
MATHEMATICAL AND

COMPUTATIONAL SCIENCES

Publications

Titles and Abstracts

April 1989

THINKING MACHINES
CORP ORATION

•

u 	• 	' It-, • '1'9111' ff
.11 	.

remsttettA. bits 'sift

•

aviA. JADItAltilMIMAM

OtIOVTICME LTAVIOITATUSMO --

sigobstoildecl

feet flubk

. 	 ap411110A14/1 ommivir :
11 -y 	. 	 MOTTASI0413100

, 	, 	• 	 ..ey•
: in-14-1.11.W,1710.47
ri 	Ii 	

, •.„ 	
as_11.1 	— I t , 	

,

.1'
16‘'l

46114." ?

f!' q 1. .".,A104,6+4*.4.
• . 	•,.

- 	•-• 	ire..1

•

• .1. 1.: 	jit

:
a•I_.iiI

f 	,

IIld
r 	 _

71 	• 	
71JMLI.

I :

, dl

Four Vector-Matrix Primitives
Thinking Machines Corporation

Technical Report
Ajit Agrawal, Guy E. Blelloch, Robert L. Krawitz, Cynthia A. Phillips

April 1989

Abstract

This paper describes four APL-like primitives for manipulating dense
matrices and vectors and describes their implementation on the Connec-
tion Machine' hypercube multiprocessor. These primitives provide a natu-
ral way of specifying parallel matrix algorithms independently of machine
size or architecture. We illustrate their use in three numerical algorithms:
a vector-matrix multiply, a Gaussian-elimination routine and a simplex
algorithm. We describe implementations of the primitives assuming load-
balanced embeddings of matrices and vectors on a hypercube multiproces-
sor architecture. The primitives may indicate a change from one embedding
to another. The implementations are efficient in the frequently occurring
case where there are fewer processors than matrix elements. In particular if
there are m > p lgp matrix elements, where p is the number of processors,
then the implementations of some of the primitives are asymptotically op-
timal in that the processor-time product is no more than a constant factor
higher than the running time of the best serial algorithm. Furthermore,
the parallel time required is optimal to within a constant factor.

We have implemented the primitives on the Connection Machine Sys-
tem, and this implementation improved the running time of some of our
applications by almost an order of magnitude over a naive implementation.
We give Connection Machine timings for the primitives and the algorithms.

To appear in the proceedings of First Annual ACM Symposium on Par-
allel Algorithms and Architectures

'Connection Machine System is a registered trademark of Thinking Machines
Corporation.

Node Orderings and Concurrency in
Structurally-symmetric Sparse Problems

Yale University
Department of Computer Science

Technical report
lain S Duff and S. Lennart Johnsson

March 1989

Abstract

In the solution of structurally-symmetric sparse linear systems by direct
methods it is possible to exploit concurrency not only within the elimina-
tion operations at a single pivot step but also over the eliminations using
different pivots. The pivot ordering that minimizes the number of arith-
metic operations does not, in general, minimize the time for the concurrent
solution of a system of equations. We investigate minimum degree and
nested dissection orderings, as well as a few other ordering schemes, with
respect to potential solution time and total arithmetic complexity for a few
benchmark problems and an idealized parallel computer. The benchmark
problems include 2-dimensional grid problems and some other standard
sparse matrix test problems.

Presented at the First International Conference on Vector and Parallel

Processing, Loen, Norway, June 1986
To appear in Algorithms for Vector and Parallel Supercomputers, Wiley,

1989.

Solving the Wide Angle Wave Equation on a Data
Parallel Computer

Thinking Machines Corporation
Technical Report

S. Lennart Johnsson, Anne Trefethen, and David Browning
In preparation

Abstract

Three-dimensional acoustics problems are computationally very de-
manding for an accurate computation of the field over the frequency range
and domain of interest in many applications. Even with todays supercom-
puters simulations require very long execution times. It is important to
use current and future supercomputers effectively for an accurate model-
ing of the problem. In this paper we focus on the implementation of the
method for solving the three-dimensional wide-angle wave equation pro-
posed by Lee and others on the Connection Machine system. The method
makes use of an Alternating Direction Method for solving the parabolic ap-
proximation to the wave equation. On the Connection Machine system we
have implemented the algorithm using substructuring and odd-even cyclic
reduction for the solution of the reduced set of equations. The address
space of the Connection Machine is configured as a two-dimensional array.
The computed solution for a model problem is compared with the exact
solution. We present some highlights of the implementation, including per-
formance measurements for different grid sizes and mappings thereof to the
Connection Machine.

To appear in the Proceedings of the Second IM A CS Symposium on
Computational Acoustics, 1989.

A Dataparallel Implementation of an Explicit
Method for the Three-Dimensional Compressible

Navier-Stokes Equations.
Thinking Machines Corporation

Technical Report CS-89/4
Pelle Olsson and S Lennart Johnsson

March 1989

Abstract

The fluid flow in a three dimensional, twisted channel, is modeled by
both the full, Navier-Stokes equations and the Euler equations. For both
models we use an explicit finite difference method with a three stage Runge-
Kutta method for integrating the system of equations in time. A second-
order accurate, centered difference scheme is used for spatial derivatives of
the flux variables. For the Euler equations as well as the Navier-Stokes
equations artificial viscosity is introduced in order to stabilize the numeric
scheme. The artificial viscosity introduces fourth order centered differences
into the discrete, numeric scheme.

The explicit method has been implemented on the Connection Machine
model CM-2, a data parallel computer configurable with up to 65,536 pro-
cessors and 512 Mbytes of primary storage. A performance of 1.05 Gflops/s,
single-precision, was demonstrated for a fully configured Connection Ma-
chine system. The performance scales in proportion to the number of pro-
cessors. The performance on 8k processor configurations was 135 Mflops/s,
on 16k processors 265 Mflops/s, and 525 Mflops/s on 32k processors. The
efficiency is independent of the machine size, as expected. A consider-
able performance improvement is expected with efficient implementation of
functional kernels such as convolution, and matrix-vector multiplication.

A Study of Dissipation Operators for the Euler
Equations and a Three-dimensional Channel Flow.

Thinking Machines Corporation
Technical Report CS-89/3

Pelle Olsson and S. Lennart Johnsson
March 1989

Abstract

Explicit methods for the solution of fluid flow problems are of consid-
erable interest in supercomputing. These methods parallelize well. The
treatment of the boundaries is of particular interest both with respect to
the numeric behavior of the solution, and the computational efficiency. We
have solved the three-dimensional Euler equations for a twisted channel
using second-order, centered difference operators, and a three stage Runge-
Kutta method for the integration. Three different fourth-order dissipation
operators were studied for numeric stabilization: one positive definite, one
positive semidefinite, and one indefinite. The operators only differ in the
treatment of the boundary. For computational efficiency all dissipation op-
erators were designed with a constant bandwidth in matrix representation,
with the bandwidth determined by the operator in the interior. The posi-
tive definite dissipation operator results in a significant growth in entropy
close to the channel walls. The other operators maintain constant entropy.

Several different implementations of the semidefinite operator obtained
through factoring of the operator were also studied. We show the differ-
ence both in convergence rate and robustness for the different dissipation
operators, and the factorizations of the operator due to Eriksson. For the
simulations in this study one of the factorizations of the semidefinite oper-
ator required 70 - 90% of the number of iterations required by the positive
definite operator. The indefinite operator was sensitive to perturbations
in the inflow boundary conditions. The simulations were performed on a
8,192 processor Connection Machine system model CM-2. Full processor
utilization was achieved, and a performance of 135 Mflops/s in single pre-
cision was obtained. A performance of 1.1 Gflops/s for a fully configured
system with 65,536 processors was demonstrated.

Embedding Meshes in Boolean Cubes by Graph
Decomposition

Yale University
Department of Computer Science

Technical Report
Ching-Tien Ho and S. Lennart Johnsson

March 1989

Abstract

This paper explores the embeddings of multidimensional meshes into
minimal Boolean cubes by graph decomposition. The dilation and the
congestion of the product graph (GI x G2) --* (H1 x H2) is maximum
of the two embeddings G1 -- H1 and G2 ---4 112. The graph decomposi-
tion technique can be used to improve the average dilation and average
congestion for existing mappings. One property used frequently in mesh
embedding by graph decomposition is that a ii x £2 x • • • x 4 mesh is a
subgraph of the product graph of the two meshes ei X e2 X • • • X eic and

x i'2' x • • • x et, if fi < .e i" for all 1 < i < k. The graph decomposition
technique combined with some particular two-dimensional embeddings al-
lows for minimal expansion, dilation two, congestion two embeddings of
about 87% of all two-dimensional meshes, asymptotically. With the graph
decomposition technique, and some three-dimensional mappings presented
in this paper, more than 96% of all three-dimensional meshes contained
in a 512 x 512 x 512 mesh can be embedded in a minimal Boolean cube
with dilation two. The graph decomposition technique is also used to gen-
eralize the mesh embeddings to include wrap-around with an increase in
the dilation by at most 1, compared to a mesh without wrap-around. The
expansion is preserved for the majority of meshes, if a wrap-around feature
is added to the mesh.

The Finite Element Method on a Data Parallel
Computing System

Thinking Machines Corporation
Technical Report CS-89/2

Kapil K. Mathur and S. Lennart Johnsson
January 1989

Abstract

A data parallel implementation of the finite element method on the
Connection Machine system CM-2 is presented. This implementation as-
sumes that the elementary unit of data is an unassembled nodal point. In
the context of the CM-2, each virtual processor represents an unassembled
nodal point and nodal points shared between elements are replicated on
different virtual processors. An algorithm for computing each elemental
stiffness matrix concurrently, as well as different elemental stiffness matri-
ces concurrently, without inter-processor communication is presented. The
performance of the elemental stiffness matrix computation is in the range
1.6 - 1.9 GFlops s-1. The sparse system of linear equations that results
from the finite element discretization has been solved by a conjugate gradi-
ent method with a diagonal preconditioner. The rate of convergence of the
conjugate gradient iterations for boundary conditions which correspond to
uniaxial deformations depends nonlinearly on the order of interpolation of
the elements and linearly on the mesh discretization. Sample code segments
are provided to illustrate the programming environment on a data parallel
architecture.

To appear in the Journal of High-Speed Computing

A Numerical Formulation for Anisotropy in Metal
Forming Analysis

Thinking Machines Corporation
Technical Report

Paul R. Dawson and Kapil K. Mathur
In preparation

Abstract

Changes in the mechanical state of metals typically accompany the de-
formations associated with forming operations. Often these changes sub-
stantially affect the properties of the product. A mathematical model for
the large strain anisotropic deformation behavior of polycrystalline metals
and its implementation in a finite element formulation for viscopla.stic flow
are summarized. The novel feature of this formulation is use of constitu-
tive models that are rich in microstructural detail. Several issues related to
use of such micromechanical models in deformation process simulation are
discussed. Two primary forming operations are considered with an interest
in the degree to which properties, especially the crystallographic texture,
are modified by deformation. The processes considered are slab rolling and
wire drawing. Part of the simulation results are orientation distributions of
the grains in aggregates of material points of the workpiece. Such results
show how the combined ideal and redundant deformations of a process af-
fect the final product properties, an important advance over computations
based on the ideal deformations alone.

Histogram Computation on Distributed Memory
Architectures

Yale University
Department of Computer Science

Technical Report 682
Dimitris C. Gerogiannis, Stelios C. Orphanoudakis and S. Lennart

Johnsson
January 1989

Abstract

One data-independent and one data-dependent algorithm for the com-
putation of image histograms on parallel computers are presented, analyzed,
and implemented on the Connection Machine system CM-2. The data-
dependent algorithm has a lower requirement on communication bandwidth
by only transferring bins with a non-zero count. Both algorithms perform
all-to-all reduction, which is implemented through a sequence of exchanges
as defined by a butterfly network. The two algorithms are compared based
on predicted and actual performance on the Connection Machine CM-2.
With few pixels per processor the data-dependent algorithm requires on the
order of NIL' data transfers for B bins compared to B data transfers for the
data-independent algorithm. As the number of pixels per processor grows
the advantage of the data-dependent algorithm decreases. The advantage
of the data-dependent algorithm increases with the number of bins of the
histogram.

Data Structures and Algorithms for the Finite
Element Method on a Data Parallel Supercomputer

Thinking Machines Corporation
Technical Report CS-89/1

S. Lennart Johnsson and Kapil Mathur
January 1989

Abstract

This article describes the formulation and implementation of the finite
element method on a data parallel computing system, such as the Con-
nection Machine system. Data structures, storage requirements, commu-
nication and parallel arithmetic complexity are analyzed in detail for the
cases when a processor is assigned to a finite element, and when a proces-
sor is assigned to a nodal point per element. Data parallel algorithms for
grid generation, evaluation of the elemental stiffness matrices, and for the
iterative solution of the linear system are presented. An algorithm for com-
puting the elemental stiffness matrices concurrently, as well as computing
the matrix elements of a single elemental stiffness matrix concurrently with-
out communication is presented. A conjugate gradient solver with diagonal
pre—conditioner is used for the solution of the linear system. Results from
an implementation of the finite element method in three dimensions based
on iso—parametric brick elements are also presented. For single—precision
floating—point operations the measured peak performance is in the range
1.1 - 1.8 Gflops s/s for evaluating the elemental stiffness matrices and 0.5
- 0.7 Gflops s/s for the conjugate gradient solver. The time per conjugate
gradient iteration for an application with 400, 000 degrees of freedom is
approximately 1.25 s for double—precision (software) floating—point opera-
tions. With hardware support for double—precision floating—point opera-
tions, the time per conjugate gradient iteration for a finite element with
with 400, 000 degrees of freedom is projected to be 0.15 s.

Optimizing Tridiagonal Solvers for the Alternating
Direction Method

Yale University
Department of Computer Science

Technical Report 679
S. Lennart Johnsson and Ching-Tien Ho

January 1989

Abstract

Sets of tridiagonal systems occur in many applications. Fast Poisson
solvers and Alternate Direction Methods make use of tridiagonal system
solvers. Network based multiprocessors provide a cost effective alternative
to traditional supercomputer architectures. We investigate the complexity
of concurrent algorithms for the solution of multiple tridiagonal systems on
Boolean cube configured multiprocessors with distributed memory. Varia-
tions of odd-even cyclic reduction, parallel cyclic reduction, and algorithms
making use of data transposition with or without substructuring and local
elimination, or pipelined elimination are considered. A simple performance
model is used for algorithm comparison, and the validity of the model is
verified on an Intel iPSC/1. For many combinations of machine and sys-
tem parameters, pipelined elimination, or equation transposition with or
without substructuring is optimum. We present hybrid algorithms that
at any stage choose the best algorithm among the considered ones for the
remainder of the problem.

It is shown that the optimum partitioning of a set of independent tridi-
agonal systems among a set of processors yields the embarrassingly parallel
case. If the systems originate from a lattice and solutions are computed
in alternating directions, then to first order the aspect ratio of a computa-
tional lattice shall be the same as that of the lattice forming the base for
the equations.

Our experiments demonstrate the importance of combining in the com-
munication system for architectures with a relatively high communications
start-up time.

To appear in the SIAM Journal of Scientific and Statistical Computing.

Protein Structure Prediction by Memory-base
Reasoning

Thinking Machines Corporation
Technical Report

Xiru Zhang, David Waltz, Jill P. Mesirov
December 1988

Abstract

Memory-based reasoning (MBR) is a technique that makes intensive use
of memory to recall some specific episodes from the past for problem solv-
ing. It is used in this research to predict protein structures based on 112
known structures selected from the Brookhaven Protein Databank. The 0
and V, angles of each amino acid in a protein are used to represent its 3-D
structure. For this particular problem, we extend MBR to include a recur-
sive procedure to refine its initial prediction and a varying "window" size
to take into account the interaction between amino acids apart from dif-
ferent distances along the amino acid sequence. The system implemented,
PHI-PSI, has been tested with all the available data. It does better than
distribution-based guesses for most of the 0 and -0 angle values.

Submitted to IJCAI-89

Protein Sequence Comparison on the Connection
Machine CM-2

Thinking Machines Corporation
Technical Report

Robert Jones, Washington Taylor, Xiru Zhang, Eric Lander, Jill P.
Mesirov

December 1988

Abstract

Dynamic programming algorithms provide a very sensitive method for
comparing protein sequences but are computationally expensive when ap-
plied to sequence databases. Parallel computers offer one way in which to
combine sensitivity and speed. Here we describe our implementation of one
of these algorithms on a massively-parallel computer, the Connection Ma-
chine CM2, its performance and its use in studying relationships between
proteins.

To appear in the proceedings of The Interface between Computation
Science and Nucleic Acid Sequencing, 1988.

Embedding Hyper-Pyramids into Hypercubes
Yale University

Department of Computer Science
Technical Report 667

Ching-Tien Ho and S. Lennart Johnsson
December 1988

Abstract

A P (k , d) hyper-pyramid is a level structure of k Boolean cubes where
the cube at level i is of dimension id, and a node at level i — 1 connects to
every node in a d dimensional Boolean subcube at level i, except for the leaf
level k. Hyper-pyramids contain pyramids as proper subgraphs. We show
that a 1' (k , d) hyper-pyramid can be embedded in a Boolean cube with
minimal expansion and dilation 2. The congestion is bounded from above
by !:4_ f - and from below by 1+ r 	. For P(k, 2) hyper-pyramids we present
a dilation 2 and congestion 2 embedding. In addition to expansion, dilation,
and congestion we also characterize the embedding with the active-degree,
and the node-load. The former property gives the maximum number of
cube edges being used at any node, and the latter property measures the
maximum number of messages a cube node needs to handle. The active
degree for the embeddings is equal to the number of cube edges per node,
i.e., kd + 1, and the node-load is bounded from above by 0(2d) + 0(kd)
with a congestion of 0(5). For the P(k, 2) hyper-pyramid embedding we
present, the node-load is 2k + 5.

We also present embeddings of a P(k, d) hyper-pyramid together with
2d — 2 P(k, d) hyper-pyramids such that only one cube node is unused.
The dilation of the embedding is d + 1 with a congestion of 0(2d). An
alternate embedding with dilation 2d and congestion 0(5) is also pre-
sented. The active-degree is kd +1 for both embeddings. The node-load is
0(d2")+ 0(kd) for the former and 0(2d) + 0(kd) for the latter embedding.
Specialized to hyper-pyramids P(k, 2) we present two embeddings: one with
dilation 3, congestion 3 and a node-load of 3k + 5; the other with dilation
4, congestion 5 and a node-load of 2k + 9. As a corollary a complete n-ary
tree can be embedded in a Boolean cube with dilation max(2, [log2 n]) and

expansion 2k ri°g2
ni +1 / n4+1 -1

/ n-1

Experiences with Large Scale Network Optimization
on the Connection Machine

The Wharton School
University of Pennsylvania

Cindy Phillips, Stavros A. Zenios
November 1988

Abstract

Network optimization problems appear in several areas of application
from operations research, transportation, engineering design, financial plan-
ning and others. Such problems are characterized, quite often, by their very
large size. Massively parallel computers like the Connection Machine (CM)
appear to be well-suited for both sparse and dense implementations of dual
relaxation algorithms for network optimization. In this report we summa-
rize recent experiences with the solution of large scale network optimization
problems using the CM. We discuss key features of the implementation of
parallel algorithms for assignment and strictly convex nonlinear network
problems and present results with numerical experiments.

To appear in Impact of Recent Computer Advances on Operations Re-

search, Elsevier Science Publishing, Co.

Shuffle Permutations on Boolean Cubes
Yale University

Department of Computer Science
Technical Report 653

S Lennart Johnsson and Ching-Tien Ho
October 1988

Abstract

In this paper we prove lower bounds and present algorithms opti-
mal within a small constant factor for generalized shuffle permutations on
Boolean cubes. A generalized shuffle permutation is a permutation where
a global address (aq _ laq _ 2 	ao) receives its new content from a global ad-
dress (ao(q_ 1)a6(q_ 2) ...25(0)), with 8(a0) = a1, 6(c) = a2,...,6(a,_1) = ao
for ai E {0, 1, 	, q — 	a < q. For packet switched communication re-
stricted to one port at a time per processor, the minimum number of com-
munications in sequence is equal to the number of address bits to which
the permutation is applied. The data transfer time of the permutation is
proportional to the size of the data set per processor and the number of
address bits being part of the permutation. With concurrent communica-
tion on all ports of every processor the data transfer time is proportional
to the size of the data set per processor. Depending on communication
capability, message size, cube size, data transfer rate, and communication
start-up time, different algorithms must be chosen for a communication
time optimal within a small constant factor. The analysis is verified by
experimental results on'the Intel iPSC/1.

A Deterministic Cellular Automaton with Diffusive
Behavior

Thinking Machines Corporation
Technical Report

Bruce M. Boghosian, C. David Levermore
October 1988

Abstract

It is a classical result that an ensemble of independent unbiased random
walks on the one dimensional lattice, Z, and moving at discrete times, Z+,

has a continuum limit given by a diffusion equation. More recently, systems
of randomly walking particles interacting via an exclusion principle have
been studied. Another interesting problem is that of using deterministic
dynamical systems for the same purpose. Of course, to the extent that
the underlying microscopic dynamics of atoms in real diffusing media are
deterministic, we know that this should be possible.

In this work we describe a completely deterministic cellular automaton
that exhibits diffusive behavior in one dimension, possibly with spatial inho-
mogeneity. We analyze this automaton both theoretically and experimen-
tally to investigate its continuum limit. We experimentally find significant
deviations from the Chapman-Enskog theory; these deviations are due to
a buildup of correlations that invalidates the molecular chaos assumption.

Appeared in Discrete Kinetic Theory, Lattice Gas Dynamics and Foun-
dations of Hydrodynamics, Torino, Italy, 19-23 September 1988

Stable Dimension Permutations on Boolean Cubes
Yale University

Department of Computer Science
Technical Report 617

Ching-Tien Ho and S. Lennart Johnsson
October 1988

Abstract

In this paper we present lower bounds and algorithms optimal within
a small constant factor for stable dimension permutations on Boolean
cubes. A stable dimension permutation is a permutation where a global
address (aq_laq _ 2 	a0) receives its new content from a global address
(a6(q_ 1)a6(9_ 2) ... ago)), where 8 is a permutation function on {0,1, ... , q —

1}. With communication restricted to one port at a time for each proces-
sor, the lower bound has a term proportional to the number of processor
dimensions being part of the dimension permutation for the number of
communications in sequence, and a term for the data transfer time that is
proportional to the same number of dimensions and the size of the data set
per processor. With concurrent communication on all ports of every proces-
sor, the bound for the data transfer time is reduced to become proportional
only to the size of the data set per processor. We also show that for an
optimal algorithm the time for a dimension permutation cannot be reduced
by using the cube dimensions not being part of the dimension permutation,
if data is allocated to the entire cube. However, if data is only allocated to
a subcube, then the dimensions not being part of the subcube can be used
to reduce the time complexity of the dimension permutation. The band-
width of the Boolean cube is fully explored by dividing the data set to be
communicated between a pair of processors into subsets, one for each path
between the pair of processors. The k-shuffle permutation, the bit-reversal

permutation, and matrix transposition, are special cases of stable dimen-

sion permutations. Depending on communication capability, message size,
cube size, data transfer rate, and communication start-up time, different al-
gorithms must be chosen for a communication time optimal within a small
constant factor.

Expressing Boolean Cube Matrix Algorithms in
Shared Memory Primitives

Yale University
Department of Computer Science

Technical Report 636
Ching-Tien Ho and S. Lennart Johnsson

July 1988

Abstract

Generic communication primitives can be used for many algorithms on
Boolean cubes. Here we focus on expressing such primitives and algorithms
for matrix multiplication in terms of shared memory type programming
primitives. All processors share the same global address space. The com-
munication primitives realize nearest-neighbor communication and global
operations such as broadcasting from one processor to a set of proces-
sors, the reverse operation of plus-reduction, and matrix transposition (di-
mension permutation). We consider both the case where communication
is restricted to one processor port at a time, and the case of concurrent
communication on all processor ports. The communication algorithms are
provably optimal within a factor of two. We describe both constant stor-
age algorithms, and algorithms with reduced communication time, but a
storage need proportional to the number of processors and the matrix sizes
(for a one-dimensional partitioning of the matrices). The choice of the de-
scribed matrix multiplication algorithms depends on machine size relative
to the matrix sizes, the matrix shapes, and the architectural parameters of
the machine.

Interactive Scientific Visualization and Parallel
Display Techniques

Thinking Machines Corporation
Technical Report VZ88-1

J.A. Sethian, James B. Salem, A.F. Ghoniem
March 1988

Abstract

In this paper, we describe a new graphics environment for real-time visu-
alization of the results of numerical simulations of computational fluid me-
chanics. Within this environment, the researcher may interactively perform
real-time flow visualization experiments on numerical data which parallel
those performed in the laboratory on physical apparatus. This provides an
effective and interactive way to analyze the underlying physical mechanisms
of the flow, and to compare results with laboratory experiment. The system
is implemented on a data parallel supercomputer directly connected to a
frame buffer. Since most fluid visualization techniques are highly parallel in
nature, this allows us to obtain real-time display of fluid motion. The fluid
diagnostic tools include display of moving color contours for scaler fields,
and smoke/dye injection of passive tracer particles for velocity fields.

We demonstrate our interactive graphics fluid flow system by analyzing
data generated from a numerical simulation of laminar and turbulent flow
over a backwards-facing step. Input parameters are menu-driven, and we
typically achieve approximately 15 screen updates per second, producing
essentially real-time motion.

Appeared in Proceedings of the Supercomputing Conference '88, pp.
132-139

Systolic FFT Algorithms on Boolean Cube Networks
Yale University

Department of Computer Science
Technical Report 619

S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin and Alan
Ruttenberg
March 1988

Abstract

Systolic algorithms are typically devised for one or two dimensional
arrays of processing elements. In this paper we describe a systolic Cooley-
Tukey Fast Fourier Transform algorithm for Boolean n-cubes with a sub-
stantial amount of storage per cube node. In mapping a Cooley-Tukey
type FFT to such a network the main concerns are effective use of the
high connectivity/bandwidth of the Boolean n-cube, the effective use of
the computational resources, the effective use of the storage bandwidth,
if there is a storage hierarchy, and pipelines should the arithmetic units
have such a feature. Another important consideration in a multiprocessor,
distributed storage architecture is the allocation and access to coefficients,
if they are precomputed. We describe FFT algorithms that use both the
storage bandwidth and the communication system optimally, and which
require storage of P nN coefficients for a transform on P > N data el-
ements. A complex to complex FFT on 16 million points is predicted to
require about 1.5 seconds on a Connection Machine model CM-2.

In the Proceedings of the International Conference on Systolic Arrays,

May, 1988

Finding 958004 + 2175194 + 4145604 = 4224814 on the
Connection Machine

Thinking Machines Corporation
Technical Report NT88-1

Roger E. Frye
March 1988

Abstract

The smallest counterexample to Euler's generalization of Fermat's Last
Theorem is 958004 + 2175194 + 4145604 = 4224814. I explain how this
solution was found by exhaustive data parallel search on several Connection
Machines.

To appear in Proceedings of the Supercomputing Conference '88

Real-Time Interactive Visualization of
Computational Fluid Mechanics

Thinking Machines Corporation
Technical Report

J.A. Sethian, James B. Salem
March 1988

Abstract

We describe and demonstrate a new graphics environment for real-time
visualization of the data from numerical simulations of fluid mechanics.
Since such simulations often generate massive amounts of data, our envi-
ronment provides an effective way to interact in real-time with the flow. We
take advantage of the highly parallel machine. The fluid diagnostic tools
allow real-time display of the motion of smoke dye and bubble wire tracers
injected into the moving flow, as well as display of moving color contours
for scalar fields such as temperature and pressure.

We demonstrate our interactive graphics fluid flow system by analyzing
data generated from a numerical simulation of laminar and turbulent flow
over a backwards-facing step. Input parameters are menu-driven, and we
typically achieve approximately 3-7 screen updates per second, producing
essentially real-time motion.

To appear in the International Journal of Supercomputer Applications

Study of Protein Sequence Comparison Metrics on
the Connection Machine CM-2

Thinking Machines Corporation
Technical Report CB88-2

Eric Lander, Jill P. Mesirov, Washington Taylor IV
March 1988

Abstract

Software tools have been developed to do rapid large-scale protein se-
quence comparisons on databases of amino acid sequences, using a data
parallel computer architecture. This software enables one to compare a
protein against a database of several thousand proteins in the same time
required by a conventional computer to do a single protein-protein com-
parison, thus enabling biologists to find relevant similarities much more
quickly, and to evaluate many different comparison metrics in a reasonable
period of time. We have used this software to analyze the effectiveness of
various scoring metrics in determining sequence similarity, and to generate
statistical information about the behavior of these scoring systems under
the variation of certain parameters.

To appear in Proceedings of the Supercomputing Conference '88

A Cellular Automata Simulation of Two-Phase Flow
on the CM-2 Connection Machine Computer

Thinking Machines Corporation
Technical Report CA88-1

Bruce M. Boghosian, Washington Taylor IV, Daniel H. Rothman
March 1988

Abstract

A cellular automaton (CA), recently developed by Rothman and Keller
[1], simulates the flow of two incompressible, immiscible, viscous fluids in
two dimensions. We have simulated this automaton on the CM-2 Connec-
tion Machine using a sequence of logical operations and table lookups to
determine the new state of a CA site from its old state and those of its
neighbors. The logical operations are performed in parallel by each of the
Connection Machine processors, while the table lookups use the indirect
addressing capabilities among groups of 32 processors.

This paper begins with a general description of CA fluids, including
the issue of isotropy, the choice of a rule set, and the averaging procedure
used to obtain hydrodynamical quantities. This is followed by a brief com-
parison with more conventional methods of simulating fluids. The CM-2
Connection Machine is then described, with emphasis on the indirect ad-
dressing capabilities of the machine. Section 2 gives a complete description
of the Rothman-Keller model for two-phase flow. Section 3 then describes
how the indirect addressing is used in the simulation algorithm, and how a
symmetry in the dynamics is used to reduce the size of the lookup tables by
a factor of six. Finally, in Section 4, a time sequence of results showing the
separation of two immiscible phases from an initially homogenized state is
presented.

To appear in Proceedings of the Supercomputing Conference '88

Spanning Balanced Trees in Boolean Cubes
Yale University

Department of Computer Science
Technical Report 611

Ching-Tien Ho and S. Lennart Johnsson
February 1988

Abstract

A Spanning Balanced n-tree (SBnT) in a Boolean n-cube is a spanning
tree in which the root has fanout n, and all the subtrees of the root have
0() nodes. The number of tree edges in each dimension of the n-cube is of
order 0(n). The spanning balanced n-tree allows for scheduling disciplines
that realize lower bound (within a factor of two) one-to-all personalized
communication, all-to-all broadcasting, and all-to-all personalized commu-
nication on a Boolean n-cube. The improvement in data transfer time over
the familiar binomial tree routing is a factor of if for concurrent communi-
cation on all ports and one-to-all personalized communication and all-to-all
broadcasting. For all-to-all personalized communication on all ports con-
currently the improvement is of order 0(V10. . We give distributed routing
algorithms defining the spanning balanced n-tree. The balanced n-tree is
not unique, and we provide a few definitions of n-trees that are effectively
edge-disjoint. Some implementation issues are also discussed.

Binary numbers obtained from each other through rotation forms neck-
laces that are full if the period is equal to the length of the number, oth-
erwise they are degenerate. As an intermediary result we show that the
ratio between the number of degenerate necklaces and the total number of
necklaces with / bits equal to one is at most 717: -„ for 1 < / <n.

To appear in SIAM Journal on Scientific and Statistical Computing,

July, 1989.

QED on the Connection Machine
Thinking Machines Corporation

Technical Report CS-88/1
Clive Baillie, S. Lennart Johnsson, Luis Ortiz, and G. Stuart Pawley

January 1988

Abstract

Physicists believe that the world is described in terms of gauge theories.
A popular technique for investigating these theories is to discretize them
onto a lattice and simulate numerically by a computer, yielding so-called
lattice gauge theory. Such computations require at least 1014 floating-point
operations, necessitating the use of advanced architecture supercomputers
such as the Connection Machine made by Thinking Machines Corpora-
tion. Currently the most important gauge theory to be solved is that de-
scribing the sub-nuclear world of high energy physics: Quantum Chromo-
dynamics (QCD). The simplest example of a gauge theory is Quantum
Electro-dynamics (QED), the theory which describes the interaction of
electrons and photons. Simulation of QCD requires computer software
very similar to that for the simpler QED problem. Our current QED code
achieves a computational rate of 1.6 million lattice site updates per second
for a Monte Carlo algorithm, and 7.4 million site updates per second for a
microcanonical algorithm. The estimated performance for a Monte Carlo
QCD code is 200,000 site updates per second (or 5.6 Gflops/sec).

In the Proceedings in the Third Conference on Hypercube Concurrent
Computers and Applications, January, 1988.

Protein Sequence Comparison on a Data Parallel
Computer

Thinking Machines Corporation
Technical Report CB88-1

Eric Lander, Jill P. Mesirov, Washington Taylor IV
January 1988

Abstract

In this paper we discuss the issues involved in implementing a gen-
eral dynamic program on a data parallel computer to compare proteins for
good subsequence matches, based on a variety of scoring metrics. A stan-
dard serial algorithm can be optimally parallelized. Careful allocation of
machine resources has enabled us to compare an entire database of 2000
proteins against itself in about the same time that it would take to run one
protein against the database using conventional computers. The results
gleaned from this program provide information about scoring metrics and
allow clustering of groups of related proteins. This information can be of
assistance in determining the biochemical function of some proteins.

Appeared in Proceedings of the 1988 International Conference o Parallel

Processing, Penn State Press, pp. 257-263.

Exploiting Symmetry in High-Dimensional Finite
Difference Calculations
Thinking Machines Corporation

Technical Report NA87-2
W. Daniel Hillis and Washington Taylor

Optimum Broadcasting and Personalized
Communication in Hypercubes

Yale University
Department of Computer Science

Technical Report 610
S. Lennart Johnsson and Ching-Tien Ho

December 1987

Abstract

Effective utilization of communication resources is crucial for good over-
all performance in highly concurrent systems. In this paper we address four
different communication problems in Boolean n-cube configured multipro-
cessors: (1) one-to-all broadcasting: distribution of common data from a
single source to all other nodes; (2) one-to-all personalized communication:
a single node sending unique data to all other nodes; (3) all-to-all broad-
casting: distribution of common data from each node to all other nodes; and
(4) all-to-all personalized communication: each node sending a unique piece
of information to every other node. Three new communication graphs for
the Boolean n-cube are proposed for the routing, and scheduling disciplines
provably optimum within a small constant factor proposed. One of the new
communication graphs consists of n edge-disjoint spanning binomial trees,
and offers optimal communication for case 1; a speed-up with a factor of
n over the spanning binomial tree for large data volumes. The other two
new communication graphs are a balanced spanning tree, and a graph com-
posed of n rotated spanning binomial trees. With appropriate scheduling
and concurrent communication on all ports of every processor, routings
based on these two communication graphs offer a vspeed-up of up to,
and O(/) over the routings based on the spanning binomial tree for cases
2, 3 and 4 respectively. All three new spanning graphs offer optimal com-
munication times for cases 2, 3 and 4 and concurrent communication on all
ports of every processor. The graph consisting of n edge-disjoint spanning
trees offers graceful degradation of performance under faulty conditions.
Timing models and complexity analysis have been verified by experiments
on a Boolean cube configured multiprocessor.

To appear in IEEE Transactions on Computers, September, 1989.

Ensemble Architectures and Their Algorithms: An
Overview

Yale University
Department of Computer Science

Technical Report 580
S. Lennart Johnsson

November 1987

Abstract

During recent years, the number of commercially available parallel com-
puter architectures has increased dramatically. The number of processors in
these systems varies, from a few processors up to a many as 64k processors
for the Connection Machine. In this paper, we discuss some of the technol-
ogy issues that are the underlying driving force and focus on a particular
class of parallel computer architectures. This class is often called Ensemble
Architectures, and they are interesting candidates for future high perfor-
mance computing systems. The ensemble configurations discussed here are
linear arrays, 2-dimensional arrays, binary trees, shuffle-exchange networks,
Boolean cubes, and cube connected cycles. We discuss a few algorithms for
arbitrary data permutations, and some particular data permutation and
distribution algorithms used in standard matrix computations. Special at-
tention is given to data routing. Distributed routing algorithms in which
elements with distinct origin and distinct destinations do not traverse the
same communication link make possible a maximum degree of pipelined
communications. The linear algebra computations discussed are: matrix
multiplication, dense and general banded systems solvers, linear recurrence
solvers, tridiagonal system solvers, fast Poisson solvers, and very briefly,
iterative methods.

In Numerical Algorithms for Modern Parallel Computer Architectures,
Vol. 13, IMA Series in Mathematics and its Applications, Springer Verlag,
1988.

The Communication Efficiency of Meshes, Boolean
Cubes and Cube Connected Cycles

for Wafer Scale Integration
Yale University

Department of Computer Science
Technical Report 579

Abhiram Ranade and S. Lennart Johnsson
November 1987

Abstract

In this paper we analyze the emulation of two-dimensional meshes, but-
terfly networks, and spanning trees on meshes, Boolean cubes, and Cube
Connected Cycles (CCC) networks. We consider three models for signal
propagation along a wire: constant delay, capacitive delay, and resistive
delay. We also present novel layouts for hypercubes and CCC's that offer
better performance for some problems, while essentially maintaining the
performance for other problems. The mesh interconnection performs bet-
ter on all emulations for all delay models, if the communication throughout
determines the performance. With resistive delay model, meshes also offer
the best latency for all emulations. The hypercube and CCC layouts yield
lower latency for emulating butterfly networks and spanning trees for the
constant delay and capacitive delay models.

In The 1987 International Conference on Parallel Processing, pp. 479-
482.

A Microcode Compiler for Cellular Automata
Research on the CM-2 Connection Machine

Computer
Thinking Machines Corporation

Technical Report
Bruce M. Boghosian, Luis F. Ortiz, Washington Taylor IV

November 1987

Abstract

This document describes a microcode compiler for cellular automata re-
search on the CM-2 Connection Machine Computer. It allows for the spec-
ification of any update rule on a multidimensional Cartesian lattice, using
either logical operations or lookup tables, or some combination thereof.

Computing Fast Fourier Transforms on Boolean
Cubes and Related Networks

Yale University
Department of Computer Science

Technical Report 598
S. Lennart Johnsson, Ching-Tien Ho, Michel Jacquemin and Alan

Ruttenberg
October 1987

Abstract

High performance architectures are using an ever increasing number
of processors. The Boolean cube network has many independent paths
between any pair of processors. It provides both a high communications
bandwidth as well as the ability to emulate many other networks without
contention for communication channels. Of particular interest for the Fast
Fourier Transform (FFT) is the ability to emulate butterfly networks, which
defines the communication pattern of the FFT. Each node of a Boolean cube
network of N nodes has a degree of log2 N. For a large number of nodes
the number of channels required at the chip boundary may be unfeasibly
large with several nodes toa chip, and a network with slightly lower connec-
tivity, such as Cube Connected Cycles networks, may be preferable. The
communication system is the most critical resource in many high perfor-
mance architectures, and its effective use is imperative. We describe FFT
algorithms that use both the storage bandwidth and the communication
system optimally for an architecture such as the Connection Machine that
has 65536 processors interconnected in a Boolean cube related network. We
also describe the necessary data allocation, and the allocation and use of
the twiddle factors.

In Advanced Algorithms and Architectures for Signal Processing II",

SPIE 1987, Vol 826, pp. 223-231, 1987.

Algorithms for Multiplying Matrices of Arbitrary
Shapes Using Shared Memory Primitives on Boolean

Cubes
Yale University

Department of Computer Science
Technical Report 569

S. Lennart Johnsson and Ching-Tien Ho
October 1987

Abstract

We investigate the multiplication of two arbitrarily shaped matrices on
Boolean cube configured multiprocessors. We present algorithms in terms
of generic communication primitives which effectively allows the program-
mer to express the algorithms as shared memory algorithms. Some of the
communication primitives we present yield communication within a factor
of two of the lower bound, and have the best known routing times. For the
multiplication of a PxQ matrix by a QxR matrix three loops are required in
a language like Fortran 77. One, two or all three loops may be parallelized.
We show that with the communication primitives we use parallelizing all
three loops yield a complexity that at most is equal to that of parallelizing
two loops, which in turn is at most equal to that of parallelizing only one
loop, for all matrix shapes. In parallelizing only one loop the processors
shall be aligned with the axis (P,Q, or R) with the maximum number of
elements to yield the lowest arithmetic and communication complexity. In
parallelizing two loops the processors shall be assigned to the plane with
the maximum number of elements. In parallelizing two or all three loops
the aspects ratio of the processor array shall be the same as that of the
matrix element domain. We also derive expressions for the optimal num-
ber of processors and show that for large start-up times for communication
the optimum number of processors may be significantly smaller than the
number of matrix elements in the dimensions parallelized. Experimental
results for the Intel iPSC are presented.

In Proceedings of ARO Workshop on Parallel Processing and Medium
Scale Multiprocessors, SIAM, 1986.

Data Parallel Programming and Basic
Linear Algebra Subroutines

Yale University
Department of Computer Science

Technical Report 584
S. Lennart Johnsson

September 1987

Abstract

Data Parallel programming is conceptually simple and provides power-
ful programming primitives as in shared memory models of computation.
With an appropriate underlying architecture, primitives requiring global
memory access do not require significantly longer execution times than
primitives only requiring local access. In the data parallel programming
model primitives are also available for expressing simple forms of local data
interaction in relative coordinates, as for instance required in relaxation on
multidimensional lattices.

One particular data parallel computer is the Connection Machine. In
this paper, we describe some of the data parallel aspects of the programming
languages provided on the Connection Machine. We comment on the im-
plementation of level-1 and level-2 BLAS, and describe the implementation
of one level-3 BLAS function. Matrix multiplication is discussed in detail.
For matrices of the size of the machine or larger, only the kernel function
is required. The matrix multiplication kernel yield a performance of up to
5.2 Gflops in single precision on the CM-2 with the floating point option.
For matrices considerably smaller than the machine, all three nested loops
in a Fortran 77 program can be made parallel, and expressed with few
instructions without any loop constructs.

In Scientific Software, Vol. 14., IMA Series in Mathematics and its
Applications, Springer Verlag, 1988, pp. 183-196.

Algorithms for Matrix Transposition on Boolean
n-cube Configured Ensemble Architectures

Yale University
Department of Computer Science

Technical Report 572
S. Lennart Johnsson and Ching-Tien Ho

September 1987

Abstract

In a multiprocessor with distributed storage the data structures have
a significant impact on the communication complexity. In this paper we
present a few algorithms for performing matrix transposition on a Boolean
n-cube. One algorithm performs the transpose in a time proportional to
the lower bound both with respect to communication start-ups and element
transfer times. We present algorithms for transposing a matrix embedded
in the cube by a binary encoding, a binary-reflected Gray code encoding of
rows and columns, or combinations of these two encodings. The transposi-
tion of a matrix when several matrix elements are identified to a node by
consecutive or cyclic partitioning is also considered and lower bound algo-
rithms given. Experimental data are provided for the Intel iPSC and the
Connection Machine.

In SIAM J. Matrix Analysis, July 1988, vol. 9, no. 3, pp 419-454.

Highly Parallel Banded Systems Solvers
Yale University

Department of Computer Science
Technical Report 581
S. Lennart Johnsson

August 1987

Abstract

We present algorithms for the solution of banded systems of equations
on parallel architectures, in particular ensemble architectures, ie., architec-
tures that have a large number of processing elements. Each processor has
its own local storage. The band is considered dense. Concurrent elimination
of a single variable yields a linear speed-up for ensembles configured as tori,
or Boolean cubes, if N >> m, with a maximum ensemble size of m (m + R)
(or 2m(m + R)) processors for a banded system of N equations, bandwidth
2m + 1 and R right hand sides. The minimum attainable computational
complexity is of order 0(N). Concurrent elimination of multiple variables
as well as concurrent elimination of each such variable yields a minimum
complexity of 0(m + m log 2 14) for a total of (2m + R) N ensemble nodes.
To attain this complexity the ensemble should be configured as clusters,
each in the form of a torus of dimension m by 2m + R, or a Boolean
cube of appropriate dimension. Furthermore, corresponding processors in
different clusters are assumed to be interconnected to form a binary tree,
shuffle-exchange, perfect shuffle, or Boolean cube network. The number of
clusters should be of order 0(5-) for minimum computational complexity. in

In Parallel Computations and Their Impact on Mechanics, AMD-Vol.
86, pp. 187-208, ASME, December 1987.

Directions in High Performance Computation
Yale University

Department of Computer Science
Technical Report 574
S. Lennart Johnsson

June 1987

Abstract

Evolving technology is driving high performance computer architecture
towards highly concurrent systems. We review some of the technology
influencing this direction, and discuss some of the architectural, algorith-
mic, and programming system consequences of this change. Finally, we
briefly describe some of the essential features of the Connection Machine,
a commercially available computer with an architecture and programming
system that includes several of the features we expect to find in many high
performances architectures in the future.

In Proceedings of the American Statistical Association 19th Symposium
on Computer Science and Statistics, March 8 -11, 1987.

Multiple Tridiagonal Systems, the Alternating
Direction Methods and Boolean Cube Configured

Multiprocessors
Yale University

Department of Computer Science
Technical Report 532

S. Lennart Johnsson and Ching-Tien Ho
June 1987
Abstract

In this paper we investigate the complexity of concurrent algorithms for the
solution of multiple tridiagonal systems as they appear, for instance in fast
Poisson solvers, or in Alternating Direction Methods. We consider divide-
and-conquer algorithms in the form of several variations of odd-even cyclic
reduction, and algorithms making use of data transposition and local elim-
ination. The processors are assumed to be configured as a Boolean cube.
A simple performance model is established, and the validity of the model
verified on an Intel iPSC. Depending on machine characteristics, a divide-
and-conquer algorithm such as balanced cyclic reduction, or a transpose
based algorithm, may be optimum. In general, the former is preferable
for sufficiently many processors. Indeed, a hybrid scheme in which the
last several steps of the divide-and-conquer algorithm, is lower complexity
than either. The transition point depends on the architectural parameters
such as communication start-up time, data channel transfer rate, maximum
packet size, and the time for an arithmetic operation, but also the number
of independent systems to be solved. For the Intel iPSC with its moderate
number of processors the transpose algorithms are in general preferable.

It is shown that the optimum partitioning of a set of independent tridi-
agonal systems among a set of processors yields the embarrassingly parallel
case. If the systems originates from a lattice and solutions are computed
in alternating directions, then to first order the aspect ratio of a computa-
tional lattice shall be the same as that of the lattice forming the base for
the equations.

Some of the transpose based algorithms are novel variations of Gaussian
elimination. Our experiments demonstrate the importance of combining in
the communication system for architectures with a relatively high commu-
nications start-up time.

On the Embedding of Arbitrary Meshes in Boolean
Cubes with Expansion Two Dilation Two

Yale University
Department of Computer Science

Technical Report 576
Ching-Tien Ho and S. Lennart Johnsson

April 1987

Abstract

An embedding based on a binary-reflected Gray code encoding of the
mesh points in each dimension attains the minimum dilation, but the expan-
sion of a d-dimensional mesh may be close to 2d. A direct mapping method
that yields dilation 2 and minimum expansion embeddings for most aspect
ratios of two-dimensional meshes is presented. The average edge dilation
asymptotically approaches one. The direct mapping method is also applied
to higher dimensional meshes with preserved dilation.

In The 1987 International Conference on Parallel Processing, pp. 188-
191.

A Fast Parallel Algortihm for Labeling Connected
Components in Image Arrays

Thinking Machines Corporation
Technical Report NA86-2

Willie Lim, Ajit Agrawal, Lena Nekludova
December 1986

Revised April 1987

Abstract

A fast parallel algorithm for labeling connected components in a 2-D
array of pixels is discussed. The algorithm has a time complexity of 0(log
N) for the exclusive read exclusive write model of parallel computation and
where the time to access to any memory location in any processor is con-
stant. The algorithm is implemented on a Connection Machine by mapping
the 2-D array of values into a 2-D array of processors. On this machine time
complexity is measured in terms of router cycles i.e. message transmissions
through the routing network. Initially each processor is assigned a unique
label or id. The label of a region is the largest processor label of the proces-
sors in the region. Processors on region boundaries are connected as rings
by using pointers. The boundary label i.e. the largest processor label of the
processors, in the boundary of each boundary is computed. The processors
on all the boundaries in the region are linked together into a long one and
its label is computed. The label for this long boundary is the label of the
region. This label is then propagated to all the interior processors in the
region.

Appeared in Proceedings of the 1987 International Conference on Par-

allel Processing, Penn State Press, pp. 783-786

Fast PDE Solvers on Fine and Medium Grain
Architectures

Yale University
Department of Computer Science

Technical Report 583
S. Lennart Johnsson

April 1987

Abstract

Fast solvers for partial differential equations are often based on tridi-
agonal system solvers, the Fast Fourier Transform (FFT), and/or a com-
bination thereof. We describe in some detail the implementation of tridi-
agonal system solvers and the FFT on a massively parallel architecture.
The computational complexity of these two methods is compared, and
some of the optimization issues that arise in medium scale architectures
are discussed. Both odd-even cyclic reduction and the FFT for P equa-
tions requires 0(log2 P) steps and arithmetic time on a massively parallel
architecture. The difference in arithmetic time is only a small constant
factor. We derive this factor for real and complex systems. Odd-even
cyclic reduction and the FFT have similar, but not identical communica-
tion topology. For the odd-even cyclic reduction algorithm it is equivalent
to a reduction data manipulator network, whereas, that of the FFT is the
familiar butterfly network. Communication time is dependent upon the
ability of the communication system to support these two communication
requirements with the data mapping being used. We derive the number
of communications required by the two algorithms both for unlimited and
limited buffer sizes, and the total number of element transfers. Measured
times for implementations on the Connection Machine are presented.

In Advances in Computer Methods for Partial Differential Equations,
IMACS (International Association for Mathematics and Computers in Sim-
ulation), vol. 6, pp. 405-410, 1987.

The FFT and Fast Poisson Solvers
on Parallel Architectures

Yale University
Department of Computer Science

Technical Report 582
S. Lennart Johnsson

March 1987

Abstract

In this paper we highlight some of the issues that need to be addressed
in finding efficient implementations of the conventional radix-2 and radix-4
Fast Fourier Transform algorithm on parallel architectures. We consider
the mapping problem for Ensemble Architectures, and the solution of Pois-
son's equation using FFT's. We also point out some properties of matrix
transposition, which are particularly relevant for Boolean cube configured
architectures and related networks. Finally, we comment on FFT in the
context of submicron technology and wafer-scale integration.

In Proceedings of the Mathematical Sciences Institute Workshop on Fast
Fourier Transforms for Vector and Parallel Computers, Cornell University,
March 22-25, 1987.

Solving SchrOdinger's Equation on the Intel iPSC by
the Alternating Direction Method

Yale University
Department of Computer Science

Technical Report 502
Faisal Saied, Ching-Tien Ho, S. Lennart Johnsson, and Martin H. Schultz

January 1987

Abstract

We consider the numerical solution of the SchrOdinger's equation and
investigate several different algorithms for implementing the Alternating
Direction Method on hypercubes. We indicate the relative merits of the
algorithms depending on cube parameters such as arithmetic speed, com-
munication latency, transfer rate, the packet size, and the cost of reordering
data locally. We present timings for the Intel iPSC that show that Alter-
nating Direction Methods can be implemented efficiently on hypercubes.

In Hypercube Multiprocessors 1987, pp. 680-691, SIAM 1987.

A Parallel 0(log.AT) Algorithm for Finding Connected
Components in Planar Images

Thinking Machines Corporation
Technical Report NA87-1

Ajit Agrawal, Lena Nekludova, Willie Lim
December 1986

Abstract

For an EREW model of parallel machine, we present an 0(log N) al-
gorithm, with small constant, for finding connected components in a 2-
dimensional multicolored image, consisting of N pixels. The algorithm re-
quires 0(N) processors. The best known bounds for the problem is 0(logN)
for finding connected components of a graph in a weaker CRCW model.

Solving Banded Systems on a Parallel Processor
Yale University

Department of Computer Science
Technical Report 519

Jack Dongarra and S. Lennart Johnsson
November 1986

Abstract

In this paper we examine ways of solving dense, banded systems on dif-
ferent parallel processors. We start with some considerations for processors
with vector instructions, then discuss various algorithms for the solution of
large, dense, banded systems on a parallel processor. We analyze the be-
havior of the parallel algorithms on distributed-storage architectures config-
ured as rings, two-dimensional meshes with end-around connections (tori),
Boolean n-cube configured architectures, and bus-based and switch-based
machines with shared storage. We also present measurements for two-bus
based architectures with shared storage, namely, the Alliant FX/8 and the
Sequent Balance 21000.

In Journal of Parallel Computing, vol. 5, no. 2, pp. 219-246,1987.

Alternating Direction Methods on Multiprocessors
Yale University

Department of Computer Science
Technical Report 382

S. Lennart Johnsson, Youcef Saad and Martin H. Schultz
September 1986

Abstract

We propose several implementations of the Alternating Direction
Method for solving parabolic partial differential equations on multipro-
cessors. A complexity analysis of these implementations shows that the
method can be made highly efficient on parallel architectures by using
pipelining and variations of the classical Gaussian elimination algorithm for
solving tridiagonal systems. Previously, we showed that we could obtain
linear speedups for moderate numbers of processors in a ring architecture.
In this paper we discuss extensions to a large number of processors in a
2—D grid architecture and a hypercube.

In SIAM J. Sci. Stat. Comp., Vol. 8, No. 5, September, 1987.

Solving Sparse Systems of Linear Equations on the
Connection Machine

Thinking Machines Corporation
Technical Report

Charles E. Leiserson, Jill P. Mesirov, Lena Nekludova, Stephen M.
Omohundro, John Reif, Washington Taylor IV

1986

Abstract

The Connection Machine is a 65,536-processor computer which was de-
signed for artificial intelligence applications. This paper shows that the
machine is suitable for numerical computations as well. We describe a pro-
gram for solving sparse systems of linear equations based on parallel nested
dissection which has been implemented on the Connection Machine.

Solving Tridiagonal Systems on Ensemble
Architectures

Yale University
Department of Computer Science

Technical Report 436
S. Lennart Johnsson

November 1985

Abstract

The concurrent solution of tridiagonal systems on linear and 2-dimensional
arrays, complete binary trees, shuffle-exchange and perfect shuffle networks, and
boolean cubes by elimination methods are devised and analyzed. The methods can
be obtained by symmetric permutations of some rows and columns, and amounts
to cyclic reduction or a combination of Gaussian elimination and cyclic reduction,
(GECR). The ensembles have only local storage and no global control. Synchro-
nization is accomplished via message passing to neighboring processors.

The parallel arithmetic complexity of GECR for N equations on a K processor
ensemble is 0(N/K+ log2 K), and the communication complexity is 0(K) for the
linear array, O(ITC) for the 2-dimensional mesh, and 0(log2 K) for the networks
of diameter 0(log2 K). The maximum speed-up for the linear array is attained at
K (N/a)1/2 and for the 2-d mesh at K (N/2a2/3, where a = (the time to
communicate one floating-point number)/(the time for a floating-point arithmetic
operation). For the binary tree the maximum speed-up is attained at K = N, and
for the perfect shuffle and boolean k-cube networks, K = N/(1 + a) yields the
maximum speed-up. The minimum time complexity is of order 0(N1/2) for the
linear array, of order 0(N113) for the mesh, and of order 0(log2 N) for the binary
tree, the shuffle-exchange, the perfect shuffle and the boolean k-cube.

The relative decrease in computational complexity due to a truncation of the
reduction process in a highly concurrent system is much greater than on a unipro-
cessor. The reduction in the arithmetic complexity is proportional to the number of
steps avoided, if the number of processing elements equals the number of equations.
So is also the reduction in the communication complexity for ensembles configured
as binary trees, shuffle-exchange and perfect shuffle networks, and boolean cubes.

Partitioning the ensemble into subsets of processors is shown to be more effi-
cient for the solution of multiple independent problems than pipelining the solu-
tions over the entire ensemble. A balanced cyclic reduction algorithm is presented
for the case where each system is spread uniformly over the processing elements,
and its complexity is compared with Gaussian elimination.

In SIAM J. Sci. Stat. Comp, Vol. 8, no. 3, pp. 354-392, May 1987.

Communication Efficient Basic Linear Algebra
Computations on Hypercube Architectures

Yale University
Department of Computer Science

Technical Report 361
S. Lennart Johnsson

September 1985

Abstract

This paper presents a few algorithms for embedding loops and multi-
dimensional arrays in hypercubes with the emphasis on proximity preserv-
ing embeddings. A proximity preserving embedding minimizes the need
for communication bandwidth in computations requiring nearest neighbor
communication. Two storage schemes for "large" problems on "small" ma-
chines are suggested and analyzed, and algorithms for matrix transpose,
multiplying matrices, factoring matrices, and for solving triangular linear
systems are presented. A few complete binary tree embeddings are de-
scribed and analyzed. The data movement in the matrix algorithms is
analyzed and it is shown that in the majority of cases the directed routing
paths only intersect at nodes of the hypercube allowing for a maximum
degree of pipelining.

In Journal of Parallel and Distributed Computing, Vol. 4, No. 2, pp.
133-172, April, 1987.

Solving Narrow Banded Systems on Ensemble
Architectures

Yale University
Department of Computer Science

Technical Report 418
S. Lennart Johnsson

August 1985

Abstract

We present concurrent algorithms for the solution of narrow banded
systems on ensemble architectures, and analyze the communication and
arithmetic complexities of the algorithms. The algorithms consist of three
phases. In phase 1 a block tridiagonal system of reduced size is produced
through largely local operations. Diagonal dominance is preserved. If the
original system is positive definite and symmetric, so is the reduced system.
It is solved in a second phase, and the remaining variables are obtained
through local backsubstitution in a third phase. With a sufficient number
of processing elements, there is no first and third phase. We investigate
the arithmetic and communication complexity of Gaussian elimination and
block cyclic reduction for the solution of the reduced system on boolean
cubes, perfect shuffle and shuffle-exchange networks, binary trees and linear
arrays.

With an optimum number of processors the minimum solution time
on a linear array is of an order that ranges from 0(rn2 V-5/7--n) to O(m3
m3log2(N1m)) depending on the bandwidth, the dimension of the problem,
and the times for communication and arithmetic. For boolean cubes, cube-
connected cycles, perfect shuffle and shuffle-exchange networks, and binary
trees the minimum time is 0(m3 m3log2(N1m)) including the communi-

cation complexity.

In ACM TOMS, Vol. 11, No. 3, 1985.

Combining Parallel and Sequential Sorting on a
Boolean n-cube

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson

April 1984

Abstract

Three parallel algorithms for sorting M uniformly distributed elements
on a Boolean n-cube of N = 2' N < M processors are presented. Two of
the algorithms combine sequential sort with bitonic sort to accomplish a
time complexity of 0(M1o9M IN) for N < M,and 0(log2 M) for Mi_-_--d_ N.
One algorithm sorts the elements cyclically, such that a processor holds
sorted elements that are congruent modN. The other algorithm sorts sub-
sequences of M/N consecutive elements into each processor. The third
algorithm is a parallel bucket sort that sorts the elements into L buckets
in time 0(MIN + L) if N < L and time ()(MIN + L + logN — logL) for
N > L.

In the Proceedings of the 1984 International Conference on Parallel
Processing, August 21-24, 1984.

An Algebraic Description of Array Implementations
of FFT Algorithms

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson and Danny Cohen

1982

Abstract

Fast Fourier Transform, FFT, algorithms are interesting for direct hard-
ware implementation in VLSI. The description of FFT algorithms is typi-
cally made either in terms of graphs illustrating the dependency between
different data elements or in terms of mathematical expressions without any
notion of how the computations are implemented in space or time. In this
paper a notation that explicitly models the distribution of computations
in space and time is used to describe a decimation-in-frequency type FFT
algorithm. Expressions in the notation used in this paper can be given an
interpretation in the implementation domain.

In The 20th Annual Allerton Conference on Communication, Control
and Computing, Monticello, Illinois, October 6 - 8, 1982, pp. 126 - 134.

VLSI Algorithms for Doolittle's, Crout's and
Cholesky's Methods

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson

1982

Abstract

In order to take full advantage of the emerging VLSI technology it is
required to recognize its limited communication capability and structure al-
gorithms accordingly. In this paper concurrent algorithms for the methods
of Crout, Doolittle and Cholesky are described and compared with concur-
rent algorithms for Gauss', Given's and Householder's method. The effect
of pipelining the computations in two dimensional arrays is given special
attention.

In the Proceedings of the International Conference on Circuits and

Computers, September 29 - October 1, 1982, pp. 372-377.

Pipelined Linear Equation Solvers and VLSI
Technology

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson

1982

Abstract

Many of the commonly used methods for solution of linear systems of
equations on sequential machines can be given a concurrent formulation.
The concurrent algorithms take advantage of independence of operations in
order to reduce the time complexity of the methods. During the course of
computations specified by the algorithm data has to be routed to the various
places of computation. Pipelining can be used to avoid broadcasting in
VLSI arrays for computation. Pipelining will in general allow for a reduced
cycle time but may force data to be spread out in time, as is the case
for Gaussian elimination. What the required spacing is depends on the
pipelining and the data flow.

In the paper concurrent algorithms and their pipelining for Gaussian
elimination, Householder transformations and Given's rotations are dis-
cussed. Gaussian elimination and Given's rotations can use two dimensional
arrays while Householder transformation uses a one dimensional array. If
partial pivoting is necessary in Gaussian elimination, then one dimension
of the array is essentially lost and a linear array is almost as efficient as a
two-dimensional array. Householder transformations that are numerically
stable may perform the triangulation in shorter time, if partial pivoting is
necessary in Gaussian elimination. The amount of arithmetic that a node
in the arrays perform is somewhat different for the different methods. The
difference is largest for the boundary cells. However, it should be feasible to
design a common node of very low complexity that very efficiently supports
a range of methods for the solution of linear systems of equations.

In the Proceedings of Microelectronics 1982, Adelaide, Australia, May
12 - 14, 1982, pp. 42 - 47, The Institution of Engineers, Australia, National
Conference Publication No. 82/4.

A Computational Array for the QR-method
California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson

1982

Abstract

The QR method is a method for the solution of linear systems of equa-
tions. The matrix R is upper triangular and Q is a unitary matrix. In
equation solving Q is not always computed explicitly. The matrix R can
be obtained by applying a sequence of unitary transformations to the ma-
trix defining the systems of equations. Householder's method or Given's
method can be used to determine unitary transformation matrices. This
paper describes a concurrent algorithm and corresponding array for com-
puting the triangular matrix R by Householder transformations. Particular
attention is given to issues such as broadcasting and pipelining.

In Proceedings, Conference on Advanced Research in VLSI, Ed. P. Pen-
nfield, Artech House, 1982, pp. 123 - 129.

A Mathematical Approach to Modeling the Flow of
Data and Control in Computational Networks

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson and Danny Cohen

1981

Abstract

This paper proposes a mathematical formalism for the synthesis and
qualitative analysis of computational networks that treats data and control
in the same manner. Expressions in this notation are given a direct interpre-
tation in the implementation domain. Topology, broadcasting, pipelining,
and similar properties of implementations can be determined directly from
the expressions.

This treatment of computational networks emphasizes the space/time
tradeoff of implementations. A full instantiation in space of most computa-
tional problems is unrealistic, even in VLSI. Therefore, computations also
have to be at least partially instantiated in the time domain, requiring the
use of explicit control mechanisms, which typically cause the data flow to
be nonstationary and sometimes turbulent.

In VLSI Systems and Computations, Eds. Kung, Sproull, Steele, Com-
puter Sciences Press, Rockville, 1981, pp. 213 - 225.

A VLSI Approach to Real-Time Computation
Problems

California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson and Danny Cohen

1981

Abstract

This paper presents a formalism for describing the behavior of compu-
tational networks at the algorithmic level. It establishes a direct corre-
spondence between mathematical expressions defining a function and the
networks which compute that function. By formally manipulating the sym-
bolic expressions that define a function, it is possible to obtain different
networks that compute the function. Certain important characteristics
of computational networks, such as computational rate, performance and
communication requirements can directly be determined from this mathe-
matical description.

The use of this formalism for design and verification is demonstrated on
a few computational networks for functions typical in signal processing.

In 25th Annual International Technical Symposium and Exhibit of the
Society for Photo-Optical Instrumentation Engineers, San Diego, August
24 - 28, 1981, Vol. 298, pp. 48 - 59, SPIE - The Society for Optical
Engineering.

Towards a Formal Treatment of VLSI Arrays
California Institute of Technology
Department of Computer Science

Technical Report
S. Lennart Johnsson, Uri Weiser, Danny Cohen and Alan L. Davis

1981

Abstract

A formalism to describe the behavior of computational networks at the
algorithmic level is introduced. A direct correspondence between mathe-
matical expressions defining a function and computational networks com-
puting that function can be established by the notation. Different net-
works guaranteed to compute a given function can be obtained by formal
manipulation of expressions. Important characteristics of computational
networks, such as computational rate, performance and communication re-
quirements can be determined directly from that mathematical description
of a network. The use of the notation for design and verification will be
demonstrated on computational networks for Finite Impulse Response fil-
ters, matrix operations and the Discrete Fourier Transform.

The progression of computations can often be modelled by wave fronts in
an illuminating way. Our notation supports such a modelling as is shown. A
computational network can be abstracted to a graph. The duality between
this form of representation and mathematical expressions is discussed.

In Proceedings, Second Caltech Conference on VLSI, Pasadena, January

19 - 21, 1981.

Computational Arrays for Band Matrix Equations
California Institute of Technology
Department of Computer Science

Technical Report 4287
S. Lennart Johnsson

May 1981

Abstract

This report presents systolic algorithms for matrix equations of band-
width m and size N on arrays of P x P processors for P < m. Blocks of
matrix elements are stored in each processor. A collection of blocks form a
processing window. Blocks are allocated cyclicly. We also provide systolic
block algorithms for dense matrices, and give an algorithm for partial piv-
oting. The array is perfectly load balanced, and the speed-up is of order
0(P2) without pivoting. Without tree-like interconnections for the pivot
selection the speed-up with partial pivoting is of order 0(P).

A Note on Householder's Method, Sparse Matrices
and Concurrency

California Institute of Technology
Department of Computer Science

Technical Report 4089
S. Lennart Johnsson

December 1980

Abstract

Householder transformations result in more fill-in than Gaussian elim-
ination. In this report we show that the concurrency is also less than for
Gaussian elimination. In an parallel random access model of computation
the order of the complexity is the same as that of Gaussian elimination
with partial pivoting.

Gaussian Elimination on Sparse Matrices and
Concurrency

California Institute of Technology
Department of Computer Science

Technical Report 4087
S. Lennart Johnsson

December 1980

Abstract

Sparse matrices offer a higher degree of concurrency than dense matrices
for LU-decomposition. All vertices that are not adjacent can be eliminated
concurrently. We show that greedy elimination schemes are not optimal, in
general. There is also a trade-off between concurrency and fill-in. A perfect
elimination graph such as that of a tridiagonal matrix yields a very limited
concurrency if no fill-in is the objective for the elimination order. Two
vertices can be eliminated concurrently. However, nested dissection yields
an elimination tree that allows elimination in log2 N steps for a system of
N equations. The number of arithmetic operations is approximately twice
that of the perfect elimination scheme.

bns ae3iiIrs10.1 eaut4/8 =ID xtbutintiM trataaws0
rmterfil DJ1O0

Imoiond.vir
istortmoD tanatsttaqs0

1'8Ith t7otroill
aoaatufot kasiana

0841I roan:n-441

36,riftti

ri*i-riata Numb mat vp,st iinistoo)o astpb itstil.id a lac, Mil36tr1 linage
Waitifulte, 	r1.01.1 tdowti..4 40o 	J4 119Nifrof ILA -nciiiliccitaomabal var
jai &riuJqo kin frt4 100791b) n 	 heNzahuLl wodrt W4i4wirtrzarto

h5t4,34 A Ari.ffit IMP Virinft0,00,) 	10.4ebail otakt of %lea Amon
lotiapij,rov a iltavii7 	Louroxitilist a to tisiD 111 tint& rIqm betianitnii,

lstwoo witues lama* ext$ lat swisotidt wit Ai ol-lat oa xuarrtir4no,
1/364x nniiwnatila hate= till/WOK .XL)MP ii-Alw3 	 nits irselhav
Icr rovhtla -rol /Alas 	p1 f l oifl 	1fLALrIfitortibt 	sm11

t 441 ylutanifarysqq$ ifeoot/rpm° 	 10,311111:t 14T .1111414441,3*

-31:05ibit sp)ila.ofazile t-ita-esq wii Ic,WI

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66

