
sion. Any processor in which the pvar expression evaluates to rill is eliminated from the
selected set. Although these macros may modify the currently selected set, they all
obey the discipline of restoring the currently selected set to its previous state upon
completion. Also, they may be nested as deeply as desired.

It is sometimes useful for user functions to have a *all surrounding their bodies to en-
sure that they are starting out with the complete machine selected. Using the functions
described in this section, the selected set is whittled down to select only the processors
that should perform a given operation. The body of these forms is always executed,
even if there are no selected processors.

Note: In the current implementation, of the forms below that return values, none are
configured to allow the return of multiple values. It is an error to attempt to return
multiple values from any of these forms.

'all &body body 	 [Macro]

This form selects all processors. Its body is executed with the currently selected set
equal to the entire machine. The value of the final expression in the body is returned
whether it is a Lisp value or a pvar.

*when pvar &body body 	 [Macro]

This form subselects from the currently selected set. Thus every processor that is un-
selected when *when is called remains unselected in the body of the *when. It selects

19

Chapter 4. Processor Selection 	 21
-

(*when (=!! a b) (*set e (+!! c d)))

(*cond ((=!! a (!! 1)) (*set e (+!! b c)))

((not!! (=!! c d)) (*set f (*!! b c)))

(t!! (*set f (!! 9))))

(*if (=!! c d) (*set e f) (*set g h))

(*when a (*set b (-!! b))

(*defun f (x y)

"Returns y divided by x for y greater than 0.

Returns nil if any x is 0. The return value is

undefined a processors where y<0"

(block foo

(with-css-saved

(*when (>!! y (!! 0))

(if (*or (=!! (!! 0) x))

(return-from foo nil)

(/!! y x))

))))

Chapter 5

Computations on Pvars
'''' •••••;•,'•••:•:•••••••••::.Ke••utiw:::w..

This chapter introduces a variety of functions that work within each processor and
that return a pvar containing all the processors' results. Recall that in *Lisp, it is con-
ventional for functions that return a pvar to have the suffix!! on their names.

5.1 Predicate Operations

The *Lisp predicate functions are used in the same way as Common Lisp predicates,
for instance, in conditional expressions. They return a pvar that contains a t in all proc-
essors of the currently selected set in which the predicate holds, and a nil in those in
which it does not.

oddp!! integer-pvar 	 [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument integer-pvar is odd, and nil in all others. It is an error if any component of
integer-pvar is not an integer.

evenp!! integer-pvar 	 [Function]

The pvar returned by this predicate contains t for each processor where the value of
the argument integer-pvar is even, and nil in all others. It is an error if any component of
integer-pvar is not an integer.

pluspl number-pvar 	 [Function]

The pvar returned by this predicate contains t for each processor where the value of

the argument number-pvar is greater than zero, and nil in all others.

23

Chapter 5. The Pvar Data Structure 	 25

1=ll numeric-pvar &rest numeric-pvars 	 [Function]

This returns a pvar that contains tin each processor where the argument pvars contain
unequal values and nil elsewhere. If only one argument is given, the returned pvar is t!!.

<11 numeric-pvar &rest numeric-pvars 	 [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in strictly increasing order and nil elsewhere. If only one argument
pvar is given, the returned pvar is t!!.

>1! numeric-pvar &rest numeric-pvars 	 [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in strictly decreasing order and nil elsewhere. If only one argument
pvar is given, the returned pvar is t! !.

<=!! numeric-pvar &rest numeric-pvars 	 [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in non-decreasing order and nil elsewhere. If only one argument pvar
is given, the returned pvar is t! !.

>s!! numeric-pvar &rest numeric-pvars 	 [Function]

This returns a pvar that contains t in each processor where the argument pvars contain
values which are in non-increasing order and nil elsewhere. If only one argument pvar
is given, the returned pvar is t!!.

5.1.1 Predefined Pvars

t!! 	 [Constant]

This is a pvar whose contents in each processor is the Lisp symbol t.

nil!! [Constant]

This is a pvar whose contents in each processor is the Lisp symbol nil.

It is an error to use t!! or nil!! as the destination for *set, *pset or any other form which
modifies its argument.

Chapter 5. The Pvar Data Structure 	 27

lognottl integer-pvar 	 [Function]

This returns a pvar whose bits are the logical complement of the bits in integer-pvar.

logiort! &rest integer-pvars 	 [Function]

This returns a pvar whose bits are the logical inclusive or of the bits in integer-pvars. If
there are no pvars, then (!! 0) is returned.

logxort! &rest integer-pvars 	 [Function]

This is the parallel equivalent of the Common Lisp function loccor. If there are no inte-
ger-pvars, then (H 0) is returned.

logand! &rest integer-pvars 	 [Function]

This returns a pvar whose bits are the logical and of the bits in integer-pvars. If no inte-
ger-pvars are given. then (!! -1) is returned.

logeqvt! &rest integer-pvars 	 [Function]

This is the parallel equivalent of the Common Lisp function logeqv. If no integer-pvars
are given, then (1! -1) is returned.

5.4 Numerical Operations

This section describes the elementary numerical functions. As with Common Lisp, the
results of these functions are always numerically correct. For example, the result of an
addition is never truncated. no matter how much memory is required to represent the
result. If not enough memory is available, an error is signaled. However, the numerical
accuracy of certain arithmetic operations on floating point data is subject to restric-
tions noted in the Version 5.0 'Lisp Release Notes. A few arithmetic operations are
also restricted when operating on integer data to a maximum number of bits for each
argument. The Release Notes also describe these limitations.

These functions each return results of the same type as the most expensive of their
arguments (e.g. if all arguments are integers, the result is generally an integer; but if any
argument is a float, the result is a float).

Chapter 5. The Pvar Data Structure 	 29

mod!! numeric-pvar integer-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function mod. It is an error if inte-

ger-pvar contains zero in any processor.

ash!! integer-pvar count-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function ash.

truncate!! numeric-pvar &optional divisor-numeric-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function truncate, except that only
one value (the first) is computed and returned.

round!! numeric-pvar &optional divisor-numeric-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function round, except that only
one value (the first) is computed and returned.

ceiling!! numeric-pvar &optional divisor-numeric-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function ceiling, except that only
one value (the first) is computed and returned.

floor!! numeric-pvar &optional divisor-numeric-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function floor, except that only one
value (the first) is computed and returned.

sqrt!! non-negative-or-complex-pvar 	 [Function]

This returns the non-negative square root of its argument, if the argument is not com-
plex. If the argument is complex, the principal square root is returned. Unlike Com-
mon Lisp., it is an error to provide a negative, non—complex value to sqrt!!.

isqrtil non-negative-integer-pvar 	 [Function]

This is the parallel equivalent of the Common Lisp function isqrt.

random!! limit-pvar 	 [Function]

This returns a pvar whose contents is a random value between 0 inclusive and limit-

pvar exclusive for each processor.

Chapter 5. The Pvar Data Structure 	 31

least significant bit. In any processor in which zero bits are extracted, the resulting
field contains zero. This operation is especially fast when both position-pvar and size-
pvar are constants. as in (1 lisp-value). from-pvar must be a pvar containing integers.
while position-pvar and size-pvar must be pvars containing non-negative integers. Out-
of-range bits are treated as zero for positive integers (for example. (load-byte!! (1! 1)

(1! 2) (1! 3)) returns a pvar that contains zero in each processor). and one for negative
integers (for example, (load-byte!! (!! -1) (!! 2) (!! 3)) returns a pvar that contains 7 in
each processor).

deposit-byte!! into-pvarposition-pvarsize-pvarbyte-pvar 	 [Function]

This returns a pvar whose contents are a copy of into-pvar with the low order size-pvar

bits of byte-pvar inserted into the bits starting at location position-pvar.

When the into-pvar is positive (negative), zeros (ones) are appended as high order bits
of byte-pvar as needed. The returned value may have more bits than into-pvar if the
inserted field extends beyond the most significant bit of into-pvar. For example,
(deposit-byte!! (11 3) (!! 1) (11 2) (11 2)) returns (11 5). This function is especially fast
when both position-pvar and size-pvar are constants, as in (1! lisp-value). Into-pvar and
byte-pvar must contain integers, while position-pvar and size-pvar must be pvars con-
taining non-negative integers only.

if!! pvar then-pvar &optional else-pvar 	 [Macro]

This returns a pvar that contains the contents of the then-pvar in all processors in
which pvar is non-nil, and the contents of else-pvar in all processors in which pvar is nil.
The else—pvar argument defaults to nil!!. For the execution of the then-pvar expression.
the currently selected set is set to all processors that passed the predicate, whereas for
the execution of the else-pvar the currently selected set is set to all the selected proces-
sors that failed the predicate. (See also • if , which is executed only for side effect.)

This is equivalent to:

(*let ((result)
(temp-pred pvar))

(*when temp-pred
(*set result then-pvar))

(*when (not!! temp-pred)
(*set result else-pvar))

result

An example that demonstrates the usefulness of if!! is the following function to take the
absolute value:

Chapter 5. The Pvar Data Structure 	 33

*defun name arg-list &body body 	 [Macro]

This is analogous to the Common Lisp defun and can be used in place of it in defining
user functions that might take as an argument a pvar or that might return a pvar as a
result. Using *defun is only required if a function is to take pvar arguments and possi-
bly return a non-pvar result. • defun returns, as a symbol, the name of the function
being defined. Like the Common Lisp defun, the body may contain declarations and a
documentation string. In particular type declarations for pvar arguments may be pro-
vided within the body of a *defun.

If, in a given file, a function too defined by *defun is called before it is defined textually
in the file, or is called but is not defined in the current file, then the user must declare
that too is actually a function defined by •defun and is not a regular function defined
by defun. One makes such a declaration with the *Lisp macro • proclaim. For example:

(*proclaim '(*defun foo))

Failure to make such declarations results in incorrectly compiled code.

*funcall function &rest arguments 	 [Macro]

This is used just like Common Lisp's funcall, but with functions defined using •defun.
One may not use funcall with a function defined using *defun.

*apply function arg &optional more-args 	 [Macro]

This is used just like Common Lisp's apply, but with functions defined using *defun.

5.7 Debugging Tools

pretty-prInt-pvar pvar
&key (:mode *ppp-default-mode*)

(:format *ppp-default-format*)
(:per-line *ppp-default-per-line*)
(:start •ppp-default-start*)
(:end *ppp-default-end*)

[Macro]

This prints out the contents of a pvar in all processors. If :per-line is nil, no newlines
are ever printed between values; otherwise, :per-line values are printed out and then a
newline is output. The keyword :mode can have the value :cube or :grid; in the latter

Chapter .5. The Pvar Data Structure 	 35
:V;;.Mi*KOM*Mitk:a=10)..0.100i*MOMWSIOSIMIMMVAaMaleK4W, ;::2§.$$z‘',...44:MOIMM:440

Ilst-of-ective-processors 	 [Function]

This simply returns a list of cube addresses of all the currently selected processors. The
order of this list is not specified. Since this function is so useful, an alias, loap, is also
defined. This could be written as:

(defun list-of-active-processors ()

(let ((return-list nil))

(do-for-selected-processors (processor)

(push processor return-list))

return-list))

pretty-print-pvar-in-currently-selected-set pvar
&key format start end 	 [Function]

This function prints out the the cube address and value ofpvar for all processors in the
currently selected set. Since this function is so useful, an alias, ppp-css, is also defined.
format defaults to "-s". This function returns no values.

Chapter 6. Communication 	 49
.:.::.::immommiwom>;:nommomswkwax:ftwwww-eae.Kmmmimv.,-m::*

6.4 Global Operations

The following functions reduce the contents of a pvar in all selected processors into a
single Lisp value, which is then returned:

•logior integer-pvar 	 [*Defun]

This returns a Lisp value that is the bitwise logical inclusive or of the contents of inte-
ger-pvar in all selected processors. This returns the Lisp value 0 if there are no selected
processors.

•logand integer-pvar 	 [*Defun]

This returns a Lisp value that is the bitwise logical and of the contents of integer-pvar in
all selected processors. This returns the Lisp value -1 if there are no selected proces-
sors.

• min numeric-pvar 	 rDefun]

This returns a Lisp value that is the minimum of the contents of numeric-pvar in all
selected processors. This returns the Lisp value nil if there are no selected processors.

'max numeric-pvar 	 [*Defun]

This returns a Lisp value that is the maximum of the contents of numeric-pvar in all
selected processors. This returns the Lisp value nil if there are no selected processors.

or pvar 	 [Defun]

This returns a Lisp value oft if the contents of pvar is non-nil in any selected processor;
otherwise, it returns nil. If there are no selected processors, this function returns nil.
For example, to determine if there are any processors currently selected, use (* or t!!),
which returns t only if there are selected processors.

• and pvar 	 Defun]

This returns a Lisp value oft if the contents of pvar is non-nil in every selected proces-
sor; otherwise, it returns nil. If there are no selected processors, this function returns t.

Chapter 6. Communication 	 51

grid-from-cube-address!! cube-address-pvar dimension-pvar 	[Function]

This function takes a cube-address-pvar and returns a pvar containing the grid address
for the specified dimension-pvar for each selected processor.

cube-from-grid-address!! address-pvar &rest address-pvars 	 [Function]

This function translates a grid address consisting of (possibly) several address-pvars
into a cube address for each selected processor.

off-grid-border-pH &rest grid-address-pvars 	 [Function]

This function returns a boolean pvar that is true if the grid-address-pvars specify an
address that is invalid given the current dimensions, and false otherwise. It is an error
for any component of grid-address-pvar to be a non-integer.

off-grid-border-relative-p!! &rest relative-grid-address-pvars 	[Function]

This function is identical to off-grid-border-pH except that the relative-grid-address-
pvars specify relative addresses.

Chapter 7

Using the Connection Machine

The *Lisp language resides in a package named *LISP. To use the language, the user
must either be in that package:

(in-package '*LISP)

or else make that package available to the package the user is in:

(use-package '*LISP)

On Symbolics Lisp machines, the user should put the following package attribute in
the attribute list of any file that contains functions to be put in the • LISP package:

Package: (*LISP COMMON-LISP-GLOBAL)

For instructions on how to load the "Lisp language into your Lisp machine, please
refer to the Connection Machine Front-End Subsystems.

7.1 Using the Connection Machine Hardware

This section describes the two *Lisp functions (cold-boot and •warm-boot) that allow
the user to use the hardware.

Note: The macro • cold-boot has been enhanced to work with n-dimensional NEWS.
*Lisp interpreter safety, and geometry objects. These changes and the new features to
which they are related are all documented in the Supplement to the *Lisp Reference
Manual.

*cold-boot &key :initial-dimensions initial-dimensions 	 [Macro]

This function initializes *Lisp and must be called immediately after loading in the
*Lisp software. It resets the internal state of the *Lisp system and of the Connection

53

Chapter 7. Using the Connection Machine 	 55

7.1.1 Initialization Lists for *cold -boot and *warm-boot

Users can define a set of forms to be executed automatically before and after each
execution of 'cold boot and 'warm-boot. These user-defined initialization lists are
stored in one or more of these variables:

*before-*cold-boot-initlallzations* 	 [Variable]

*after-*cold-boot-InItlallzatlons* 	 [Variable]

*before-*warm-boot-InItlalizatIons* 	 [Variable]

*after-*warm-boot-initializations* 	 [Variable]

New forms are added using the function add-initialization, and removed using delete-
initialization.

add-initlalization name-of-form form variable 	 [Function]

The argument name-of-form is a character string that names the form being added.
The argumentforrn may be any executable Lisp form. Adding two forms with the same
name is permissible only if the forms are the same according to the function equal;
otherwise an error is signaled. The variable should be one of the initialization-list vari-
ables above, or it may be a list of such variables, in which case theforrn is added to each
initialization list named. The form and variable arguments must be quoted so that they
are not evaluated during the call to add-initialization. For example:

(add-initialization (string 'items)
'(initialization-items)

'*after-*warm-boot-initializations*)

delete-initialization name-of-form variable 	 [Function]

This function deletes the form named by name-of-form from the initialization list (or
lists) specified by variable. The arguments are specified in the same manner as the first
and third arguments for add-initlalization. For example:

(delete-initialization (string 'items)

'*after-*warm-boot-initializations*)

Chapter 7. Using the Connection Machine 	 57

boot and *warm-boot work in the same manner as for the interpreter. The simulator is
more lenient than the interpreter with respect to dimensioning the machine: the simu-
lator allows arbitrary extent in each dimension, while the interpreter currently sup-
ports only extents that are powers of two. Warnings are issued if one tries to configure
the simulator in a way that the interpreter cannot handle.

Since the simulator and interpreter implementations of *Lisp are very different, it is
unfortunately necessary to recompile code when switching from one system to the
other. It is not possible to load the simulator once the interpreter version of *Lisp has
been loaded, and vice versa.

The symbols 'lisp-hardware and 'lisp-simulator are appended to the Common Lisp
*features' list when running on the interpreter and on the simulator, respectively.
These symbols can be used to perform read-time conditionalization of code.

7.2 Interfacing Paris Code to *Lisp

It is sometimes necessary to explicitly call Paris instructions from within *Lisp pro-
grams.

Paris instructions require pvars' memory addresses and lengths as their arguments.
While a pvar is commonly—and appropriately—regarded as a "parallel variable," that
is, a program variable that has a value in each CM processor, a pvar actually exists in
the front end as a Lisp object that points to and describes a field in each CM proces-
sor's memory. These fields in the CM contain the values that comprise the parallel
variable. The front-end Lisp object also contains pvars' addresses and lengths, infor-
mation that may be needed as arguments to Lisp/Paris functions. The following func-
tions return this information.

(pvar-location pvar)
(pvar-length pvar)

These functions return the location (address) and length of a pvar.

(pvar-type pvar)

This function returns the type of a pvar. The type of a pvar may be one of :general,
:field, :signed, :float, :boolean, :complex, :character, :string-char, :array, or :struc-

ture. These correspond to pvar types t (for general), unsigned-byte, signed-byte, de-

fined-float, boolean, complex, character, string-char, array, and types defined by
*defstruct, respectively.

Chapter 8

Avoiding Potential Difficulties

This chapter describes potential difficulties in using *Lisp and ways the user can avoid
them.

8.1 Pvar Values in Non-Selected Processors

It is an error to depend on the value of a pvar in a processor that was not in the cur-
rently selected set at the time the pvar was created. For instance, the following is incor-
rect:

(*when (<!! (self-address!!) (!! 10))
(*let ((foo (self-address!!)))
(print (pref foo 20))

))

The *Lisp language definition does not define the value printed in the above example
because the pvar foo was only given values in the active processors, 0 through 9.

8.2 The Extent of Pvars

Unlike Common Lisp, pvars defined using *let or *let* have dynamic extent; that is, it
is an error to reference the value of a pvar once the body of its defining *let or 'let* has
been exited. For example:

(*defun will-not-work (pvar constant)

(funcall
(*let ((xyzzy (!! constant)))

#'(lambda (x) (*sum (+!! (!! x) xyzzy)))

59

61

Chapter 8. Avoiding Potential Difficulties 	 61

8.5 *cold-boot

'cold-boot calls cm:coidboot to initialize Connection Machine state and also initial-
izes the *Lisp run-time systems. This function must be called when first entering the
*Lisp environment (hardware or simulator) if the user intends to evaluate any code. In
addition, we strongly recommend that 'cold-boot be called between runs of applica-
tion programs. Finally, 'cold-boot should be called if 'warm-boot has failed to clear
an error state.

'cold-boot is intended to be used as a top-level form. Under no circumstances should
it be used inside of a *defun form, either lexically or in such a manner that it might be
executed while a idefun function is being evaluated.

8.6 pref!!, pref-grid!! and pref-grid-relative!!

These *Lisp functions (which are actually macros) are defined to evaluate their source
argument(s) in the context of the set of addresses defined by evaluating their address
pvar(s). Therefore, writing a function foo that calls one of these functions with a source
arguments passed into foo may not work because s will have already been evaluated by
the Lisp evaluator before the body of foo is evaluated.

The solution is to define such functions as macros. For example:

(*defun foo (condition source-pvar address-pvar)
(if condition

(pref!! source-pvar address-pvar)
(!! 0)

))

The above may not work as intended and should be rendered as

(defmacro foo (condition source-pvar address-pvar)
'(if ,condition

(pref!! ,source-pvar ,address-pvar)
(!! 0)

))

If source-pvar is always a symbol and not a pvar expression, then this modification is
not necessary.

8.7 Multiple Values

The current implementation does not support the return of multiple values from any
*Lisp form. It is error to attempt such an operation.

Appendixes

63

Appendix A

*Lisp Symbols

This appendix lists all *Lisp symbols and pvar types described in this manual.

Constants

ni111, 7, 25
EH, 7, 25

Operators

11, 28
+11, 28
- H, 28
'I!, 28
'apply, 33
'cold-boot, 10
"defun, 9, 33, 34
'funcall, 33
'prefll, 10
'set, 7, 8
'when, 7
/11, 28
1=11, 25
=11, 24
>11, 25
>=11, 25
1+11, 28
1-H, 28
add-initialization, 55
'all, 19
allocate!!, 11, 12
'and, 49
and??, 26
array-to-pvar, 44
array-to-pvar-grid, 45

ash!!, 29
ceiling?!, 29
'cold-boot, 53, 61
'cond, 20
cond!!, 32
cosll, 30
cube-from-grid-address, 50
cube-from-grid-address!!. 51
'deallocate, 12
•deallocate-sdefvars, 12
declare, 16
sdefun, 15
delete-initialization, 55
deposit-byte!!, 31
do-for-selected-processors, 20
enumerate!!, 32
eq11, 24
eq111, 24
evenpl!, 23
float!!, 30
floatpl!, 24
floor!?, 29
grid-from-cube-address, 50
grid-from-cube-address!!, 51
'if, 20
if!!, 31
integerpH, 24
isqrtH, 29
'let, 13, 15
'let`, 13, 15
list-of-active-processors, 35
load-byte!, 30
log!!, 30

65

Index

67

Index
.:*m.v.umx ,W4.:INAWMIMMISAM:41**-MMMWAW:f:MMOIMARNAWIWASIEWss-1":".MTIM.,::_

References are to page numbers. Separate listings of *Lisp symbols and pvar types are provided
in appendix A.

multiple values, 61

communication, interprocessor, 9
cube address, 4, 62
currently selected set, 5, 19 	 news!!, 10

debugging tools, 33
declare statement, 16
defining *Lisp functions, 9
"defvar, 11
double-float pvar, 16

field, 5
front-end computer, data transfer, 43

grid address, 4, 62

interprocessor, 37-51

logical operations, 26-27
long-float pvar, 16

Paris, called from *Lisp, 57
predicate operations, 23
processor selection, 7
processors, 4

non-selected, 59
pvar, 4, 6, 11-17
pvar type declaration, 15-17
pvars, extent, 59

selection, of processors, 19-21
*set, 7
*setf, 6, 14
short-float pvar, 16
signed-byte pvar, 16
simulator, 56
single-float pvar, 16

type statement, 16

unsigned-byte pvar, 16
memory management, 58

	
user-defined operations, 32

69

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35

