
The
Connection Machine
System

CMMD Reference Manual
_.: __-

Version 1.1
January 1992

Thinking Machines Corporation
Cambridge, Massachusetts



First printing, October 1991
Revised, January 1992

*******************************************************************************

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMosT and Prism are trademarks of Thinking Machines Corporation

C* ®& is a registered trademark of Thinking Machines Corporation.
*Lisp and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD is a trademark of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
Motif is a trademark of The Open Software Foundation, Inc.
Sun, Sun-4, and SPARC are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111



Contents

About This Manual ....................................
Customer Support .....................................

Chapter 2

2.1

2.2

2.3

2.4

Introduction ...........................

1.1 Introducing CMMD ........................
The Cooperative Message-Passing Model ..
Two Exceptions .......................
CMMD and Other CM Software ..........

1.2 How Many Nodes? ........................
CMMD Function Summary ..............

Single-Node Functions: Host Only
Single-Node Functions: Host or An
Two-Node Functions ...........
Global Functions: All Nodes, but N
Global Functions: Host plus All Nc

1.3 Cand Fortran 77 .........................

1

el~e..................... .1

... ................... 1

..................... 2

3..................... 

..................... 3

..................... 5

..... Node.............. 5

ay Node .............. 6
..................... 7

lot Host ............. 8
)des ................. 9

..................... 10

Initialization ...............................

Initializing CMMD ............................

Initializing the Short Message Facility .............

Functions That Initialize CMMD ..................

Functions That Initialize the Short Message Facility ..

Chapter 3 Processor Information .....................................

3.1 Processor Information Functions ..................................

11

11

12

12

14

15

15

Chapter 4

4.1

Message Passing ...........................................

Introduction ...................................................
Blocking and Non-Blocking Message Passing ...........

Version 1.1, January 1992

Chapter 1

vii
ix

17

17
17

1iiin



v CMD Refenc Maua

Patterns of Message Passing ..........................
Regular Messages and Vector Messages ................

4.2 Functions for the Paired Sending and Receiving of Messages.
4.2.1 Sending Messages .....................................

Standard Sends and Vector Sends .....................
More about Vector Sends ............................

4.2.2 Receiving Messages ...................................
Standard Messages and Vector Messages ................

4.3 Simultaneous Sends and Receives .................................
4.3.1 In Any Pattern ........................................
4.3.2 Further Notes .........................................
4.3.3 Swaps: An Exchange between Two Nodes Only ............

4.4 Non-Blocking Short Message Sending .............................

Chapter 5

5.1

Polling ..............................

Polling Function ........................

Chapter 6, Auxilliary Routines .................

Chapter 7 Broadcasts ..........................

7.1 Broadcasting the Entire Buffer to All Nodes .

7.2 Distributing a Buffer among the Nodes .....

Chapter 8 Global Synchronization .............

8.1 Global Synchronization Functions ..................

Chapter 9 Scan, Reduction, and Concatenation Operations ..........

9.1 Reductions, Scans, and Segmented Scans .............
Reductions ..................................
Scans ......................................
Segmented Scans .............................

9.2 Concatenation. ..................................

9.3 Reduction Operations .............................

18
18

19
19
20
22
24
25

27
27
28
29

31

33

33

35

37

37

38

41

42

45

46
46
47
48

48

49

Version 1.1, January 1992

CMMD Reference Manualiv

..............

..............

..............

..............



C ss - - - -- - -

9.4 Scan Operations ...............................................
Direction and Inclusion ......................................
Smode and Sbit ............................................

9.5 Concatenation Operations ........................................

Appendix A Routines That Let You Create Your Own Protocol .........

A. 1 The Packet Routines ...........................................

51
53
54

56

57

58

Index .................................................................... 59

Version 1.1, January 1992

Contents v





About This Manual
- - - --------------------_ ---

Objectives of This Manual

The CMMD Reference Manual describes the CMMD library, a library of commu-
nication routines used for creating message-passing programs (sometimes called
MIMD programs) to run on the Connection Machine CM-5 supercomputer. It pro-
vides

* a brief introduction to the library and to the host/node message-passing
model that it implements.

* a "quick reference" list of routines provided by the library, organized by
which processors (host, node, or both) and how many processors (one, two
or more, or all) can or must call the routine.

* reference chapters for each functional group of routines. These chapters
provide information on the routines themselves and, in some cases, on the
way in which the routines function and the uses to which they may be put.

Intended Audience

This manual is written for programmers who are developing or porting message-
passing programs to run on the Connection Machine CM-5 supercomputer. It
assumes some previous knowledge of message-passing programming.

Related Documents

CMMD User's Guide: The CMMD Reference Manual should be used in
conjunction with the CMMD User s Guide, which provides an introduction to the
CM-5 supercomputer itself and to the manner in which message-passing
programs execute on that machine. Programmers new to the CM-5 supercom-
puter are urged to read the first two chapters of the user's guide before beginning
programming on the machine.

Later chapters of the user's guide describe the tools for compilation, linking,
debugging, and program analysis.

Version 1.1, January 1992 vii



viii CMMD Reference Manual
_ An.~55~

Manual Pages: The reference descriptions for individual routines provided in
this manual are also available on-line as manual pages accessible via the man
command.

Revision Information

This edition of the CMMD Reference Manual documents Version 1.1 of the
CMMD library. Readers should note that this library is still under development
and is therefore subject to change.

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

CMMD functions, and UNIX and CM System Soft-
ware commands, command options, and filenames,
when they appear in syntax statements or em-
bedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Version 1.1, January 1992



Customer Support
---------- -- 010 n~~ 0 011111

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes
Thinking Machines to respond to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines' home office
customer support staff:

US. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uuep
Electronic Mail:

Telephone:

customer-support~think.com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

ix





Chapter 1

Introduction

1.1 Introducing CMMD

The CM message-passing library, CMMD, provides facilities for cooperative
message passing between processing nodes. It thus provides simple inter-
processor communication that falls outside the range of the CM data parallel
languages.

This library is expected to be of particular interest to users who have written C
or Fortran programs for machines with MIMD architectures. Such users can port
their programs to the CM-5 by replacing the original message-passing library
calls with calls to CMMD routines.

The Cooperative Message-Passing Model

CMMD supports a programming model frequently referred to as host/node pro-
gramming. This model involves two simultaneously running programs. One
program runs on the host, while independent copies of the node program run on
each processing node. On the CM-5, the host is the partition manager (PM) that
controls a partition of the system, while the nodes are the processing nodes within
the partition. The host begins execution by performing needed initializations (in-
cluding initializing the CMMD library) and then invoking the node program; it
may have little involvement in subsequent computations.

Within this general programming model, CMMD permits cooperative concurrent
processing, in which synchronization occurs only between matched sending and
receiving nodes and only during the act of communication. At all other times,
computing on each node proceeds asynchronously.

Version 1.1, January 1992 1



2. CMMD Reference Manua

This initial release of CMMD primarily supports blocking message sending and
receiving, but does provide limited support for non-blocking message passing as
well. (Future versions of the library are expected to offer further support for
asynchronous message passing.) Blocking routines are synchronized routines in
which senders wait for their recipients to respond before continuing execution,
and vice versa. Programmers using such routines must ensure that each sending
routine is matched with a receiving routine, or deadlock may ensue. (The CM-5
timesharing operating system ensures that any such deadlock affects only the
erring program, and has no effect on other programs sharing the partition.)

In addition, global functions provide for broadcasting data from and reducing it
to the host, for scan and reduce operations, and for global sychronization. (Like
their data parallel counterparts, CMMD global functions are able to take advan-
tage of the CM-5's hardware support for global communications.)

Two Exceptions

Two exceptions to the cooperative message-passing format exist. The first is a
facility for sending non-blocking short messages. Using this facility, each node
can send one short message to one or more other nodes and then continue its
program without waiting for a response. Only one message from one given node
to another can be outstanding; sending two or more messages to the same node
requires some synchronization.

For example, node 1 can send node 3 a short message, then perform computa-
tions without waiting for node 3 to receive the message. If node 1 then sends a
second message to node 3, the system software will check the status of the first
message. If that first message has been received, the second is also sent as a
non-blocking message. If, however, the first message has not yet been received
by node 3, the second send will block until receipt of the first message.

The second exception is a pair of routines that operate outside the CMMD mes-
sage-passing protocol and thus allow programmers to define their own protocols.
These routines should be used only by programmers who are highly experienced
in writing message-passing programs, as they provide almost no safeguards
against disaster.

Version 1.1, January 1992

2 CMMD Reference Manual



Chapte 1.Inrod

CMMD and Other CM Software

CMMD can be called from C and from Fortran 77. This manual documents the
C interface (that is, it uses C syntax and data types). Section 1.3, at the end of this
chapter, shows the relationship between C data types and Fortran data types.

CMMD routines are completely compatible with the current release of the CM-5
operating system, CMosT Version 7.1. Programs under the control of CMMD
routines, however, cannot make calls to data parallel CM libraries, such as paral-
lel I/O0 or graphics routines. Standard (serial) C calls can be used: UNIX I/O calls
from the host program, for instance, or Xlib graphic routines. Future versions of
the CMMD library are expected to make provision for moving data between
CMMD and data parallel programming modes.

Please note that this library is under continual development and hence subject to
possibly substantial changes.

This manual provides information on the CMMD routines. See the CMMD User s
Guide for information on compiling, loading, use of timers, and debugging.

1.2 How Many Nodes?

Synchronization of processors under the message-passing model affects different
numbers of processors according to the operation being performed.

* When one node sends a message, and a second receives it, those two nodes
must synchronize. Until both have made their respective calls and the mes-
sage is transferred, neither call can return.

* If more than two nodes are involved in a set of messages (which can hap-
pen in send_and_receive calls), all those nodes must complete their calls
before any of the calls can return.

* When a global function is invoked, no call can return until every node (and
sometimes the host) has made the call.

* Informational functions usually involve only one node; for example, any
node may check whether it has a message pending without involving any
other node.

Version 1.1, January 1992

Chapter . ntroduction 3



4, CMM R c ana

Programs using CMMD calls have the responsibility of checking that all requisite
nodes make the appropriate calls at the appropriate times. If this is not done, pro-
gram performance will suffer and deadlock may ensue.

Please note that global routines can be used only when all processors in the parti-
tion take part. If some section of a program involves only a single subset of
processors, it cannot make a global call on that subset without hanging the entire
program.

The chart on the next several pages summarizes CMMD routines by functionality
and by the number and identity of nodes that must call them. Once you are ac-
quainted with the library, you can use this chart as a quick reference.

Succeeding chapters discuss each functional group of routines and provide refer-
ence writeups for each routine.

Version 1.1, January 1992

4 CMMD Reference Manual



Chapter 1. Introduction 5

CMMD Function Summary

Single-Node Functions: Host Only

Enabling and Disabling Library Use

CMID enable ()
CHID is enabled()
CMMD disable()
CMMDsuspend ()
CiDis suspended ()
CMD resume ()

Global Synchronization

CMID barriersync ()

Version 1.1, January 1992



6:C.' ' '."'..'::.: :'.M:::..::..·:.MD.:::' R':...::':eference Manual.:. ',..<':,S1:

Single-Node Functions: Host or Any Node

Informational Functions

CMMD self address()
CMHD host node ()
CNMo_partition_size ()

CMMD bytes received()
CMMD_bytes_sent()
CMMDmsg sender()
CMM msg_ tag()

Polling

CD msg.pending (int node, int tag)

Setting and Getting Global Or

CMOD_set_global_or (int value)
CMMD_get_global _or()

Sending Short Messages

CMMD_send_short (int destination, int tag, void *buffer int len)
CMMD wait for send (int destination)

Version 1.1, January 1992

6 CMMD Reference Manual



Chapter 1.I

Two-Node Functions
(Note: In any of these functions, a single node may play both roles, being both
sender and receiver.)

Sending and Receiving Messages

CMMD_send (int destination, int tag, void *buffer; int len)
CM000send_v (int destination, int tag, void *buffer int elem_len,

int stride, int elem_cnt)

CMD receive (int source, int tag, void *buffer, int len)
CMMDreceive (int source, int tag, void *buffer, int elem_len,

int stride, int elem_cnt)

CM_sendndand receive (int source, int source_tag, void *inbuffer
int inlen, int destination, int dest_tag, void *outbuffer
int outlen)

CMD _ send and receive_v (int source, int source tag, void
*inbuffer int in_elem_len, int in_stride, int in_elem_cnt,
int destination, int dest_tag, void *outbuffer
int out_elem_len, int out_stride, int out_elem_cnt)

cDswap (intprocessor, void *inbuffer, int inlen, void *outbuffer
int outlen)

CD_swap_v (intprocessor void *inbuffe, int in_elem_len,
int in_stride, int in_elem_cnt, void *outbuffer,
int out_elem_len, int out_stride, int out_elem_count)

Version 1.1, January 1992

Chapter . Introduction 7



8 - CMMD Refe'ece Manual

Global Functions: All Nodes, but Not Host

Global Synchronization

CMIDsync with nodes ()

Reduce, Scan, and Concatenate

CllD reduce <typo> (<type> value, CMMD_combiner_t combiner)

CsMD scan <type> (<type> value, CMMD_combiner combiner,
CMMD scan direction t direction,
CMMDsegment_mode_t smode, int sbit,
CMMDscan inclusiont inclusion)

CID_concat_with_nodes (void *element, void *buffer,
int elem_length)

Version 1.1, January 1992

8 CMMD Reference Manual



Chapte IIrodcioI

Global Functions: Host plus All Nodes

Enabling and Disabling Short Message Sending

COIDenableshortmessages ()
CWD disable-shortmessages()

Broadcast

CMD_ bc from host (void *buffer int len)
CQID receive bc from host(void *buffer int len)

CdD_ distribto nodes (void *buffer int elem length)
CHmDreceive element fromhost (void *buffer int length)

Global Synchronization

CIDmsync_hos twith nodes ()
CdD sync with host ()

Reduce and Concatenate

CID reduce-from nodes_<type> (<type> value,
CMMD combiner_t combiner)

CHD reduceto host_<type> (<type> value,
CMMDcombinert combiner)

CMdDgather_ fom nodes (void *buffer, int elem_length)
CWIDconcat elements to_host (void *element, int elem_length)

Version 1.1, January 1992

Chapter . Introduction 9



10 CMMD Reference Manua

1.3 C and Fortran 77

Fortran 77 calling sequences for CMMD routines are identical to C calling
sequences, in terms of routine names, parameter names, and parameter order.

Data types, however, are declared differently. The following table shows transla-
tions from C data types to Fortran 77 data types.

C Fortran

int
char
CHMD combiner t
CMD scan direction t
COD segment _mode t
CtlMD scan'inclusion t
unsigned
float
double

integer
character
integer
integer
integer
integer
integer
real
double precision

In the ANSI C programming language, void is a special data type that has no
meaningful values. The equivalent of a Fortran SUMBROUINE (a subprogram that
returns no value) is expressed in C as a function whose return type is void.

A widespread C programming convention is that the type "pointer to void" repre-
sents a pointer to any desired type. If a subroutine has a formal parameter of type
"pointer to void", then a pointer of any type may correctly be used as the corre-
sponding actual argument. The called routine must then assume or deduce the
properties of the data pointed to, usually from information conveyed by the other
parameters.

The CMMD library uses this convention for all cases in which an argument is a
pointer to an area of memory that either contains data to be sent or is reserved for
data to be received. Pointers indicate only the starts of memory areas; the sizes
of the areas are specified through other parameters.

Version 1.1, January 1992

--

10 CMMD Reference Manual



Chapter 2

Initialization

2.1 Initializing CMMD

Data parallel and message-passing program execution make different demands
on the CM-5's communications networks (the Control Network and the Data Net-
work), and thus require different settings for network participation. For
message-passing programs using CMMD, these settings are controlled by two
pairs of functions, which must be called from the host. The first pair, CmD
enable and Cm disable, perform the initial tasks necessary first to enable
message passing and later to disable message passing and restore the network
setting to the state it was in when CmOD_enable or CmD _resume was last
called. The second pair, ClmD suspend and cMt _resume, are used to suspend
and resume message passing temporarily within the course of a program (for ex-
ample, to allow use of some other library).

Programs or routines using CMMD should therefore begin with the host calling
Cm _enable and end with the host calling C:EDdisable. Calls by the host
to CnED_suspend and CsEmD_resume may be placed where necessary within the
program (if they are needed).

Each of these calls requires that the system be in the appropriate state: for in-
stance, an error results from trying to disable message passing when it is not
enabled. Therefore, two informational routines are provided: CMID_is

enabled tells whether message passing has been enabled; CMMDis
suspended tells whether message passing is currently suspended.

Version 1.1, January 1992 11



1 CMD Reer

2.2 Initializing the Short Message Facility

At this initial release, CMMD uses a model of cooperative, or loosely synchro-
nous, message passing. A short message facility within CMMD does, however,
allow the non-blocking sending and receiving of short messages (up to 16 bytes).
This facility must be enabled and disabled separately from CMMD itself. A pro-
gram enables CMMD and starts passing messages. At some point, when the
sending of short messages is useful, the program enables that facility, creating
short-message buffers on all the nodes. When the facility is no longer useful, it
may be disabled and its buffer space reclaimed. If the facility is still enabled
when CMMD itself is disabled, it will be disabled automatically as part of the
overall disabling.

The routines that enable and disable the sending of short messages are cmae_
enable shortmessages and CHMD_disable short messages. These
routines must be called synchronously by all nodes and the host; they are dis-
cussed at the end of this chapter.

2.3 Functions That Initialize CMMD

CMMD enable()

CImoD_enable must be called by the host at the beginning of any program that
uses CMMD routines. It records the current states of communications in the net-
works, allocates space for message buffers in the host and the nodes, and
initializes variables needed for message-passing operations, and synchronizes
the host and nodes.

CHMMDis enabled()

CMDis enabled returns TRUE if CMMD is currently enabled (that is, if it has
been enabled and is not suspended). Otherwise, it returns FALSE. Only the host
can call this function.

Version 1.1, January 1992

12 CMMD Reference Manual



Chaer 2.Intilia

CMD disable()

CeD_disable must be called by the host at the termination of a program that
uses CMMD routines. It synchronizes the host with the nodes, deallocates the
space originally allocated in the host and the nodes for message buffers, and re-
stores the original states of the communications networks. (That is, it returns the
networks to the state found when CbmDenable or CHbD resume was last
called.)

An error is signaled if CMMD is not currently enabled. If it has been suspended,
it must be resumed before it can be disabled.

CN:ED suspend ()

CraDsuspend returns control temporarily to the host processor, to allow data
parallel processing. The routine synchronizes the host with the nodes, saves the
current states of the communication networks, and restores the states that the net-
works were in before the latest CbID enable or CUD resume was called. This
routine can be called only by the host.

CUMD_suspend signals an error if CMMD has not been enabled or if it is already
suspended.

CMBD_ is_suspended ()

CBMD_is_suspended returns TRUE if message passing has been enabled and
then suspended; otherwise, it returns FALSE. Only the host can call this routine.

CMED resume ()

If CMMD has been suspended, CDresume saves the current states of the com-
munications networks and restores the communications network states in effect
before the last call to CBD_suspend. The user program should ensure that host
and nodes are synchronized after making this call before beginning message
passing again.

Version 1.1, January 1992

Chapter 2. Initialization 13



14 C Dee

CmD_resume can be called only by the host. It returns an error if CMMD is not
in a suspended state.

2.4 Functions That Initialize the Short Message Facility

CND enable short messages ()

CMD_enable short messages synchronizes the host and all nodes and allo-
cates internal storage necessary to support the non-blocking sending of short
messages via the ClW_osend short function. It must be called on the host and
all nodes.

CWD_enable_short messages has no effect on a program's ability to use
CMMD calls other than CImD_send short. All standard CMMD calls can be
used while the send_short facility is enabled.

An error is signaled if the facility is already enabled.

CHI D sdisable short messages ()

CMDdisablashort messages disables the non-blocking sending and
receiving of short messages. It must be called on the host and all nodes.

On each node, the call waits until all short messages sent from this node have
been received (e.g., by aiD receive). It then frees the internal storage allo-
cated on that node for short message support.

If short message passing is enabled at the time that CMMD itself is disabled, then
this function is called internally by CNmD_disable.

An error is signaled if this function is called when the facility is not enabled.

Version 1.1, January 1992

14 CMMD Reference Manual



Chapter 3

Processor Information

Processors, both host and nodes, must address each other explicitly during mes-
sage passing. Therefore, routines are needed to provide host and node identifiers.
CM_ host node provides the host identifier, while CmmID_self_address
provides the calling node's own identifier.

For each partition, the set of node identifiers consists of the integers from 0 to the
number of nodes in the partition minus 1, inclusive. The function cwoDparti-
tion size returns the size of the current partition. The host identifier is an
integer outside the range of the partition size.

3.1 Processor Information Functions

C00 self address ()

Called from a process running on a given node, ClHD_self_address returns
the node identifier for that node.

Node identifiers are integers, from 0 to the maximum number of processors in the
partition -1, inclusive. For example, every 128-node partition contains nodes
O to 127. Node identifiers are logical identifiers: programs and programmers
need never concern themselves with physical processor addresses.

Version 1.1, January 1992 15



1CMMDRefre

OQED_host nod ()

CLD host_nods returns the host identifier (an integer not in the partition set).
It can be called from the host itself or from any node.

CMDpartition size ()

CUIDartition_size returns the number of processors in the current parti-
tion. It can be called from the host or from any node.

Version 1.1, January 1992

16 CMMD Reference Manual



Chapter 4

Message Passing

4.1 Introduction

Blocking and Non-Blocking Message Passing

This initial version of CMMD primarily supports cooperative message passing,
in which the sending and receiving of messages are synchronized. Most of the
message-passing routines discussed in this chapter fit this model. They not only
pass information from one node to another, but also synchronize the nodes in so
doing. They are therefore called blocking routines.

CMMD does, however, allow the non-blocking sending and receiving of short
messages (up to 16 bytes). This facility must be enabled and disabled separately
from CMMD itself, using the routines CHDenableshort_messages and
CMD_ disableshort_ mssages. These routines, which must be called by
host and all nodes, are discussed in Chapter 2.

Two routines are used to send short messages: Cat send_short to actually
send the message, CimD waitfor send to allow users to impose some mea-
sure of synchronization, should they wish to do so. These routines are discussed
in Section 4.4, at the end of this chapter. No special routines are needed for
receiving short messages: CaiD receive or cm_receive_v may be used.

Version 1.1, January 1992 17



1 MM Rfeene ana

Patterns of Message Passing

A processor can play one of four roles in message passing:

* It can send a message.

* It can receive a message.

* It can send and receive messages simultaneously. Two special cases:

· It can take part in a cshift, in which all nodes simultaneously send
(in one direction) and receive (from another direction).

* It can take part in a swap, in which it and one other processor ex-
change messages, simultaneously sending to and receiving from
each other.

Routines are provided for each of these roles: send, receive, send_and_receive,
and swap. These routines are discussed in Sections 4.2 and 4.3.

Regular Messages and Vector Messages

Message-passing routines support two types of messages: standard messages, in
which bytes are stored in normal sequential order, and vector messages, in which
elements are separated by some amount of space. Each of the routines in this
section, therefore, has two versions: a standard version, and a vector version
(labeled with a final _v).

In a vector message, the distance between the starting position of one element
and the starting position of the next element is referred to as the "stride." The
stride includes one element plus the intervening space before the beginning of the
next element. Normally, therefore, the stride is larger than the element size.

Element Element

(~ ~ ~ 1CN9

Stride Stride

Version 1.1, January 1992

CMMD Reference Manual18



Chapter 4Mes

4.2 Functions for the Paired Sending and
Receiving of Messages

4.2.1 Sending Messages

otDsend (tnt destination, int tag, void *buffer, int len)

ClQDsendv (int destination, int tag, void *buffer, int elem_len,
int stride, int elem cnt)

destination An integer identifying the node to which the message is
to be sent.

tag An integer from 0 to 127, inclusive, which serves as a
label for the message.

*buffer A pointer to a buffer that contains the message to be sent.

len The length of the buffer, in bytes.

elem_len (Vector sends only.) An integer specifying the length of
each element in the vector.

stride (Vector sends only.) An integer specifying the distance in
bytes between the starting addresses of vector elements.

elemcnt (Vector sends only.) An integer specifying the number of
elements in the vector.

Cl _send and CMIDsend_ v send the contents of a buffer of specified length,
tagged with the specified tag, to the given destination node. The node must be
inside the partition; otherwise, an error results. (The symbol DEFAULT SG_TAG
is the standard default tag.)

Buffers may be of any length up to the maximum memory per node. A NULL
buffer pointer or a length of zero causes a message of zero data length to be sent.

The message is not sent until the receiving node acknowledges that it is ready to
receive a message labeled with the specified tag from this node. In its response,
the receiving node specifies the maximum length of the message it is willing to
receive. Normally, this is the same as the length specified by CmDsend, but it
may be either larger or smaller.

For example, if the receiving node does not know the length of the message to
be sent to it, it can specify the maximum buffer length (or whatever shorter length

Version 1.1. January 1992

i9Chapter 4. Message Passing



0 CI: ..:: .::::e .. :

seems a reasonable maximum for the type of message expected) and accept as
many (or as few) bytes as the sender desires to send.

On the other hand, if the receiving node does not have room for the full message
that the sender wishes to send, it can signal that it wishes to receive a shorter
message. CMm send is constrained to send no more data than the receiver has
signaled that it can accept. (Please note: This is an implementation-dependent
constraint that may be lifted at some future release.) Thus, it sends either the
amount it planned to send or the amount cmmDreceive allows, whichever is
less.

After sending whatever amount of data it is allowed to send, CMMD send returns;
it returns a value of 0 if it sent its entire message and a value of 1 if it sent a
smaller amount. In the latter case, or in the case in which CMMDreceive allo-
cates a "maximum-length" buffer, the program should call CMO bytes_sent
to get the number of bytes actually sent.

Standard Sends and Vector Sends

A standard message, sent by CMmD send, begins at the starting place identified
by the *buffer argument, and proceeds for len sequential bytes. A vector mes-
sage, sent by CMMDsend v, takes a number of non-sequential elements from the
buffer, and sends those as a sequential message. (In other words, it performs an
implicit gather.)

Normally, the stride specified for CMMD send_v will be larger than the element
length. This difference creates the vector send: elem_len bytes are put into the
message, then (stride - elemlen) bytes are skipped over, then the next elem_len
bytes are added to the message, and so on, until the specified number of elements
has been placed in the message to be sent. (See Figure 1).

If the stride and element length are specified as being equal, the result is the same
as a non-vector send: (elem_len * elem_cnt) bytes are sent.

If the stride is smaller than the element length, CWMD_send v sends elem_len
bytes starting at each stride. For example, a stride of 0 would result in the same
element being sent elem_cnt times.

Note that you do not specify the total length of the message in a vector call. Rath-
er, the length is the result of multiplying the number of elements by the length of

Version 1.1, January 1992

20 CMMD Reference Manual



ha 4 Ms

each element. Note also that unless the element length and the stride are identical
(in which case you are using a vector call to do a standard send), the buffer itself
must be longer than the message to be sent from it, since its length must equal
the number of elements multiplied by the stride. Figure 1 illustrates stride, ele-
ment length, element count, message length, and buffer length for a vector send.

Figure 1. A vector send.

As an example of regular and vector sends, let us consider the case of a 4 x 6
matrix A, filled with self-addresses from 0 to 23, in which each element is one
byte long, laid out in memory as follows:

0
6

A = 12

18

1 2 3 4 5
7 8 9 10 11

13 14 15 16 17
19 20 21 22 23

Version 1.1. January 1992

Buffer:
(1 square = 1 byte)

Element Element

..... xx I x xIx lIIGI x x x x

Stride Stride

for this send: Elem_len = 4
Stride = 8
Elemcnt = 2

Textofmessage: 

Chapter 4. Message Passing 21



* '-

To send the top row of the matrix as a message to node 5, you would use the call

CMMDsend (5, DEFAULT MSGTAG, &A, 6)

To send the first column of the matrix to node 3, on the other hand, you would
need a vector send, stating that you were sending four elements (elemcnt), each
one byte long (elemlen), located six bytes apart (stride).

CMMD_send_v (3, DEFAULT_MSG_TAG, &A, 1, 6, 4)

Normally, the receiving node would accept the first message with a standard re-
ceiving call (amDreceive) and the second with a vector receiving call
(coD_receive_v), thus preserving the original geometry of the data. They are
not, however, required to do so. Indeed, you could transpose this sample matrix
by sending each row as a sequential message, but having each received as a
six-element vector with a stride of 4.

More about Vector Sends

Vector sends, like standard sends, are constrained by the destination's receive
request. A sending node offers to send (selem-count * selem-length) bytes; a re-
ceive message agrees to accept (delem-count * delem-length). The smaller
number of the two is sent, in the following manner:

(1) Each element of the source is sent in its entirety until the appropriate
number of bytes sent is reached.

(2) If selem_len != delem _ en, the source elements will be broken up and
distributed across the destination's element length (not across its stride).

Note that this is in contrast to what some might expect. CMMD calls DO NOT send
only as many bytes of each source element as will fit in each destination element.

Version 1.1, January 1992

22 CMMD Reference Manual



Chate 4., Mesag Passing 23

For example, if selem_len > delem_len

selemlen = 5, sstride = 8,

delemlen = 2, dstride = 3

the source buffer would contain

l 1 11111 I 1 12121212121 1 1 13131313131 1 1414141414...

and the destination buffer (after the operation) would contain

1l1 1 1 121 1221 2121 13131 13131 13141 14141 1441---

On the other hand, if selem_len < delem_len

selem len = 2, sstride = 5,

delem len = 3, dstride = 4

the source buffer would contain

ll 1 I 1 12121 1 1 13131 1 1 14141--

and the destination buffer (after the operation) would contain

1I1l121 1213131 14141...

Version 1.1, January 1992

Chapter 4. Message Passing 23



24 · M Rf n M l; .:... '.:.

4.2.2 Receiving Messages

CM_receive (int source, int tag, void *buffer, int len)

CMMD_receive v (int source, int tag, void *buffer int elem_len, int stride,
int elem cnt)

source An integer identifying the node from which the message
is to be sent (ANYNODE allows any node to be the
sender).

tag An integer from 0 to 127, inclusive, which serves as a
label for the message (ANY_TAG allows receipt of a mes-
sage labeled with any tag).

*buffer A pointer to a buffer that will contain the message to be
received.

len (Non-vector function only.) The length of the buffer, in
bytes.

elem_len (Vector functions only.) An integer specifying the length
of each element in the vector, in bytes.

stride (Vector functions only.) An integer specifying the dis-
tance in bytes between the starting addresses of the
vector elements.

elem_cnt (Vector functions only.) An integer specifying the num-
ber of elements in the vector.

cmD receive and CHD receive v inform the source node that they are
ready to receive a message of len bytes with a specified tag; they then wait for
a message with the given tag to be sent from the given source. These routines can
take the special symbol ANYNODE as the source argument, indicating that any
source is acceptable, and the symbol ANY TAG as the tag argument, indicating
that any tag will be accepted.

If ANY_NODE is given, the program can call the function CHDmag_sender ()
to get the node identifier of the actual sender; if ANY_TAG is used,
CMD_mg_tag () can be called to get the tag of the accepted message.

Once an acceptable message is sent, CoD receive and OD_receive_ v
copy the message into the specified buffer. They return a value of 0 if the number

Version 1.1, January 1992

CMMD Reference Manual24



aB~(~s~1~8~- 

of bytes received equals len; otherwise they return 1, and CamID bytes_

received () can be called to get the number of bytes actually received.

Standard Messages and Vector Messages

All messages sent by CMMD calls are packed in sequential order. For many, this
is the actual data ordering: CiD_receive handles this type of message.

Other messages, however, send data that is not to be considered sequential: an
array section would be one example. In this case, Ca,_receive v is used, and
the call specifies that the information to be received is to be considered a vector
of e elements (elem_count), each m bytes long (elem_length), each element to be
placed in an area of the buffer that is n bytes long.

The placement of the data in the buffer thus depends on the relationship between
stride and elemlen:

* If stride > elem_len (the usual case) the elements will be placed in the
specified buffer at intervals, each separated by (n minus m) bytes.

* If stride = elem_len, then the elements are placed sequentially in the buff-
er, as for a standard receive.

* If stride < elem_len, subsequent elements overwrite previous ones where
they overlap.

CND _send_v and caMi _ receive v are frequently paired, so that data is
received in the same geometry from which it was sent. It is possible, however,
to receive data in a geometry different from that in which it was sent: for instance,
sequential data may be broken into a vector (thus "scattering" the data), or a vec-
tor received as sequential (thus "gathering" it). Figure 2 illustrates these four
possible patterns.

Version 1.1, January 1992

Chapter 4. Message Passing 25



26 CMMD Reference Manuale

send 4 bytes101112131 

receive 4 bytes 0 1 2 3 I I

sendv 4 elements: 
stride = 2, elem_len = 1 I 12i I

receive_v 4 elements:
stride =2, elemlen = 1 _° 121 14 6

send 4 bytes | 1 2 3 

receivev 4 elements: I
stride = 2, elem_len = 1

send v 4 elements:
stride = 2, elemlen = 1

receive 4 bytes 0 2 4 6

Figure 2. Sending and receiving data.

Version 1.1, January 1992

26 CMMD Reference Manual



Chapter 4. Message Passing 27

4.3 Simultaneous Sends and Receives

4.3.1 In Any Pattern

C) .send andreceive (int source, int sourcetag, void *inbuffer, int inlen,
int destination, int dest_tag, void *outbuffer,
int outlen)

CID_snd and receivev (int source, int source_tag, void *inbuffer,
int in_elem_len, int instride, int in_elem_count,
int destination, int dest_tag, void *outbuffer,
int out elem_len, int out stride,
int out_elem_count)

source

sourcetjag

*inbuffer

inlen

in elemlen

in stride

in elem count

destination

desttag

*outbuffer

An integer identifying the node from which a message
will be received by this node.

An integer, 0-127 inclusive, or ANYrTAG, labeling the
message to be received.

Pointer to the buffer that will contain the message to be
received.

(Non-vector functions only.) Length, in bytes, of the buff-
er to hold the message received by this node.

(Vector functions only.) Length, in bytes, of each element
in the vector to be received by this node.

(Vector functions only.) Number of bytes between starting
addresses of elements in the vector that comprises the
message to be received by this node.

(Vector functions only.) Number of elements that com-
prise the vector to be received by this node.

An integer identifying the node to which this node will
send a message.

An integer, 0-127 inclusive, labeling the message that
will be sent by this node.

A pointer to the buffer holding the message to be sent by
this node.

Version 1.1, January 1992

Chapter 4. Message Passing 27



28 CMD Rferece Mnua

outlen (Non-vector functions only.) Length, in bytes, of the buff-
er to be sent by this node.

out_elem_len (Vector functions only.) Length, in bytes, of each element
in the vector to be sent by this node.

out_stride (Vector functions only.) Number of bytes by which start-
ing addresses of elements in the vector to be sent are
separated.

out_elem_count (Vector functions only.) Number of elements that com-
prise the vector to be sent by this node.

These two functions allow nodes to send and receive messages simultaneously.
The routines can be used to perform common grid communication, or to send and
receive in more random patterns. Any number of nodes can take part in one of
these calls; the only requirement is that each node must both send a message and
receive a message. (See CMIDswap and caD swap_v for a simpler way to
send and receive simultaneously when two nodes are involved, each serving as
both source and destination for the other.)

The functions cause the message in the calling node's outbuffer to be passed to
the destination node at the same time that a message is read into the calling
node's inbuffer from the source node. The buffers may overlap.

COibD send and receive and Cue send and receive v do not return
until the calling node has sent one message and received one. They return TRUE
if the number of bytes received equals inlen and the number of bytes sent equals
outlen; otherwise they return FALSE, and CMD bytes_received () and
COD bytes_sent () can be called to get the number of bytes received and
sent, respectively.

CMMD_sendanand receive handles sequential data, while CoamD send
and receive v exhibits gather/scatter behavior.

4.3.2 Further Notes

(1) The strides for sent and received messages do not have to be equal. For
example, to perform a transpose in which the sends are vectored and the
receives are sequential, set in_stride as needed for the sends and set it
equal to in_elem_len for the receives. (For more information on vector
messages, see the entry for CEDsend.)

Version 1.1, January 1992

28 CMMD Reference Manual



Chap$8e 4 Mesg asi 2

(2) The send_and_receive functions should be used when a program needs
to perform circular shifts on an array. Each node sends in one direction
and receives from another direction, as in the example diagrammed in
Figure 3 below.

Figure 3. A circular shift on 4 nodes.

(3) Sends and receives may be mixed with send_and receive functions. For
example, you might mix these calls in order to create an end-off shift on
four nodes:

Node 0: CiMD_send: uses boundary value, sends to node 1
Node 1: CMMD send and receive: receives from 0, sends to 2
Node 2: CIaD send and receive: receives from 1, sends to 3
Node 3: C Dm receive: receives from 2

4.3.3 Swaps: An Exchange between Two Nodes Only

mD _swap (int processor, void *inbuffer, int inlen, void *outbuffer, int outlen)

CHMD_swap_v (int processor, void *inbuffer, int inelemlen, int instride,
int inelem_count, void *outbuffer; int outelemlen,
int out_stride, int outelem cnt)

processor An integer identifying the node with which a message is
to be swapped.

Version 1.1, January 1992

Inbuf

outbuf

29Chapter 4. Message Passing



30 CMD Rferece Mnua

A pointer to the buffer that will hold the received
message.

(CND6_swap only.) Length, in bytes, of the buffer that
will hold the message received by this node.

inelem len

in stride

inelemcount

*outbuffer

outlen

outelem len

out stride

outelemcount

(camswap_v only.) Length, in bytes, of each ele-
ment in the vector to be received by this node.

(CuepD_swap_v only.) Number of bytes between start-
ing addresses of elements in the vector to be received by
this node.

(cOeD_swap_v only.) Number of elements that com-
prise the vector to be received by this node.

A pointer to the buffer holding the message to be sent by
this node.

(cms _swap only.) Length of the buffer to be sent by
this node.

(Ce_D swap_v only). Length, in bytes, of each element
in the vector to be sent by this node.

(CAD swap_v only.) Number of bytes by which start-
ing addresses of elements in the vector to be sent are
separated.

(CteD swap_v only.) Number of elements that com-
prise the vector to be sent by this node.

ComD_swap is identical to CmODsendan and receive (and ClmD swapv to
CND sendan d_ receive_v) where the source node equals the destination
node.

For an explanation of sequential versus vector routines, see ClD_send.

Version 1.1, January 1992

*inbuffer

inlen

CMMD Reference ~anual30



C~a eBs ss 3

4.4 Non-Blocking Short Message Sending

CQ Dsend_short (int destination, int tag, void *buffer int len)

destination An integer identifying the node to which the message is
to be sent.

tag An integer from 0 to 127, inclusive, which serves as a la-
bel for the message.

*buffer A pointer to a buffer that contains the message to be sent.

len The length of the buffer, in bytes.

CRD_ send_ short sends a message of up to CMD _SHORT_ MSSAGE BYTES
(16) from this node's buffer, labeled with the specified tag, to the destination
node. If no previous short send from this node to the specified destination node
is outstanding, CM_snd short returns immediately; unlike CmDsend, it
does not wait for the destination to receive the message. If a previous short send
from this node to the specified destination node is still in transit, the call waits
until that message has been received (e.g., by cOm_receive) before returning.

Note that a given node can send a single short message to any number of destina-
tion nodes, without having to wait for acknowledgment.

An error is signaled if ColwDsendshort is called when the short message
facility is not enabled; that is, before the host and all nodes have called
CRSD enable short messages, or after they have called CmrD disable_
shortmessages.

CUD wait for send (int destination)

destination An integer identifying the node to which the message is
to be sent.

CRD wait_ for_send checks to see whether a prior short message from this
node to the specified destination node is outstanding (not yet received). If such
a message exists, the function waits until that message has been received (e.g.,
by CMiD_receive). If destination is ANYNODE, the function waits until all pre-
vious messages from this node to any destination have been received.

Before sending a message to the specified node (n), CMDsend short(n,...)
automatically calls CMDwait for send(n), thus ensuring that a second send

Version 1.1, January 1992

Chapter 4. Message Passing 31



32 CMDefreceMa

to node n does not occur until the first has been received. A program would call
CMD_ wait for end explicitly if the programmer wanted to ensure that a

message to one node was received before a message to another node was sent,
but did not want to wait immediately after the first send. The pattern might be

send short to node n

do some other stuff

call wait for send on node n

send short to nodem

Version 1.1, January 1992

32 CMMD Reference Manual



Chapter 5

Polling
r X~~t i *.�. *�. �

Message-passing programs need some way of identifying whether, at any given
time, there are messages that are either in transit or waiting to be sent. To identify
such messages, a program polls for them.

A process on any individual node may call C Dmsgpending () to poll for
a message, and issue a message-receive call only after it knows that a message
is waiting to be sent. This allows the process to avoid having to block while wait-
ing for a message. (A receiving process that relies on polling but polls
infrequently may, of course, cause sending processes to block while waiting for
the receiver.)

5.1 Polling Function

CHlDmsagpending (int node, int tag)

node Integer identifying a node. (May be AN NODE.)

tag Integer identifying a tag. (May be AN TAG.)

CMDmsgpending returns Tnu if there is a message waiting to be received
from the specified node (or from any node if ANY NODE is supplied as the node
argument) with tag tag (or any tag if ANY_TAG is supplied as the tag argument).
It returns FALSE otherwise.

If ANY _NODE is used, the function Cm_mag_sender () can then be called to
get the node identifier of the pending sender; if ANYTAG is used, caoD _msg_tag
will return the tag of the pending message.

Version 1.1, January 1992 33





Chapter 6

Auxiliary Routines
._.---------,111 1 ------------- --- 11 _ _

These are the routines that tell you what really happened when you sent that mes-
sage from one node to another: How much was sent or received? By what node
was it sent? How was it tagged? Although their obvious uses are as responses to
return values of 1 (signifying incomplete transmission or reception) or to the re-
ception of messages sent from ANYNODE or labeled with ANY_TAG, these
informational routines can be called at any point during a program.

CNlD bytes received()

Ca_ bytessent()

ClDmag_ende ()

Returns the number of bytes received by this
node in its most recent message.

Returns the number of bytes sent in the last
message.

Returns the node identifier for the last message
received except when issued following a call to
CoO msg pending. In that case:

* If the call to CMMD_ msg_pending
returned TRUE, CHIMD_msg_sender
returns the identifier of the node that is
waiting to send a message.

* If the call to CMMlD_msg_pending
returned FALSE, calling CMD _msg_
sender causes an error.

Version 1.1, January 1992 35



368 CMMD Reference g~0M-M

CD_msg_ tag () Returns the tag of the last message received
except when issued following a call to OMMD
msgpending. In that case:

* If the call to CMMD_msg_pending
returned TRUE, CRw mgtag returns
the tag of the message that is waiting to
be received.

* If the call to CmD _msg_pending
returned FALSE, calling CMMD_msg_
tag causes an error.

Version 1.1, January 1992

36 CMMD Reference Manual1



Chapter 7

Broadcasts

Broadcasts are messages sent from the host to all nodes. Two kinds exist: The
host may broadcast the entire contents of the buffer to all nodes (in which case
all receive identical data) or it may parcel out elements from the buffer among
all nodes, one element per node.

All nodes receive data simultaneously, and all receive the same amount of data.
For this reason, it is very important to ensure that all nodes have sufficient buffer
space to hold the broadcast message.

The host and all the nodes must take part in these broadcasts. Once a broadcast
is signaled, either by the host or by any node, the hardware begins checking for
responses. Only when the hardware signals that the entire broadcast is complete
can any of the broadcast calls return.

7.1 Broadcasting the Entire Buffer to All Nodes

CMM Dbc from host (void *buffer, int len)

CMMDreceive bc_from_host (void *buffer int len)

*buffer A pointer to a buffer that holds the message being broad-
cast and received.

len The length, in bytes, of the buffer being broadcast and
received.

Version 1.1, January 1992 37



3CM Rerneau

The host process calls CMUDbcfrom_host to broadcast a buffer of the
specified length (in bytes) to all nodes. All nodes must call caoD_receive_
bcfrom_host, with the same length argument, to receive the buffer.

PLEASE NOTE

If length arguments are not identical across all nodes, a segmen-
tation fault may result.

Please note also that all processors within the partition must
take part in this operation. If a given program divides the parti-
tion into sections, an attempt to use global operations within a
section will fail.

These functions do not return until the broadcast is complete; that is, until the
host and all the nodes have made their calls.

7.2 Distributing a Buffer among the Nodes

CM distribto nodes (void *buffer int elemlength)

CQOD.receive_ lment from host (void *buffer int length)

*buffer A pointer to the buffer that holds the messages being sent
and received.

For the host, the length of the buffer (in bytes) must be at
least (CW!Dpartition_size () * elem_length).

For a node, the length must be at least elem_length.

elem_length The length (in bytes) of each element to be sent.

length The length (in bytes) of the buffer that is to receive the
element being sent.

Version 1.1, January 1992

38 CMMD Reference Mnual



Ch-te.wn -ast 391...M

The host process calls cmaD_ distrib to nodes in order to distribute ele-
ments of the given length from the specified buffer to each node in processor
order. The length (in bytes) of the buffer on the host must be at least (Dw
partition size () * elem_length). Only the first (CIm _paartition
size () * elem_length) bytes are sent; each node receives one element.

In response to the host call, all nodes must call cMD_receiveelement_
from host, specifying a buffer of the appropriate size to receive the element.

Neither the host call nor any of the node calls return until all have been made and
completed.

Version 1.I, January 1992

Chapter 7. Broadcasts 39





Chapter 8

Global Synchronization
____~

Global synchronization functions, as their name implies, serve to synchronize all
nodes (and optionally the host as well) at a given point in a program. Three ver-
sions are provided:

CBID sync_host with nodes
CWD _sync_with_ host

CD_sync with nodes

C4D barrier _sync

This pair of calls serves as a synchroni-
zation point for host and nodes together.

This call, sent by all nodes, allows them
to synchronize themselves without the
host's participation.

This call, sent only by the host, synchro-
nizes host and nodes at the completion of
all currently executing node functions.

All processors in the partition must join in these calls. Once the host or any node
has begun one of these synchronization calls, the CM hardware keeps track of
responses, and allows none of the calls to return until all nodes (and the host,
when needed) have made their call.

In addition to these synchronous routines, two asynchronous global OR routines
allow host and all nodes to signal to each other by contributing to a global OR and
reading its results.

C4lD setglobal_or

CeD get global_or

Sent by host and all nodes, this call con-
tributes a value (0 or nonzero) toward the
creation of a global OR.

Sent by host or any node, this call reads
the current value of the global OR.

Version 1.1, January 1992 41



42a CMRfrecMna

By using the C D set_global_or function, each processor contributes to the
global OR at an appropriate time; the hardware checks and updates the global
value at frequent intervals; and individual processors read the value when de-
sired. Thus, the global OR mechanism can be used as a non-blocking method of
determining when all processors have reached a given state. All processors
would start a task, for instance, by sending a 1. As each finished its share of the
task, it would send a 0. By checking the value of the global OR (which would
change to 0 only when all processors had finished), a processor could determine
whether the whole task was complete and thus select its own next action.

Please note: These asynchronous global OR functions should not be confused
with the synchronous global-OR reduction operation, which is explained later, in
the section on Scans, Reductions, and Concatenation.

8.1 Global Synchronization Functions

CHeD_synchost with nodes()

CIMD sync_ with host ()

The host calls CMD_sync host with nodes to synchronize itself and all the
nodes. The nodes respond by calling C4LDsync_with_host. These calls re-
turn only after the host and all nodes have made the call.

CImD_sync_ith nodes ()

CHMDsync_with nodes synchronizes the calling node with all other nodes.
Once one node has made this call, all nodes must; the function does not return
until they do. (Note that this routine does not involve the host.)

Version 1.1, January 1992

42 CMMD Reference Manual



Chapter 8..,': '.-... .:-:-.:. Sychro n:o. :.:.:"'.:.' 4 3::.,:

CMDbarriersync()

A program running on the nodes of a CM-5 system alternates between two states:
It can be executing a procedure, or it can be in the dispatch loop, waiting for the
host to initiate execution of a procedure. (For more information about this execu-
tion process, see Chapter 2 of the CMMD User s Guide.)

The CM barrier sync function is called by the host only. It synchronizes
the host with the completion of all previously called node procedures. It returns
only when all nodes have finished execution and have returned to the dispatch
loop.

PLEASE NOTE

All host-node communication for all nodes in a given program
block must be complete before the host processor makes this
call. If the call is made while any communication between host
and node is pending, the program will hang.

IEMD set_global_or (int value)

value An integer, either 0 or nonzero.

Callable on any processor (host or node), CmMD set_global_or allows a pro-
cessor to contribute a value (either 0 or some nonzero integer) to a global OR
function - that is, an OR in which host and all nodes may take part. The function
returns when the value has been sent; it does not wait for participation by any
other processor.

Version 1.1, January 1992

Chapter 8. Global Synchronization 43



44CMD efreceMaua

CWlMD_get_global_or ()

Callable on either the host or the nodes, CBDl_getglobalor returns the cur-
rent value of a global OR function over all processors, host and nodes alike.

This function is asynchronous; it requires participation by no other processors.

If CE)D_et_global_or has not already set a value for the global OR, calls to
CImD get global_or return unpredictable results.

As contributions to this global OR may be asynchronous, the hardware checks the
value at frequent intervals and updates it as needed. Note, however, that some
network delay exists during reception and propagation of values; thus, there is a
small but actual window between the time at which a processor sends a
set_global_or message and the time by which that message can affect the
result of another node's get_global _or request.

Version 1.1, January 1992

CMMD Reference Manual44



Chapter 9

Scan, Reduction, and Concatenation
Operations

Scans, reductions, and concatenation are global operations. Given a buffer con-
taining some value in each node, these global computations operate cumulatively
on the buffer set to perform such tasks as

* summing the value across all the nodes

* finding the largest or smallest value

* performing a bitwise AND, OR, or XOR

For reduction operations, the final value can be returned either to all the nodes
or to the host. For scans, the cumulative results are returned as a running tally
across all the nodes.

All nodes within the partition must take part in these calls. If the result is to be
returned to the host, then the host must also take part.

These global functions impose synchrony: those involving both host and nodes
do not return until host and all nodes have made their (different) calls; those in-
volving only nodes do not return until all nodes have made the call.

Each scan and reduction function comes in four versions: one for integer, one for
unsigned integer, and one each for single- and double-precision floating-point
numbers. Each version requires as input a value of the type specified in its name,
and returns a value of the same type. Exceptions to this rule are the float routines,
which take float arguments but return double results.

Because scan and reduction functions may perform one of a number of opera-
tions, they take as an argument one of the following symbols representing the
operation to be performed.

Version 1.1, January 1992 45



46 M Rf Mau

CNMD combiner add

CHMM combiner uadd

CIn) combiner max
CMID combiner umax
CMMD combiner min
C4OID combiner umin
C)oD combiner ior
CNMD combiner xor
CHMD combiner and

Add operations.
Add operations (unsigned).
Return the largest value found.
Return the largest value found (unsigned).
Return the smallest value found.
Return the smallest value found (unsigned).
Inclusive OR operation.
Exclusive OR operation.
Logical AND operation.

Thus, for example, a cmD_ reduce int function, called using the CoD_com-
biner max argument, would compare the values on all nodes and return the
largest value to all nodes, while a call to CmDu_reduce to host with the
CHD combiner_add argument would add the values from all nodes and return
the sum of the values to the host.

9.1 Reductions, Scans, and Segmented Scans

Reduction operations, scans, and segmented scans provide three basic methods
of all-to-all and all-to-one communication. (See Figure 4.)

Reductions

A reduce operation starts with values in every processor and ends with a single
value, either in every node or in every node plus the host processor. Values may
be added, so that the sum of all values is returned; or the largest or smallest value
may be chosen; or an OR or XOR may be done across all the values. In each case,
one final result is returned.

Thus, on four nodes holding the values

4 9 7 6

a reduce/add would return

26 26 26 26

Version 1.1, January 1992

CMMD Reference Manual46



Chapter 9. Scan, Reduction, and Concatenation Operations

II 1 21 51 417 1 61 31 1

I I I I I [ IJ .1 I I I I

12547635

I 1 1 1 7 1 6 1 3 1 51

I| 1 3 8 12|119|125|128|33|
1331331331331331331331 .33

Scan

Reduction

3 6 1 52 0 2-4 6 512 6 4

3 9 10 5 7 0 2-2 4 92 8 12

Segmented scan

Figure 4. Global summation operations.

Scans

A scan (sometimes called a parallel prefix operation) moves from processor to
- processor, in processor identifier order, creating a running tally of results in each
processor. The function call specifies whether the scan proceeds upward ( to n)
or downward (n to 0), and whether the scan is to be inclusive or exclusive. (In
an inclusive scan, the source value contained in any given node n contributes to
the result for node n; in an exclusive scan, it does not.)

Version 1.1, January 1992

�5�45eQ�e�

I . . I

47



48 CMReeec

Thus, with our same four values,

4 9 7 6

an upward exclusive scan/add would produce

0 4 13 20

while a downward inclusive scan/add would produce

26 22 13 6

Segmented Scans

In a segmented scan, independent scans are run simultaneously on different sub-
groups (or segments) of the nodes. The segments are determined at run time by
an argument called the sbit (described later in this chapter). For example, given
our four values:

4 9 7 6

and sbit values of

1 0 1 0

an upward inclusive segmented scan/add would return

4 13 7 13

9.2 Concatenation

Concatenation simply appends the value from each processor to the values of all
preceding processors (in processor identifier order). CMMD provides two ver-
sions of concatenation: one concatenates across the nodes only, and writes the
resulting value into a buffer on every node. The other concatenates values from
every node into a buffer on the host. Concatenation always proceeds from the
lowest to the highest node; it is never segmented.

Version 1.1, January 1992

CMMD Refernce Manual48



Chapter 9. Scan, Reduction, and Concatenation Operations

9.3 Reduction Operations

CMD reduce int (int value, CMMDcombiner t combiner)
Ch._reduce_uint (unsigned value, CMMD_combinert combiner)
CMtlDreduce_float (float value, CMMD_combiner_t combiner)
CMMD reducedouble (double value, CMMDcombiner t combiner)

value The value to be contributed to the operation. Its type must
match that specified by the fimnction name.

combiner One of the symbols listed below, specifying the type of
operation to be performed.

For signed integer operands (CMMD reduce_int), al-
lowable combiners are

CMMD combiner add CMMD combiner ior
CMMD combiner max CHMD combiner xor
CMMD combiner min CMMD combiner and

For unsigned integer operands (CMMDreduce_uint),
allowable combiners are

CMID combiner uadd CMMD combiner ior
CMMD combiner umax CMD combiner xor
CMMD combiner umin CMMD combiner and

For float and double operands (CMMDreducefloat
and CmlD_reduce double), allowable operands are

CMMD combiner add
CMMD combiner max
CMMD combiner min

Using anything other than an allowable combiner causes a
fatal error.

The reduce functions return the value of the specified reduce operation over all
the nodes. Every node thus receives the same return value. The functions will not
return until all nodes have called CMMreduce_type. The host processor is not
involved. To involve the host processor, use the pair of routines described below,
CMMD reduce from nodes and CMMD reduce to host. Note that these
routines must be paired; it is an error to call CMMDreduce on the nodes and
CMMD reduce from nodes on the host.

Version 1.1, January 1992

�58�a3�

49



50MMDRefeen Ma

C!QD_reducefrom_nodesint (int value, CMMDcombiner t combiner)
CMiDreducefrom nodes uint (unsigned value, CMMD_combiner_t

combiner)
CMDreducefrom nodes float (float value, CMMD combiner_t

combiner)
WQ6Dreduce from nodes double (double value, CMMDcombiner t

combiner)

CHQD reduce to host int
CHMD reduce to host uint

CNID reduce to host float

CQID reduce to host double

value

combiner

(int value, CMMD_combiner t combiner)
(unsigned value, CMMD_combiner_t
combiner)
(float value, CMMD combiner_t
combiner)
(double value, CMMDcombiner_t
combiner)

The value to be contributed by this processor to the opera-
tion. Its type must match that specified by the function
name.

One of the symbols listed below, specifying the type of
operation to be performed.

For signed integer operands, allowable combiners are

CMID combiner add
CND combiner max
ClMD combiner min

CMMD combiner ior
CNMD combiner xor
CQD combiner and

For unsigned integer operands, allowable combiners are

CND combiner uadd
CWmD combiner umax
CID combiner umin

CIMD combiner ior
CHID combiner xor
CHMD combiner and

For float and double operands, allowable operands are

CHMD combiner add
CNMD combiner max
CMMD combiner min

Using anything other than an allowable combiner causes a
fatal error.

In this pair of functions, the host calls CHIMDreduce_from_nodes_tpe and
all nodes call C!D_ reducceto host type. The functions return to the host
processor and to each node the value of the specified reduce operation over all

Version 1.1, January 1992

CMMD Reference Manual50



C Siui

the nodes including the host processor. The functions will not return until all
nodes have called C2OD_reduce_tohost_type and the host has called CMD_
reduce from_node type .

9.4 Scan Operations

dCMD scan int

CND scan uint

CHID scan float

CMMD scan double

value

combiner

int value, CMMDcombinert combiner, CMMD scan_
direction_t direction, CMMD_segment_mode_t smode,
int sbit, CMMD scaninclusiont inclusion)

(uint value, CMMD combiner t combiner, CMMD
scan_direction_t direction, CMMD_segment_mode_t
smode, int sbit, CMMDscaninclusiont inclusion)

(float value, CMMD_ combiner_t combiner, CMMD
scan_direction_t direction, CMMD segment_ mode_t
smode, int sbit, CMMD_scan_inclusion_t inclusion)

(double value, CMMD combinert combiner, CMMD
scan_ direction_t direction, CMMD_segment_mode_t
smode, int sbit, CMMD_scan_inclusion_t inclusion)

The value to be contributed by this processor to the opera-
tion. Its type must match that specified by the function
name.

One of the symbols listed below, specifying the type of
operation to be performed.

For signed integer operands (mDscan_int), allow-
able combiners are

CNMD combiner add

CHD combiner max
CMD combiner min

CMMD combiner ior

CMD combiner xor

CMMD combiner and

For unsigned integer operands (CMDscan.uint),
allowable combiners are

CMMD combiner uadd

CHlD combiner umax

CHMD combiner umin

CMD combiner ior

CMMD combiner xor

CMD combiner and

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations 51



52 CMD Rferece Mnua

For float and double operands (Dscan float and
CMDreduce_double), allowable operands are

CUD combiner add
CMqD combiner max

CHID combiner in

Using anything other than an allowable combiner causes a
fatal error.

direction ClUED upward
The scan starts at node 0 and proceeds to the highest-
numbered node.

CNUDdownward
The scan starts at the highest-numbered node and pro-
ceeds downward to node 0.

smode CHD none
The scan proceeds across all nodes.

ClID segment bit
The scan is a segmented scan, with sbit acting as a seg-
ment bit.

ClD start bit
The scan is a segmented scan, with sbit acting as a start
bit.

sbit If sbit is nonzero, the node marks the boundary (usually
the beginning) of a segment; if sbit is zero, the node is not
a boundary marker. (If smode is CD_none, then sbit is
ignored.)

inclusion Cl inclusive
The scan is inclusive.

CHlD exclusive
The scan is exclusive.

CMD scan _type returns the value of the specified scan operation over all the
nodes. This function does not return until all nodes have called the function. The
host processor is not involved.

Version 1.1, January 1992

52 CMD Reference Manual



Chapter ~ i 9.SaRdcinadCnaeaio prtos5

------- --- - ----- ---i -----

PLEASE NOTE

(1) Values for direction, smode, and inclusion MUST be identi-
cal across all nodes. Otherwise, results are unpredictable and
the program may crash.

(2) For CMMDscanfloat and CHa=D_scan_double, the
combination of smode = CmD start bit and inclusion =
ChlD_ exclusive is currently illegal and will cause the nodes
to exit.

Direction and Inclusion

The direction argument determines the direction of the scan, either upwards
(from 0 to the highest-numbered node) or downwards (from the highest-num-
bered node to 0). The inclusion argument determines whether a given node
participates in its own value. When smode is cD none, these two arguments
alone work together to define which source values affect the destination value in
a given processor.

* In inclusive upward scans, the value returned for a given node n is the
combination of the source values in all nodes <= n.

* In inclusive downward scans, the value returned for a given node n is the
combination of the source values in all nodes >= n.

* In exclusive upward scans, the value returned for a given node n is the
combination of source values in all nodes < n. The first (lowest-numbered)
node receives the identity value for the combiner.

* In exclusive downward scans, the value returned for a given node n is the
combination of the source values in all nodes >n. The highest-numbered
node receives the identity value for the combiner.

If a scan is a segmented scan, these rules apply on a per-segment basis, as ex-
plained below.

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations 53



54 ----- Refe---ceManl--uu ui---uu-m

Smode and Sbit

The smode and sbit arguments define segmented scans. These are scans that tally
their results across subgroups of the nodes. Every node belongs to one group, or
"segment," with the group to which it belongs determined by smode and sbit as
follows:

When smode is cdM Dsegment bit

If smode is cM _segment bit, then sbit is considered a segment bit. A
nonzero segment bit starts a new segment for an upward scan, but ends a
segment for a downward scan. Imagine 8 nodes with the following seg-
ment bits:

00100100

Both upward and downward scans would have 3 segments: one would in-
clude nodes 0 and 1, another would include nodes 2-4, and a third would
include nodes 5-7.

When sbit is a segment bit, operations in one segment never affect the val-
ues of elements in another segment. Thus, given segment bits of

0010

and values of

4152

an upward exclusive max would produce

0405

(See Figure 5.)

X When smode is cueD start bit

If smode is CNam start bit, then sbit is considered a start bit. A non-

zero start bit always starts a new segment, whether the direction of the scan
is upward or downward. Thus, given 8 nodes with the following start bits:

00100100

an upward scan would have the same segments as the segmented scan
shown above (0-1, 2-4, 5-7); but a downward scan would have segments
of 7-6, 5-3, and 2-0.

Version 1.I, January 1992

CMID Reference Manual54



Chpe 9 cn RdcinadCoctntinOeatos5

In addition, if the operation is exclusive, a node with a nonzero start bit
does receive a value from the preceding segment. The value received is the
reduce of the previous segment, with the same combiner. Thus, given start
bits of

0010

and values of

4152

an upward exclusive scan/max would produce

0445

(See Figure 5.)

Figure 5. Upward exclusive scans with max combiners.

Version 1.1, January 1992

Using CMmosegment bit:
Segment 0 Segment 1

source E

max = 4 S

dest [IIb

Using OC D start_bit:
Segment 0 Segment 1

source L

max = 4 5

dest WFII

Chapter 9. Scan, Reduction, and Concatenation perations 55



5�MM�R frn�Manual::...x.:,:::.:.:..:.::.::::.,>:.:.::.:.:..:: .:..:..::.:.:-:.:..::..::..-:.::.:-.:..:::-:....:::.::::::::'-.::::.::::.:::..::. ~::: :.:::'.

9.5 Concatenation Operations

CMMD concat with nodes (void *element, void *buffer int elem_length)

*element A pointer to the element this node contributes to the
concatenation process.

*buffer A pointer to the buffer in which the returned value will
be stored. Its length in bytes must be at least
(C4MD partition size () * elem_length).

elemlength The length in bytes of the element to be concatenated.
Must be identical across all nodes.

CMMDconcat with-nodes concatenates elements of equal length from each
node into the given buffer. The length of the buffer in bytes must be at least
(CMDpartitionsize () * elem_length). This function does not return until
all nodes have called CMMD concat with nodes. The host processor is not
involved.

CMMD_gather _from_nodes (void *buffer int elem_length)
CMMDconcatelementstohost (void *element, int elem length)

*buffer (Host only.) A pointer to the buffer in which the returned
value will be stored. Its length in bytes must be at least
(CMMDpartition_size () * elemlength).

*element (Nodes only.) A pointer to the element this node contrib-
utes to the concatenation process.

elem_length The length in bytes of the element to be concatenated.
(Must be identical for all processors.)

This pair of functions concatenates elements from each node into a buffer on the
host. The element length must be identical for all processors, and the host must
specify enough space to store the result. The function returns after all nodes have
called CMMD concat elements to host and the host has called CMMD
gather_from_nodes.

Note that these functions are essentially the opposite of the functions CMMD
distrib tonodes and CMMD_ receive_element_from_host. That pair
distributes the contents of a buffer element-wise from the host to the nodes; this
pair gathers the elements from the nodes into a buffer on the host.

Version 1.1, January 1992

56 CMMD Reference Manual



Appendix A

Routines That Let You
Create Your Own Protocol

PLEASE NOTE

(1) The routines documented in this appendix, CaD_send_
packet and CM _receivepacket, cannot be used in con-
junction with other CMMD send and receive routines. The
library provides no protection against doing so, but results are
likely to be indeterminate. CMMD global functions, on the other
hand, can be used with these packet routines.

(2) Creating a message-passing protocol is not a simple opera-
tion. Deadlocks are not only possible, they are extremely likely.
Please do not use these routines unless you have very good rea-
sons for doing so, and are experienced at message-passing
multiprocessor programming.

Using Clo a sendpacket and CHMDreceivepacket, nodes can send and
receive non-blocking messages of up to 20 bytes in length. The routines provide
no synchronicity, nor any functionality to verify whether a message, once sent,
is received somewhere. Users employing these routines must ensure that any
messages sent by them are received; unreceived messages can clog the data net-
work and cause the program to hang.

Version 1.1, January 1992

I '

57



5-8R-- CMD-fe111Mna

CD_ sendpacket and CMW receive_packet make no provision for
headers. Users must create their own headers and their own software to parse
whatever header-and-text combination they decide to use.

A.1 The Packet Routines

CMD sendpacket (unsigned int destination, int words_tosend,
unsigned int *buffer, unsigned int type)

destination An integer identifying the node to which the message is
to be sent.

words_tosend The length of the buffer, in 32-bit words.

*buffer A pointer to a buffer that contains the message to be sent.

type At this release, 0 is the only allowable value for this argu-
ment.

This function sends out a message to the destination node. Arguments specify the
length (expressed in 32-bit words) of the packet, and the starting address of the
message.

The function is non-blocking. It does not wait for any acknowledgment from the
receiver. It returns TRUE if the message has been sent into the communications
network, FALSE otherwise.

CMD_receive_packet (unsigned int *buffer)

*buffer A pointer to a buffer that contains the message to be
received.

The function checks for incoming messages. If it finds one, it receives the mes-
sage, writes it into the buffer, and returns the number of words received. If it finds
no incoming message, it returns -1.

Version 1.1, January 1992

58 CMMD Reference Manual



Index
_ _ W 

A
AND, 45
ANY NODE, 24,35
ANY TAG, 24,35

auxiliary routines, 35

B
blocking messages, 2, 17
broadcasts, 37
buffers

broadcasting, 37
distributing, 38
length of, 19

C
C,3
circular shifts, 29

CHD barrier sync, 41, 43
CMMD_bcfromhost, 37
CDOD_bytesreceived, 35

CWiD bytessent, 35

CMMD concat _elementsto host, 56

CMD concat withnodes, 56

CMLD disable, 11, 13
CHMD disable_short_messages, 14

CMND distrib to nodes, 38
CMMD. enable, 11, 12
CMMDenable_short_messages, 14

CMD_gather_from_nodes, 56

CMD_getglobal_or, 41,44

CMMD host node, 16

CMMD is enabled, 11, 12
CMMD is suspended, 11, 13
CMM Dmsgpending, 33
CMDmsgseander, 35
CMD msg tag, 35

COMpartition size, 16

CO receive, 24

CMMDreceive bcfrom host, 37

CMHMDreceiveelementfrom host,

38

CMDreceive packet, 58
CND receive v, 24

CMM reduce, 49

CMMD reduce from nodes, 50
CMlDreduce to host, 50

CD oresume, 11, 13
CHMD scan, 51

CMD _selfaddress, 15
CMD send, 19
CHDsendanandreceive, 27

CMD _send and receive v, 27

CHMD_send packet, 58

CMMDsend_short, 31

CMMDsend_v, 19
CMD_set_global_or, 41,43

CMD suspend, 11, 13

COeD_swap, 29
CMDswap_v, 29

CMMD_sync_ host with_nodes, 41,42

CHMD_syncwith host,41,42

CMMD_sync_with_nodes, 41,42

CHMD wait for _send, 31

combiners, 45
communication patterns, 28
concatenation operations, 45, 48, 56
cooperative message passing, 1

D
DEFAULT MSG TAG, 19

defining a protocol, 57
direction of scans, 52
distributing a buffer, 38

Iersion 1.1, January 1992

-

59



6 CMDRfrneMna

E
elements

of a broadcast, 38
of vector messages, 20, 25

end-off shift, 29
exclusive scans, 53

F
Fortran 77, 3
functions

broadcasts, 37
concatenation, 56
for any node, 6
for host only, 5
for receiving messages, 24
for sending and receiving, 27, 29
for sending messages, 19
global, 8
global synchronization, 41
informational, 15, 35
low-level packet, 58
pairing two nodes, 7
reduce, 48
requiring all nodes, 8
requiring all nodes plus host, 9
scans, 50
to initialize CMMD, 12
to initialize the short message facility, 14

G
gather/scatter, 28
global functions, 8
global operations, 45
global OR

combiner, 41
synchronization facility, 41

global synchronization, 41

global synchronization functions, 42
grid communication, 28

H
host functions, 5
host identifier, 15
host processor, role of, 1
host/node programming model, 1

I
inclusive scans, 53
initializing CMMD, 11
initializing the short message facility, 12

L
length

of buffers, 19
of messages, 19
of vector elements, 25

logical operations, 45

M
matrices

sending rows or columns of, 21
transposing, 21, 25

MAX, 45
messages

blocking, 17
length of, 19
non-blocking, 12
receiving, 24
sending, 19
sending and receiving simultaneously, 27
short, 31
swaps, 29
vector, 20, 25

KIN, 45

Version 1.1, January 1992

60 CMMD Reference Manual



Index

61

N
network delay, 44
network participation settings, 11
node identifiers, 15
node processors, 1
nodes, number required for synchronization, 3
non-blocking messages, 2

O
OR

combiner, 45
for synchronization, 41

P
packet routines, 58
parallel prefix operations, 47
polling, 33
polling routines, 33
processor information functions, 15

R
receiving

blocking messages, 24
broadcast messages, 37, 38
short messages, 17
vector messages, 25

reduction operations, 45, 46, 49
resuming CMMD, 11

S
sbit, 54
scan operations, 45, 47, 51
segment bit, 54
segmented scans, 48
sending messages, 19
sending short messages, 31
shifts, 29
short messages, 12, 17, 31
simultaneous sends and receives, 27
single-node functions, 5
smode, 54
start bit, 54
stride, of vector messages, 20, 25
summation, 45
suspending CMMD, 11
swaps, 29
synchronization, 3

global, 41, 45

T
transposing matrices, 21, 25
two-node functions, 7

V
vector messages, 20, 25

X
XOR, 45

Version 1.1, January 1992

61


