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About This Manual

Objectives of This Manual

Getting Started in *Lisp is your introduction to the *Lisp programming language. This manual
provides an introduction to data parallel programming using the *Lisp language. It takes you through
a sample *Lisp session, introduces you to the important data structures and parallel operations of
*Lisp, and gives you the basic tools you need to start programming in the language.

Intended Audience

This manual is written for people who are relatively new to the Connection Machines system, but
who have some programming experience on other computing machines. This guide does assume a
general familiarity with the design and purpose of the Connection Machine (CM) system, but the
prerequisite information that you'll need is included in Appendix B of this guide. (The first chapter
of the CM System User Guide is also a good source for information at this level of detail, and the
CM Technical Summary provides a deeper introduction to the CM with a more detailed description
of how the CM operates.)

Because *Lisp is an extension of the Lisp programming language, familiarity with Lisp is essential.
This guide assumes a general understanding of the Common Lisp dialect of Lisp, as described in
Common Lisp: The Language, by Guy L. Steele, Jr., and assumes some programming experience in
Lisp. If you're not familiar with Lisp, two good tutorial references for the language are:

Common Lisp: A Gentle Introduction to Symbolic Computation, David S. Touretzky.
Reading, Massachusetts: Benjamin Cummings Publishing Company, Inc., 1990

Lisp, Patrick Henry Winston and Bethold K. P. Horn. Reading, Massachusetts: Addison-Wesley,
1984

Revision Information

This guide is new as of Version 6.1 of *Lisp.
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Organization of This Manual

Chapter 1 Instant *Lisp

Presents a sample *Lisp session, showing you how to start up and use *Lisp, and
walks you through the process of writing a simple *Lisp program.

Chapter 2 The *Lisp Language

Presents an overview of the features of *Lisp that have counterparts in Common
Lisp; in other words, how Common Lisp and *Lisp are similar.

Chapter 3 Parallel Programming Tools

Presents an overview of the features of *Lisp that are specific to the CM; in other
words, how Common Lisp and *Lisp differ.

Chapter 4 When Things Go Wrong

Describes the error-handling features of *Lisp, and shows you how you can use
the Lisp debugger to examine and diagnose bugs in your *Lisp code.

Chapter 5 Declaring and Compiling *Lisp Code

Describes the *Lisp compiler and *Lisp type declarations, and explains why
proper type declarations are essential for getting your code to compile completely.

Chapter 6 *Lisp Sampler-A Scan in Four Fits

Presents four short examples of *Lisp programs that do interesting and unusual
things, with an emphasis on the way in which a particular *Lisp tool, the scan!!
function, can be used to perform many different tasks.

Chapter 7 Going Further with *Lisp

Discusses a few topics not covered elsewhere in this guide, and presents a number
of sources for further information about the *Lisp language.

Appendix A Sample *Lisp Application

Contains a complete copy of the source code for the cellular automata example of
Chapter 1, along with extensions that define a generic cellular automata simulator.

Appendix B A *Lisp/CM Primer

Presents a brief introduction to the CM system and to data parallel programming,
and describes how the *Lisp language is implemented on the CM.
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About This Manual xi

Appendix C All the Paris You Need to Know

Presents a brief overview of a few important Paris operations that you need to
know in order to use *Lisp.

Appendix D Sample *Lisp Startup Sessions

Presents sample startup sessions for both the hardware and simulator versions of
*Lisp.

Related Documents

* *Lisp Dictionary.

This manual provides a complete dictionary-format listing of the functions, macros, and
global variables available in the *Lisp language. It also includes helpful reference material
in the form of a glossary of *Lisp terms and a guide to using type declarations in *Lisp.

* CM User Guide.

This document provides helpful information for new users of the Connection Machine
system, and includes a chapter devoted to the use of *Lisp and Lisp/Paris on the CM.

* Connection Machine Technical Summary, Version 6.0.

This document provides an overview of the software and hardware of the CM.

* Connection Machine Parallel Instruction Set (Paris).

This document describes Paris, the low-level parallel programming language of the CM.
*Lisp users who wish to make use of Paris calls in their code should refer to this manual.

* Common Lisp: A Gentle Introduction to Symbolic Computation, David S. Touretzky.

Reading, Massachusetts: Benjamin Cummings Publishing Company, Inc., 1990

This document provides a tutorial introduction to programming in Common Lisp.

* Lisp, Patrick Henry Winston and Berthold K. P. Horn. Reading, Massachusetts:
Addison-Wesley, 1984

This is the one of the original introductory documents for the Lisp language, and its most
recent editions are compatible with the Common Lisp language standard.
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u Common Lisp: The Language, Second Edition, Guy L. Steele Jr. Burlington,
Massachusetts: Digital Press, 1990.

The first edition of this book (1984) was the original definition of the Common Lisp
language, which became the de facto industry standard for Lisp. ANSI technical committee
X3J13 has been working for several years to produce an ANSI standard for Common Lisp.
The second edition of Common Lisp: The Language contains the entire text of the first
edition, augmented by extensive commentary on the changes and extensions recommended
by X3J13 as of October 1989.

The Connection Machine, W. Daniel Hillis.
Cambridge, Massachusetts: MIT Press, 1985.

This book describes the design philosophy and goals of the Connection Machine system.

Notation Conventions

The notation conventions
documentation.

Convention

boldface

italics

used in this manual are the same as those used in all current *Lisp

Meaning

*Lisp language elements, such as :keywords, operators, and function
names, when they appear embedded in text.

Parameter names and placeholders in function formats.

typewriter

> (user-input)

system-output

Code examples and code fragments.

Interactive examples, user input.

Interactive examples, Lisp output.
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Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and

correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond

to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uuep
Electronic Mail:

Telephone:

customer-support@think. com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.
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"Wilt thou show the whole wealth of thy wit
in an instant?"

William Shakespeare

Chapter 1

Instant *Lisp

*Lisp (pronounced "star Lisp") is a data parallel extension of the Common Lisp
programming language, designed for the Connection Machine® (CM) system.

*Lisp is a direct extension of Common Lisp, so if you've programmed in Lisp before,
*Lisp programs should look very familiar to you. The data parallel extensions of *Lisp
include a large number of functions and macros, and one important abstraction, the parallel
variable, or pvar ("p-var"). As we'll see shortly, pvars are as important to *Lisp
programmers as lists are to Lisp programmers.

1.1 Getting Started: A Simple Application

So that we have something specific to talk about, I'm going to pick a particular type of
application and show you how to develop a *Lisp program for it. While the application I've
chosen may not be identical to the projects you may have in mind, the techniques I use in
developing it and the rules of thumb that I use in choosing which *Lisp features to use
should carry over well to your own work.

both the *.Lsp forms th..........iat y~ou ne~emd to pe-.andthe value.s) that ..... * n.......ts .. Inalese

printed b d typ. i espn-ted i oral type are ethersults dsplayed Lsp

or exa es of *Li o e ta you do' ne t tp 
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1.1.1 Our Project: A Cellular Automata System

Depending on your background and interests, you may or may not have heard of the Game
of Life. Invented by John H. Conway of the University of Cambridge, the Game is played
on a very large board, marked off into squares like a checkerboard. Each square can be in
one of two states, traditionally called "live" and "dead." Before each game, some of the
squares are made "live," usually forming a pattern of some kind. The Game itself is played
by changing the state of each square according to the following rules:

* A cell's neighbors are the eight squares that surround it on the board.

* If a live square has fewer than two, or more than three live neighbors, it dies.

* If a dead square has exactly three live neighbors, it becomes live again.

All cells change their values together, in a single "step." The Game consists of a series of
such steps, one after another. There are no winners and losers in the Game-the purpose
of the Game is to see the kinds of patterns that arise on the board from following these three
simple rules. The rules of the Game of Life cause the automaton's cells to resemble
colonies of living creatures, producing patterns of"life" and "death" that ripple across the
automaton's grid.

For example, Figure 1 shows a single step from one such game:

Figure 1. Picture of a single step of the Game of Life, with the "live" cells shaded

Conway's Game of Life is a simple example of a cellular automaton. A cellular automaton
consists of a grid, or array, of elements called cells, each of which contains a value of some
kind that determines that cell's state. Along with the array of cells, there is a set of rules
that determine how the automaton's cells change over time. The cells change their states
in a regular, step-by-step fashion, and the current state of each cell typically depends on the
state values of its neighbors, the cells that are closest to it.

Version 6. 1, June 1991
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But the Game of Life is only one of a spectrum of different possible automata. Whereas the
Game of Life uses two states per cell, other kinds of automata use tens, hundreds, or even
thousands of states. For example, Figure 2 shows one possible "step" from such a
multi-state automaton. (I've used different shading to represent different cell states.)

Figure 2. Picture of one step of a multi-state cellular automaton,
using shading to represent the states of the cells

Such automata are used to simulate the flow of liquids or gases of varying densities, the
absorption and release of molecules in chemical reactions, and even the spread of
infectious diseases. Other kinds of automata use grids of different shapes and sizes; there
are even automata that run on one-dimensional and three-dimensional grids.

What we'd like to produce is a simple *Lisp program that allows us to try out a number
of different automata on the CM, simply by specifying the rules that describe how they
work. What we need is a set of tools that will let us define and display a cellular automaton
in action.

For simplicity's sake, let's assume that we'll always be working with automata that use
two-dimensional grids of cells, and that the states of the cells will be represented by
integers from 0 to n-l, with n being the total number of possible states for a cell. Thus, we
need tools for setting the total number of states that each cell can have, and for defining
how the value of each cell depends on the values of its neighbors. Our set of tools should
also allow us to run the automaton through any required number of steps, and to display
the current state of the automaton in a readable format.

Okay, now that we've got a reasonably clear idea of what we want to do, we can start up
a *Lisp session and begin programming.

Version 6.1, June 1991
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1.1.2 *ting Up *Lisp

At this point you have a choice to make, because *Lisp comes in two main forms. There's
the standard version of *Lisp that runs on the CM hardware, and there is also a *Lisp
simulator. The simulator is a Common Lisp program that runs entirely on your front-end
computer, simulating the operations of an attached CM through software.

Depending on the front-end computer you are using, and where your system administrator
has stored the *Lisp software, there is generally a specific command you can type that
loads the software for either the CM hardware or the simulator version of *Lisp. For
example, on UNIX front ends the command will typically be

% starlisp

or

% starlisp-simulator

Once you have the *Lisp software loaded, type:

> (*lisp) ;;; To select the *Lisp package

> (*cold-boot) ;;; To initialize *Lisp and the CM

Important: The *cold-boot command initializes *Lisp and the CM so that you can begin
typing commands. If you don't *cold-boot, you won't be able to execute any *Lisp code!

For-Simulator sers: .ong other tings the *coldbotcommand ets the:.niber ofsi d p s thatv aai....... a.b. ... Th . .... ..

..............raher smallfor our purosess you'll wa t*cokl~t te-simulator like this:-:-::.

........>.... ' (*c.... ot : e iti.-ds CE 1).

* ..... .......... ....... .....This strts you offwithr s256procssos arrnge in ': squar pttern by16 ' i:
:For CM Userse The .*coocomad automticaly attaches you to a- CM, if one ils-
avlable. If you get an erro'r mssag su'h "as "the'.FE'BI"s cu rrently 'in u"' or "no.:~~~~~~~~~~~~~~~~~~~A -i 'I' . .. -. .f

..seqeuences are. availabe'.-., it probaly m.eans -tht the CMis- currently busy;.-you may have.- : . . .: . :- ,
to tr again late. If you're using *Lisp .on- real C:M hardware, you can-use th-e command
(..cm:lnger) to.::findout what..CM resoresre available; se the CM Sstem UO~' Guie
for.more informaion. If you findthattheMisbusyyoucanusethe* simulator
itnstead;the simua tor is ay Ie, aess f te at, u y o, the .~~~~~~~~~. . ........ -.- -.... ..... .. ... --- --. ., ...
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1.2 Using *Lisp

1.2.1 Defining an Automata Grid

First, we're going to need some way of representing the grid of cells for the automaton. In
a program written for a serial computer, the grid would be a two-dimensional array of
integers. On the CM, however, we can take advantage of the parallel nature of the machine
by storing the state value for each cell in the memory of a different CM processor.

To do this, we'll define a parallel variable, orpvar, to keep track of the grid:

> (*defvar *automata-grid* 0)
*AUTOMATA-GRID*

By default, when you *cold-boot *Lisp the CM processors are automatically arranged in
a two-dimensional grid that is as close to being square as the number of available
processors permits.

Let's print out a portion of this grid:

> (ppp *automata-grid* :mode :grid :end '(8 5))

00000000
00000000
00000000
00000000

00000000

The ppp function (also known as pretty-print-pvar) prints out the values of a pvar in
whatever format you specify. Here we're using it to display the state values of our
automata-grid as a grid of numbers.

We'll want to do this quite often, so let's define a function to display the grid:

> (defun view (&optional (width 8) (height 5))
(ppp *automata-grid* :mode :grid :end (list width height)))

Each value displayed by view comes from the memory of a single CM processor. We can
read and write each value individually, much as we can read and write the individual
elements of an array.

Version 6.1, June 1991
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For example:

> (defun read-cell (x y)

(pref *automata-grid* (grid x y)))

> (read-cell 5 1)

0

The *Lisp operation pref reads a value from a pvar, given its location within the CM. To
specify the location I've used grid, a *Lisp helper function that lets you describe the
location of a particular value by its grid (x and y) coordinates. Applying *setf to pref (by
analogy with Common Lisp's setf) changes the value of the pvar at the specified location:

> (defun set-cell (x y newvalue)

(*setf (pref *automata-grid* (grid x y)) newvalue))

> (set-cell 5 1 7)

> (read-cell 5 1)
7

> (view 8 3)

00000000
00000700
00000000

It would be a nuisance to have to set the state value of each cell in the grid individually,
so let's define a function that will let us set the state of all the cells at once:

> (defun set-grid (newvalue)

(*set *automata-grid* newvalue))

> (set-grid 7) ;;; Set cells to same value

> (view 8 3)
77777777

77777777

77777777

> (set-grid (random!! 10)) ;;; Set cells to random values

> (view 8 3)
13053193

85660046

44596756

Notice that the randomil function calculates a different random value for each cell, rather
than choosing one random value for all of the cells. This is an important feature of *Lisp:
data parallelism. *Lisp operations such as randomil cause every processor to perform the
same operation on potentially different data; each processor can produce a different result.
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1.2.2 Defining a Simple Automaton

Now we can start thinking about how to define the rules for an automaton. The simplest
type of automaton is one in which each cell's state depends only on its previous state-that
is, where neighboring cells have no effect on one another.

As an example, let's define an automaton that obeys the following rules:

* Each cell can have any state value from 0 to 9.

* If a cell's state is even, divide its state value by two.

* If a cell's state is odd, add 1 to its state value and multiply by 2.

I'm not just picking these rules out of thin air. We'll see the effect they have in a moment.

In *Lisp, we can easily write a function that implements these rules. For example, here's
a function that does the calculations for a single step of the automaton:

> (defun one-step ()
(if!! (evenp!! *automata-grid*)

(floor!! *automata-grid* 2)

(*!! (1+!! *automata-grid*) 2)))

Here, I'm using the *Lisp operator ifil, which works much like if in Common Lisp; it
evaluates a test expression for all the CM processors, and then performs one *Lisp
operation for all processors where the test was true (not nil), and another operation for all
processors where it was false (nil).

In the one-step function we use evenpl! as the test to find those processors whose cell
values are even. For these processors, the value of *automata-grid* is divided by 2. For all
the remaining processors, the value of *automata-grid* is incremented by 1, and then
multiplied by 2, using the parallel operators 1+!! and *11 respectively.

Each calculation used by one-step takes place simultaneously in all processors. Even more
important, the value of *automata-grid* is not changed by the one-step function. ifll returns
a pvar whose values depend on the results obtained from the two ifll branches. The value
of this pvar for each processor is the value of the branch that processor executed.
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This means that all we need to do is type (set-grid (one-step)) to calculate the new value

for each cell and update the entire grid. But there's an important question that we need to
answer first: What happens if a cell's value exceeds the total number of states allowed?

Cells are only permitted values between 0 and 9, but one-step can return a value for a cell
that is greater than 9.

This suggests a simple answer: We can use the *Lisp function mod!! to redefine set-grid
so that it will automatically wrap values greater than 9 back into the range 0 through 9:

> (defvar *total-number-of-states* 10)

> (defun set-grid (newvalue)

(*set *automata-grid*
(mod!! newvalue *total-number-of-states*)))

> (set-grid 27)

> (view 8 3)

77777777

77777777
77777777

> (set-grid (random!! 27))
> (view 8 3)

72073864
10832452
19702313

This last example is a useful tool. We'll want the ability to set every cell in the grid to a

random state. Let's write a function that does this, and write it so that it automatically

chooses random values in the range from 0 up to one less than the current number of states:

> (defun random-grid ()

(set-grid (random!! *total-number-of-states*)))

And while we're defining things, let's create a function that will run the automaton through
any specified number of steps:

> (defun run (&optional (n 1))
(dotimes (i n)

(set-grid (one-step))))

Version 6.1, June 1991



~~:~~:;:i:~~~:~~:~~:~~:I::'·:.:'.'·': :F............ ... . M m:: ·'~'::~::::~ ::ii:::::::::i!:f::::: t~r :
........... ......... .. ... .. .... .........·.·:~·:::~~: I~:i: ;'

Now we can run the automata and see how it works. Let's randomize the grid and run the
automaton through 1, 5, and 50 cumulative steps:

> (random-grid)
> (view 8 3)
53246763

09521297

75386878

> (run)
> (view 8 3)
28123638

00214106 

62843464

> (view 8 3)
14411214
00142402

21421222

> (run 45)
> (view 8 3)
14411214
00142402

21421222

We don't have to run this automaton for many more steps to realize that it's in a steady
loop; all 0 cells will remain 0, and all other cells will run through the series 4-2-1 over and
over.

I chose the original rules with this result in mind; it's one of the most common ending
conditions of a cellular automaton. After a certain number of loops, a cellular automaton
typically settles down into one of a few basic patterns of activity:

* It can become moribund, with no cells ever changing.

* It can become trapped in a steady, repeating pattern.

* It can become chaotic, displaying no readily apparent pattern.

* It can alternate irregularly between steady patterns and chaotic activity.

Let's define another automaton, this time one that's a little more interesting (that is, one of
the latter two varieties).

Version 6.1, June 1991
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1.2.3 Defining a More Complex Automaton

This time we'll create an automaton in which neighboring cells do influence one another.
The automaton I have in mind is a variation on Conway's Game of Life, called "9 Life."
As before, each cell can have any one often states, 0 through 9, but the rules are somewhat
more detailed:

* For each cell in the automaton, get the state values of the cell's neighbors, and
count the number of neighbors that have non-zero values.

* If the number of non-zero neighbors is either less than 1, or greater than 3, subtract
1 from the cell's value (unless it is already zero, in which case it remains zero).

* If the number of non-zero neighbors is either 2 or 3, add 1 to the cell's value.

* Otherwise leave the cell unchanged.

Rest assured, there is method to this madness, as we'll see when we run this automaton.

Of course, I also have to define what I mean by "neighbors". There are two well-known
types of neighborhoods that are used in two-dimensional cellular automata, the Von
Neumann neighborhood and the Moore neighborhood (see Figure 3).

The Von Neumann neighborhood is the four cells immediately adjoining a given cell; in
other words, its neighbors to the north, east, south, and west. The Moore neighborhood
adds the four diagonal neighbors as well, for a total of eight cells.

Figure 3. Two important cellular automaton neighborhoods

The Game of Life happens to use the Moore neighborhood, but we'll design our tools so
that we can choose either neighborhood when we run the 9 Life automaton-that way we
can see the differences between the two.

Version 6.1, June 1991
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No matter which neighborhood we choose, however, we'll need a function that will cause
each cell to check the values of its neighbors, make a count of the ones that are currently
positive, and update its own value.

If we were to write such a function for an ordinary serial computer, it would most likely
consist of a loop that steps through the automaton cell by cell, doing the count for each cell
individually. A serial one-step function would look something like:

(defun serial-one-step (array-x-size array-y-size)

(dotimes (x array-x-size)

(dotimes (y array-y-size)

(let ((neighbors (list (get-cell (- x 1) y)

(get-cell (+ x 1) y)

(get-cell x (- y 1))

(get-cell x (+ y 1))

(store-new-cell-value x y

(new-value neighbors)))))

(update-grid))

Here, get-cell gets the value of a cell from the automata grid, new-value calculates the new
value for a cell based on the values of its neighbors, store-new-cell-value stores the new
value of the cell in a temporary array, and update-grid updates the grid by storing the new
value for each cell into the automata grid.

There are three important things to notice about this function:

* The function must explicitly refer to the actual shape of the grid, as described by
the arguments array-x-size and array-y-size.

* The function includes a double dotimes loop to step through all the cells.

* The function must temporarily store the new value for each cell, and then update
the values for all the cells after the loop has been completed, so that the new values
of cells reached earlier in the loop don't influence the calculations for cells reached
later in the loop.

Things are much simpler on the CM. Remember that each cell of the automaton is stored
in the memory of a different CM processor. We can simply have the processor associated
with each cell find the state values of the cell's neighbors, count the ones that are positive,
and then update the cell accordingly. All the cells will update simultaneously, eliminating
the need for any looping as well as the need to temporarily store the new value for each cell
outside the grid. Before we can write the function that does this, however, we'll need to
look at how we can use *Lisp operations to cause the CM processors to exchange values.
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There are a number of *Lisp operators that cause the CM processors to exchange values
with each other. What we want is a operator that will instruct each cell in the automaton
to get the value of a single neighboring cell (for example, one to the north, one to the east,
etc.).

In *Lisp, the tool we want is news!!. For example:

> (random-grid)
> (view 8 3)

2 3 1 0 2 7 2 4 ;;; Dimension 0 runs "across"

4 5 6 5 4 6 8 0 ;;; Dimension 1 runs "down"

68438179

> (set-grid (news!! *automata-grid* -1 0))

> (view 8 3)
02310272

14565468

06843817

In this example, I've used news! to shift the entire contents of the *automata-grid* by one
cell. The grid coordinates given to news!!, (-1, 0), are interpreted by each processor as
being relative to that processor's position in the grid. So the coordinates (-1, 0) cause each
processor to get a value from the processor that is one step to the "west" across the grid.
Each processor gets the cell value of its west neighbor, and stores that value in its own cell.

-For the Curious u may be won ere e n s in the left-most c olun c -amen.

Te ll n e atoih caillyrhwrapo lttheircneratad ont paripose tde 

Who Are the People in YOUR Neighborhood?

Let's use news!! to define a set of functions that will cause each cell to count the number
of its non-zero neighbors according to the current neighborhood we've chosen.

We'll want to be able to switch neighborhoods, so let's define a global variable that will
determine the neighborhood that we want these functions to use.

> (defvar *neighborhood* :neumann)

Version 6.1, June 1991
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Now for the counting functions themselves. There are many ways to write them, of course,
but what we want is something simple and readable. Here's a function that will get the sum
of neighbors in the Von Neumann neighborhood:

> (defun neumann-count (grid)

(+!! (news!! grid 0 -1)

(news!! grid 0 1)

(news!! grid -1 0)

(news!! grid 1 0)

;; north

;; south
;; west

;; east

and here's one that does the same thing for the Moore neighborhood.

> (defun moore-count (grid)

(+!! (news!!

(news!!

(news!!
(news!!

(news!!

(news!!

(news!!

(news!!

grid 0

grid 0

grid -1
grid 1

grid -1

grid -1

grid 1

grid 1

-1)

1)
0)
0)

-1)

1)

-1)

1)

;; north

;; south

;; west

;; east

;; northwest

;; southwest
;; northeast

;; southeast

It will be really convenient if we can call a single function and have it choose the right
helper function for our current needs. Here's the function we'll use:

> (defun neighbor-count ()

(*let ((grid (signum!! *automata-grid*)))

(ecase *neighborhood*

(:moore (moore-count grid))

(:neumann (neumann-count grid)))))

Here we've used *let, the *Lisp version of let, to define a local pvar whose value is a copy
of the *automatal-grid* with all non-zero cells set to 1. When we pass this grid to the
neighbor-counting functions, we obtain just a count of the number of non-zero neighbors.
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One Small Step...for 9 Life

Having these neighbor-counting functions, we can redefine the one-step function for the
9 Life automata as:

> (defun one-step ()
(*let ((count (neighbor-count)))

(cond!!

; When count is < 1 or > 3, subtract 1 if not zero.
((or!! (<!! count 1) (>!! count 3))
(if!! (zerop!! *automata-grid*)

*automata-grid*

(1-!! *automata-grid*)))

; When count is 2 or 3, add 1

((<=!! 2 count 3) (1+!! *automata-grid*))

; Otherwise, leave cells unchanged

(t *automata-grid*))))

In this function we're using another *Lisp conditional operator, cond!I. Similar to Common
Lisp's cond form, condll evaluates multiple tests and executes branches of code inlseparate
groups of processors.

As with ifl, cond!! returns a pvar whose value depends on the execution of its branches.
The value of a cond!! form for each processor is simply the value of the cond!! clause that
processor executed. This is handy, because we want to set the value of *automata-grid*
based on the results of a number of parallel tests, but we don't want to have to write a
separate (set-grid (if!! ... )) expression for each test.

Now in order to see the effects of this automaton we'll want to set up a more orderly test
case than a random grid. This pair of functions will initialize the grid with a simple pattern:

> (defun set-cells (cell-list value)

(dolist (cell cell-list)

(set-cell (car cell) (cadr cell) value)))

> (defun init ()

(set-grid 0)
(set-cells '((2 2) (3 1) (3 2) (3 3) (4 1))

1)
(view))
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And let's add a function to our toolbox that will let us run the automaton through a number
of steps, and then automatically display the current state of the automaton. This is easy-
we'll just reuse the run and view functions we defined earlier:

> (defun view-step (&optional (n 1))

(run n)

(view))

Let's run this new automaton through 1, 5, and 50 cumulative steps:

> (init)
00 000000
00011000
00110000
00010000
00000000

> (view-step)

00000000
00121000
00121000
00110000
00000000

> (view-step 4)
00000000
00565000
00505000
00554000
00000000

> (view-step 45)

0000000 0
00972000
00406000
00348000
00000000

Strange, isn't it? The automaton seems trapped in a square pattern of numbers, determined
by the shape of the original pattern of l's. The cells within the square continue to change
in a manner that is not readily predictable, but this pocket of non-zero values can't seem
to spread beyond the edges of the square.
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We're running the automaton with a Von Neumann neighborhood, so that each cell has a
limited number of neighbors. What happens if we use the Moore neighborhood?

-> (setq *neighborhood* :moore)
:MOORE

Here's the results for runs of 1, 5, and 50 steps:

> (init)
00000000

00011000

00110000

00010000

00000000

> (view-step)

00011000

00122000

00200000

00121000

00000000

> (view-step 4)

01000010

10224010

10000212
10340001

10340001

> (view-step 45)
00003000

46610000

00000043

33810051

00002101

As you can see, the eight-fold pathways of the Moore neighborhood allow the original
pattern to spread much further across the grid.
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1.2.4 Mortal or Immortal?

An interesting question to ask is: Does the pattern die out for either neighborhood? That
is, does the automaton ever reach a state at which every cell is in the zero state, so that no
further change is possible?

I'll leave that for you to answer, by exploring further the two versions of the automaton.
To try either one, remember to choose a *neighborhood*, either :neumann or :moore, and
to call the init function to restore the original pattern. Then view-step yourself into oblivion.

There's one more tool that you'll need to use to check whether the grid is truly dead. As
you know, view shows only a portion of the grid. But the state values produced by the
Moore version of this automaton can ripple across the grid, into cells that we can't see
using the default width and height arguments to view.

Rather than print out the entire grid to make sure there are no live cells left, you can use
a simple *Lisp function to do the test for you. It's called *sum:

> (*sum (signum!! *automata-grid*))

208

The *sum function returns the sum of all the values of a pvar. In this example, we've once
again made a copy of the *automata-grid* in which every non-zero cell is replaced by 1, and
then used *sum to take the sum of this grid's values. This gives a count of the number of
live cells in *automata-grid*. When the count reaches zero, the automaton is well and truly
dead. So a simple test for the dead state is:

> (defun deadp () (zerop (*sum (signum!! *automata-grid*))))
> (deadp)
NIL

Notice that we're using the Common Lisp zerop test here, not a parallel test, because *sum
returns a scalar value, not a pvar. When deadp returns t, you'll know that every cell in the
grid-including the ones that you can't see with view-has been zeroed out.

Try running both versions of the 9 Life automaton for a few hundred steps, and see if either
one dies out. Then try modifying the rules for the automaton, or the initial pattern, and see
what happens as a result. See if you make the pattern die out faster, or cause it to fall into
a fixed state forever.
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1.2.5 Personalize Your System

If you've been typing things in all along, and saving the defun and defvar forms into a file
as you work, you now have a fairly sizable amount of *Lisp code that implements a limited
but generic cellular automata simulator. What do you do with it now? Personalize it, of
course. Play around with the code yourself, and modify things to suit your own taste.
Enhance the system with your own ideas; there are many ways in which it can be improved.

For example, the way things are right now you must redefine the one-step function every
time you want to try a different automaton. A useful way to extend this automata simulator
would be to write operations that let you define many different kinds of automata by name,
and to call up any named automaton for use automatically.

In an appendix to this document, I've outlined just such a system for your perusal. The
appendix also includes a commented copy of all of the *Lisp code used in this chapter.
There is also a copy of this code on-line in the *Lisp software directory, in the file

/cm/starlisp/interpreter/f6100 /cellular-automata-example.lisp

Check with your system administrator or applications engineer if you need help locating
this file.
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1.3 Exiting From *Lisp

At this point, let's assume you're ready to call it quits for now, and want to exit from *Lisp.

If you're attached to a CM, type

> (cm:detach) ;; Detach any attached CM

to release it.

You can then type the Lisp exit command that is appropriate for your system, as described
in the CM User i Guide. For example, Lucid users should type either (Icl:quit) or (sys:quit).
Symbolics users don't need to "exit" from Lisp, and can simply type (*lisp) to deselect the
*Lisp software package.
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"But still the heart doth need a language, still
Doth the old instinct bring back the old names. "

Samuel Taylor Coleridge

Chapter 2

The *Lisp Language
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In Chapter 1 we looked at starting up *Lisp and writing simple applications in the
language. In this chapter and the next, we'll look at *Lisp as a language and see what
features it contains. This chapter describes the features of *Lisp that resemble existing
features of Common Lisp-in other words, how the two languages are similar.

Briefly, in this chapter we'll be looking at:

* pvars, the fundamental parallel data structure of *Lisp

* data parallelism

· the *Lisp parallel equivalents of Common Lisp functions

* the parallel data types of *Lisp

* defining and compiling your own parallel functions

2.1 Creating and Using Parallel Variables

The basic parallel data structure in *Lisp is the parallel variable, or pvar. A pvar is a
variable that has a separate value for each processor in the CM. Each processor can
independently use and modify its own value for a pvar.

The values of a pvar can be any one of a number of front-end data types, including
numbers, characters, arrays, and structures. I'll often speak of these data types as being
scalar data objects to distinguish them from the parallel pvars stored on the CM.
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2.1.1 Creating a Pvar- !I

The simplest operation of *Lisp is !! (pronounced "bang-bang"), which takes a single scalar
argument and returns a pvar with that value in every processor.

For example, call the function !! with your age. In my case, this looks like:

> (!! 24)
#<FIELD-Pvar 1-5 *DEFAULT-VP-SET* (64 128)>

Presto! You've just told your age to several thousand processors. You've also created a
pvar (displayed as "#<FIELD-Pvar... >"). Each processor in the CM has reserved a
region of space in its memory to hold the value you specified. The sum total of all those
regions of reserved memory within the CM is the pvar.

Figure 4. The expression (!! 24) distributes a scalar value (24) to all processors

This process of creating space for a pvar in the memory of all processors on the CM is
referred to as allocating a pvar, and the corresponding operation of releasing that space is
referred to as deallocating a pvar. (This is not because *Lisp programmers like long words
for simple things; allocating pvars is a little more involved than creating variables in
Common Lisp, so it's best to be specific.)

Like most *Lisp functions, !! returns a temporary pvar, a pvar used to temporarily store the
value of a result. Temporary pvars are similar to bits of scrap paper; you don't use them to
hold onto important pieces of information, you just use them to temporarily hold onto a
value that you're going to store somewhere else.
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2.1.2 Permanent Pvars - *defvar

That "somewhere else" is quite often a permanent pvar, a pvar defined in such a way that
it won't go away until you explicitly deallocate it. The *Lisp operation that allocates
permanent pvars is *defvar. For example,

> (*defvar my-pvar 5)

defines a permanent pvar named my-pvar, and initializes it to have the value 5 for each
processor. (Notice that the scalar value 5 is automatically converted into a pvar. This is true
of virtually every operator in *Lisp; scalar values are promoted to pvars where necessary.)

*Lisp automatically defines two permanent pvars for you: t!l and nill. As their names
suggest, these are the parallel equivalents oft and nil in Common Lisp: tll has the value t
for every processor, and nil!! has the value nil for every processor.

2.1.3 Local Pvars - *let

As we saw in the preceding chapter, you can also create local pvars, that is, pvars that exist
only for the duration of a piece of *Lisp code. The *Lisp operator that defines local pvars
is *let. For example,

(*let ((two!! 2)

(three!! 3.0))

(+!! two!! three!! my-pvar))

defines two local pvars, two!! and three!!, and takes the parallel sum of these pvars with the
permanent pvar my-pvar that we defined in the previous section.

2.1.4 Reading, Writing, and Printing Pvar Values

Once you've created a pvar, there are a number of things you can do with it.

You can examine the value of a pvar for any processor in the machine. The *Lisp
operation for this is pref, which does a "processor reference." It takes two
arguments, a pvar and the number of a particular processor in the CM, and acts
much like the Common Lisp operator aref, retrieving the value of the supplied pvar
for that processor.
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As with array elements in Common Lisp, processors are numbered from 0 to one
less than the total number of processors you have attached. For example, the form

> (pref my-pvar 12)

5

returns 5, the value of my-pvar in processor number 12. (In fact, since my-pvar has
the value 5 for every processor, this expression would return 5 no matter which
processor you chose to examine.)

* You can change the value of a pvar for any processor. Just as you apply setf to aref
in Common Lisp to change an element of an array, so in *Lisp the operator *seff
is used in combination with pref to change the value of a pvar for a specific
processor:

> (*setf (pref my-pvar 12) 42)

This expression stores the value 42 in my-pvar for processor 12. You can check this
with a call to pref:

> (pref my-pvar 12)
42

* You can print out the values of a pvar, either for all processors or only for a
particular subset. The *Lisp operation to display the values of a pvar is
pretty-print-pvar, or ppp as it is generally known to *Lisp programmers:

> (ppp my-pvar :end 20)

5 5 5 5 5 5 5 5 5 5 5 5 42 5 5 5 5 5 5 5

This example displays the value of my-pvar in the first twenty processors. You can
see here the value 42 that we stored in processor 12.

* You can copy values from one pvar to another. The *set operator takes two pvar
arguments and copies the contents of the second pvar into the first:

> (*set my-pvar 9) ;;; "Set" my-pvar to 9

> (ppp my-pvar :end 20)
99999999999999999999

> (*defvar copy-pvar)
> (*set copy-pvar my-pvar) ;;; Copy my-pvar to copy-pvar

> (ppp copy-pvar :end 20)
99999999999999999999
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2.2 Data Parallelism-A Different Value for Each Processor

So far, the examples of pvars in this chapter have had the same value in every processor.
However, the key point of *Lisp is the data parallelism of the language: the ability of each
processor to perform the same operation on potentially different data. Most often, the pvars
that you create and use in your programs will have a different value for each processor.

*Lisp includes a number of operations that by definition return a different value for each
processor. One of these is randomil, which we saw in Chapter 1. Another is the function
self-addressll:

> (ppp (self-address!!) :end 20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

The pvar returned by self-addressIl contains a special integer for each processor, known
as the processor's send address. The send address of each processor is unique and constant,
so send addresses can be used to refer to individual processors within the machine.

We've already seen one use for send addresses, in the pref examples of Section 2.1.4. We'll
see further uses later on. For now, just think of self-addressll as a handy way to get a pvar
that has a different value for every processor in the CM. (I'll use self-addressl in future
examples to show how the data parallel operations of *Lisp work.)

2.3 Pvar Data Types

*Lisp pvars can contain values of many Common Lisp types. Each of the permissible types
is listed below, along with examples of *Lisp expressions that return pvars of that type.

boolean - Either t or nil for each processor.

t!! ni':! (evenp!! (self-address!!))

unsigned-byte, signed-byte - An integer (unsigned or signed) for each processor.

(+!! 3 5) (-!! (self-address!!) 800)
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26 Getting Started in *Lisp

defined-float - A floating-point number for each processor.

(float!! 34) (/!! (self-address!!) 4)

complex - A complex number for each processor.

(complex!! 3 1)

character - A Common Lisp character for each processor.

(!! #\C) (int-char!! 23)

array - A Common Lisp array for each processor.

(make-array!! ' (2 8) :element-type
: initial-element pi)

'single-float

structure - A Common Lisp structure object for each processor.

(*defstruct particle
(x-pos 0 :type (unsigned-byte 32))

(y-pos 0 :type (unsigned-byte 32)))

(make-particle!! 20 61)

2.3.1 Other Pvar Types

There are also front-end pvars, which contain a reference to a front-end data object for each
processor. These are created by the *Lisp front-endll function.

Finally, there is a general pvar type that allows you to store values of many different types
in the same pvar (with the exception of arrays and structures). Pvars that are not explicitly
declared to be of a particular data type are general pvars by default. So, for example, the
expression

(*defvar my-pvar 5)

that we used above creates a general pvar. To define a pvar of a specific data type, you must
provide a type declaration for the pvar. (We'll see how to do this in Chapter 5.)
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2.4 The Size and Shape of Pvars

While you're starting out, you may find it helpful to think of pvars as being a peculiar type
of array that just happens to be stored in the memory of the CM. Although there are
important differences between Common Lisp arrays and *Lisp pvars, there are a number
of similarities as well:

* arrays and pvars both hold many elements

* arrays and pvars have specified sizes and shapes

* the elements of arrays and pvars are accessed by supplying indices

* when passed as arguments to functions, both arrays and pvars are passed by
reference, never by value

So if you find yourself having trouble working with pvars, it doesn't hurt to think of them
as arrays until you get used to them.

With that said, how can you determine the size and shape of your pvars? The answer is that
you determine the size and shape of pvars by setting the size and shape of the current
processor grid. There are two ways to do this: by cold-booting the CM with a specific
processor grid, and by defining virtual processor sets (VP sets). We'll look at both methods
in this section.

2.4.1 Processor Grids and Configurations

When you call *cold-boot to attach to a CM and initialize *Lisp, you're not just given a
bunch of disorganized processors to play with. The processors of the CM are logically
arranged in a one-, two-, or n-dimensional grid known as a processor grid, or, more
generically, a configuration.

If you call *cold-boot without any arguments, the processors of the CM are arranged in a
two-dimensional grid that is as close to being square as the current number of attached
processors will allow. For example, for an 8K CM the default grid size is a 64 by 128 grid
of processors. If you're using the *Lisp simulator, the default arrangement of processors
is an 8 by 4 grid.

This grid-like arrangement of processors will become especially important when we look
at processor communication later on, but for right now you can simply think of it as a
means of specifying the size and shape of your pvars in the memory of the CM, much as
you would specify the size and shape of an array on the front end.
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2.4.2 *cold-boot

The *cold-boot operator returns two values: the number of attached CM processors and a
list of integers that describes the size and shape of the current processor grid.

For example, if you've just attached yourself to an 8K CM, a call to *cold-boot will return

> (*cold-boot)
8192
(64 128)

You can supply arguments to *cold-boot to select almost any configuration of processors
you want, within limits. In particular, you can select configurations that have more
processors than are physically available on the CM to which you've attached. (We'll see
some examples of this later on.) Also, *cold-boot will "remember" the configuration you
specify; if you call *cold-boot without any arguments, it will reinitialize *Lisp using the
same configuration that it used the last time you called it.

Configuration Variables

Among other things, *cold-boot initializes a number of Lisp variables according to the
current configuration of processors. Two important examples of these variables are:

* *number-of-processors-limit*
The total number of processors in the current configuration.

* *current-cm-configuration*
A list of numbers describing the current configuration of the CM processors.

In the 8K *cold-boot example shown above, these variables would be initialized as follows:

> *number-of-processors-limit*
8192

> *current-cm-configuration*

(64 128)

You can use these variables to write *Lisp code that will execute correctly no matter how
many CM processors are attached. You can also use these variables to remind yourself of
the current "state" of the CM, that is, how many processors you have attached, and what
configuration they are in.
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2.4.3 Processor Grids and Pvar Shapes

The shape of the current processor grid determines the shape of your pvars. If the value of
*current-r-configuration* is (64 128), as in the examples above, then every pvar that you
create will have its values arranged in a two-dimensional grid, 64 elements by 128
elements. For example, Figure 5 shows the arrangement of values for the pvar returned by
the expression

(!! 24)

for a 64 by 128 processor grid.

0 1 2 3 4 5 6 7 8
0�3�j2�j242�J2424

0 24 24 24 24 2412424 24 24

1 2412424 24 224124124 24124

127 241 241 241 241 241 241241241241

Figure 5. Shape of the pvar returned by (11 24) for a 64 by 128 grid

2.4.4 Pvars of Different Shapes and Sizes-VP Sets

But what do you do if you want to use pvars of different shapes and sizes within the same
program? This is where the concept of virtualprocessor sets (VP sets) comes in. You can
use VP sets to define differently shaped processor grids that can be used together in the
same program. You can then use those configurations to control the shape of your pvars.

We'll see some examples of the creation and use of VP sets later on, but for now let's stick
to just using one configuration (the one defined by *cold-boot) for all the pvars we define.
This will make it easier to focus on the fundamental features of *Lisp.
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2.5 Calling Parallel Functions

The *Lisp language includes parallel equivalents for most of the basic operations of
Common Lisp. For example, just as there are arithmetic operators in Common Lisp, there
are parallel arithmetic operations in *Lisp:

> (ppp (+!! (self-address!!) 3) :end 20)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

> (ppp (*!! (self-address!!) pi) :end 6)
0.0 3.1415927 6.2831855 9.424778 12.566371 15.707963

> (ppp (float!! (1+!! (self-address!!))) :end 12)
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

> (ppp (sin!! (*!! (self-address!!) (/!! pi 4))) :end 6)
0.0 0.7071067 1.0 0.7071074 4.7683707E-7 -0.70710653

> (setq i #C(0.0 1.0))

;; 2 pi i
> (ppp (exp!! (*!! 2 pi i)) :end 5) ;; e = 1

#C(1.0 0.0) #C(1.0 0.0) #C(1.0 0.0) #C(1.0 0.0) #C(1.0 0.0)

> (ppp (random!! 20) :end 20)

11 11 18 6 19 10 5 3 4 1 3 10 3 6 5 9 7 5 6 19

In general, the *Lisp parallel equivalent of a Common Lisp operator

· has the same name, with either "II" added to the end, or "*" added in front

· performs the same, or nearly the same operation, but in parallel on the CM

There are far more parallel operators of this variety than we have space to examine here.
If you want to know whether a particular Common Lisp function has a *Lisp equivalent,
see the *Lisp Dictionary, which includes a complete list of the functions and macros
available in *Lisp.
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2.6 Printing Pvars in Many Ways

Let's stop here for a moment and take a closer look at the pvar printing function ppp. The

ppp operator has a large number of keyword arguments that let you specify exactly how

you would like the values of a pvar to be printed out.

The simplest method is the way we've been doing it so far, that is, using the :end keyword

to say where ppp should stop displaying values:

> (ppp my-pvar :end 20)

5 5 5 5 5 5 5 5 5 5 5 5 42 5 5 5 5 5 5 5

You can also specify a :start point, if you'd like to take a look at some values in the middle

of a pvar:

> (ppp (self-address!!) :start 20 :end 30)
20 21 22 23 24 25 26 27 28 29

You can display a fixed number of pvar values :per-line,

> (ppp (self-address!!) :end 30 :per-line 12)
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29

or, if you want to see how the values of a pvar are arranged on the current processor grid,

ppp has a :mode argument that lets you ask for the :grid view of things:

> (ppp (self-address!!) :mode :grid :end '(4 4))

DIMENSION 0 (X) ----->

0246
1357

8 10 12 14

9 11 13 15
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If the display looks a little disorderly, as in the example above, you can use the :format
argument to control the format in which values are printed:

> (ppp (self-address!!) :mode :grid :end '(4 4) :format "-2D ")

DIMENSION 0 (X) ----- >

0 2 4 6

1 3 5 7

8 10 12 14

9 11 13 15

One more useful trick: If you want to, you can add a :title to your output:

> (ppp (self-address!!) :end 32 :per-line 8

:format "2A " :title "Send addresses")

Send addresses:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

2.7 Defining *Lisp Functions and Macros

Now that we've seen some of the parallel functions available in *Lisp, and seen how to
print out the pvars they return, let's look at how you can define your own parallel functions
and macros.

2.7.1 To Define a Function, Use defun

If you've written Common Lisp programs before, then the operator used to define parallel
functions in *Lisp should look very familiar to you. It's called defun:

(defun add-mult!! (a b c)
(*!! (+!! a b) c))
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This example defines a function called add-multi! that takes three arguments, either pvars

or numeric values. In each processor on the CM, add-multi! adds the values of the first two

arguments (a and b) and then multiplies by the value of the third argument (c).

*Lisp functions defined by defun are called exactly as you would call any other Lisp

function. So, for example,

> (ppp my-pvar :end 12)

9 9 9 9 9 9 9 9 9 9 9 9

> (*set my-pvar (add-mult!! my-pvar -6 (self-address!!)))

NIL

This call to add-multi! subtracts 6 from the value of my-pvar for each processor, then

multiplies by the value of (self-address!!). The result is stored back into my-pvar by *set,

as we can see by calling ppp:

> (ppp my-pvar :end 12)

0 3 6 9 12 15 18 21 24 27 30 33

*Lisp functions defined by defun are no different from any other Lisp function. You can

use apply and funcall to make calls to them, and use the Common Lisp tracing functions

trace and untrace to track calls to them.

.......... .... . -..- ..... ......... ....... .... . ...... ...... ......... ... ..............

For the. Observant::.. You: may have. noticed that .*Lisp mincludes a special-puose variant
of defun.called *dfn However, st purposes *defun isn't necessa; deIfn should be
used i-stead. F ation on e if nce ese operatorsethe enty,
on::*:defun::in:: the......D.c..nary

2.7.2 To Define a Macro, Use defmacro

The operation used to define macros in *Lisp should also look familiar to Common Lisp

programmers. It's called defmacro:

> (defmacro *two-incf (pvar)

'(*set ,pvar (+!! ,pvar 2)))
*TWO-INCF

This macro takes a single pvar argument and increments its value by 2 for each processor.
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*Lisp macros defined by defmacro are called exactly as you would call any other Lisp
macro. For example:

> (*two-incf my-pvar)

NIL

> (ppp my-pvar :end 12)

2 5 8 11 14 17 20 23 26 29 32 35

2.8 Compiling *Lisp Code

*Lisp functions and macros are compiled exactly as they are in Common Lisp. This means
that there are three basic ways to compile a *Lisp function:

* You can call the Common Lisp function compile to compile a specific function:

(compile 'add-mult!!)

* You can call the Common Lisp function compile-file to compile a file of code,
which you can then load into *Lisp:

(compile-file "starlisp-code.lisp")
(load "starlisp-code")

* You may also be able to use your editor to compile your code. Depending on the
Lisp programming tools your editor provides, there may be a special keystroke you
can use to ask the editor to compile a function definition. In Emacs-style editors
this keystroke is commonly Ctrl-Shift-C or Meta-Shift-C. Check the manual for
your editor for more information.

As in Common Lisp, compilation of code is optional. You don't have to compile your code
before you can run it. Use the compilation method that's most comfortable for you, or don't
compile at all, if you choose not to.

A Note about Declarations

One important difference between Common Lisp and *Lisp is that *Lisp requires
complete, explicit declarations of the data types of variables and the returned values of
functions in order to fully compile *Lisp code.
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Declarations in *Lisp look much like the standard Common Lisp declarations, except that
there are additional data type specifications for pvars. These additional type specifiers are
described in Chapter 5.

For example, a completely declared version of add-multll might look like

(defun add-mult!! (a b c)

(declare (type (pvar (signed-byte 32)) a b c))
(*!! (+!! a b) c))

This doesn't mean that if you don't provide declarations, your code won't compile. You
just won't see the full potential of *Lisp for speed and efficiency in your compiled code.

For the most part you can ignore type declarations while you're learning *Lisp. We'll take
a deeper look at both declarations and the *Lisp compiler in Chapter 5.

2.9 Summary: How *Lisp and Common Lisp Are Similar

In this chapter, we've seen most of the features of *Lisp that are similar to things you'll
already have encountered in Common Lisp:

* parallel variables (pvars), which are the *Lisp versions of variables in Common
Lisp, and resemble arrays in their use

* the pvar printing operator ppp, which is used to display the contents of pvars

* parallel functions that cause each CM processor to perform a Common Lisp
operation

* the operators defun and defmacro, which are used in *Lisp just as they are in
Common Lisp, to define functions and macros

* the *Lisp compiler, an extension of the Lisp compiler for compiling *Lisp code

In the next chapter, we'll take a look at the parallel programming tools of *Lisp that are the
real heart of the language.
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"There is always work,
And tools to work withal, for those who will..."

James Russell Lowell

Chapter 3

Parallel Programming Tools

Up until this point, we've been using the CM simply as a massively parallel calculator,
having every processor perform the same operation at the same time. From here on we'll
see how we can use the CM as a massively parallel computing system, by using the parallel
programming tools of *Lisp.

In Chapter 2, we saw the features of *Lisp that are similar to Common Lisp. Now we'll
look at the CM-specific parallel programming tools of *Lisp that distinguish it from
Common Lisp.

3.1 Data Parallel Programming

The *Lisp tools for data parallel programming fall into five main categories:

* tools for selecting a set of processors to perform an operation

* tools for moving data between processors within the CM

* tools for moving data between the CM and the front end

* tools for combining and transforming data

* tools for determining the shape of your pvars (VP sets)

In the following sections, we'll look at one or two examples from each category.
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3.2 Processor Selection Operators

Because you don't always want to perform the same operation in every processor, *Lisp
allows you to select which processors will perform a given operation. Each processor
maintains an internal flag that determines whether it is active, that is, whether or not it will
execute the instructions it receives. Because of this, you can choose a subset of the
processors in the machine, known as the currently selected set, to execute any given
operation. The rest of the processors are deselected, and do nothing.

The processor selection operators in *Lisp are modeled after the conditional tests of
Common Lisp, and typically select processors based on the result of a parallel test. By
default, all CM processors are active when you *cold-boot *Lisp, so the main job of the
processor selection operators is to temporarily turn off, or deselect, some processors for the
duration of a piece of code.

3.2.1 Processor Selection - Doing More by Doing Less

"What's the good of that?" you might ask. "The point of having a massively parallel CM
is to have all the processors computing at once. If I turn some of them off I'm wasting
computing power, right?" In a sense, yes; if you were to turn off all but one of the CM
processors, that certainly wouldn't be very efficient. However, it's unlikely that you would
ever knowingly choose to do that.

A better way to look at it is the way Michelangelo looked at carving a statue of a lion: He
selected all those parts of a block of stone that weren't lion, and carved them away.
Processor selection operators let you select just those values of a pvar that have a certain
important property, so that you can perform an operation on those values while leaving the
rest undisturbed. What you temporarily lose in computing power, you more than gain back
in computing finesse.

For example, a *Lisp function to carve Michelangelo's lion would look like:

(defun carve-lion (stone-pvar)

(*when (not!! (lion-p!! stone-pvar))

(*set stone-pvar (carve!! stone-pvar))))

The *Lisp operation *when uses a parallel test to determine which processors should be
active. In this case, the test (not!! (lion-p!! stone-pvar)) selects only those processors where
stone-pvar doesn't look like a lion. The *set form is evaluated only for those processors,
with the result that all values of stone-pvar that are not!! ion-p!! are carve!!-ed away,
leaving us a stone-pvar with a single perfect lion inside.
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This function would actually work, if we could find someone like Michelangelo to write

the lion-p!! test for us. Failing that, let's look at a more mundane example, in which we'll

use *when to perform a calculation using only the even-numbered CM processors:

> (*defvar data 4)

DATA

> (ppp data :end 20)
44444444444444444444

Here, the pvar data is given the value 4 in every processor. We'll need to use the value of

the self-address!! function, so let's print out its value for a few processors:

> (ppp (self-address!!) :end 20)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Let's assume we want to add 3 to data in every even-numbered processor. That means that

we need a test that returns t wherever the value of self-addressll is even. *Lisp has such

a test: evenp!!

> (ppp (evenp!! (self-address!!)) :end 20)
T NIL T NIL T NIL T NIL T NIL T NIL T NIL T NIL T NIL T NIL

With this test in hand, the actual *when expression is simple:

> (*when (evenp!! (self-address!!))

(*set data (+!! data 3)))

NIL

> (ppp data :end 20)
74747474747474747474

The result, as we can see, is that the value of data is set to 7 for every even-numbered

processor. Not much like a lion, but it's a start.

A related parallel conditional, if!!, also selects processors based on a test. The difference is

that if!! also returns a pvar result:

> (ppp (if!! (oddp!! (self-address!!))

(+!! data 3)
(-!! data 3))

:end 20)
47474747474747474747
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As you can see in this example, ifil actually performs two selections:

* First, all odd processors are selected (that is, all processors in which (oddpll
(self-address!l)) is t), and the sum of data and 3 is calculated for those processors.

* Then those processors are deselected, and all the remaining processors (those for
which (oddpll (self-address!!l)) is nil) are selected. In these processors, the
difference of data and 3 is calculated.

The value returned by ifll for each processor is the value it obtains from one or the other
of these two operations. In this example, ifil returns the sum of data and 3 in all
odd-numbered processors, and the difference of data and 3 in all even-numbered
processors. The 7's and 4's in the pvar returned by ifil thus alternate in a manner exactly
opposite that of the original data pvar.

For the Curious: Enumerating Selected Processors

One *Lisp function that comes in handy for working with selected sets of processors is
enumeratell. This function is similar to self-addressll, in that it assigns unique sequential
integer values to processors. The difference is that enumeratell assigns values only to
selected processors:

> (*defvar empty-pvar 0)
EMPTY-PVAR

> (ppp empty-pvar :end 20)
00000000000000000000

> (*when (evenp!! (self-address!!))

(*set empty-pvar (enumerate!!)))
NIL

> (ppp empty-pvar :end 20)
00102030405060708090

3.2.2 The Processor Selection Operators of *Lisp

There are *Lisp processor selection operators that correspond to all the major Common
Lisp conditionals, including when, unless, if, cond, case, and ecase, plus two additional
CM-specific operations, *all and wlth-css-saved. We don't have room to examine each of
them here, but they are described in more detail in the *Lisp Dictionary.
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3.3 Communication Operators

When applied to processors on the CM, the term "communication" essentially means
"moving data around between processors." There are two main methods of communication
in *Lisp: router communication and grid communication.

3.3.1 Router Communication - General-Purpose Data Exchange

The processors in the CM are all linked together by a general message-passing network
called the router. The router allows each processor to send a piece of data to any other
processor in the CM, with all processors transmitting data simultaneously.

A useful way to picture this is to think of the router as a postal service for processors (see
Figure 6).

Figure 6. The router handles messages much like a postal service

Each processor has a unique router address, which we've already seen; it's the value
returned by (self-addressll). When one processor needs to send a piece of data to another
processor, the sending processor needs to supply only two pieces of information: the data
itself, and the address of the processor that should receive it. The router takes it from there,
simultaneously accepting messages from every processor in the CM and making sure that
all messages are delivered to their destinations as quickly as possible.

To carry the post-office metaphor a step further, every router exchange involves three
pvars: one that holds the message being sent by each processor, another that holds the
address to which each message should be delivered, and a third pvar that serves as the set
of "mailboxes" into which the messages are deposited.
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3.3.2 The Router Communication Operators of *Lisp

The router communication operators in *Lisp are:

* *pset, which does a parallel "send", in which each processor sends a value to
another processor

* prefil, which does a parallel "get", in which each processor requests a value from
another processor

For example, a call to *pset looks like:

> *number-of-processors-limit*

8192

> (*pset :no-collisions (self-address!!)
data

(-!! *number-of-processors-limit*

(self-address!!)

1))
> (ppp data :end 10)
8191 8190 8189 8188 8187 8186 8185 8184 8183 8182

In this example:

* A call to (self-address!l) is used as the pvar of messages to be sent;. that is, each
processor is sending its own address.

* The data pvar is the set of mailboxes into which the messages are delivered.

* The expression (-II *number-of-processorslimit* (self-addressl) 1) provides the
addresses; that is, processors with low send addresses send to processors with high
send addresses, and vice versa.

The result is that the data pvar now contains a copy of the (self-addressll) pvar with its
values "flipped" end for end.
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3.3.3 Grid Communication - Fast, but with Restrictions

There's one main problem with router communication; just like the real-life Postal Service,
for some kinds of communication it's just too slow. For this reason, the CM includes a more
specialized form of communication called grid communication.

Figure 7. In grid communication data moves along the axes of the processor grid

Whereas router communication allows each processor to send a message to any other
processor in the machine, in grid communication all processors send their messages in the
same direction along the axes of the current processor grid (see Figure 7).

Because the messages all "follow the lines" of the processor grid, so to speak, and because
the movement of every message is expressed in terms of "so many processors up," "so
many processors over," and so on, grid communication is generally much faster than router
communication.

Grid communication does limit you to moving your data across the processor grid in
lock-step fashion, much like soldiers marching in formation on a parade ground, but for
many applications, such as the cellular automata example we saw in Chapter 1, this
grid-like motion of data is exactly what is needed.
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3.3.4 The Grid Communication Operators of *Lisp

The main grid communication operators of *Lisp are:

* news!l, which shifts values across the grid according to a set of relative coordinates

* *news, which shifts values, and also stores them in a supplied destination pvar

As an example, let's look at *news. We can use *news to write a function that performs the
zig-zag movement of data shown in Figure 7 as follows:

> (defun zig-zag (pvar)
(*news pvar pvar 3 0)
(*news pvar pvar 0 -1)
(*news pvar pvar 2 0))

ZIG-ZAG

;;;

;;;

;;;

three steps "east"

one step "north"

two steps "east"

EP..h nfthe *nawme nll in thi filnrm.tnn tnlrP lat frnrm the linlnlliPl n.Vir chlfa t a vnimlr

> (defun zig-zag (pvar)
(*news pvar pvar 5 -1)) ;;; five steps "east", one "north"

ZIG-ZAG

For the Curious: You might wonder why it's called "*news," and not something more
memory-jogging like "*grid." The reason is historical. Grid communication is often
referred to as "NEWS" ("North-East-West-South") communication, because on early
versions of the CM hardware, grid communication was limited to two-dimensional
processor grids. The grid communication operators of *Lisp likewise derive their names
from this two-dimensional pattern of data exchange.
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3.3.5 An Example of Grid Communication

Let's define a pvar and use the zig-zag function to move its values around. We'll also use
the :grid argument to ppp so that we can see the current processor grid displayed as a grid
of values on the screen.

Let's create a permanent pvar with the value 0 in every processor, and then store three
integers into it so we can see the movement of data between processors:

> (*defvar data-pvar 0)
DATA-PVAR

> (*setf (pref data-pvar (grid 0 2)) 2)

> (*setf (pref data-pvar (grid 0 3)) 3)
> (*setf (pref data-pvar (grid 0 4)) 4)

Here again, we're using the function grid to refer to processors by their grid coordinates.
Now let's use ppp to display the data-pvar in :grid format:

> (ppp data-pvar :mode :grid :end '(6 6))
000000

000000
200000
3 0 0 0 0 0
4 0 0 0 0 0
000000

Here we're displaying the top left-hand "corner" of the current processor grid, and we can
see the values 2, 3, and 4 that we stored into data-pvar in the left-most column.
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Now in a dazzling display of computational power, we'll use zig-zag to move them:

> (zig-zag data-pvar)

NIL

> (ppp data-pvar :mode :grid :end '(6 6))
000000

000002

000003

000004

000000
000000

Of course, you'll typically use grid communication operators to move many more data
values around the grid than the three integers we've used here. The principles, however,
remain the same.

3.4 Front-End/CM Communication

*Lisp includes three types of operators that let you move data quickly
end and the CM:

The simplest type is the operator !!, which as we've seen takes
value and "broadcasts" it to every processor in the CM.

between the front

a single front-end

* *Lisp also has a set of "global" communication operators that do just the opposite:
they take a pvar on the CM and turn it into a single front-end value.

* Finally, *Lisp has a number of array/pvar conversion functions that make it easy
for you to move large amounts of data between the front end and the CM.

In this section, we'll take a look at examples of the latter two types of operators.
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3.4.1 Funnels for Data-Global Communication Functions

The global communication functions all have one feature in common: They take a pvar

argument, combine the values of that pvar into one value, and then return that value to the

front end. You can think of these operators as computational funnels; they take a large set

of values from the CM and combine them into a single front-end value.

A good example is *sum, which adds together all the values of a pvar:

> (*defvar numbers (random!! 10))

NUMBERS

> (ppp numbers :end 20)
21874582183730964949

> (*sum numbers)
18651

One handy use of *sum is based on the fact that global functions only combine values from

active processors (processors currently selected by an operator such as *when or if!!). If you

want to know how many processors are currently active, a simple way to find out is to take

the *sum of 1:

> (*sum 1) ;;; on an 8K machine (8192 processors)

8192

> (*when (evenp!! (self-address!!)) ;;; turn off odd processors

(*sum 1) )
4096

Other useful global operations are:

* *max, *min - find the maximum and minimum values of a pvar

> (*max (self-address!!)) ;; Returns highest send address.

8191

* *and, *or - find the logical AND/inclusive OR of the values of a pvar

> (*or t!!) ;; Returns T if any processors are selected
T
> (*when nil!! (*or t!!)) ;; and NIL if none are selected
NIL
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3.4.2 Bulk Data Movement-Array/Pvar Conversions

If you want to move a large amount of data from the front end to the CM or vice versa,
you can call the array/pvar conversion functions of *Lisp, which are:

* array-to-pvar - converts an array on the front end to a pvar on the CM

* pvar-to-array - converts a pvar on the CM to an array on the front end

For example, given the array and pvar defined by

> (defvar data-array #(1 2 3 4 5 6)) ;;; Front-end array

> (*defvar data-pvar 0) ;;; Empty pvar on the CM

we can use array-to-pvar to copy the six elements of data-array into the first six values of
data-pvar:

> (array-to-pvar data-array data-pvar :end 6)

> (ppp data-pvar :end 12)
123456000000

Here the :end keyword argument is used (as with ppp) to specify the send address at which
the copying of values ends.

We can use pvar-to-array to copy the first three values of data-pvar back into data-array,
starting at element 3:

> (pvar-to-array data-pvar data-array :array-offset 3

:start 0 :end 3)

> (let ((*print-array* t))

(print data-array))

#(1 2 3 1 2 3)

Here we're using both the :start and :end keywords to specify a range of pvar values to be
copied. The :array-offset keyword is used to specify element 3 of the array as the first
element into which a value is copied.

For more examples of these functions, see the entries for them in the *Lisp Dictionary.
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3.5 Parallel Data Transformation in *Lisp

*Lisp includes operators that allow you to perform large-scale transformations of your
data. For example, you can use *Lisp operations to take a cumulative sum of the values of
a pvar across the current processor grid. In this section, we'll look at the *Lisp operators
that allow you to perform these kinds of parallel data manipulations.

The data transformation functions of *Lisp include tools for:

* performing cumulative operations (such as the cumulative sum mentioned above)

* copying important pvar values across the processor grid

* ranking and sorting the values of a pvar

3.5.1 Parallel Prefixing (Scanning)

Scanning is a transformation in which a cumulative operation is performed on the values
of a pvar across the currently selected grid. The main scanning function of *Lisp is scanil.
The scan!l function has an extensive set of options that let you choose from a number of
possible scanning operations, such as addition or multiplication of values; taking the
maximum and minimum of values; taking the logical or arithmetic AND, OR, and XOR of
values; and even simply copying values across the processor grid.

A common use of the scan!! operation is for cumulative summations. For example:

> (ppp (scan!! 2 '+!!) :end 20)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Here, each processor calculates the sum of the values for all processors up to and including
itself, producing a cumulative sum of the values of the pvar.

The scan!! operator has a keyword argument, :include-self, that lets you specify whether
each processor will include its own value in the calculation. For example, here's the above
addition with the :include-self argument of nil:

> (ppp (scan!! 2 '+!! :include-self nil) :end 20)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

In this case, each processor calculates the sum of the pvar values for all processors
preceding but not including itself. As shown in these examples, you can use the
:include-self argument to "shift" the result of a scan over by one processor.
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A unique feature of scan!!l is that it allows you to select segments of a pvar over which
independent scans are performed. The scanil operation uses a :segment-pvar argument to
select pvar segments.

An example of scanl with a :segment-pvar argument is:

> (*defvar segments (zerop!! (mod!! (self-address!!) 4)))

> (ppp segments :end 16)
T NIL NIL NIL T NIL NIL NIL T NIL NIL NIL T NIL NIL NIL

> (ppp (scan!! 1 '+!! :segment-pvar segments) :end 16)

12341234123412341234

Every t value in the :segment-pvar argument of scan!!l indicates the start of another
segment, and as you can see the summation is done only within segments.

The scan!l function is a powerful programming tool, and has some surprising uses. We'll
see some more examples of scanil in the sample *Lisp functions of Chapter 6.

3.5.2 Spreading Values across the Grid

An operation related to scanning is spreading. Spreading copies the values from one "row"
or "column" of the current grid to all rows or columns of the grid. (Of course, when you're
using processor grids with more than two dimensions, the terms "row" and "column" don't
really apply, but the principle is the same.)

The *Lisp operator for spreading is called spread!!. As an example, let's assume that
(self-address!!) currently returns the values shown here:

> (ppp (self-address!!)

:mode :grid

:end '(8 3)

:format "-3S ")
0 1 2 3 16 17 18 19
4 5 6 7 20 21 22 23

8 9 10 11 24 25 26 27

and let's say that we want to spread the values in the fourth column to all of the columns.
(What this means in terms of the processor grid is that we want to spread values from the
processors at coordinate 3 of dimension 0 to all processors along dimension 0.)
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The following call to spreadll will do this for us:

> (ppp (spread!! (self-address!!) 0 3) ;; Dimension 0, Coord. 3

:mode :grid

:end '(9 3)

:format "-3S ")

3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7

11 11 11 11 11 11 11 11 11

The spreadll function is most useful in combination with communication and scanning
operators, because it allows you to quickly spread important values across the processor
grid.

3.5.3 Sorting Pvar Values

One other useful transformation operator is sortl, which sorts the values of a numeric pvar
in ascending order. For example:

> (*defvar random-numbers (random!! 10))
RANDOM-NUMBERS

> (ppp random-numbers :end 20)
33582893554412798697

> (*when (<!! (self-address!!) 20)

(ppp (sort!! random-numbers '<=!!) :end 20))
12233344555677888999

NIL

Here I've used *when to select the first 20 values of the random-numbers pvar, and then
called sort!! to return a copy of those values sorted in ascending order.

If you prefer to write your own sorting routines, *Lisp also includes an operator called
rank!l that simply returns a numerical ranking of the values of a pvar. For example:

> (*when (<!! (self-address!!) 20)
(ppp (rank!! random-numbers '<=!!) :end 20))

3 4 8 14 1 15 17 5 9 10 6 7 0 2 12 18 16 11 19 13
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3.6 Configuration Operators

We've seen that the shape of the current processor grid determines the size and shape of
your pvars. *Lisp includes several functions and macros that let you control the size and
shape of the current processor grid, as well as tools that let you define multiple grids that
can be used together in the same program. You've already seen one of these operators:
*cold-boot. In this section we'll take a look at these operators, and see how you can use
them in your programs to control the current configuration of the CM.

3.6.1 Defining the Initial Grid Configuration - *cold-boot

Whenever you initialize *Lisp with the function *cold-boot, you're also choosing the size
and shape of the current processor grid. The *cold-boot function has a keyword argument,
:initiaI-dimensions, that determines the initial shape and size of the processor grid.

For example, if you wanted to start off with a cube-shaped grid of processors, 64 processors
on a side, you could type the following:

> (*cold-boot :initial-dimensions '(64 64 64))
8192

(64 64 64)

This gives you a rather mind-boggling number of processors to work with-more than a
quarter million, as a matter of fact.

> *current-cm-configuration*

(64 64 64)
> *number-of-processors-limit*

262144
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3.6.2 Where Did the Extra Processors Come From?

Notice that even though I've requested a large number of processors in these examples,
many more than the number of physical processors available in the machine, the actual
number of physical processors hasn't changed-the first argument returned by *cold-boot
is still 8192. (As in previous *cold-boot examples, I'm assuming an 8K CM.) By requesting
a larger number of processors than are present in the physical hardware of the CM, you
automatically tell the CM to use virtual processors.

Whenever you request a number of processors that is larger than the actual number of
physical processors within the CM, each physical processor simulates the operations of two
or more virtual processors (or VPs, as they are commonly called).

This simulation takes place automatically and transparently. The only effects you're likely
to notice are a change in execution speed and a reduction in the total number of pvars you
can create. (When you use virtual processors, more than one pvar value is stored in the
memory of each physical processor, so your pvars take up more memory.)

3.6.3 Defining Custom Configurations - VP Sets

Once you start working with data sets of different sizes, you'll want to make use of this
ability to define processor grids of various shapes and sizes, because the shape and size of
the current processor grid determines the shape and size of your pvars.

*Lisp allows you to define special data objects called virtual processor sets (VP sets) that
describe particular configurations of processors. You can then use *Lisp operations to
select these configurations when you need them.

For example,

> (def-vp-set big-square '(256 256))

defines a two-dimensional VP set called big-square, which describes a two-dimensional
grid of processors of size 256 by 256. Once you've created a VP set such as this, you can
start using it to define pvars with the same size and shape:

> (*defvar big-square-pvar 1 nil big-square)
BIG-SQUARE-PVAR

> (*defvar another-square-pvar (random!! 20) nil big-square)
ANOTHER-SQUARE-PVAR
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You can even save a step and define both the VP set and the pvars at the same time. For
example, the three examples above could be replaced by the single form:

(def-vp-set big-square ' (256 256)

:*defvars ' ((big-square-pvar 1)

(another-square-pvar (random!! 20)))

FOrthe curiou h the led P st ecausaCet VP Sets r d termine

pvrs thathver tgis size and shape youv s the combion o a taiculr argment
.. .... ... . . ..X -. ... .. ..-. .... .

by alb.wing you to defin both a VP set and ts ssociated p s a he. same

I3.6.4 Default and Current VP Sets 

How do you use these VP sets, once you've defined them? In a sense, you've already been
using them, ever since you started up *Lisp. When you *cold-.boot *Lisp, a special default

is, whatever grid size and shape you've specified via the :initial-dimensions argument).

If you always used the default VP set and never created VP sets of your own, you probably
wouldn't even notice that VP sets existed at all. However, once you've defined your own
VP sets, you can use them to switch between different processor configurations within a
single *Lisp program.

At any time, there is always one VP set that is the current VP set, the one that determines
how the processors of the CM are currently arranged. You make a particular VP set the
current one by selecting it. Unless you specify otherwise, all pvars are created with the
shape and size of the current VP set.

The default VP set is selected automatically for you by *cold-boot. You can then use the
VP set operations of *Lisp to temporarily or permanently select a VP set of your own.
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3.6.5 Selecting VP sets

When you want to use a particular VP set, such as the big-square defined above, you can
either select it temporarily (for the duration of a piece of code), via the macro *with-vp-set:

> (*cold-boot :initial-dimensions '(128 128))

8192

(128 128)

;;; Display the shape and size of the current processor grid

> (list *current-cm-configuration*

*number-of-processors-limit*)

((128 128) 16384)

;;; Display shape and size of the grid with big-square selected

> (*with-vp-set big-square

(list *current-cm-configuration*
· number-of-processors-limit*))

((256 256) 65536)

;;; When *with-vp-set exits, the old grid is restored

> (list *current-cm-configuration*

*number-of-processors-limit*)

((128 128) 16384)

or you can select it permanently (until you select another VP set), by using the set-vp-set
function:

> (set-vp-set big-square)

#<VP-SET Name: BIG-SQUARE, Dimensions (256 256) ... >

;;; Display shape and size of VP set selected by set-vp-set

> (list *current-cm-configuration*

*number-of-processors-limit*)

((256 256) 65536)
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3.6.6 Two Important VP Set Variables

There will often be times that you'll want to know exactly which VP set is the current one,
as well as which VP set is the default defined by *cold-boot. For this reason, *Lisp
maintains two important global variables that keep track of these details.

The *Lisp variable *default-vp-set* is always bound to the default VP set defined for you
by *cold-boot:

> *default-vp-set*

#<VP-SET Name: *DEFAULT-VP-SET*, Dimensions (128 128) ... >

This variable is automatically set each time you call *cold-boot, but otherwise its value
doesn't change.

The variable *current-vp-set* is always bound to the currently selected VP set, and its value
changes every time the current VP set changes:

> *current-vp-set*

#<VP-SET Name: BIG-SQUARE, Dimensions (256 256) ... >

> (set-vp-set *default-vp-set*)

#<VP-SET Name: *DEFAULT-VP-SET*, Dimensions (128 128) ... >

> *current-vp-set*

#<VP-SET Name: *DEFAULT-VP-SET*, Dimensions (128 128) ... >

You can compare these variables to test whether the current VP set is the default:

> (defun default-p ()
(eq *current-vp-set* *default-vp-set*))

> (set-vp-set big-square)

#<VP-SET Name: BIG-SQUARE, Dimensions (256 256) ... >
> (default-p)
NIL

> (set-vp-set *default-vp-set*)
#<VP-SET Name: *DEFAULT-VP-SET*, Dimensions (128 128) ... >
> (default-p)
T

VP sets are an advanced *Lisp tool, and there are many more uses for them than we have
room to describe here For an example of the use of VP sets, see Section 6.4 in Chapter 6.
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3.7 Summary: *Lisp as a Language

Here's a quick review of what we've covered in this chapter:

* Processor selection operators, such as *when and if l, let you increase the power of
your *Lisp programs by restricting the set of processors that are currently active.

* Communications operators, such as *pset and *news, let you move data between
processors within the CM in the manner that is most efficient for your
programming needs.

* Front-end/CM communication operators such as *sum and array-to-pvar let you
quickly move large amounts of data between the front end and the CM.

* Data transformation operators such as scan!, spread!!, and sortll allow you to
design just the kinds of data transformations you need.

* Configuration operators such as *cold-boot, def-vp-set, and with-vp-set give you
control of the shape of the current processor grid, and, in so doing, let you specify
the size and shape of your pvars.

That's all the main parallel programming tools of *Lisp in a nutshell. In the next chapter,
we'll look at the error-handling features of *Lisp, and show how you can use the Lisp
debugger to examine and diagnose bugs you encounter while writing *Lisp programs.
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"Oh, don 't the days seem lank and long,
When all goes right and nothing goes wrong... "

W S. Gilbert

Chapter 4

When Things Go Wrong

No introductory guide can account for the unexpected. Even if you follow the instructions
of this document to the letter, typing in everything exactly as shown, you may still receive
unexpected warnings and error messages, or suddenly find yourself facing an imposing
display of debugger information. The purpose of this chapter is to show you the types of
warnings and errors that you can expect to see, and to show how you can deal with them.

4.1 Warning Messag es

Warnings take many forms. Some are messages from the Lisp system that you're using,
such as this one, which tells you the Lisp garbage collector is active:

;;; GC: 174988 words [699952 bytes] of dynamic storage in use.

;;; 644210 words [2576840 bytes] of free storage available.~j l: ,,jC:::::i':·:;~·::wX .- .. ......... ..... . ... ................ ......... ... .. ..~iiiii i:...... ....... .... ......... ..... ... . ..I S... .. .. . . . . .. ... . ... ... .. ... .. .... ... . ... .. . .. ... ..
::~i~~i:8::i~~f~~ii::::ii~~i:Iiiiliiii .::.:i. .... ...... iiiij.iiiiiii..................... .. .... .. .. .. .............:~:~i~.,;X .. .. ... .... .. ..... .. .. .. ..

;;; 644210 words [2576840 bytes] of free storage availab..... .....
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Other warnings come from *Lisp itself. Most of the *Lisp warnings that you're likely to
see will come from the *Lisp compiler. Depending on the settings of certain *Lisp
compiler variables, you may see a warning when you compile a function. For example:

> (defun simple (x) (+!! x 2))
> (compile 'simple)

Warning: *Lisp Compiler: While compiling function SIMPLE:
The expression (+!! X 2) is not compiled because

;;; the compiler cannot find a declaration for X.

For now, you can pretty much ignore such warnings. These messages are simply telling you
that the *Lisp compiler lacks information that it requires to fully compile a piece of *Lisp
code. Your functions are still being compiled, though perhaps not as efficiently as possible.
(We'll return to this in more detail when we look at the *Lisp compiler in Chapter 5.)

4.2 Error Messages

Errors are just as varied as warnings, and range from simple typing mistakes, such as

> (pront 'oops!)
>>Error: The function PRONT is undefined.
SYMBOL-FUNCTION:

Required arg 0 (S): PRONT

:C 0: Try evaluating #'PRONT again
:A 1: Abort to Lisp Top Level
->

to more detailed messages triggered by supplying incorrect arguments to a function:

> (/!! 3 0)
>>Error: In interpreted /!!.

The result of a (two argument) float /!! overflowed.
There are 8192 selected processors,
8192 processors have an error.
A SINGLE-FLOAT temporary pvar stored at location 458752
caused the error.

*LISP-I::/!!-2:

:A : Abort to Lisp Top Level
->
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4.2.1 Recovering from Errors

While you're learning to use *Lisp, you'll probably just want to exit from the debugger and
get back to the *Lisp prompt immediately. There is usually a simple command that you can
type to abort from the debugger and get back to the top-level prompt. In the Lucid version
of *Lisp, the command is

-> :A

Abort to Lisp Top Level

When You Abort, Remember to (*warm-boot)

But simply aborting from the debugger is not enough. Remember, you're programming on
two machines: your front end and the CM. Aborting from the debugger resets your front
end and returns you to the top-level Lisp prompt, but it does not automatically reset the
state of the CM as well. To do this, you must also call the *Lisp operator

> (*warm-boot)

The *warmnn-boot command resets the internal state of the CM and performs other minor
housecleaning operations that return both front end and CM to a normal, ready-to-run state.

You should get into the habit of calling *warm-boot whenever you abort from the debugger,
because otherwise the CM may be left in a confused state that will prevent your code from
running correctly. Even worse, you may get spurious error messages from otherwise
error-free code; these errors can be very hard to trace, precisely because the error lies not
in your code, but in the state of the CM. As an example of what can happen, try this:

> (*sum 1) ;; NOTE: This example was run on an 8K CM

8192

> (*when (evenp!! (self-address!!)) (break))
>>Break: break

EVAL:

Required arg 0 (EXPRESSION): (*WHEN (EVENP!! (SELF...
:C 0: Return from Break

:A 1: Abort to Lisp Top Level
-> :a
Abort to Lisp Top Level

> (*su 1)
4096
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Here we've used the Common Lisp function break to simulate an error within the body of
the *when form. The *when in this example deselects half of the processors. When you abort
from the debugger, these processors remain deselected, as the second call to *sum shows.

This is easily corrected by calling *warm-boot:

> (*warm-boot)
> (*sum 1)

8192

Whenever you encounter a bizarre inconsistency of this sort while running your code, it's
a good idea to try calling *warm-boot to reset the CM, and then try running your code again.

For More Persistent Errors, Try (*cold-boot)

Occasionally, you'll encounter an error message that persists even after you've called
*warm-boot. For these sorts of persistent errors, you can try calling

> (*cold-boot)

This will reinitialize both *Lisp and the CM, performing a much more thorough
housecleaning than *warm-boot. If the error is related to permanent pvars-which are
reallocated when you call *cold-boot--you may want to try typing

(*cold-boot :undefine-all t)

The :undefine-all argument to *cold-boot wipes out every pvar and VP set in the *Lisp
environment, leaving you with a clear field in which to work. (By the way, this will also
wipe out any pvars and VP sets defined by your *Lisp programs-you will probably need
to reload your *Lisp code to have it run correctly.)

If an obscure error persists even after this, you may want to ask your systems administrator
or applications engineer to help you diagnose the problem.

4.3 *Lisp Error Checking

*Lisp provides a global variable, *interpreter-safety*, that controls the amount of error
checking that is performed by the *Lisp interpreter. This affects the kinds of error messages

Version 6.1, June 1991

62 Getting Started in Lisp



Chapter 4. When Things Go Wrong 63

that you see when you run your code as well as the speed with which your interpreted code
will run. (There are similar variables for the *Lisp compiler; we'll look at them in Chapter
5.)

The value of *interpreter-safety* must be an integer between 0 and 3. The effects of each
of these values are:

0 Most run-time error checking is disabled.
1 Minimal run-time error checking is performed, and an error may not be

signaled at the exact point in your code at which it occurred.
2 This setting is reserved for future expansion; don't use it.
3 Full run-time error checking. Errors are signaled immediately.

The default value of *interpreter-safety* is 3, but you can set *interpreter-safety* yourself
to select the level of error checking that you prefer. For example, to turn off interpreter
error checking, type

> (setq *interpreter-safety* 3)

Roughly, 3 means "full error checking," while 0 means "no error checking." This means
that you should run your code with an *interpreter-safety* level of 3 while debugging, and
at an *interpreter-safety* of 0 once it is running correctly to get the best speed from your
interpreted code. (Note: To obtain the fullest possible speed from your code, you'll want
to declare and compile it, as described in Chapter 5.)

An *interpreter-safety* level of 1 is useful mainly for testing nearly completed code,
because when errors occur you are given an indication of thefact that they occurred, but
your code is not slowed down to the point where the exact location of the error can be
indicated. At this safety level, an error detected on the CM will only be reported the next
time you try to read a value from the CM. For example:

> (setq *interpreter-safety* 1)

> (/!! 3 0) ;; The error occurs here, but is not signaled...

#<FLOAT-Pvar 5-32 *DEFAULT-VP-SET* (32 16)>

> (+!! 2 3) ;; Still not reading a value from the CM...

#<FIELD-Pvar 11-3 *DEFAULT-VP-SET* (32 16)>

> (*sum 1) ;; Upon reading a value, the error is signaled:

>>Error: The result of a (two argument) float /!! overflowed

CMI::WAIT-UNTIL-FEBI-OUTPUT-FIFO-NOT-EMPTY:

:A 0: Abort to Lisp Top Level

->
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4.4 Common Errors

Now let's take a quick look at some common errors that you may encounter while learning
to use *Lisp. This is by no means an exhaustive list, but it should give you an idea of how
to tackle the errors that you do encounter.

4.4.1 Executing *Lisp Code without Having a CM Attached

Unless you're using the *Lisp simulator, you must have a CM attached in order to execute
*Lisp code. It's easy to tell when you're not attached to a CM: you'll find yourself getting
"bus errors" from perfectly legal *Lisp code.

For example:

> (cm:detach) ;; Detach from the CM

> (+!! 2 3 4)
>>Trap: Interrupt: bus error

CMI::PTR-REF-LOW:

Required arg 0 (PTR): NIL

:A Abort to Lisp Top Level

-> (cm: attached)

NIL

NIL

As shown here, you can call the Paris function cm:attached to determine whether a CM is
currently attached. (See the discussion of cm:attached in Appendix C.)

Another common error is caused by attaching to a CM, but neglecting to call *cold-boot.
Until you call *cold-boot for the first time, you will not be able to execute your *Lisp code.

> (cm:attach)
8192

> (+!! 2 3 4)

>>Error: Timed out on safe FIFO read.
CMI::WAIT-UNTIL-FEBI-OUTPUT-FIFO-NOT-EMPTY:

:A 0: Abort to Lisp Top Level
->

Both types of errors are easily corrected by calling *cold-boot. The *cold-boot operator
automatically attaches you to a CM if you're not already attached, and it initializes both
*Lisp and the CM so that you can begin running code on the machine.
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4.4.2 Running Out of CM Memory

There are two kinds of CM memory: the stack and the heap. The heap is used for
permanent pvars, and the stack is used for local and temporary pvars. If you allocate so
many pvars in either kind of memory that there isn't room for more, you'll get an error.

Running Out of Stack Memory

For example, stack pvars are allocated by *let, *let*, and by nearly all the functions in *Lisp
that return a pvar. You're not likely to run out of stack memory by using either *let or *let*,
because these operators automatically deallocate any stack pvars they create. However, if
you call to a *Lisp function within a loop, you can easily find yourself running out of stack
memory:

> (dotimes (i 10000) (+.!! 3.14 2.17 9.99))
>>Error: You have run out of CM memory

while trying to allocate 32 bits of stack.

CMI::TRY-TO-GET-MORE-CM-STACK-MEMORY:

Required arg 0 (NUMBER-OF-BITS-TO-ALLOCATE): 32

:A 0: Abort to Lisp Top Level

Each time the +11 call is executed, it allocates a temporary pvar on the stack. These
temporary pvars steadily pile up on the stack until there is no more stack space left. To
recover from this kind of error, abort from the debugger and call *warm-boot, which will
clear out the stack.
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A stack-related resource you may find yourself running short of is temporary pvars:

> (dotimes (i 1000) (+!! 0 1 2))
>>Error: You have run out of temporary Pvars.

You must now do a *COLD-BOOT.

*LISP-I::POP-LOCAL-ERROR:

:A 0: Abort to Lisp Top Level
->

When you get an error like this, you haven't necessarily run out of memory, but you have
run out of the data structures used to keep track of the stack memory you allocate. At this
point, you may be able to get away with simply calling *warm-boot to restore the pool of
free temporary pvars, but if not you can always call *cold-boot to recover from this error.
(In the same way, you can find yourself running short of VP set and geometry data
objects-the same solution applies in these cases.)

Running Out of Heap Memory

Heap pvars are allocated by the operations *defvar and allocatell. You're not likely to
exhaust heap memory by using *defvar, but the main purpose of allocatel! is to allow you
to rapidly allocate as much of the heap as you want for pvars. You can easily use up all the
available heap memory by calling allocate!! indiscriminately:

> (defvar pvar-list nil)

> (loop (push (allocate!! 3.14159) pvar-list))

>>Error: You ran out of CM memory
while trying to allocate 32 bits on the heap.

CMI::ALLOCATE-HEAP-FIELD-ADDRESS-AND-CM-MEMORY:

Required arg 0 (NUMBER-OF-BITS-TO-ALLOCATE): 32
:A 0: Abort to Lisp Top Level
->

The easiest way to recover from heap memory errors is to call *cold-boot, which destroys
all pvars created by allocate!!, and then reallocates pvars you have defined by *defvar.

Another way to recover is to use *deallocate to remove some of the heap pvars you have
defined. In the above example, the allocated heap pvars are stored in a list, so it is easy to
deallocate them:

> (dolist (pvar pvar-list) (*deallocate pvar) (pop pvar-list))
NIL

Version 6.1, June 1991

i



Chapter 4. When Things Go Wrong 67

Tracing Stack Memory Use

Even if your program doesn't contain simple loops like those shown above, it may still run
out of memory if it allocates a large number of pvars, or allocates pvars that contain very
large data structures. In particular, if you get an "out of stack memory" error, you'll want
to check your program to see where it is allocating the most stack memory.

*Lisp includes a function, trace-stack, that you can use to trace the stack memory usage
of your program, and thereby determine what parts of your code are using the most stack
memory. For example, let's trace the function

> (defun trace-test (a b c)
(*!! a (+!! b c)))

We can use trace-stack to trace the amount of stack memory used by this function:

> (trace-stack :init)
Stack tracing is now on in :TRACE mode.
Current stack level is 1536.
Maximum stack limit is 1536.
1536

1536

> (trace-test 9 3 2)
#<FIELD-Pvar 9-7 *DEFAULT-VP-SET* (128 64)>

> (trace-stack :reset)

Stack tracing is now on in :BREAK mode.
Current stack level is 1536.

Maximum stack limit is 1554.

1536

1554

This records the amount of stack memory used by the call to trace-test. We can then use
trace-stack to cause a continuable error whenever stack usage reaches or exceeds this limit:

> (trace-test 9 3 2)
>>Error: Stack has reached/exceeded traced maximum of 1554.

Stack is now at 1554.
*LISP-I::MAX-STACK-LEVEL-CHECK:
:C 0: Continue until next stack increase.

:A 1: Abort to Lisp Top Level
-> :a

Abort to Lisp Top Level
Back to Lisp Top Level
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And when we're finished with the stack tracing facility, we can switch it off:

> (trace-stack :off)

Stack tracing is now off.

Current stack level is 1554.

Maximum stack limit is 1554

1554

1554

For more information, see the entry for trace-stack in the *Lisp Dictionary.

Displaying CM Memory Use

*Lisp also includes *room, a parallel equivalent of Common Lisp's room function. You can
use *room to get a general description of CM memory use:

> (*room)
*Lisp system memory utilization

Vp Set *DEFAULT-VP-SET*, (32 16)
Stack memory usage : 11

Heap memory usage : 0

*Defvar memory usage : 8
Overhead : 10

Total for Vp Set : 29

Overall totals

Stack memory usage : 11

Heap memory usage : 0

*Defvar memory usage : 8
Overhead : 18

Total : 37

11

0
8

18

The *room function is also described in more detail in the *Lisp Dictionary.
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4.4.3 Functions That Don't Promote Scalars to Pvars

Most *Lisp operations that accept pvars as arguments also accept scalars of the same type,
and automatically promote them to pvars. There are a few functions, however, that don't.
When one of these functions encounters a scalar value where it expects a pvar, it will warn
you that the scalar argument should be a pvar:

> (describe-pvar 3)
>>Error: 3 is not a Pvar.

DESCRIBE-PVAR:

Required arg 0 (PVAR): 3
Optional arg 1 (STREAM): #<Stream SYNONYM-STREAM 30B2BE6>

:A 0: Abort to Lisp Top Level

You'll also get an error of this sort if you supply a scalar value of an incorrect type. For
example, arithmetic operations such as +11 only coerce numeric scalars to pvars:

> (+!! #\c 3)
>> Error: An argument to +!!, having value #\c,

is not a pvar, but should be
*LISP-I::NEW-PVAR-CHECK:

Required arg 0 (PVAR): #\c
Required arg 1 (FUNCTION-NAME): +!!

:C 0: Test the assertion again

:A 1: Abort to Lisp Top Level

You can recover from these errors simply by aborting from the debugger, calling
*warm-boot, and then calling the function again with a proper pvar argument.

This kind of error can also occur when you have compiled a function with a declaration
restricting its arguments to pvars. Scalar arguments passed to these compiled functions will
not be promoted. For example:

> (defun test (a)
(declare (type single-float-pvar a))

(+!! a a))

> (compile 'test)

> (test 3)
>>Trap: Interrupt: bus error
TEST:

Required arg 0 (A): 3

:A 0: Abort to Lisp Top Level
>Version 6.1, June 1991
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4.4.4 Obscure Hardware and Software Errors

Some error messages, caused either by unusual CM states or real hardware errors, are
downright impenetrable for the average user:

>>Error: Detected CM Exception while waiting for data from CM.
The following status message might help identify the problem.

There are 28. CM and/or SPRINT chips reporting errors.
This usually indicates an illegal memory reference.
The cause could be an invalid field-id or incorrect
length argument in a PARIS instruction.

CMI::WAIT-UNTIL-FEBI-OUTPUT-FIFO-NOT-EMPTY:

<Half a page of continuation options>

:A 0: Abort to Lisp Top Level
->

Your best bet in handling these kinds of obscure errors is to abort from the debugger, call
*warm-boot or *cold-boot, and try running your code again. If errors of this kind persist,
they should be reported to your systems manager or applications engineer for correction.

4.5 Using the Debugger

Once you feel comfortable working with *Lisp, you'll want to take a closer look at the
debugger to see what features it offers you. Let's take a quick look at a few debugger
commands that you may find helpful in debugging your code.

As an specific example, type

> (/!! 1.0 (self-address!!))

This causes a floating-point overflow due to the division by zero for processor 0.
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Assuming an 8K CM, this will producing the following debugger output:

>>Error: In interpreted /!!.

The result of a (two argument) float /!! overflowed.

There are 8192 selected processors,

1 processor has an error.

A pvar of type SINGLE-FLOAT caused the error.

*LISP-I::/!!-2:

Required arg 0 (A): #<FLOAT-Pvar 3-32 ... >

Required arg 1 (B): #<FIELD-Pvar 5-13 ... >

:C 0: Ignore error.

1: Ignore Error.

2: Display Processors With Error.

3: Display Value in Processors with Error.

4: Display Selected Processors.

5: Display Value in Selected Processors.

6: Display Value in All Processors.

7: *Set Value in Processors with Error.

:A 8: Abort to Lisp Top Level

The debugger display includes:

* the error that occurred (a floating-point overflow)

* the number of processors that are currently selected (8192)

* the number of those processors that signaled the error (1)

* the type of pvar that caused the error (single-float)

* the name of the internal function in which the error occurred (*lisp-i::/11-2)

* the arguments to that function (a float pvar and a field pvar)

* a list of debugging actions, each with an associated command to invoke it

At this point, there are a number of things that you can do:

· You can type the debugger command :e to continue, ignoring the overflow error.

* You can type :b for a backtrace of the chain of function calls leading to the error:

-> :b
*LISP-I::/!!-2 <- EVAL <- SYSTEM:ENTER-TOP-LEVEL
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:::: You can type:::'':'::'::' :n and :p to move up and down the chain of calls:

• You can type :n and :p to move up and down the chain of calls:

-> :n

EVAL:

Required arg 0 (EXPRESSION):

(/!! (!! 1.0) (SELF-ADDRESS!!))

-> :p

*LISP-I::/!!-2:
Required arg 0 (A): #<FLOAT-Pvar 3-32 ... >

Required arg 1 (B): #<FIELD-Pvar 5-13 ... >

* You can use the supplied debugging options to view the values contained in the

processors that signaled the error:

-> 3
Display Value in Processors with Error.

0 = #<FLOAT :PLUS-INFINITY>

From this display you see the value in each processor that signaled an error. In this

case, there was only one, processor 0, whose send address of 0 caused the division

to overflow, returning a result of floating-point infinity.

* And as we have already seen, you can type :a to abort back to the Lisp prompt.

-> :a

Abort to Lisp Top Level

Back to Lisp Top Level

> (*warm-boot)
NIL

Your debugger will have many more commands than there is room to discuss here. You can

use the command :h from within the debugger to see a list of the possible commands that

you can use. Also, consult the documentation for your Lisp development system for more

information about the debugger and the tools it offers you for debugging your code.
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4.6 Summary: Find That Bug and Step on It!

In this chapter, we've seen

* some of the types of warning and error messages displayed by *Lisp

* the most common error messages you can expect to see, and how to handle them

* the kinds of information displayed by the Lisp debugger

* the tools that the debugger gives you for diagnosing errors

* the basic method for exiting from the debugger: abort and *warm-boot

* the ways in which *warm-boot and *col-boot help you recover from errors

* the *Lisp variable *interpreter-safety*, which controls the display of errors by the
*Lisp interpreter

Now that we've seen some of the ways in which your code might break down, let's take
a look at the tools you can use to make it run like a dream. In the next chapter, we'll look
at the *Lisp compiler, and see how you can use it to compile your *Lisp code into fast and
efficient Lisp/Paris instructions.
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"I have nothing to declare except my genius. "
Oscar Wilde

Chapter 5

Declaring and Compiling *Lisp Code
6: ~'''''''';..

Depending on your interests and inclinations, you may begin writing your *Lisp code with
an eye to immediately compiling it, or you may leave the step of declaring and compiling
your code until after you have it running in an interpreted form. No matter what your
coding style happens to be, you'll need to declare your code properly to have it compile
completely. In this chapter we'll look both at the *Lisp compiler itself, and at the kinds of
type declarations that are used in *Lisp.

You'll also want to refer to Chapter 4, "*Lisp Type Declaration," of the *Lisp Dictionary,
which contains a complete and detailed set of guidelines for properly declaring your code.

5.1 The *Lisp Compiler

The *Lisp compiler is an extension of the Common Lisp compiler, and is invoked
automatically whenever you compile a section of Lisp code.

*Lisp functions and macros are compiled exactly as they are in Common Lisp:

* by calling the Common Lisp function compile to compile a specific function:

(compile 'add-mult!!)

* by calling the Common Lisp function compile-file to compile a file of code:

(compile-file "starlisp-code.lisp")
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by whatever method you usually use to compile Lisp code.

Depending on the Lisp programming tools your editor provides, there may be a
special keystroke you can use to compile a function definition from within the
editor. In Emacs-style editors this keystroke is commonly Ctrl-Shift-C or
Meta-Shift-C. Check the manual for your editor for more information.

Just as in Common Lisp, it is not necessary to compile your *Lisp code before you run it,
because uncompiled code is automatically handled by the *Lisp interpreter. However, you
won't see the best performance from your code if you don't compile.

5.1.1 What the *Lisp Compiler Does

The *Lisp compiler is different from most standard compilers. It doesn't turn your *Lisp
code directly into machine-language instructions. Instead, the *Lisp compiler converts
your code into a mixture of Common Lisp code and calls to Paris, the low-level
programming language of the CM. This code is then passed through the Common Lisp
compiler to be converted into machine code.

*Lisp is not a strongly typed language, but Paris is. Thus, for the *Lisp compiler to convert
your *Lisp code into Lisp/Paris instructions, you must supply a complete type declaration
for each parallel variable, function argument, and returned value in your code. You must
also provide declarations for Common Lisp variables and expressions that are used within
*Lisp expressions.

You should take the time to declare your *Lisp code so that it can be compiled completely
for a number of reasons:

* Compiled *Lisp code executes much faster than interpreted *Lisp code.

* Compiled *Lisp code is more efficient:

· it uses less CM memory for temporary variables

* it takes advantage of specialized Paris operations to combine a number of
*Lisp operations into a single Paris instruction

* it eliminates the type-checking overhead of interpreted *Lisp code
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5.2 Compiler Options

The *Lisp compiler has many options and parameters that you can use to control the way
your code is compiled. This section describes two compiler parameters, *warning-level*
and *safety*, that will be very important to you in learning to use the compiler.

5.2.1 Compiler Warning Level

You can instruct the *Lisp compiler to warn you if it encounters a section of *Lisp code
that it cannot fully compile, because of missing declarations or other reasons. The value of
the global variable *waming-level* determines the kind and number of warnings that the
compiler displays. The legal values for *warning-levl* are:

:high Detailed warnings are displayed whenever code cannot be fully compiled.
:normal Warnings are only displayed for inconsistencies in type declarations, as

when arguments to a function are not of the correct type.
:none No warning messages are displayed.

The default value for *warning-level* is :normal, but while you're learning to use the
compiler, it is better to leave it set it to :high:

> (setq *warning-level* :high)

5.2.2 Compiler Safety Level

You can also instruct the *Lisp compiler to insert error-checking statements in the code that
it produces. The value of the global variable *safety* determines the amount of
error-checking code that is added, and must be an integer from 0 to 3. The effects of each
of these values are:

0 No error-checking code is included.
1 Limited error-checking code is included, so an error may not be signaled

at the exact point in your code at which it occurred.
2 Run-time safety control. See description of *immediate-error-if-location*

below.
3 Full error-checking code is included, so that an error will always be signaled

at the exact point in your code at which it occurred.
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Roughly speaking, the higher the value of *safety*, the more error-checking code is
included. This means that you should compile your code at a *safety* level of 3 while
debugging, and compile at a *safety* level of 0 when you want to execute your code at full
speed. Just as with *warning-level*, you can change the value of *safety* by using setq:

> (setq *safety* 3) ;;; Full safety level

When your *Lisp code is compiled at a *safety* level of 2, you can choose at run time
between the effects of levels 1 and 3. This allows you to choose the level of error checking
that you want without the need to recompile your code. The effect of *safety* level 2 is
controlled by the global variable *immediate-error-if-location*.

If *immediate-error-if-location* is:

t Errors are signaled immediately, as with *safety* level 3.
nil Errors may not be signaled immediately, as with *safety* level 1.

You can change the value of *immediate -error-if-location* at any time:

> (setq *immediate-error-if-location* t) ;;; Full safety

5.2.3 Other Compiler Options

Along with *safety* and *warning-level*, there are a number of other compiler options that
you can modify to control the manner in which your *Lisp code is compiled. Most of these
options can safely be ignored for right now, but you will want to know how to examine and
change them. The function

(compiler-options)

displays a menu of the current compiler options, along with their settings. You can then
modify each of these settings interactively. You can also change any of the compiler's
options by changing the value of a global variable (as shown for *warning-level* and
*safety* above).
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5.3 Displaying Compiled Code

One of the best ways to see the effect of the *Lisp compiler on your code is to compile it
in such a way that the Lisp/Paris form of the code is displayed.

Displaying All Compiled Code

The simplest way to do this is by typing

> (setq slc:: *show-expanded-code* t)

The global variable slc::*show-expanded-code* controls whether or not the *Lisp compiler
automatically displays each piece of Lisp/Paris code that it generates. For example, with
slc::*show-expanded-code* set to t, when you compile the function

> (defun test (pvarl pvar2 pvar3)

(declare (type single-float-pvar pvarl pvar2 pvar3))
(*!! (+!! pvarl pvar2) pvar3))

the following expanded code is displayed:

(LET* ((SLC::STACK-FIELD (CM:ALLOCATE-STACK-FIELD 32))

(#:+*!!-INDEX-2 (+ SLC::STACK-FIELD 32)))

(DECLARE (TYPE SLC::CM-ADDRESS

SLC::STACK-FIELD #:+*!!-INDEX-2))

(DECLARE (IGNORE #:+*!!-INDEX-2))

;; (*!! (+!! pvarl pvar2) pvar3).

(CM:F-ADD-MULT-1L SLC::STACK-FIELD

(PVAR-LOCATION PVAR1) (PVAR-LOCATION PVAR2)

(PVAR-LOCATION PVAR3) 23 8)

(SLC::ALLOCATE-TEMP-PVAR
:TYPE :FLOAT :LENGTH 32 :BASE SLC::STACK-FIELD

:MANTISSA-LENGTH 23 :EXPONENT-LENGTH 8))

The important code to notice here is the commented center section-I've set it off with
extra space to make it easier to read. As you can see, the *Lisp compiler was able to
compress the * and + operations into a single step by using the Paris floating-point
add/multiply instruction cm:f-add-mult-11. (The rest of the code handles bookkeeping
details such as reserving stack space and defining the temporary pvar that will be returned.)
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Displaying Specific Compiled Code

If you just want to see the expansion of a particular section of code, the
slc::*show-expanded-code* variable may not suit your purposes. To examine the expanded
form of a particular piece of code, you can use two Common Lisp operations, pprint and
macroexpand-1:

> (setq slc::*show-expanded-code* nil)

> (let ((*compiling* t))

(pprint (macroexpand-1 '(*set (the single-float-pvar a)

(the single-float-pvar b)))))
(PROGN ;; Move (coerce) source to destination - *set.

(CM:MOVE (PVAR-LOCATION A)

(PVAR-LOCATION B)

32)
NIL)

(In this example I've included the type declarations so that the +!! form will fully compile.)

There are two things to keep in mind when using pprint and the macroexpanding functions
to display *Lisp code:

* The *Lisp compiler must be enabled (it is by default). To enable the compiler, type:

(setq *compilep* t)

* The *Lisp compiler will only compile macroexpanded forms when the global
variable *compiling* is bound to t. You should use let to temporarily bind this
variable, as in the example above.

Pretty Print Macroexpand - ppme

Typing the entire (let ((*compiling* t)) (pprint (macroexpand-1 ... ))) expression around every
piece of code you that wish to compile is a clumsy way to view your compiled code. For
this reason, the compiler includes a macro that you can use to display the expanded form
of a piece of code. Called ppme (short for "pretty print macroexpand"), it essentially
performs a call to pprint and macroexpand-1, as in the above example.

You can call ppme with almost any piece of *Lisp code. For example:

> (ppme (*set (the single-float-pvar a)
(+!! (the single-float-pvar b)

(the single-float-pvar c))))
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The resulting compiled code looks like this:

(progn
;; (*set (the single-float-pvar a) (+!! (the single-fl...

(cm:f-add-3-11 (pvar-location a)
(pvar-location b)

(pvar-location c)
23

8)

nil)

There is one limitation, however. The ppme macro only expands a piece of code when the
outermost operator of the code is a macro. To expand other *Lisp expressions, such as

(+!! (the single-float-pvar b)

(the single-float-pvar c))

enclose them in a *Lisp macro such as *set, as shown in the example above.

Depending on the features of your front end's Lisp programming environment, there may
be other tools that you can use to view expanded code. In general, any tool that
macroexpands a section of code may be used to view the compiled form of *Lisp code (so
long as the outermost form of the code is a macro, of course). For example, on Symbolics
front ends the editor includes the commands Macro Expand Expression. (Control-Shift-M)
and Macro Expand Expression All (Meta-Shift-M) which are used for expanding macros;
these tools will also allow you to view the code generated by the *Lisp compiler.

5.4 *Lisp Data Types and Declarations

Just as in Common Lisp, declarations are optional in *Lisp; you don't need to provide type
declarations to get your *Lisp code to run. However, if you want to compile your *Lisp
code you must provide complete declarations for all parallel variables and functions in your
program. In this section, we'll take a quick look at *Lisp data types and type specifiers, and
then show how you go about including declarations in your programs.
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5.4.1 Pvar Type Specifiers - ( pvar typespec )

*Lisp includes all the front-end data types of Common Lisp, and thus also includes the
standard type specifiers for those types. However, as we've seen not all front-end data
types have pvar equivalents. This section shows you examples of legal type specifiers for
each of the pvar data types of *Lisp.

Type specifiers for pvars are typically of the form

( pvar typespec )

where typespec is a type specifier for one of a specific set of scalar data types.

For each of the pvar data types listed below, I've included the basic type specifier for pvars
of that type, as well as additional "shorthand" specifiers. (The symbol <=> indicates
equivalent forms.) These shorthand specifiers can be used in place of the longer (pvar ...)
forms wherever a type specifier is required.

boolean - Either t or nil for each processor.

(pvar boolean)

boolean-pvar

unsigned-byte - A non-negative integer for each processor.

(pvar (unsigned-byte length))
(unsigned-pvar length)
(field-pvar length)
unsigned-byte-pvar

signed-byte - A signed integer for each processor.

(pvar (signed-byte length))
(signed-byte-pvar length)

signed-byte-pvar

defined-float - A floating-point number for each processor.

(pvar (defined-float significand-length exponent-length))
(float-pvar significand-length exponent-length)

single-float-pvar <=> (pvar (defined-float 23 8))

double-float-pvar <=> (pvar (defined-float 52 11))
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complex -A complex number for each processor.

(pvar (complex (defined-float significand exponent))

(complex-pvar significand exponent)
single-complex-pvar

<=> (pvar (complex (defined-float 23 8))

double-complex-pvar

<=> (pvar (complex (defined-float 52 11))

character - A Common Lisp character for each processor.

(pvar character)

character-pvar

(pvar string-char)

string-char-pvar

array - A Common Lisp array for each processor.

(pvar (array element-type dimension-list))
(array-pvar element-type dimension-list)

(vector-pvar element-type length)
<=> (pvar (array element-type (length)) )

structure - A Common Lisp structure object for each processor.

(pvar structure-name)
structure-name-pvar

Note: structure-name must be a structure defined by the *Lisp *defstruct macro.

front-end - A reference to a front-end value for each processor.

(pvar front-end)

front-end-pvar

Note: Pvars of this type are created by the *Lisp front-endll operator.

general - A value of any data type for each processor.

(pvar t)

(pvar *)

general-pvar
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5.4.2 Using Type Declarations

There are three ways of providing type declarations in *Lisp:

* global type declarations, made with *Lisp's *proclaim operator

* local declarations, made with Common Lisp's declare operator

* type declarations made "on the fly" with Common Lisp's the operator

We'll take a quick look at of each of these declaration operators in this section.

Global Type Declarations - *proclaim

The *proclaim operator is much like Common Lisp's proclaim, but is used to provide type
information to the *Lisp compiler.

The *proclaim operator is used to declare the data type of:

* permanent pvars allocated by *defvar

* scalar variables used in pvar expressions

* values returned by user-defined functions

o Co : isp s proclaim fo The aim operar passes tpe

When used to declare the type of a permanent pvar, *proclaim takes the form

(*proclaim ' (type pvar-type-specifier pvar-name pvar-name ... ))

as in the following examples:

(*proclaim ' (type single-float-pvar float-pvar))

(*defvar float-pvar 3.14)

(*proclaim ' (type (pvar (signed-byte 8)) integer-pvar-1

integer-pvar-2))
(*defvar integer-pvar-1 -5)
(*defvar integer-pvar-2 26)
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Similarly, when used to declare the type of scalar variables used in pvar expressions,
*proclaim takes the form

(*proclaim '(type scalar-type-specifier var-name var-name ... ))

as in:

(*proclaim '(type single-float account-balance))

(defvar account-balance 100) ;; Scalar variable, not a pvar
(*set interest (*!! account-balance .05))

(*proclaim '(type complex pointl point2) )
(defvar pointl #C(1.0 2.0))

(defvar point2 #C(4.0 5.0))

(*set total-real-length
(+!! (realpart!! pointl) (realpart!! point2)))

When used to declare the returned type of a user-defined function, *proclaim takes the form

(*proclaim

(ftype (function argument-types returned-value-type) function-name))

as in:

(*proclaim '(ftype (function (pvar pvar) (pvar single-float))

average!!))
(defun average!! (pvarl pvar2) (/!! (+!! pvarl pvar2) 2))
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Local Type Declarations - declare

For local declarations within your *Lisp code, use Common Lisp's declare operator.

The declare operator is used to declare the data type of:

* local pvars created by *let and *let*

* arguments to user-defined functions

* local variables used in pvar expressions

When used to declare the type of a local pvar, declare takes the form

(declare (type pvar-type-specifier pvar-name pvar-name ...

as in:

(*let ((float-pvar (random!! 1.0))

(field-pvar (random!! 10)))

(declare (type single-float-pvar float-pvar))

(declare (type (field-pvar 8) field-pvar))

(+!! float-pvar field-pvar))

When used to declare the types of arguments to user-defined functions, declare resembles
the argument type declarations used in other computer languages:

(defun pvar-function (pvarl pvar2)

(declare (type single-complex-pvar pvarl))

(declare (type (signed-byte-pvar 16) pvar2))

(*!! pvarl pvar2))

The declare operator is also recognized by *Lisp in all the locations that Common Lisp
permits, so you can use it to declare the data type of local variables used in pvar
expressions. For example, you can declare the type of a looping variable, as in:

(do ((i 0 (+ i 2)))

((>= i 10))
(declare (type fixnum i))

(*set sum-pvar (+!! sum-pvar i)))
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In-line Type Declaration- the

You can also use the Common Lisp the operator to make in-line declarations in your code,
for cases where neither *proclaim or declare can be used. (As, for example, when you need
to declare the data type returned by a Common Lisp expression.)

T The hA nnerptnr hr the fnllnuwino fnrm-

(the type-specifier expression)

as in

(*set data-pvar
(the (unsigned-byte 32) (+ normal-limit extra-limit)))

5.5 Type Declaration and the Compiler

There are a number of basic principles governing the use and effects of type declarations:

A type declaration is a promise made by you to the *Lisp compiler, guaranteeing
that variables and functions declared to be of a specific type will never have values
of any other data type.

For example, the declare form in

(defun max-float (pvarl)

(declare (type double-float-pvar) pvarl)

(*max pvarl))

promises that max-float will always be called with a double-float pvarl argument.

The *Lisp compiler uses this information only to turn your code into more efficient

Paris instructions. Type declarations don't change the semantics of your code. In
particular, type declarations do not cause the *Lisp compiler to perform coercions.

For x.Ynmnli the the fnrm in
' VBoo, I .._._. .

I (the single-float-pvar any-pvar)

does not automatically convert any-pvar into a single-float-pvar.
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* You must include any needed conversions yourself, via operators such as coercell
as in

(the single-float-pvar

(coerce!! any-pvar 'single-float-pvar))

* It is an error for a *Lisp program to violate its own declarations. If your code
doesn't match your declarations, the results you obtain will be unpredictable.

Chanino a r ir.lnratinn in vlur norne nre dlp ne nnt nffcnt the rnmnilpd fnrm nf

your code. If you change a declaration, you must recompile any code that depends
on that declaration to see the effect of the change.

a Length expressions in pvar type declarations are compiled in such a way that they
are evaluated at run time. This means you can use declarations such as

(pvar (unsigned-byte byte-size))

where the symbol byte-size is a variable that determines the byte size used
throughout your code. Using evaluated expressions in this fashion is, of course, not
as efficient as using constant-sized declarations.

Warning: This is a *Lisp extension to Common Lisp, and is valid only within
pvar declarations. For example:

> (defun foo (x)
(declare (type (unsigned-byte byte-size) x))
(print x))

> (compile 'foo)
;;; Warning: Illegal type specifier

;;; in (TYPE (UNSIGNED-BYTE BYTE-SIZE) X)

The (unsigned-byte byte-size) declaration signals a warning because Common
Lisp does not recognize this kind of type specifier.

5.5.1 *Lisp Code That Won't Fully Compile

Some *Lisp code can not be completely compiled by the *Lisp compiler. This includes:

* *Lisp code with undeclared pvars, functions, or scalar expressions

* *Lisp code that uses general pvars (pvars of type (pvar t) or (pvar *))
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5.6 Example: Compiling and Timing a *Lisp Function

As an example of the tools we've seen in this chapter, let's take a simple *Lisp function,
declare it, compile it, and time it to see how fast it runs.

The function we'll use is:

(defun add-mult! ! (a b c)

(*!! (+!! a b) c))

Let's assume that we want the add-multill function to take single-precision floating-point
pvars as arguments, and return a single-float pvar as a result. The definition of add-multil
with the appropriate declarations added is

> (*proclaim '(ftype (function (pvar pvar pvar)
(pvar single-float))

add-mult!!))

> (defun add-mult!! (a b c)

(declare (type (pvar single-float) a b c))
(*!! (+!! a b) c))

Now we can compile this function and see how its speed improves. We'll use the Paris
timing operator cm:time to see the difference in speed.

The cm:time macro takes a single Lisp form (either *Lisp or Common Lisp) as its
argument, and uses the timing facility of the CM to provide an accurate description of the
time taken to execute that form.

For example, we can time a call to the interpreted version of add-multll like this:

> (cm:time (add-mult!! (!! 2.0) (!! 4.0) (!! 7.0)))

Evaluation of (ADD-MULT!! (!! 2.0) (!! 4.0)

took 0.005786 seconds of elapsed time,

during which the CM was active for 0.002159

or 37.00% of the total elapsed time.

(!! 7.0)))

seconds
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When you're timing your *Lisp code, there are three important numbers to watch for:

· the elapsed time (the total time taken to execute the supplied Lisp form)

* the CM active time (the amount of time the CM was actively processing data)

* the percentage utilization of the CM (what percentage of the elapsed time the CM
was active)

In the example above, the CM utilization is 37% of the total elapsed time, which means that
the CM was busy for only about a third of the total time it took to execute the Lisp
expression.

Of course, the function add-multll executes so quickly that using cm:time on a single
function call doesn't give a good sense of how fast the function executes. Let's define a
function that calls add-multll a thousand times, and use that to help time the function itself.

> (*proclaim '(type (pvar single-float) my-float-pvar))

> (*defvar my-float-pvar (!! 0.0))
> (defun test-loop ()

(dotimes (i 1000)

(*set my-float-pvar

(add-mult!! (!! 2.0) (!! 4.0) (!! 7.0)))))

Now let's time a call to test-loop:

> (cm:time (test-loop))

Evaluation of (TEST-LOOP) took 4.678420 seconds of elapsed

time, during which the CM was active for 2.059298 seconds

or 44.00% of the total elapsed time.

This is the result using interpreted *Lisp code. The total elapsed time was four and a half
seconds, with the CM active less than half that time.
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Now let's compile test-loop and add-multll and time the resulting compiled functions.

> (compile 'test-loop)
> (compile 'add-mult!!)

> (cm:time (test-loop))

Evaluation of (TEST-LOOP) took 2.120245 seconds of elapsed

time, during which the CM was active for 1.785779 seconds

or 84.00% of the total elapsed time.

This time it took about two seconds to execute the Lisp expression, with the CM busy more
than eighty percent of the time. Obviously, compiled code has advantages both in speed of
execution and in more complete utilization of the CM.

5.7 Common Compiler Warning Messages

This section describes the compiler warning messages you're most likely to see as you start
using the *Lisp compiler, along with the most common reasons for getting these warnings.

5.7.1 Compiler Can't Find Type Declaration...

By far the most common compiler warning is the "compiler can't find type declaration"
message. This warning is signaled when your code lacks a type declaration for a variable
or function that is needed to fully compile your code. For example:

> (setq *warning-level* :high)

> (defun add-constant (pvar c) (+!! pvar c))

> (compile 'add-constant)

;;; Warning: *Lisp Compiler: While compiling PVAR in function

;;; ADD-CONSTANT: The expression (+!! PVAR C) is not compiled

;;; because the Lisp compiler cannot find a type declaration

;;; for the symbol PVAR.

Every pvar in your code must have a type declaration, either by a local declaration operator
such as declare or the, or by the global declaration operator *proclaim. But simply declaring
all your pvars is not sufficient. You must also declare the type of any scalar variables that
are used in your *Lisp code.
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For example, if we add a declaration for pvar to add-constant, as in

> (defun add-constant (pvar c)

(declare (type single-float-pvar pvar))

(+!! pvar c))

The function still will not compile:

> (compile 'add-constant)
Warning: *Lisp Compiler: While compiling C in function

ADD-CONSTANT: The expression (+!! PVAR C) is not compiled

because the *Lisp compiler cannot find a type declaration

for the symbol C.

We must also add a declaration for the scalar variable c:

> (defun add-constant (pvar c)

(declare (type single-float-pvar pvar)

(type single-float c))

(+!! pvar c))

> (compile 'add-constant)
ADD-CONSTANT

5.7.2 Compiler Can't Determine Type Returned by...

A similar warning is the "compiler can't determine type returned by" message. This
warning is signaled when your code lacks a declaration for returned value of a function:

> (defun add-mult-constant (pvar c m)
(declare (type single-float-pvar pvar)

(type single-float c m))
(*!! (add-constant pvar c) m))

> (compile 'add-mult-constant)
Warning: *Lisp Compiler: While compiling

(ADD-CONSTANT PVAR C) in function ADD-MULT-CONSTANT:
The expression (*!! (ADD-CONSTANT PVAR C) M) is not
compiled because the *Lisp compiler cannot determine
the type of value returned by the expression
(ADD-CONSTANT PVAR C).
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Every user-defined function in your code must have a type declaration for its returned
value. This is typically provided by a *proclaim form:

> (*proclaim
(ftype (function (pvar t) single-float-pvar) add-constant))

With this declaration included, the add-mult-constant function will now compile:

> (defun add-mult-constant (pvar c m)

(declare (type single-float-pvar pvar)

(type single-float c m))

(*!! (add-constant pvar c) m))

> (compile 'add-mult-constant)
ADD-MULT-CONSTANT

5.7.3 Compiler Does Not Compile Special Form. . .

The *Lisp compiler recognizes and compiles a small set of Common Lisp special forms
without any special declarations. These forms include compiler-let, let, let* and progn.
Other special forms require a type declaration indicating the data type they will return. For

. example:

> (defun choose (pvar cond vl v2)

(declare (type single-float-pvar pvar)

(type boolean cond) (type single-float vl v2))

(*set pvar (if cond vl v2)))

> (compile 'choose)

;;; Warning: *Lisp Compiler: The expression

;;; (SLC::*2!! (THE (PVAR #) (ADD-CONSTANT PVAR C)) (!! M))

;;; in function CHOOSE is not compiled because

;;; The *Lisp compiler does not yet compile the special form

;;; IF. Adding a type declaration to the expression

;;; (IF COND V1 V2),

;;; such as (THE (PVAR SINGLE-FLOAT) (IF COND V1 V2))

;;; will allow the *Lisp compiler to compile the expression,

;;; and make this warning go away.
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Adding a the type declaration to the if form allows this function to compile:

Adding a the type declaration to the if form allows this function to compile:

4 IJ:...... k4 .5ALGI· CAIC ..................... 1·~ .. o ...... 
- 6ucA=.un %JAWuueW %FVCL L-UL1 V VJ

(declare (type single-float-pvar pvar)
(type boolean cond) (type single-float vl v2))

(*set pvar (the single-float (if cond vl v2))))

> (compile 'choose)
CHOOSE

5.7.4 Compiler Does Not Understand How to Compile...

Some *Lisp functions will not compile properly if passed pvar arguments that are declared
to be of varying size (for example, pvars of type (defined-float * *)). For example:

> (defun pack-pvar (pvar)
(declare (type (pvar (defined-float * *)) pvar))
(*pset :no-collisions pvar pvar (enumerate!!)))

> (compile 'pack-pvar)
;;; Warning: *Lisp Compiler: While compiling PVAR in function
:;; PACK-PVAR: The exoression

(*LISP-I::*PSET-1 :NO-COLLISIONS PVAR PVAR ...)
is not compiled because *PSET does not understand how to
compile pvars with element-type defined-float,

; varying length mutable pvars can not currently be
compiled correctly.

Changing the declaration to a fixed-size type (a type specifier that does not have any *'s)
will allow this function to be compiled:

> (defun pack-pvar (pvar)
(declare (type (pvar single-float) pvar))
(*pset :no-collisions pvar pvar (enumerate!!)))

> (compile 'pack-pvar)
PACK-PVAR
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5.7.5 Function Expected a... Pvar Argument but Got...

Finally, the compiler will also catch misdeclared arguments, signaling a warning when a
function receives arguments of an incorrect type:

> (defun char-value (char-pvar)
(declare (type character-pvar char-pvar))
(int-char!! char-pvar))

> (compile 'char-value)
;;; Warning: While compiling CHAR-PVAR in function CHAR-VALUE:

;;; Function INT-CHAR!! expected an integer pvar argument

;;; but got a character pvar argument.

In this case, the function char-value is intended to convert a character pvar to an integer
pvar, but is written so that it makes a call to int-charli, which expects an integer
(unsigned-byte or signed-byte) pvar argument. Changing this function by substituting the
correct char-intil function for int-char!l eliminates the warning:

> (defun char-value (char-pvar)

(declare (type character-pvar char-pvar))
(char-int!! char-pvar))

> (compile 'char-value)
CHAR-VALUE

5.8 Summary: The Compiler as a Programming Tool

In this chapter, we've seen that:

* The *Lisp compiler is invoked automatically whenever you compile code.

* The *Lisp compiler generates Lisp/Paris code that is much more efficient than
interpreted *Lisp code.

* To fully compile your code, the *Lisp compiler needs type declarations for each
parallel variable, function, and macro in your code, as well as for scalar variables
used in pvar expressions.

* These type declarations resemble the type declarations of Common Lisp, and there
are declaration forms for each of the pvar data types in *Lisp.
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* The *Lisp compiler includes a number of options, such as *safety*, that allow you
to control the way your code is compiled.

* The compiler option *warning-level* allows you to request that the compiler warn
you when it can't locate the declarations it needs to compile a section of code.

* Because the *Lisp compiler macroexpands *Lisp code into Lisp/Paris code, you
can use tools such as macroexpand to see the Paris code the compiler generates.

* You can use the Paris operator cm:time to see the difference in speed between
interpreted and compiled code.

That's it for the programming and compiling tools of *Lisp. In the next chapter, we'll look
at some sample *Lisp functions that use the tools and techniques we've seen in previous
chapters to perform useful (and perhaps surprising) tasks.
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"Example is always more efficacious than precept. "
Samuel Johnson

Chapter 6

*Lisp Sampler A Scan in Four Fits

In this chapter, we'll look at four short *Lisp examples that perform simple, useful tasks.
To give this chapter some continuity, I'll focus on one of the most unique and powerful
tools of *Lisp: the scanil operator (which we looked at briefly in Section 3.5). The scanil
operator can be used in a variety of ways, some of which may suprise you if you're new
to the techniques of parallel programming. We'll see a number of uses for scanil in the
"fits" of code below, many of which can be adapted for use in your own code. Of course,
I'll also be using other *Lisp operations, so from these examples you'll be able to get a
sense of how you can combine *Lisp operators to perform specific tasks in your programs.

6.1 Fit the First: Adding Very Large Integers

In *Lisp you can define integer pvars of any size, and add them in parallel:

> (pref (+!! 12345678901234567890 87654321098765432109) 0)
99999999999999999999

But if you have extremely large integers to add (longer than, say, forty digits), this isn't
really an efficient way to do it. There's no rule, however, saying that you have to add
numbers by storing them one-per-processor. You can divide a very large integer up into its
individual bits, and store the bits one-per-processor (see Figure 8). You can then use *Lisp
operations to perform a parallel addition of these pvars, using all the CM processors.
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Processor n 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X]1 .. I0 111 0|1|1 0 | 01001 101 111

Figure 8. Very large integer stored as a pvar with a single bit value for each processor.

Let's assume that we have two large integers, stored one bit per processor, as described
above. This is the same as saying that we have two integer pvars (or, to be more precise,
unsigned-byte pvars) of length 1, each containing the bits of a very large binary number,
one bit per processor. We'll assume that the bits of these pvars are stored in send-address
order (that is, with the lowest order bit stored in the processor with a send address of 0).

To add these pvars, we use the rules of binary addition:

* If both source pvars contain 0 for a processor, the result will be 0 for that processor.

* If one source pvar contains 1, and the other 0, the result will be 1.

* If both source pvars contain 1, the result is 0 with a carry of 1.

* A carry value is propagated forward, negating the result for each subsequent
processor, until it reaches a processor with 0 in both sources (see Figure 9).

Processor n

Pvarl E I ...
Pvar2

Result [o] .
[O] ... ·

13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101 01 110101011 1 1 1 

|000 ! 1° 1|0 1|11 o 1 I1 lo|

--- carry 1 - -- carry - 1

ResuloI~1t Ir I.

Figure 9. Addition example, showing the propagation of carry bits.

The hardest part of the addition is keeping track of the carry values, and incorporating them
into the final result. However, we can easily keep track of them by using the segmented
scanning feature of scanll that we saw in Section 3.5.1.
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In essence, processors where both sources are 1 and processors where both sources are 0
define "segments" within which carry values are propagated. The carry values start at pairs
of l's and end at pairs of O's, affecting all values in between. We can use parallel boolean
operations to determine where these segments begin and end, and then use a segmented
scan! to propagate the effects of the carry bits.

Here's a function that does this:

> (defun very-long-add!! (bit-pvarl bit-pvar2)

(declare (type (field-pvar 1) bit-pvarl bit-pvar2))

(*let ((zero-zero (=!! 0 bit-pvarl bit-pvar2))

(one-one (=!! 1 bit-pvarl bit-pvar2))

carry-segments will-receive-carry dest)

(declare

(type boolean-pvar zero-zero one-one)

(type boolean-pvar carry-segments will-receive-carry)

(type (field-pvar 1) dest))

; Determine points at which carries start and end

(*set carry-segments

(or!! (zerop!! (self-address!!)) zero-zero one-one))

; Determine processors that will be affected by a carry

(*set will-receive-carry
(scan!! one-one 'copy!!

:segment-pvar carry-segments :include-self nil))

; Exclude processor zero, because it can't get a carry

(*setf (pref will-receive-carry 0) nil)

; Perform the addition

(*set dest

(if!! (or!! one-one zero-zero)

; Pairs of l's and O's produce 1 with carry, else 0

(if!! will-receive-carry 1 0)

; All other values will be 0 with carry, 1 otherwise

(if!! will-receive-carry 0 1)))

dest))

The call to scanil is the real heart of this algorithm. The rest of the function is simply setup
code to determine the exact boundaries for the scan, and cleanup code that uses the scan
result to calculate the final value for each processor. It's quite common for a function that
uses scanil to have this form: setup code, the scan!! itself, then cleanup code. We'll see
other examples of this later on.
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Now, since the bit pvars we'll be using have the least significant bit stored in processor o,
we'll want a function that displays these pvars with this bit on the right, rather than on the
left, as ppp would display them.

Here's a definition for a function that does this, called pbp (short for print-bit-pvar):

> (defun pbp (pvar &key (length 20) title) "Print Bit Pvear"

(*let ((display-pvar
(if!! (<!! (self-address!!) length)

(pref!! pvar (-!! length (self-address!!) 1))

0)))
(ppp display-pvar :end length :title title))

(values))

The pbp function takes a pvar, a length, and a title, and prints the specified number of bit

values with the low-order bits on the right. It uses the communication operator pref!! to
make a copy of the specified part of the pvar with its values "flipped" end for end.

We can define a simple bit pvar with a value of 1 for the first 12 processors, and then use
both ppp and pbp to display the first 20 values of this pvar:

> (*defvar bits (if!! (<!! (self-address!!) 12) 1 0))
BITS

> (ppp bits :end 20) ; low-order bits on left

> (pbp bits :length 20) ; low-order bits on right
...... . ........1 1 1 1 1 1 
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Now, to test very-long-addl!, we'll write a function that creates two bit pvars, displays
them, and adds them.

> (defun test-very-long-add ()
(let ((lengthl (+ 12 (random 5)))

(length2 (+ 12 (random 5))))

(*let ((bit-pvarl 0) (bit-pvar2 0))

(declare (type (field-pvar 1) bit-pvarl bit-pvar2))

; Store random binary numbers in the bit pvars
(*when (<!! (self-address!!) lengthl)

(*set bit-pvarl (random!! 2)))

(*when (<!! (self-address!!) length2)

(*set bit-pvar2 (random!! 2)))

; Display the two binary numbers

(pbp bit-pvarl :length 20 :title "Bit-pvar 1")

(pbp bit-pvar2 :length 20 :title "Bit-pvar 2")

; Display the result of adding them

(pbp (very-long-add!! bit-pvarl bit-pvar2)

:length 20 :title "Result "))

(values)))

Here's the actual output of two sample calls to the test-very-long-add!! function:

> (test-very-long-add)
Bit-pvar 1: 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1

Bit-pvar 2: 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0
Result : 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1

> (test-very-long-add)

Bit-pvar 1: 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1

Bit-pvar 2: 0 0 0 00 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0
Result : 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1

Obviously, we're only adding numbers of 12 to 17 bits in these examples, but
very-long-addll can be used without modification to add numbers with thousands or even
millions of bits, limited only by the number of processors that you are currently using.

expression without affecting the value tha t reion returns. likp hich prints a
pvar and then returns nfl, the pppfl funcion pr:is a pvr and .... t u hsa

.4 i:rpore A m p E"
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6.2 Fit the Second: A Segmented news!! Function

In Chapter 3 we looked at router and grid communication, and I pointed out that grid
communication is faster because of its regularity: all values move in the same direction
across the grid. The scanl function is also preferable to using the router, for the same
reason: it's faster and more efficient. But scanning is much more flexible than grid
communication. You can use scan!! to write data-movement operations that have the speed
of grid communication operations, yet at the same time allow you to rearrange the values
of your pvars in router-like ways.

For example, the grid communication operator news!l doesn't have a :segment-pvar
argument like scan!!, but you can use segmented scanll calls to perform newsll-like shifts
of data in a segmented manner.

As a specific example, let's take the pvar returned by (self-addressll) as our "data" pvar:

> (ppp (self-address!!) :end 20 :format "2D ")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and suppose that we have a segment pvar with the following values (for clarity, I've used
the :format argument of ppp to replace nil values with dots):

> (ppp segment-pvar :end 20 :format " -:[.~;T~] ")

T T . . T . . .T . . . T . . . T . . .

We can use a segmented scanil to "rotate" each segment of the self-addressll pvar one
position to the right, producing:

0 3 1 2 7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18

Here's how to do it:

> (defun segmented-news!! (pvar segment-pvar)

(*let (end-segment-pvar
result
temp)

; Define a second segment pvar that has T's at

; the _end_ of the segments defined by segment-pvar
(*set end-segment-pvar

(scan!! segment-pvar 'copy!! :direction :backward
:segment-pvar t!! :include-self nil))
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; Last active processor in end-segment-pvar must be T

(*setf (pref end-segment-pvar (*max (self-address!!))) T)

; use scan!! to shift pvar values forward one position

(*set result
(scan!! pvar 'copy!! :segment-pvar t!! :include-self nil))

; use a backward scan to copy the last value

; of each segment back to the start of the segment

(*set temp

(scan!! pvar 'copy!! :segment-pvar end-segment-pvar

:include-self t :direction :backward))

; combine the copied last elements from temp pvar
; with the elements in the result pvar

(*when segment-pvar (*set result temp))

; return the resulting shifted pvar

result )

There are three scan!! calls in this function, each of which performs a particular task. In
order, the scans are:

• A "backward" copy!! scan with a segment pvar of t!! and :include-self nil. This

shifts the contents of segment-pvar "backwards" by one element, producing a
segment pvar that contains t for every processor that ends a segment. (Note that we
also have to use *seff to make sure this pvar has a t in the "last" active processor.)

* A "forward" copy!l scan with a segment pvar oft!! and :include-self nil. This shifts

each value of the supplied pvar argument "forward" by one step.

* A "backward" copy!! scan using the end-of-segment pvar we created, to copy the
last value of each segment back to the first location in the segment. Notice that this
time :include-self is t, to keep copied values from crossing segment boundaries.

The result, after we use *when and *set to combine things, is a copy of pvar with its contents

rotated forward by one element within each segment, as defined by segment-pvar.
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Here's an example of this function in action, using the example shown at the beginning of
this section:

> (*defvar segment-pvar (zerop!! (mod!! (self-address!!) 4)))

SEGMENT-PVAR

> (*setf (pref segment-pvar 1) T) ; set processor 1 as well

> (ppp (self-address!!) :end 20 :format "-2D ")

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> (ppp segment-pvar :end 20 :format " : [.-;T~] ")

T T . T . . . T . . T . . . T

> (ppp (segmented-news!! (self-address!!) segment-pvar)

:end 20 :format "-2D ")

0 3 1 2 7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18

..... .... .... ................................................... ............................. .......................-. : .
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By using a *defstruct pvar, a sort and a scan!! or two, we can simulate this algorithm, and
see what steps the router has to take to handle a "many collisions" get.

The *defstruct pvar is used to hold information about the data transfers that we make:

> (*defstruct gmc-data

(fetch-address nil :type fixnum)

(originating-address nil :type fixnum))

For each processor, the fetch-address slot of this pvar records the address from which the
processor is requesting a value, and the originating-address slot records the self address of
the processor itself, so that the data can be sent back to it.

The function we write will need to do the following:

* Create a gmc-data pvar containing the fetch-address and originating-address for
each active processor.

* Sort the values of this pvar by fetch-address, to gather together requests for data
from the same fetch-address, and at the same time "pack" the requests together
into low-address processors so that there are no gaps between them.

* Find the first processor in each group of similar requests, and do a "get" (prefll)
operation to retrieve values for just those processors.

* Do a scan!! to copy the retrieved values to all other processors in each group of
requests.

* Finally, do a "send" (*pset) operation to deliver the retrieved values to the
processors that requested them.

The entire algorithm can be written as a single function:

> (defun pref!!-many-collisions (data address)
(let ((number-of-active-processors (*sum 1)))
(*let ((sort-data (make-gmc-data!!

:fetch-address address
:originating-address (self-address!!))))

; Sort sort-data pvar by fetch-address and

; pack into low-address processors so it is contiguous

(*pset :no-collisions sort-data sort-data
(rank!! (gmc-data-fetch-address!! sort-data) '<=! !))
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; Select processors that contain data after the sort

(*all

(*when (<!! (self-address!!)

number-of-active-processors)

; Create segment pvar that is T for the first element

; of each group of elements with the same fetch-address

(*let ((beginning-of-segment

(or!! (zerop!! (self-address!!))

(/=!! (gmc-data-fetch-address!! sort-data)

(scan!! (gmc-data-fetch-address!! sort-data)

'max!! :include-self nil))))

fetched-data)

; Do a get only for the first element of each segment

(*when beginning-of-segment

(*set fetched-data

(pref!! data (gmc-data-fetch-address!! sort-data))))

; Use scan!! to copy fetched data to the other elements

(*set fetched-data

(scan!! fetched-data 'copy!!

:segment-pvar beginning-of-segment))

; Use originating-address slots to send the data back

; to the processors that originally requested it

(*pset :no-collisions fetched-data fetched-data

(gmc-data-originating-address!! sort-data))

; Return the redistributed data

fetched-data))))))

Here's an example of how you would call prefl-many-collisions:

> (*defvar collision-addresses (floor!! (self-address!!) 6))

COLLISION-ADDRESSES

> (ppp collision-addresses :end 28)

0000001111112222223333334444

> (ppp (pref!!-many-collisions (*!! (self-address!!) 3)

collision-addresses)

:end 28)

0 0 0 0 0 0 3 3 3 3 3 3 6 66 6 6 6 9 9 9 9 9 9 12 12 12 12
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There are two scanil calls in pref!!-many-collisions, each having a different set of
arguments:

* The first scanll call does a forward maxl scan of the sorted sort-data values, with
:include-self nil. This causes each processor to compare its own value with the
maximum value of all the preceding processors. Only processors that start a
segment of similarly addressed requests will see a difference between these values,
so this step quickly locates the first processor in each segment.

* The second scanl! call is a forward copyl! scan using the segment pvar derived
from the first scanl. The first processor in each segment has retrieved a value, so
this scanll operation copies that value to the other processors of the segment.

Notice how in this example we're using one type of scanl! call to determine the bounds for
another type of scanll call. It's the multi-faceted nature of scanll that makes this possible.

Notice also the combination of *pset and rank!! at the beginning of the
prefl!-many-collisions function. This is an important example of a pair of *Lisp functions
working in tandem to perform more than one operation. The rank!! function provides a
ranking of the fetch-address values in the sort-data pvar, and *pset uses this ranking to sort
the values in ascending order. The important point to notice, however, is that some
processors might be deselected when prefl!-many-collisions function is called. When rank!!
does its ranking, these processors are simply ignored. The result is that *pset "packs" all
the active values of sort-data into processors with low addresses, eliminating any "gaps"
caused by deselected processors.
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6.4 Fit the Fourth: Creating a "List" Pvar

While *Lisp does not have a direct parallel analogue of the list data structure, you can use
*Lisp operations to define a parallel data structure that has much of the flexibility of lists.
This example uses VP sets, router communication, and scanning to define a parallel data
structure with an arbitrary number of elements per processor, which I call a "list" pvar on
account of its flexible nature. (Lisp purists will most likely prefer some other name.)

This is accomplished by defining a new VP set that has sufficient processors to hold all the
elements of the list pvar, and by defining the list pvar in such a way that it is divided into
segments of elements, one segment for each processor in the original VP set. In this way,
each processor in the original VP set is assigned a "list" of elements for its use, of any
required length.

Here's the definition of the VP set:

> (def-vp-set list-vp-set nil

:*defvars ((segment-pvar nil) (elements nil)))

It is defined as aflexible VP set, meaning that its size and shape are determined at run time.
It has two associated pvars, an elements pvar that will contains the elements of the lists we
define, and a segment-pvar (as used in the scanil examples above) that will indicate with
a t value the beginning of each segment of list elements.

We'll also want a pair of permanent pvars that describe the start location and length of the
segment of elements assigned to each processor:

> (*defvar *list-start-processor*)

> (*defvar *number-of-elements*)

Version 6.1, June 1991

108
.. : ...: ····::: ··:, ··: '~lp i: .: :: : , .1.1 : ... . ., .- :: - ... . r:



''i~i:::iC~ ·~i~i:~::::i:~~~a·`·~':·:'·' '· :.- :r~·,;.... . ........ NX.,..... .... . ...... X. ..... ...~~~~~~-" :2: ··:W;:~:x:·,:::;::·:::~::::·::i~:i~i............... ........ .: .... ...... ···:·~::::~::~ ~ ~i~jl~jjii;:::;::··X·::··

Now, here is the macro that actually defines and allocates the list-vp-set for the duration
of a body of *Lisp code:

> (defmacro allocate-list-pvar (length value &body body)
'(let ((total-processors-required (*sum ,length)))

Allocate processors in list-vp-set for list elements
(allocate-processors-for-vp-set list-vp-set

(list (max *minimum-size-for-vp-set*

(next-power-of-two->= total-processors-required))))
(*with-vp-set list-vp-set

(*set segment-pvar nil elements nil))

Get send addresses of elements in that list-vp-set
that will contain the first element of each segment

(*let ((*list-start-processor*

(scan!! ,length '+!! :include-self nil))

(*number-of-elements* length))

;;; For processors that have requested a non-zero number

of elements, send the initial values to the first
element of the corresponding segments.

(*when (plusp!! ,length)

(*pset :no-collisions ,value elements
*list-start-processor* :notify segment-pvar))

;;; Use scan!! to copy the initial value to all elements

;;; in each segment.

(*with-vp-set list-vp-set

(*set elements

(scan!! elements 'copy!! :segment-pvar segment-pvar)))

;;; Evaluate body forms with list-vp-set defined

(progn ,@body )

;;; Deallocate the list-vp-set so that it can be reused.

(deallocate-processors-for-vp-set list-vp-set))))

Notice that the allocate-!ist-pvar macro simply defines the new VP set, but does not select
it; the body of code enclosed by the macro is free to select the list-vp-set whenever it is
needed.
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As an example of what you can do with a "list" pvar once you've defined it, here's a
function that prints out the first n lists in the list-vp-set:

> (defun print-lists (n)

(dotimes (i n)

(format t "-&( ")

(let ((start-address (pref *list-start-processor* i))

(length (pref *number-of-elements* i)))

(*with-vp-set list-vp-set

(dotimes (i length)

(format t "-D"

(pref elements (+ start-address i))))))

(format t ")")))

Finally, here's a test function that allocates the list-vp-set with a random set of list lengths,

calls ppp to display the first n lengths it assigned, and then calls print-lists to display the
first n lists in the list-vp-set:

> (defun test-lists (n)

(*let ((lengths (random!! 8)))
(ppp lengths :end n)
(allocate-list-pvar lengths (self-address!!)

(print-lists n))))

Here's what the output from test-lists looks like:

> (test-lists 6)

435432
(0000)
(111)
(22222)
(3333)
(444)
(55)

> (test-lists 6)

255104

(00)
(11111)
(22222)
(3)

(5555)
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While it's not a simple matter to dynamically change the size of the list assigned to each
processor, the "list" pvar has many of the advantages of the list data structure in Common
Lisp.

There are many applications where this ability to assign a "list" of elements to each original
processor comes in handy. For example, in simulating the behavior of subatomic particles,
a list pvar can be used to keep track of the particles that result from collisions or decay.

Another example is in parallel graphics programs, where a number of polygons must be
rendered (displayed on a screen). Each polygon can be broken down into triangles that are
easy to render, but each polygon may produce a different number of triangles. A list pvar
can be used to hold the set of triangles derived from each polygon, and then the entire list
pvar can be passed to a simple triangle-rendering algorithm for display.

6.5 Summary: There's More Than One Way to Scan a Pvar

In this chapter, we've seen that:

* You can use scan! to add extremely large integers.

* You can use the segmented version of scan!! to define other segmented operations.

* You can use scan!! along with *defstruct pvars, ranking tools, and communication
operators to increase the efficiency of your data transfer operations.

* You can use scanil along with the existing parallel data structures of *Lisp to
define new data structures that have the kind of flexibility that you need.

In short, there are many interesting and unusual things you can do with *Lisp: the examples
in this chapter are but a representative sample. The best way to learn about these unusual
tricks is by creating them yourself. Decide what kind of operation you wish to perform, and
then combine *Lisp operators to implement it.
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"Fish say, they have their stream and pond;
But is there anything beyond? "

Rupert Brooke

Chapter 7

Going Further with *Lisp

7.1 Topics We Haven't Covered

There are some *Lisp topics that we haven't covered in this Getting Started guide. You can
find out more about them by looking in the *Lisp Dictionary. They are described briefly
below.

Creating and Using Array Pvars

*Lisp has parallel equivalents of most of the array and vector operations of Common Lisp.
In this document, we've only seen one of these, make-arrayll. Section 1.5 of the overview
chapter in the *Lisp Dictionary provides a complete list of all array pvar operations in
*Lisp. Along with operations for array pvars, *Lisp includes specialized operations for
vector pvars and bit-array pvars, and parallel equivalents of Common Lisp sequence
operators, for example findll, lengthll, position!l, and substitutell. These are also listed in
Section 1.5.

Turning Array Pvars "Sideways"

If you use array pvars heavily in your *Lisp code, you may want to consider turning your
arrays "sideways." This operation changes the arrangement of data in your array pvars so
that the CM can access them more efficiently. For more information about "sideways"
arrays, see the dictionary entries for sideways-arefll and *sideways-array.
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Creating and Using *defstruct Pvars

In this guide, we've barely touched on the use of *defstruct for defining structure pvars, but
structure pvars are a powerful tool for defining your own parallel data types. For more
information about structure pvars and examples of how to create them, see the dictionary
entry for *defstruct.

Dynamically Allocating Blocks of CM Memory

Along with permanent, local, and temporary pvars, there is a fourth kind of pvar known as
a global pvar. Allocated by the *Lisp operator allocate!!, global pvars are used to allocate
and reference large amounts of CM memory within your *Lisp programs. Whereas you
will typically allocate permanent pvars one at a time, you can allocate dozens or even
hundreds of global pvars at one time, and store them in a list to be used whenever you need
them. For more information, see the dictionary entry for allocate!!.

Defining Segment Set Objects for Scanning

Along with the scan!! operator, there is a more advanced scanning function,
segment-set-scan!!, that uses a "segment set" data structure to define where the segments
of a pvar begin and end. These segment set data objects are created by the function
create-segment-set!!, and there are a large number of *Lisp functions for accessing the
contents of these segment set objects. For more information, see the dictionary entries for
segment-set-scan!! and create-segment-set!!.

Just For Fun: Controlling The Front Panel LEDs

Finally, *Lisp includes a function called *light which takes a boolean pvar and calls an
internal Paris function to set the state of the front panel LEDs of the CM. For more
information, see the dictionary entry for *light, and also the entries for the Paris operators
cm:iatch-leds and cm:set-system-leds-mode in the Connection Machine Parallel
Instruction Set (Paris) manual.
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7.2 Where Do You Go from Here?

I hope this Getting Started guide has given you the start you need towards proficient *Lisp
programming. Here are some suggested sources to which you can turn for further
information about *Lisp programming and more examples of *Lisp code:

The *Lisp Dictionary contains a complete list of all *Lisp functions and macros,
as well as information on type declarations and compiler options that you'll find
very handy.

* The directory Icm/starlisp/interpreterlf6100 contains a number of example *Lisp
files. The names of these files are listed in the file examples-def-file-set.lisp in this
directory.

* Your fellow *Lisp programmers are a good source of information, sample code,
and help in debugging recalcitrant programs. Ask around among the *Lisp people
you know for help and advice.

* Finally, you can contact Thinking Machines Corporation Customer Support for
help and advice on *Lisp programming, via the email address given in the front of
this guide.

May all your parentheses balance, and may all your CM processors be active!
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Appendix A

Sample *Lisp Application
:····r·,x·)~~~~~~~~~~~~~~~~~~~~~~~~R,1

This chapter contains commented source code for the cellular automata example used in
Chapter 1, along with extensions that make the system more generic. This file is also avail-
able on-line in the *Lisp software directory, in the file

/cm/starlisp/interpreter/f6100/cellular-automata-example.lisp

Check with your system administrator or applications engineer if you need help locating
this file.

A.1 Cellular Automata Example

CA Example From "Instant *Lisp" Chapter

by William R. Swanson, Thinking Machines Corporation

Load into *Lisp package

(in-package '*lisp)

;;; --- Global Variables ---

This defines a permanent pvar to hold the grid of cells

(*defvar *automata-grid* 0)

;;; Total number of states allowed per cell

(defvar *total-number-of-states* 10)

;;; Cell "neighborhood" to use for automata
(defvar *neighborhood* :neumann)
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;;;--- Simple Tools ---

;;; Function to display the grid

(defun view (&optional (width 8) (height 5))
(ppp *automata-grid* :mode :grid :end (list width height)))

;;; Functions to read/write individual cells

(defun read-cell (x y)
(pref *automata-grid* (grid x y)))

(defun set-cell (x y newvalue)

(*setf (pref *automata-grid* (grid x y)) newvalue))

;;; Function to set value of entire grid

(defun set-grid (newvalue)

(*set *automata-grid*

(mod!! newvalue *total-number-of-states*)))

;;; Function to randomly set the value of each cell

(defun random-grid ()

(set-grid (random!! *total-number-of-states*)))

;;; Tools to set up a fixed pattern:

(defun set-cells (cell-list value)

(dolist (cell cell-list)

(set-cell (car cell) (cadr cell) value)))

;;; Clear grid, set up "r-pentomino" pattern, and display

(defun init ()

(set-grid 0)

(set-cells '((2 2) (3 1) (3 2) (3 3) (4 1))
1)

(view))

;;; Tools to get information about neighboring cells.

;;; Count non-zero Von Neumann neighbors

(defun neumann-count (grid)
(+!! (news!! grid 0 -1) ;; north

(news!! grid 0 1) ;; south
(news!! grid -1 0) ;; west
(news!! grid 1 0) ;; east

)))
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;;; Count non-zero Moore

(defun moore-count (grid)

(+!! (news!! grid 0

(news!! grid 0 1)

(news!! grid -1 0)

(news!! grid 1 0)

(news!! grid -1 -1)

(news!! grid -1 1)

(news!! grid 1 -1)

(news!! grid 1 1)

)))

neighbors

-1)

; ;

,,

I,

,,

I,;;;;

;; north

south
west

east

northwest
southwest

northeast

southeast

;;; Count neighbors for current *neighborhood*

(defun neighbor-count ()

(*let ((grid (signum!! *automata-grid*)))

(ecase *neighborhood*

(:moore (moore-count grid))

(:neumann (neumann-count grid)))))

;;; Function to run the automata defined

(defun run (&optional (n 1))

(dotimes (i n)

(set-grid (one-step))))

by the function one-step.

;;; Function to run automata for n steps and display the grid.

(defun view-step (&optional (n 1))

(run n)

(view))

;;; Tool to check whether all the cells are dead (zero).

(defun deadp ()

(zerop (*sum (signum!! *automata-grid*))))

;;; --- Simple Automaton Example ---

;;; This automaton obeys the following rules:

;;; If a cell is:

EVEN - divide its value by 2

ODD - add 1 to its value and multiply by 2

(defun one-step ()

(if!! (evenp!! *automata-grid*)

(floor!! *automata-grid* 2)

(*!! (1+!! *automata-grid*) 2)))
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;;; "9 Life" automata, based on Conway's Game of Life ---

;;; Obeys the following rules:
;;; For each cell, count the number of non-zero neighbors.

;;; If it is <1, or >3, subtract 1 (zero cells remain zero).
;;; If it is 2 or 3, add 1

;;; Otherwise, do nothing

(defun one-step ()
(*let ((count (neighbor-count)))

(cond!!
;; When count is <1 or >3, subtract 1 if not zero.

((or!! (<!! count 1) (>!! count 3))

(if!! (zerop!! *automata-grid*)
*automata-grid*

(1-!! *automata-grid*)))

;; When count is 2 or 3, add 1

((<=!! 2 count 3) (1+!! *automata-grid*))

;; Otherwise, leave cells unchanged

(t *automata-grid*))))

;;; --- Extension of Material in Chapter 1 ---
;;; Tools to define and run generic automata:

;;; Macro that defines a named automaton

;;; as a list of two function objects.

;;; Init function sets up the *automata-grid*

;;; Step function calculates and returns single "step" of automata

(defmacro defautomaton (name &key init step)

'(progn

(defvar ,name)

(setq ,name (list '(lambda ,@init)

'(lambda ,@step)))
',name))

(defun init-function (automaton) (car automaton))
(defun step-function (automaton) (cadr automaton))
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;;; Definitions for the two automata we've already written:

(defautomaton four2one

;;; init function takes no arguments, and randomizes th

:init ((&rest ignore)

(setq *total-number-of-states* 10)

(random-grid))

;;; step function takes no arguments, and calculates on

:step ((&rest ignore)

(if!! (evenp!! *automata-grid*)

(floor!! *automata-grid* 2)

(*!! (1+!! *automata-grid*) 2))))

e grid.

e step

(defautomaton 9life

;;; init function takes optional arguments defining
;;; the current neighborhood, the initial pattern, and
;;; the value stored into cells that are part of the pattern
:init ((&optional (neighborhood *neighborhood*)

(start-pattern '((2 2) (3 1) (3 2) (3 3) (4 1)))
(start-value 1))

(setq *neighborhood* neighborhood
*total-number-of-states* 10)

(set-grid 0)
(set-cells start-pattern start-value))

;;; step function takes no arguments, and
;;; calculates a single step of the automaton
:step ((&rest ignore)

(*let ((count (neighbor-count)))

(cond!! ((or!! (<!! count 1) (>!! count 3))
(if!! (zerop!! *automata-grid*)

*automata-grid*

(1-!! *automata-grid*)))
((<=!! 2 count 3) (1+!! *automata-grid*))

(t *automata-grid*)))))

;;; --- Tools used to select an automaton to run ---

;;; Currently selected automaton

(defvar *current-automaton*)

;;; Function to select an automaton and initialize the grid

(defun setup (automaton &rest init-args)

(setq *current-automaton* automaton)

(initialize init-args))
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;;; :':: Function to call the in::::it function of the current automaton,
;;; and display the initial state of the grid.
(defun initialize (&optional init-args)

(apply (init-function *current-automaton*) init-args)
(view))

;;; Function to run the automaton for n steps and display the grid
(defun run (&optional (n 1) &rest step-args)

(dotimes (i n)

(set-grid

(apply (step-function *current-automaton*)
step-args)))

(view))

;;; The following sample session shows how to set up and
;;; run the automata defined by the above extensions:

;> (setup four2one) ;; Simple 4-2-1 loop automata

;5 7 9 3 2 3 1 9
;7 0 3 4 3 3 0 3
;9 4 2 3 8 9 2 5

;7 3 3 5 8 2 9 3
;1 7 9 1 8 6 9 6

;> (run)

;2 6 0 8 1 8 4 0

;6 0 8 2 8 8 0 8

;02 1 8 4 0 1 2

;6 8 8 2 4 1 0 8
;4 6 0 4 4 3 0 3

;> (run 50)

;4 1 0 2 2 2 1 0

;1 0 2 4 2 2 0 2
;0 4 2 2 1 0 2 4

;1 2 2 4 1 2 0 2
;1 1 0 1 1 4 0 4
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(setup 9life :neumann) ;; 9 Life, Neumann neighborhood

00000

00110
01100

00100
00000

(run)

00000

01210

01210

01100

00000

(run 50)
00000

00830
05070

04590

00000

0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0

(setup 9life :moore) ;; 9 Life, Moore neighborhood

00000

00110

01100
00100

00000

(run)
00110

01220
02000

01210

00000

(run 50)
00041

77211
00011

49210

00012

00

00

00

00

00

00

00

00

00

00

01

10
52

40
02
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Appendix B

A *Lisp/CM Primer

For those readers unfamiliar with the Connection Machine (CM) system, this chapter pro-
vides a brief overview of data parallel processing and the CM, and also describes how the
*Lisp language fits into the CM system.

B.1 Data Parallel Processing

Most computers are designed according to a serial processing model in which a single
computing unit, or processor, executes a single program one instruction at a time. The Con-
nection Machine system differs from such serial computing systems in two ways: the CM
is a parallel processing system, and on top of that the CM is a data parallel processing
system.

Parallel processing means having more than one processor executing your program at the
same time. The CM is a massively parallel processing system; it applies many thousands
of processors to the execution of your program simultaneously. The main difficulty with
executing programs in parallel lies in coordination: getting all those thousands of proces-
sors to work together efficiently in solving problems for you. The CM solves this problem
through data parallel processing.

In data parallel processing a large number of processors, each with its own associated por-
tion of memory, executes identical computing operations simultaneously. That is, each
processor performs the same identical operation on its own portion of memory. This avoids
the problem of coordinating the actions of all those processors; all processors do the same
thing at the same time. But while all processors perform the same operation, each processor
does so on a different piece of data. This is the key point of data parallel processing: it's
like executing the same program simultaneously on many thousands of pieces of data.

yersion 6.1, June 1991 127



128 Getting Started In *Lisp

Here are some examples of how data parallel processing can be used:

* A text-retrieval program might store a set of articles one-per-processor and then
have each processor search its particular article for a key word or phrase.

* A graphics program might arrange the pixels of an image one-per-processor and
then have each processor calculate the color value of its pixel, all at the same time.

* A finite-state automata program (for example, Conway's Game of Life) might
create a large number of cells stored one-per-processor. Each cell would have a
small number of possible states, and all the cells would be simultaneously updated
at each "tick" of a clock according to a set of fixed rules.

Programs written for data parallel processing systems have a unique style, and the process

of developing programs for these types of machines is called data parallel programming.

B.2 Data Parallel Processing on the CM

The model of data parallel processing used on the CM is as follows:

A single processor, called the front end, executes a program in either a high-level language
like *Lisp or in a low-level parallel programming language like Paris. As the program runs,
the front end transmits instructions and data to the CM (see Figure 10).

Figure 10. The data parallel programming model of the CM
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The processors within the CM store the data they receive in their own areas of memory, and
execute the instructions they receive simultaneously. The CM processors can also transmit
the results of their computations back to the front end.

In the Connection Machine system, the front end is a standard serial processing computer
such as a Sun Microsystems Sun-4, a Digital Equipment Corporation VAX computer, or a
Symbolics 3600 series Lisp machine.

As the front end executes its program, serial operations (those that don't require parallel
computation) are executed directly by the front end. Whenever the front end comes to an
operation that requires parallel computation, it transmits that instruction to the CM, to be
executed by the CM processors.

Thus, serial code within a program is executed on the front end computer in the usual man-
ner; parallel code is executed by the CM processors. The front end and CM operate
independently; the front end can be carrying out a serial computation (say adding up your
restaurant bill) while the CM carries out a parallel computation (such as working out what
the same order would cost you in every restaurant in the country).

For the Curious: How It's Really Connected

The picture presented in Figure 10 above is really a simplification. The actual physical con-
nection between the front end and the CM is more involved. (See Figure 11.)

The front end communicates with the CM via a Front End Bus Interface (FEBI) card. There
can be one or more of these cards in the front end; each provides a separate link to a CM.
Each FEBI is connected via an H-bus cable to a central switching board, the Nexus, inside
a CM. The Nexus acts as a manager for the resources of the CM, allowing a front end to
request that some, all, or none of the CM processors be made available for its use.

… r-….-- - - - - - - - - - - -1

CM Processors'

Processor
Memory

1]

Figure 11. The real connection between the front end and the CM
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Processors within the CM are grouped in sections, each of which is managed by a single
sequencer. It is the sequencer that handles the translation of instructions received from the
front end into instructions that the individual processors can execute. Depending on the
hardware you have available, there may be one, two, or four sequencers in the CM, each
with its own associated group of processors.

The Nexus makes processors available to the front end by grouping sequencers together.
Thus, if your CM has four sequencers, your front end may be connected to one, two, or all
four of them, depending on the state of the Nexus. This is all transparent to a user on the
front end, of course. Regardless of the number of sequencers that are in use, it always ap-
pears as if there is just one computational entity waiting for instructions at the end of that
long, black H-bus cable.

It's not essential that you know all this to program the CM; for most purposes the picture
of a single front end attached directly to a single CM is sufficient. However, keeping the
more complex picture of front-end/CM relations in the back of your mind can help you in
understanding the commands you use and the warning messages you see when you execute
your program on a CM.

B.3 Other Features of the CM System

Processor Selection

A program can specify that only a particular set of CM processors should carry out a se-
quence of operations. In the text retrieval example mentioned above, the processors that
find a particular word or phrase in their articles might be instructed to search further for
another word or phrase, while the remaining processors are idle. The set of processors that
is currently selected to perform CM operations is commonly referred to as the currently
selected set of processors, or often just as the active processors.

Processor Communication

Processors can pass messages to each other. The processors in the CM are connected by a
general message-passing network called the router. The router allows each processor to
send a piece of data to any other processor in the machine, with all processors transmitting
data simultaneously, in a process known as router communication. In addition, the CM sys-
tem has a faster form of communication called grid communication, which in certain cases
allows processors to pass values to each other more efficiently.
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Virtual Processors

Different CM models have different numbers of processors available for use by programs.
The hardware of a CM always has some fixed number ofphysical processors; this may be
4K, 8K, 16K, 32K, or 64K processors, but there is always some magic number that repre-
sents the actual number of processors that are "really there" inside the CM.

This does not limit the size of the data set that a program can use, however. If more proces-
sors are required than are available in the hardware of the CM, each physical processor
simulates the actions of two or more virtual processors by dividing up its memory accord-
ingly and performing each operation multiple times.

Because of this, the number of virtual processors must always be a power-of-two multiple
of the number of physical processors that are available within the CM. Thus a CM with
16K physical processors can operate as if it has 32K processors, 64K processors, etc.

A single CM can even simulate different numbers of virtual processors at the same time.
It is possible to define a number of virtualprocessor sets (VP sets), each having a different
number of virtual processors, and to use them together in the same program to manipulate
data sets of different sizes.

B.4 The *Lisp Language

Given that the Connection Machine system consists of two machines, a front end and the
CM itself, where does *Lisp itself fit into the picture?

B.4.1 A Front End Language with Side Effects on the CM

The *Lisp language is an extension of the Common Lisp standard; *Lisp programs run on
the front end just like any other Common Lisp program. However, *Lisp provides pro-
gramming constructs and data structures that are used to control the operations of the CM.
The *Lisp language can therefore be thought of as a front-end language with side effects
that cause computations to take place on the CM.
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Because *Lisp is an extension of Common Lisp, *Lisp programs must be run from within
a Common Lisp environment on the front end. For Sun front ends this is Sun Common
Lisp. For Digital Equipment Corporation VAX computers, Lucid Common Lisp is used.
On Symbolics 3600-series Lisp machines, *Lisp runs on top of Genera. No matter where
you develop and run your *Lisp code, however, you always have available to you the tools
and features of the Lisp programming environment provided by your front end.

B.4.2 Many Options for Executing Your Code

*Lisp comes in many forms, offering you many different ways to execute your code. You
can run your *Lisp code "live" on physical CM hardware, in either interpreted or compiled
form. You can also run your *Lisp code "simulated" on the *Lisp simulator, when CM
hardware is not available. You can run your *Lisp code in batch, and under timesharing.
This section describes each of these options in more detail.

The *Lisp Interpreter and Compiler

As with all Common Lisp systems, *Lisp has an interpreter and a compiler. The *Lisp in-
terpreter is simply the standard interpreter of your Common Lisp environment, extended
to understand and execute *Lisp operations. Each interpreted *Lisp operation makes one
or more calls to Paris, the system software of the Connection Machine.

The *Lisp compiler is likewise an extension of the Common Lisp compiler, and is invoked
whenever you compile a function or region of code. The *Lisp compiler translates *Lisp
code into highly efficient Lisp/Paris code.

The *Lisp Simulator

Obviously, you can only run your *Lisp code "live" on CM hardware when there are pro-
cessors available for you to use. Depending on the demand for the CM at your site, this
could mean either a long wait or working in the wee hours of the morning.

For this reason, there is also a *Lisp simulator. This is a Common Lisp program that runs
entirely on the front-end machine, simulating via software the operations of a permanently
attached CM. The simulator allows *Lisp code to be tested and debugged when Connection
Machine hardware is not available. The *Lisp simulator is freely available for the asking
from Thinking Machines Corporation Customer Support.
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The *Lisp simulator can be run at any time, regardless of whether hardware is available.
The simulator is designed to be compatible with the hardware version of *Lisp; programs
may be ported from one to the other with little or no modification. Also, the simulator is
written in portable Common Lisp, so it can be used on any computer with a Common Lisp
environment-CM hardware is not required to use the simulator.

Running *Lisp in Batch

*Lisp code can be executed in batch mode on the CM. Doing this requires that you add
extra code to make your program execute properly when run under batch processing. The
CM User Guide contains more information, along with examples of running *Lisp code
in batch.

Running *Lisp under Timesharing

*Lisp will also run on a CM that has timesharing enabled. To use *Lisp on a timeshared
CM, you must use a version of the *Lisp software that includes special timesharing support
code. Check with your systems administrator or applications engineer for more informa-
tion on running *Lisp under timesharing.
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Appendix C

All the Paris You Need to Know

The Connection Machine Parallel Instruction Set, affectionately nicknamed "Paris," is the
low-level parallel programming language of the CM. In using *Lisp on a CM there are a
few essential Paris operations with which you'll need to be familiar. This appendix pro-
vides a brief description of each of them. For more information about these operations, see
Chapter 7, "In the Lisp Environment," of the CM System User Guide.

C.1 Attaching to a CM: (cm:attach)

The Paris function cm:attach attaches you to a CM so that you can start sending it com-
mands. You can call it without any arguments, as in

> (cm:attach)

to attach to whatever CM hardware is available, or you can supply arguments that select
a specific CM size, front-end interface, and even a specific section of a CM. You can even
instruct Paris to wait (via the :wait-p argument) until the CM hardware is available.

> (cm:attach :8kp :interface 0) ;; Attach to 8K CM on interface

> (cm:attach :uccO :interface 0 ;; Attach to section 0 of CM

:wait-p t) ;; Wait until CM is available
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C.2 Finding Out What CM Resources Are Available

The Paris cm:finger function is used to find out what CM hardware is available at your site.
For example, a typical call to cm:finger might look like:

> (cm:finger)
CM Seqs Size Front-end I/F User Idle Command

LANA 0 4K cyclops 2 Zener 00:23 starlisp

LANA --- --- cyclops 0 (nobody)

256K memory, 32-bit floating point

1 free seqs on LANA -- 1 -- totalling 4K procs

This shows that the user "Zener" is attached to sequencer 0 of the CM named "LANA," and
is using *Lisp. It also shows that sequencer 1 of LANA is available, and that you can attach
to it via interface 0 from the front-end machine "cyclops." You can do this by typing

> (cm:attach :4kp :interface 0)

or simply by typing

> (cm:attach)

C.3 Finding Out if a CM is Attached: (cm:attached)

The Paris function cm:attached is a boolean test that checks whether a CM is currently
attached. It returns two values. The first value is t when a CM is currently attached and nil
otherwise. The second value is always nil unless an error occurred while looking for a CM.

For example:

> (cm:attached)
T

NIL

;; With a CM attached, returns...
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C.4 Timing *Lisp Code

The Paris function cm:time is used to time a section of code. You can wrap a call to cm:time
around any section of *Lisp code to see how long it takes to execute. The cm:time function
displays three kinds of information: the total elapsed time taken by your code, the amount
of time the CM was actually active executing your code, and the percentage of the total
elapsed time that the CM was active.

For example:

> (cm:time (sort!! (random!! 10) '<=!!))

Evaluation of (SORT!! (RANDOM!! 10) (QUOTE <=!!)) took 0.016738

seconds of elapsed time,

during which the CM was active for 0.011261 seconds

or 67.00% of the total elapsed time.

In this example, the total elapsed time was approximately 17 milliseconds, the CM active
time was about 11 milliseconds, and the percentage of CM active time versus elapsed time
was 67%.

C.5 Detaching from a CM: (cm:detach)

The Paris function cm:detach is the opposite of cm:attach, and is used to detach the CM so
that other users can attach to it. It is called without any arguments, as in

> (cm:detach)
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Appendix D

Sample *Lisp Startup Sessions

The following are annotated examples of *Lisp hardware and simulator sessions on a
Sun-4 front end, showing you the output that you're likely to see in starting up either ver-
sion of *Lisp. All annotations are included as comments, of the form #1...l#. (Note: These
comments are not displayed by *Lisp itself.) Commands that you type are preceded either
by the UNIX "%" prompt or the Sun Common Lisp ">" prompt.

D.1 *Lisp Hardware Startup Session

#I To start up *Lisp, you must type the UNIX-level command that loads

the *Lisp software. In this sample session, it is: I#

% /usr/local/starlisp

#I The first messages that you see are printed by Sun Common Lisp,
showing the version of Common Lisp you are using,

along with various copyright notices. I#

;;; Sun Common Lisp, Development Environment 3.0.5 (Rev 01), 30-Aug-90
;;; Sun-4 Version for SunOS 4.0

;;; Copyright (c) 1985, 1986, 1987, 1988 by Sun Microsystems, Inc., All

Rights Reserved

;;; Copyright (c) 1985, 1986, 1987, 1988 by Lucid, Inc., All Rights Re-
served

;;; This software product contains confidential and trade secret

;;; belonginformation belonging to Sun Microsystems. It may not be copied

;;; for any reason other than for archival and backup purposes.
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# Following this are messages printed by Thinking Machines' Corporation- 

#I Following this are messages printed by Thinking Machines' Corporation
software. #

#1 The first thing the *Lisp software does is look for the
"CM initializations" file. This file contains commands to perform any
required initialization steps, such as loading software patches. I#

;;; Loading source file "/cm/patch/initializations.lisp"

#1 Depending on the version of *Lisp you are using, you may or may not
see the next message, which informs you of the current state of
the Lucid Common Lisp compiler: I#

;;; You are using the compiler in production mode (compilation-speed = 0)
;;; Generation of argument count checking code is enabled (safety = 1)

;;; Optimization of tail calls is enabled (speed = 3)

#l One of the last things the "CM initializations" file does is print a
message telling you the current patch level of *Lisp (that is, the
total number of patch files that have been loaded). If you need to
report a problem to Thinking Machines Corporation Customer Support,
you should include the current patch level of your software, so
that Customer Support personnel will know which patches you have
loaded. In this case, 26 patches have been loaded, so *Lisp is at
"Patch Level 26". 1#

*Lisp Patch Level 26

#I Next, a header is printed showing the current version of the Thinking
Machines Corporation software that you are running. I#

;;; Connection Machine Software, Release 6-0 with *Lisp 6.0 and
;;; CM Graphics 2.0

;;; Copyright (C) 1990 by Thinking Machines Corporation.
;;; All rights reserved.

#I Finally, Lucid Common Lisp loads the file lisp-init.lisp from your

home directory, if you have already created such a file. I#

;;; Loading source file "/users/adminl/massar/lisp-init.lisp"
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#I Massar's lisp-init.lisp file includes commands to display information

about current the state of the Lucid and *Lisp compilers. I#

The Lucid Compiler is in DEVELOPMENT mode

The *Lisp Compiler is ON

The *Lisp Compiler Code Walker is ENABLED

The *Lisp Compiler safety level is set to FULL SAFETY

The *Lisp Compiler warning level is HIGH

The *Lisp Compiler *use-always-instructions* mode is OFF

#1 At this point, the *Lisp software is loaded, and you will see the
Lisp prompt ">", indicating that *Lisp is ready to accept commands.

The first thing to do is type the command (*lisp), to select the

*Lisp package: I#

> (*lisp)
Default package is now *LISP.

#l Now type the command cm:finger to see if any Connection Machine
hardware is available. In this case, the output of cm:finger is: I#

> (cm:finger)

CM Seqs Size Front end I/F User Idle Command

LANA --- --- cyclops 2 (nobody)

LANA --- --- cyclops 0 (nobody)

256K memory, 32-bit floating point

framebuffers on sequencers 0 1 (seqs 0 1 are free)
CMIOC on sequencer 0 (seq 0 is free)

2 free seqs on LANA -- 0 1 -- totalling 8K procs

#I This message shows that the CM named 'LANA' has two free sequencers.

To attach to LANA and initialize *Lisp, we type: I#

> (*cold-boot)

Not attached. Attaching...

;;; Loading source file "/cm/configuration/configuration.lisp"
4096

(64 64)

#1 At this point, *Lisp is loaded, CM hardware is attached, and both
*Lisp and the CM have been initialized. *Lisp is now ready for you to

begin loading and running your own *Lisp programs. #
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D.2 *Lisp Simulator Startup Session

#1 As with the hardware version of *Lisp, type the UNIX-level command

that loads the *Lisp software. In this case, it is: 1#

% /usr/local/starlisp-simulator

#1 Sun Common Lisp displays its version and copyright information: I#

;;; Sun Common Lisp, Development Environment 3.0.5 (Rev 01), 30-Aug-90

;;; Sun-4 Version for SunOS 4.0

;;; Copyright (c) 1985, 1986, 1987, 1988 by Sun Microsystems, Inc., All

Rights Reserved

;;; Copyright (c) 1985, 1986, 1987, 1988 by Lucid, Inc., All Rights Re-

served

;;; This software product contains confidential and trade secret

;;; information belonging to Sun Microsystems. It may not be copied

;;; for any reason other than for archival and backup purposes.

#I The the "CM Initializations" file is loaded, displaying the current

*Lisp patch level: I#

;;; Loading source file "/cm/patch/initializations.lisp"

*Lisp Patch Level 0

#1 Your "lisp-init.lisp" file is loaded, if you have created one: I#

;;; Loading source file "/users/adminl/massar/lisp-init.lisp"

The Lucid Compiler is in DEVELOPMENT mode

#I Now the simulator is loaded and ready for use. To initialize it, type

the *Lisp command to select the *Lisp software package: I#

> (*lisp)

Default package is now *SIM.

#1 And type *cold-boot to initialize *Lisp. I#

> (*cold-boot)
Thinking Machines Starlisp Simulator. Version 18.0

1

(8 4)

#I The *Lisp simulator is now loaded and ready for you to begin loading

and running your own *Lisp programs. I#
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Language Index

This index lists all *Lisp and Common Lisp language elements used in this document. Page numbers
printed in bold face type contain definitions, important examples, or central concepts related to a
particular function or macro. Operators that have no bold-faced page numbers are only used in
examples and are not defined in this document.

Definitions of all *Lisp functions and macros are available in the *Lisp Dictionary.

Definitions of all Common Lisp functions, macros, and special forms are available in Common Lisp:
The Language, by Guy L. Steele (Burlington, Massachusetts: Digital, 1990).

Symbols & Numbers
11, 22, 26,29,46
+11, 23, 25, 30, 32, 33, 39, 63, 65, 69, 79, 80,

81, 85, 86, 89,91,92, 97, 120,121
-1!, 25, 39,42, 100
*!!, 7, 30, 32, 79, 85, 86, 89, 92, 93, 106, 121
I/1, 7, 26, 30, 60, 63, 70
1=!1, 106
=!1, 99

11l, 14, 51, 100, 101, 106, 122, 123
<c=l, 14, 122, 123
>1!, 14, 122, 123
1+!!, 7, 14, 30, 121, 122, 123
1-11, 14, 122, 123

A
*all, 40, 106
allocatell, 66, 114
allocate-list-pvar, definition, 109
allocate-processors-for-vp-set, 108, 109
*and, 47
apply, 124
array-to-pvar, 48
*automata-grid*, definition, 5, 119

B
break, 61, 62

C
cadr, 14, 120, 122
car, 14, 120, 122
case, 40
char-intll, 95
cm:attach, 135, 136
cm:attached, 136
cm:detach, 19, 137
cm:flnger, 4, 136, 141
cm:time, 89, 89-91, 137
coercell, 88
*cold-boot, 4, 5, 19, 27, 28, 38, 45, 52, 52,

55, 62, 64, 66, 70, 135, 141, 142
compile, 34, 60, 69, 75, 91, 92, 93, 94, 95
compile-file, 34, 75
*compilep*, 80
compiler-options, 78
*compiling*, 80
complexl, 26
cond, 40
condll, 14, 122, 123
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C, cont.
create-segment-set!!, 114
*current-automaton*, definition, 123
*current-cm-configuration*, 28, 52, 55
*current-vp-set*, 56, 56

D
deadp, definition, 17, 121
deallocate-processors-for-vp-set, 108
declare, 69, 79, 86, 92, 93, 94, 95, 99, 101
*default-vp-set*, 56, 56
defaultp, definition, 56
defautomaton, definition, 122
defmacro, 33, 109, 122
*defstruct, 26, 105, 114
*defun, 33
defun, 5, 6, 7, 8, 11, 13, 14, 15, 17, 32, 44, 60,

69, 85, 86, 87, 89, 90, 91, 92, 93, 94,
95, 99, 100, 101, 102, 105, 107, 110,
120, 121,122, 123, 124

*defvar, 5, 23, 24, 26, 39, 40, 45, 47, 48, 50,
51, 53, 65, 66, 84, 90, 100, 104, 106,
108, 119

defvar, 8, 12, 48, 66, 85, 119, 122, 123
def-vp-set, 53, 108
describe-pvar, 69

dolist, 14, 120
dotimes, 8, 11, 65, 86, 90, 110, 121, 124

E
ecase, 13, 40, 121
enumerate!!, 40, 94, 107
eq, 56
evenp!!, 7, 25, 39, 40, 47, 61, 121, 123
exp!!, 30

F
find!!, 113
float!!, 26, 30
floor!!, 7, 121, 123
format, 110
front-end!!, 26

G, H, I
grid, 6, 45, 120

if, 40, 93, 94
if!!, 7, 14, 39, 40, 47, 99, 100, 121, 122, 123
*immediate-error-if-location*, 78
in-package, 119

init, definition, 14, 120
initialize, definition, 124
int-char!!, 26, 95
*interpreter-safety*, 62, 63

L
lambda, 122
Icl:quit, 19
length!l, 113

*let, 13, 14, 23, 65, 86, 99, 100, 101, 102, 105,
106, 109, 110, 121,122, 123

let, 48, 80, 101, 105, 109, 110
*light, 114
*lisp, 4, 19, 141, 142

list, 55, 109, 120, 122
*list-stat-processor*, definition, 108
load, 34
loop, 66

M
macroexpand-1, 80
make-array!!, 26, 113
*max, 47, 103
max, 109
*min, 47
*minimum-size-for-vp-set*, 108, 109

mod!!, 8, 50, 104, 120
moore-count, definition, 13, 121

N
neighbor-count, definition, 13, 121
*neighborhood*, definition, 12, 119
neumann-count, definition, 13, 120
*news, 44
news!!, 12, 13, 44, 120, 121
next-power-of-two->=, 108, 109
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N, cont.
nil!!, 23, 25, 47
not!!, 38
*number-of-elements*, definition, 108
*number-of-processors-limit*, 28, 42, 52,

55

0
oddp!!, 39
one-step, definition, 7, 14, 121, 122
*or, 47
or!!, 14, 99, 106, 122, 123

P
pbp, definition, 100
plusp!!, 109
position!!, 113
ppme, 80
ppp, 5, 24, 25, 30, 31, 33, 39, 40, 42, 46, 47,

48, 49, 50, 51, 100, 101, 102, 104,
106, 110, 120

ppp!!, 101
pprint, 80
pref, 6, 24, 45, 97, 99, 103, 104, 110, 120
prefll, 42, 100, 104, 105, 106
pref!!-many-collisions, definition, 105
pretty-print-pvar, 5

See also ppp
print, 48
*print-array*, 48
print-lists, definition, 110
*proclaim, 84, 89, 90, 93
proclaim, 84, 85
progn, 109, 122
*pset, 42, 94, 105, 106, 107, 109
push, 66
pvar-to-array, 48

Q
quit. See Icl:quit, sys:quit

R
random!!, 6, 8, 25, 30, 47, 51, 53, 86, 110,

120
random-grid, definition, 8, 120
rank!!, 51, 105, 107
read-cell, definition, 6, 120
realpart!!, 85
*room, 68

room, 68
run, definition, 8, 121

S
*safety*, 77, 78
scan!l, 49, 98, 99, 102, 103, 105, 106, 107,

108, 109, 114
segment-set-scan!l, 114
segmented-news!!, definition, 102, 103
self-address!!, 25, 26, 30, 31, 32, 33, 39, 40,

42,47,50, 51, 61, 70, 99, 100, 102,
103, 104, 105, 106, 110

serial-one-step, definition, 11
*set, 6, 8, 24, 33, 38, 39, 40, 65, 80, 85, 90,

93, 94, 99, 101, 102, 103, 106, 109,
120

set-cell, definition, 6, 120
set-cells, definition, 14, 120
set-grid, definition, 6, 8, 120
set-vp-set, 55, 56
*setf, 6, 24

applied to pref, 6, 24, 45, 99, 103, 104, 120
setf, 6
setq, 30, 77, 78, 79, 80, 91, 122, 123
setup, definition, 123
sideways-aref!!, 113
*sideways-array, 113
signum!l, 13, 17, 121
sin!!, 30
slc::*show-expanded-code*, 79, 80
sort!!, 51
spread!!, 51
substitute!!, 113
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S, cont.
*sum, 17, 47, 61, 62, 63, 105, 109, 121
sys:quit, 19

T
tl, 23, 25, 47, 102, 103
test-lists, definition, 110
test-very-long-add, definition, 101
the, 80, 81, 87, 94
*total-number-of-states*, definition, 8, 119
trace-stack, 67, 67--68

U
unless, 40

V
values, 100, 101
very-long-addl!, definition, 99
view, definition, 5, 120
view-step, definition, 15, 121

W, X,Y,Z
*warm-boot, 61, 62, 65, 66, 69, 70
*warning-level*, 77, 91
*when, 38, 39, 40, 47, 51, 61, 101, 103, 106,

109
when, 40
with-css-saved, 40
*with-vp-set, 55, 109, 110
zerop, 17, 121
zeropll, 14, 50, 99, 104, 106, 122, 123
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Concept Index

This index lists all *Lisp and Common Lisp concepts used in this document. Page numbers printed in
bold face type contain definitions or important examples of a particular concept.

Items printed in italic type are titles of documents in the Connection Machine Documentation set, or
titles of related books. A list of all referenced documents can be found in the About This Manual
section, under the heading "Related Documents."

*Lisp

*Lisp, 1, 128, 131, 131-133
11 and *, naming convention, 30
batch mode, 133
compiled code, displaying, 79, 79-81

Symbolics commands for, 81
compiler, 75, 75-76, 132

safety level, 77

warning level, 77

warning messages.
See compiler warning messages

compiler options, 77, 77-78
compiling, 34, 75, 75-76, 89-91

data parallelism. See data parallelism
data types. See pvar data types
declaring.

See type declaration (separate topic)
error checking

compiler, 77

See also *safety*, *warning-level*
interpreter, 62

See also *interpreter-safety*
exiting, 19
front-end Lisp environment, 132
hardware version, 4
initializing, 4, 19, 27, 52
interpreter, 62, 132
language, 1, 21, 128, 131

*Lisp, cont.
loading software, 4
on the CM, 131
on-line code examples, 18, 97, 115
selecting package, 4, 19
simulator version, 4, 45, 52, 132
timesharing, 133
timing, 89, 89-91, 137
type declarations.

See pvar type declarations
using, 5

*Lisp compiler. See *Lisp, compiler
*Lisp Dictionary, xi, 30, 33, 40, 65, 68, 75,

78, 81, 101, 108, 113, 115
*Lisp in batch. See *Lisp, batch
*Lisp interpreter. See *Lisp, interpreter
*Lisp simulator. See *Lisp, simulator version
*Lisp under timesharing.

See *Lisp, timesharing

A
aborting from the debugger.

See debugger, aborting from
active processors, 38, 130

See also currently selected set
addresses, of processors.

See processor addresses
allocating a pvar. See pvar, allocating
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A, cont.
array

See also "sideways" array pvars
pvar data type, 26, 83, 113

*Lisp operations for, 113
pvar type specifier, 83

array/pvar conversion functions, 46, 48
arrays, and pvars, similarities, 27
attaching to a CM. See CM, attaching
automata. See cellular automata

B
batch mode *Lisp. See *Lisp, batch mode
bit-array pvars, 113

See also array, pvar data type
boolean

pvar data type, 25, 82
pvar type specifier, 82

bulk data movement.
See array/pvar conversion functions

C
calling parallel functions.

See parallel functions, calling
calling parallel macros.

See parallel macros, calling
cell. See cellular automata
cellular automata, 2, 2-3

9 Life. See 9 Life automaton

cells, 2, 5
defining, 7, 7-9, 10-16
grid, 2, 3, 5, 12
Life. See Game of Life

neighborhoods, 10

Moore, 10, 13, 16
Von Neumann, 10, 13, 16

neighbors, 2, 10

cellular automata, cont.
rules, 2, 7, 10
states, 2, 3
typical ending conditions of, 9

changing a value of a pvar. See pvar
character

pvar data type, 26, 83
pvar type specifier, 83

clear the stack,
*Lisp operators that automatically, 65

CM, ix, 1, 4, 5, 11, 127, 127-133
See also Connection Machine system
attaching, 4, 27, 135
cold booting, 27, 52

and active processors, 38
current state, 28

See also configuration variables
data parallelism of. See data parallelism
detaching, 19, 137
FEBI. See FEBI
finding a CM to use. See CM, fingering
fingering, 136
front end. See front end
front panel LEDs. See LEDs, front panel
H-bus cable. See H-bus cable
initializing. See CM, cold booting
memory

and pvars, 22, 27

stack and heap, 65
Nexus. See Nexus
parallel instruction set. See Paris
resetting the state of.

See CM, warm booting
section. See section
sequencer. See sequencer
warm booting, 61

CM Parallel Instruction Set. See Paris

CM Parallel Instruction Set (Paris), xi, 114
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C, cont.
CM processors, 5, 11, 12, 129

address of. See send address
arrangement, 27

See also processor grid
communication.

See processor communication
selection and deselection.

See processor selection
value of a pvar for, 21, 22, 25

CMSystem User's Guide, ix, xi, 4, 19, 135
CM Technical Summary, ix, xi
code examples, on-line. See *Lisp, online

code examples
cold booting. See *cold-boot; CM, cold

booting
command

editor, for compiling code. See editor
commands for compiling code

for loading *Lisp. See *Lisp, loading
software

Common Lisp
language, ix, 1, 21, 131
tutorials, ix, xi

Common Lisp: The Language, ix, xii
communication

See also processor communication
between front end and CM, 46, 128
"global" operators, 46, 47

compiler
*Lisp. See *Lisp, compiler
safety level. See *Lisp, compiler safety

level
warning level. See *Lisp, compiler warning

level

compiler error checking. See *Lisp, error
checking

compiler options. See *Lisp, compiler options

compiler warning messages, 91, 91-95
can't determine type returned by, 92

compiler warning messages, cont.
can't find type declaration, 91, 92
does not compile special form, 93
does not understand how to compile, 94
function expected a...argument but got, 95

compiling *Lisp code. See *Lisp, compiling
complex

pvar data type, 26, 83
pvar type specifier, 83

configuration
See also processor grid
*Lisp operators. See *cold-boot; VP sets
custom. See VP sets
of processors, 27, 28

configuration variables, 28
Connection Machine Parallel Instruction Set

(Paris), xi, 114
Connection Machine Parallel Instruction Set

(Paris). See Paris
Connection Machine philosophy.

See The Connection Machine

Connection Machine system, ix, xii, 1
See also CM

Connection Machine, The. xii
"Connection Machine".

See Connection Machine system
conversion

between arrays and pvars.
See array/pvar conversion functions

of scalars to pvars. See scalar promotion
Conway, John H., 2
copying a pvar. See pvar, copying
copying data across the processor grid.

See scanning, spreading
creating a pvar. See pvar, defining
creating VP sets. See VP sets
cumulative parallel operations. See scanning
current VP set. See VP sets

currently selected set
See also active processors
of processors, 38, 130
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D
data parallel processing, 127

CM model, 128
examples, 128

data parallel programming, 128
data parallelism, 6, 25, 37, 128
data types

of pvars. See pvar data types
parallel. See pvar data types
scalar. See scalar data types

deallocating a pvar. See pvar, deallocating
debugger, 59, 70

aborting from, 61
commands, 71
display, 70, 71
messages from. See error messages

declarations. See type declarations
default VP set. See VP sets
defined-float

pvar data type, 26, 82
pvar type specifier, 82

defining a pvar. See pvar, defining
defining parallel functions, 32, 32-33

See also parallel functions
defining parallel macros, 33

See also parallel macros
defining VP sets. See VP sets
deselection of processors.

See processor selection
detaching from a CM. See CM, detaching
displaying compiled code.

See *Lisp, compiled code, displaying

E
editor commands, for compiling code, 34, 76
enumerating selected processors, 40
error checking. See *Lisp, error checking
error messages, 60, 64

break message, 61
"bus error," 64, 69
executing code without CM attached, 64
executing code without cold booting, 64
FEBI error message. See FEBI

error messages, cont.
from stack-tracing facility, 67
"is not a pvar," 69
obscure error messages, 70
parallel division by 0, 60, 63, 71
running out of CM heap memory, 66
running out of CM stack memory, 65
running out of temporary pvars, 66
running out of VP sets and geometries, 66
sequencer error message. See sequencer
"timed out on safe FIFO read", 64
typing mistake, 60

error recovery, 61, 61-62
importance of warm booting, 61

examples, on-line.
See *Lisp, on-line code examples

exiting *Lisp. See *Lisp, exiting
exiting from the debugger.

See debugger, aborting from

F
FEBI (front end bus interface), 129

error message about, 4
finding a CM to use. See CM, fingering
flexible VP set. See VP set, flexible
floating-point pvars. See defined-float
front end, 4, 26, 27, 37, 46, 48, 128
front end bus interface card. See FEBI
front panel LEDs. See LEDs, front panel
front-end

pvar data type, 26, 83
pvar type specifier, 83

front-end/CM communication.
See communication

functions
parallel. See parallel functions
user-defined. See parallel functions

funnels for data.
See "global" communication
operators
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G
Game of Life, 2, 10
GC, warning.

See warning messages, GC warning
general

pvar data type, 26, 83
pvar type specifier, 83

"get," parallel. See parallel "get"
getting a value from a pvar. See pvar
"global" communication operators, 46, 47
global parallel variable. See permanent pvar
global pvars

See also permanent pvar; pvars, global
defined by allocate!, 114

global type declarations.
See type declarations, global

global variables, in *Lisp.
See permanent pvar

grid
cellular automata. See cellular automata
processor. See processor grid
scanning. See scanning

grid communication. See processor
communication

H
H-bus cable, 129
heap, CM. See CM memory, stack and heap

:include-self, argument to scan!!, 49, 100
initial grid configuration

See also default VP set
set by *cold-boot, 52

initializing the CM. See CM, cold booting
integer pvars. See signed-byte, unsigned-byte
interpreter error checking.

See *Lisp, error checking
interpreter, *Lisp. See *Lisp interpreter

K
keystroke, editor, for compiling code.

See editor commands for
compiling code

L
LEDs, front panel, 114

See also *light
Life. See Game of Life
lion, statue of, 38
Lisp. See Common Lisp
Lisp/Paris. See Paris
list, data structure, 1

lack of pvar data type for, 108
using *Lisp tools to simulate lists, 108

"list" pvar, 108
lists. See list
Loading *Lisp.

See *Lisp, loading software
local parallel variables. See pvar, local
local pvar. See pvar, local
local variables, declaring the type of, 86

M
macros

parallel. See parallel macros
user-defined. See parallel macros

massively parallel processing, 127
memory

CM. See CM memory
running out of. See error messages

messages. See processor communication
Michelangelo, 38, 39
modifying a value of a pvar. See pvar
moving data to/from front end.

See array/pvar conversion functions
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N
neighbor. See cellular automata
neighborhood. See cellular automata
news communication.

See grid communication
"NEWS" communication, historical note, 44
Nexus, 129
9 Life automaton, 10, 14, 17, 123
numeric pvars

complex. See complex pvar data type
float. See floating-point pvars
integer. See integer pvars

O
on-line code examples.

See *Lisp, online code examples
options, compiler.

See *Lisp, compiler options

P
package, *Lisp.

See *Lisp, selecting package
parallel data transformations, 49

See also
parallel prefixing;
scanning;
sorting;
spreading

parallel equivalent,
of a Common Lisp function, 30

parallel functions
calling, 33
predefined, 30
user-defined, 32

arguments, declaring the type of, 86

declaring the type of, 85
parallel "get", 42

See also router communication
parallel instruction set. See Paris
parallel macros

calling, 34
user-defined, 33

parallel prefixing. See scanning
parallel processing, 127

See also serial processing
parallel "send", 42

See also router communication
parallel sort. See sorting
parallel variable, 1, 5, 21

See also pvar
parallelism

data. See data parallelism
of CM, 5, 127

Paris, 76, 79, 128, 132, 135
permanent pvar. See pvar, permanent
physical processors, 53, 131
predefined pvars. See pvar, predefined
pretty-print-macroexpand. See ppme
printing a pvar. See pvar, printing
processor communication, 41, 130

grid communication, 43, 102, 130

*Lisp operators for, 44
router communication, 41, 102, 104, 108,

130

*Lisp operators for, 42
processor grid, 27

See also configuration; configuration
variables; VP sets

and grid communication, 43
and pvar shapes, 27, 29, 52
and VP sets, 27, 29, 53
setting the size and shape of, 27, 52

processor selection, 38, 130
*Lisp operators for, 38, 40
and deselection, 38
and enumeration. See enumeration

processors, 127
CM. See CM processors
memory of, 129
physical. See physical processors
virtual. See virtual processors; VP sets

promotion, of scalars to pvars. See scalar
promotion
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P, cont.
pvar, 1, 5, 21

allocating, deallocating, 22
array. See array, pvar data type
bit-array. See bit-array pvars
boolean. See boolean, pvar data type
changing a value of, 6, 24
character. See character, pvar data type
complex. See complex, pvar data type
copying, 24
data types, 21, 25, 25-26, 81, 81
declaring the type of, 84
defined-float. See defined-float, pvar data

type
defining, 5, 22, 23
front-end. See front-end, pvar data type
general. See general, pvar data type
global, 114
global variables. See pvar, permanent
"list" pvar, 108
local, 23, 86

declaring the type of, 86
permanent, 5, 23, 84, 108

declaring the type of, 84
predefined, 23
printing, 5, 24, 31, 31-32
reading a value from, 6, 23
sequence. See sequence pvars
setting the value of, 6, 24
signed-byte. See signed, pvar data type
similarity to arrays, 27
size and shape of, 27-29, 29
sorting the values of, 51
structure. See structure, pvar data type
temporary, 22
type declarations, 34, 81, 81-87

See also type declaration (separate topic)
type specifiers, 82, 82-83
undeclared

default to general type, 83

will not compile, 88
undefining all pvars, 62

pvar, cont.
unsigned-byte. See unsigned-byte, pvar

data type
using VP sets to define, 53
values of, 21
vector. See vector pvars

pvar/array conversion functions.
See array/pvar conversion functions

Q, R
quitting *Lisp. See *Lisp, exiting
rational numbers, lack of pvar data type for, 7
reading a value from a pvar. See pvar
recovering from errors. See error recovery
router, 41, 130

See also processor communication
router communication.

See processor communication
rule. See cellular automata
running *Lisp code

compiled. See *Lisp, compiler
in batch. See *Lisp, batch
interpreted. See *Lisp, interpreter
simulated. See *Lisp, simulator version
under timesharing. See *Lisp, timesharing

S
safety level, compiler.

See *Lisp, compiler safety level
scalar

data types, 21, 25
promotion to pvars, 23, 25
values, 21, 22
variables, declaring the type of, 85, 86

scanning, 49, 97-112
examples of

adding very large integers, 97, 97-101

defining new parallel data structures,
108, 108-111

defining segmented functions, 102,
102-104
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S, cont.
scanning, cont.

examples of, cont.

using the router efficiently, 104,
104-107

segmented, 50
with segment sets. See segment set objects

section, CM, 130
segment set objects, 114
segmented pvars. See scanning, segmented
selected set, of processors. See currently

selected set
selected VP set. See current VP set
selecting VP sets. See see VP sets
selection of processors.

See processor selection
send address, 25
"send," parallel. See parallel "send"
sequence pvars, 113

See also array, pvar data type
sequencer, 130

error message about, 4
serial processing, 127

See also parallel processing
serial programming,

compared with parallel, 11
setting a pvar. See pvar, copying
setting a value of a pvar. See pvar
"sideways" array pvars, 113
signed-byte

pvar data type, 25, 82
pvar type specifier, 82

simulator. See *Lisp, simulator version
sorting, 51
spreading, 50
stack

clearing. See clear the stack
CM. See CM memory, stack and heap

Starlisp. See *Lisp

Starting *Lisp. See *Lisp, loading software
state. See cellular automata
statue of lion. See lion, statue of
structure

pvar data type, 26, 83, 105, 114

example of, 105
pvar type specifier, 83

T
temporary pvar. See pvar, temporary
timesharing *Lisp. See *Lisp, timesharing
timing *Lisp code. See *Lisp, timing
tracing stack memory use, 67-68
transformations, on pvars.

See parallel data transformations
type declaration

and general pvars, 26, 88
and the compiler, 34, 76, 87, 87-88
complete guidelines, 75
effect of.

See type declaration and the compiler
examples of, 84, 89
for pvars. See pvar type declarations
global, via proclaim, 84
in *Lisp, 35, 76, 82
in-line, via the, 87
local, via declare, 86
using, 84

type specifiers, for pvars.
See pvar type specifiers

U
undeclared pvars. See pvar, undeclared
undefining all pvars, 62
unsigned-byte

pvar data type, 25, 82
pvar type specifier, 82

using *Lisp. See *Lisp, using
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V
value(s), of a pvar.

See pvar, values of
variable

configuration. See configuration variables
parallel. See pvar
VP set. See VP set variables

vector pvars, 113
See also array, pvar data type

virtual processor sets. See VP sets
virtual processors, 53, 131

effect on CM operation, 53
VP set variables, 56
VP sets, 29, 53, 131

and processor grids, 27
default and current, 54
defining, 53
example of, 108
flexible, 108
selecting, 55
used to define pvar shapes, 53
using, 54
why VP "sets," 54

VP's. See virtual processors

W
warm booting.

See *warm-boot;
CM, warm booting

warning level, compiler.
See *Lisp, compiler warning level

warning messages
from the *Lisp compiler, 60

See also compiler warning messages
from your Lisp system, 59
GC warning, 59

writing a value of a pvar. See pvar
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